JP4510992B2 - Control method of press hydraulic power source - Google Patents

Control method of press hydraulic power source Download PDF

Info

Publication number
JP4510992B2
JP4510992B2 JP2000137351A JP2000137351A JP4510992B2 JP 4510992 B2 JP4510992 B2 JP 4510992B2 JP 2000137351 A JP2000137351 A JP 2000137351A JP 2000137351 A JP2000137351 A JP 2000137351A JP 4510992 B2 JP4510992 B2 JP 4510992B2
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
servo valve
primary
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000137351A
Other languages
Japanese (ja)
Other versions
JP2001317502A (en
Inventor
喜久雄 内田
Original Assignee
川崎油工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎油工株式会社 filed Critical 川崎油工株式会社
Priority to JP2000137351A priority Critical patent/JP4510992B2/en
Publication of JP2001317502A publication Critical patent/JP2001317502A/en
Application granted granted Critical
Publication of JP4510992B2 publication Critical patent/JP4510992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Presses (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、油圧制御分野におけるプレスの油圧源の制御方法に関するものである。
【0002】
【従来の技術】
従来、絞り加工や鍛造、モールディング等に油圧プレスが広く使用され、その油圧源としてはサーボポンプや定吐出量の油圧ポンプが利用されている。
【0003】
サーボポンプは、所要の流量を適切に供給できるので好ましいが、高価であるとともに騒音が生じるものであった。
【0004】
【発明が解決しようとする課題】
それに比べて定吐出量の油圧ポンプは、安価で騒音も緩和できるが、油圧ポンプの吐出量が一定でリリーフ弁で余分の圧力や流量を放出しており、エネルギー損失が大きいものであった。
【0005】
また、近年、アクチュエーターの制御に精度の向上からサーボ弁が多用されるようになっているが、サーボ弁の使用時にはその油圧源が十分な圧力で十分な流量であることを必要とし、折角昇圧した油圧油を常にリリーフ弁から放出した状態で油圧源が使用され、騒音の発生や大きなエネルギーの損失を招いているものであった。
【0006】
【課題を解決するための手段】
本発明は、上記のような点に鑑みたもので、上記の課題を解決するために、プレスの加圧シリンダーに油圧源を接続してスライドの位置や速度、押圧力の油圧制御をするプレスの油圧源の制御方法であって、油圧源をサーボポンプでない可変吐出量の油圧ポンプとするとともに、加圧シリンダーのアクチュエーターにサーボ弁を接続してこのサーボ弁の油圧配管の一次側と二次側に圧力センサーを配設してサーボ弁の油圧配管の一次側と二次側の差圧を検出し、サーボ弁の一次側と二次側の圧力差が常圧時の2〜10%の範囲内で、負荷の要否に対応した可変の圧力差で油圧ポンプを吐出量制御するようにして、プレスの絞り時、加圧負荷時にサーボ弁の一次側と二次側の油圧油の圧力差が常圧の3〜6%とし、プレスのアプローチやリターン時に常圧2〜3%として油圧源の油圧ポンプを駆動制御するようにしたことを特徴とするプレスの油圧源の制御方法を提供するにある。
【0007】
【発明の実施の形態】
本発明のプレスの油圧源の制御方法は、プレスの加圧シリンダーに油圧源を接続して
スライドの位置や速度、押圧力の油圧制御をするプレスの油圧源の制御方法であって、油圧源をサーボポンプでない可変吐出量の油圧ポンプとするとともに、加圧シリンダーのアクチュエーターにサーボ弁を接続してこのサーボ弁の油圧配管の一次側と二次側に圧力センサーを配設してサーボ弁の油圧配管の一次側と二次側の差圧を検出し、サーボ弁の一次側と二次側の圧力差が常圧時の2〜10%の範囲内で、負荷の要否に対応した可変の圧力差で油圧ポンプを吐出量制御するようにして、プレスの絞り時、加圧負荷時にサーボ弁の一次側と二次側の油圧油の圧力差が常圧の3〜6%とし、プレスのアプローチやリターン時に常圧2〜3%として油圧源の油圧ポンプを駆動制御するようにしたことを特徴としている。
【0008】
絞りプレス等の油圧プレス1には、図1のようにスライド昇降の加圧シリンダーのアクチュエーター2の制御にサーボ弁3を使用し、油圧源に可変吐出量の油圧ポンプ4を駆動して油圧タンク5から油圧油を送給するようにしたものである。
【0009】
上記サーボ弁3の油圧源側の一次側の配管6とアクチュエーター側の二次側の配管7、8には、図1のようにそれぞれアナログやディジタル式の圧力センサー9、10、11を配設し、サーボ弁3の一次側と二次側の油圧の圧力を検出して所定の圧力差△Pとなるように油圧ポンプ4を駆動制御してその流量を必要最低限とし、エネルギーの放出をできるだけ防止するようにしている。
【0010】
たとえば、図2のようにサーボ弁3の二次側の油圧の負荷側と反負荷側となる両方の油圧配管に接続した圧力センサー10、11はポンプ制御回線の入力端子部12にそれぞれ接続して、サーボ弁3の切り替えと同時に負荷側の圧力センサー側に切り替えたり、常に大きな検出圧力値の方を採用するようにし、この二次側の検出圧力に所定の圧力差△Pの加算した値にサーボ弁3の一次側の圧力センサー9での検出圧力値を減算し、この結果に所定の許容値を加算してゲイン処理するとともに、所要のバイアス処理をしてプランジャーポンプ等の油圧ポンプ4の吐出量を必要最低限となるように傾転角制御などを行うようにしている。
【0011】
このような電気的変換処理は、上記のような手段の他に比較器等を用いるなど公知の制御手段を使用して行うことができ、サーボ弁3の一次側と二次側との圧力差の検出は差圧センサーを用いて行うこともできる。
【0012】
上記圧力差△Pとしては、使用する油圧系の常圧の2〜10%、好ましくは3〜6%位がサーボ弁3の安定した作動用に必要かつ十分であり、このように油圧ポンプ4を傾転角制御や回転数制御するのが油圧ポンプ4の負荷をできるだけ少なくし、エネルギー損失を有効に防止できて好ましい。
【0013】
上記圧力差△Pの値は、使用する油圧系に対して適切なものとすることができるが、常圧の2〜10%の範囲において可変に設定し、必要なときにはサーボ弁の一次側と二次側の圧力差が常圧の3〜6%とし、必要としないときには常圧の2〜3%として油圧ポンプを駆動制御することが好ましい。
【0014】
また、上記したサーボ弁3は、スライド昇降の加圧シリンダーのアクチュエーター2側に配設するのが、スライド昇降の加圧シリンダーのアクチュエーター2の作動を的確に制御できて好ましいが、油圧ポンプ4側に近く配置することもできる。
【0015】
【実施例】
図1〜図3は、本発明の油圧プレス1に実施した一実施例を示すものである。油圧プレス1の絞り用のスライド昇降の加圧シリンダーのアクチュエーター2を油圧制御するために、図1のようにサーボ弁3を配管接続するとともに、このサーボ弁3の油圧供給側の一次側の配管6とアクチュエーター側の二次側の配管7、8には、それぞれアナログやディジタル式の圧力センサー9、10、11を配設し、一次側と二次側の負荷される油圧の圧力差を検出するようにしている。
【0016】
そして、図2のようにサーボ弁3のこの二次側の油圧負荷側の検出圧力値に所定の圧力差△Pを加算した値にサーボ弁3の一次側の圧力センサー9での検出圧力値を減算し、この値の前後となるように油圧ポンプ4を傾転角制御し、吐出量を必要最低限となるように油圧の供給を行うようにしている。
【0017】
すなわち、サーボ弁3の前後の圧力差△Pが、たとえば常圧30MPaの3〜6%位の約0.9〜1.0MPaとなるように油圧ポンプ4の吐出量を必要最低限となるように傾転角制御し、油圧ポンプ4のエネルギーの損失をできるだけ防止し、かつ油圧ポンプ4の騒音の低減もはかれるようにしているものである。
【0018】
また、加圧シリンダーのアクチュエーター2をサーボ弁3で昇降制御するため、加圧シリンダーのアクチュエーター2によるスライド13の位置、速度、押圧力制御を精度よく行うことができる。
【0019】
そして、図3のようなプレス−ストローク線図において、アプローチ時やリターン時には常圧30MPaの2〜3%の約0.6〜0.9MPaの圧力差の油圧制御とし、絞り時や加圧負荷時には常圧の30MPaの3〜6%の約0.9〜1.8MPaとしてさらに油圧ポンプ4のエネルギー損失を少なくするようにもできる。このように負荷の要否等に対応してサーボ弁の一次側と二次側との圧力差を可変にして制御することが好ましい。
【0020】
図4は、本発明の他の実施例で、サーボ弁3を油圧ポンプ4側に配設したものである。本実施例にあっても、上記と同様の効果を奏することができる。
【0021】
上記では、絞りプレスの油圧プレスについて説明したが、FRPプレスや鍛造プレス、その他の油圧プレスにも適用できるものである。
【0021】
【発明の効果】
以上のように本発明にあっては、プレスの加圧シリンダーに油圧源を接続してスライドの位置や速度、押圧力の油圧制御をするプレスの油圧源の制御方法であって、油圧源をサーボポンプでない可変吐出量の油圧ポンプとするとともに、加圧シリンダーのアクチュエーターにサーボ弁を接続してこのサーボ弁の油圧配管の一次側と二次側に圧力センサーを配設してサーボ弁の油圧配管の一次側と二次側の差圧を検出し、サーボ弁の一次側と二次側の圧力差が常圧時の2〜10%の範囲内で、負荷の要否に対応した可変の圧力差で油圧ポンプを吐出量制御するようにして、プレスの絞り時、加圧負荷時にサーボ弁の一次側と二次側の油圧油の圧力差が常圧の3〜6%とし、プレスのアプローチやリターン時に常圧2〜3%として油圧源の油圧ポンプを駆動制御することによって、サーボ弁の安定した作動用に必要かつ十分な圧力で油圧制御できて油圧ポンプの負荷をできるだけ少なくし、エネルギーの損失を防止することができ、かつ油圧ポンプの騒音の低減もはかることができる。
【0022】
そして、サーボ弁の一次側と二次側の圧力差が常圧時の2〜10%の範囲内のもので、特にプレスの絞り時、加圧負荷時にサーボ弁の一次側と二次側の油圧油の圧力差が常圧の3〜6%とし、プレスのアプローチやリターン時に常圧2〜3%として油圧ポンプを吐出量制御して、油圧プレスの油圧ポンプの負荷をできるだけ少なくし、エネルギーの損失を防止することができ、かつ油圧ポンプの騒音の低減がはかれる。
【0023】
また、上記した圧力差の検出は、サーボ弁の加圧シリンダーのアクチュエーター側である二次側の油圧の負荷側と反負荷側の両方の油圧配管に圧力センサーをそれぞれ配設して、サーボ弁の切り換えと同時に油圧の負荷側の圧力センサーに切り替え、または常に大きな検出圧力値の方の圧力センサーを採用して一次側の圧力センサーとの圧力差を検出することで行え、上記のようにサーボ弁の安定した作動用に必要かつ十分な圧力で油圧制御できて油圧ポンプの負荷をできるだけ少なくし、エネルギーの損失を防止することができ、かつ油圧ポンプの騒音の低減もはかることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例の油圧回路図、
【図2】 同上の制御説明図、
【図3】 同上のプレス−ストローク線図、
【図4】 同上の他の実施例の油圧源部の油圧回路図。
【符号の説明】
1…油圧プレス 2…アクチュエーター 3…サーボ弁
4…油圧ポンプ 9、10、11…圧力センサー
[0001]
[Technical field to which the invention belongs]
The present invention relates to a control method of a hydraulic source of the pre-scan in the hydraulic control field.
[0002]
[Prior art]
Conventionally, a hydraulic press is widely used for drawing, forging, molding, and the like, and a servo pump and a hydraulic pump with a constant discharge amount are used as the hydraulic source.
[0003]
The servo pump is preferable because it can supply a required flow rate appropriately, but it is expensive and generates noise.
[0004]
[Problems to be solved by the invention]
In contrast, a hydraulic pump with a constant discharge amount is inexpensive and can mitigate noise, but the discharge amount of the hydraulic pump is constant and excessive pressure and flow rate are released by a relief valve, resulting in a large energy loss.
[0005]
In recent years, servo valves have been frequently used for actuator control due to improved accuracy. However, when using servo valves, it is necessary that the hydraulic power source has a sufficient pressure and a sufficient flow rate. The hydraulic power source was used in a state in which the hydraulic oil was always discharged from the relief valve, resulting in noise generation and large energy loss.
[0006]
[Means for Solving the Problems]
The present invention has been in view of the points mentioned above, is to solve the above problems, by connecting the hydraulic source to the pressurized cylinder of pre-scan position and speed of the slide, the hydraulic control of the pressing force a method of controlling a hydraulic source of the pre-scan, as well as a variable discharge hydraulic pump not servo pump hydraulic pressure source, and by connecting the servo valve to the actuator of the pressure cylinder primary side of the hydraulic pipes of the servo valve A pressure sensor is arranged on the secondary side to detect the differential pressure between the primary side and the secondary side of the hydraulic piping of the servo valve, and the pressure difference between the primary side and the secondary side of the servo valve is 2 to 10 at normal pressure. %, The hydraulic pump discharge rate is controlled with a variable pressure difference corresponding to the necessity of the load, and the hydraulic oil on the primary and secondary sides of the servo valve when the press is throttled or pressurized The pressure difference of 3 to 6% of normal pressure, press approach and litter Sometimes to provide a method of controlling the pre-scan hydraulic source, characterized in that so as to drive control the hydraulic pump of the hydraulic source as 2-3% normal pressure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The method of pre-scan hydraulic source of the present invention connects the hydraulic source to the pressurized cylinder pre scan
Position and speed of the slide, a control method of the pre-scan hydraulic source for the hydraulic control of the pressing force, together with the variable discharge rate of the hydraulic pump to a hydraulic pressure source is not a servo pump, a servo valve to the actuator of the pressure cylinder Connected, pressure sensors are installed on the primary and secondary sides of the servo valve's hydraulic piping to detect the differential pressure between the primary and secondary sides of the servo valve's hydraulic piping. The pressure difference on the secondary side is within the range of 2 to 10% of the normal pressure, and the discharge amount of the hydraulic pump is controlled with a variable pressure difference corresponding to the necessity of the load. Occasionally, the hydraulic pressure difference between the primary and secondary hydraulic fluids of the servo valve is set to 3-6% of the normal pressure, and the hydraulic pump of the hydraulic source is driven and controlled at the normal pressure of 2-3% during the press approach and return. It is characterized by that.
[0008]
The hydraulic press 1 such as a press stop, using the servo valve 3 for controlling the actuator 2 of the pressure cylinder slide elevation as in Figure 1, the hydraulic tank by driving the hydraulic pump 4 of the variable discharge amount hydraulic source The hydraulic oil is fed from 5.
[0009]
As shown in FIG. 1, analog or digital pressure sensors 9, 10 and 11 are arranged on the primary side pipe 6 and the actuator side secondary pipes 7 and 8 of the servo valve 3, respectively. Then, the hydraulic pressure of the servo valve 3 is detected and the hydraulic pump 4 is driven and controlled so that a predetermined pressure difference ΔP is obtained, so that the flow rate is minimized and the energy is released. I try to prevent it as much as possible.
[0010]
For example, as shown in FIG. 2, the pressure sensors 10 and 11 connected to both the hydraulic pressure load side and the counter load side hydraulic pressure side of the servo valve 3 are respectively connected to the input terminal portion 12 of the pump control line. Thus, at the same time as the servo valve 3 is switched, the switch is switched to the pressure sensor on the load side, or a larger detected pressure value is always adopted, and a value obtained by adding a predetermined pressure difference ΔP to the detected pressure on the secondary side. The pressure value detected by the pressure sensor 9 on the primary side of the servo valve 3 is subtracted from the result, a predetermined allowable value is added to the result, gain processing is performed, and a necessary bias processing is performed to perform a hydraulic pump such as a plunger pump. Inclination angle control and the like are performed so that the discharge amount 4 is the minimum necessary.
[0011]
Such an electrical conversion process can be performed by using a known control means such as a comparator in addition to the above means, and the pressure difference between the primary side and the secondary side of the servo valve 3. This can also be detected using a differential pressure sensor.
[0012]
As the pressure difference ΔP, 2 to 10%, preferably 3 to 6%, of the normal pressure of the hydraulic system to be used is necessary and sufficient for stable operation of the servo valve 3, and thus the hydraulic pump 4 It is preferable to control the tilt angle and the rotational speed because the load on the hydraulic pump 4 can be reduced as much as possible and energy loss can be effectively prevented.
[0013]
The value of the pressure difference △ P is can be appropriate to the hydraulic system used variably set in 2-10% of the range of normal pressure, when necessary and the primary side of the servo valve It is preferable to control the drive of the hydraulic pump so that the pressure difference on the secondary side is 3 to 6% of the normal pressure, and 2 to 3% of the normal pressure when not required .
[0014]
The servo valve 3 described above is preferably disposed on the actuator 2 side of the pressure cylinder for lifting and lowering the slide because the operation of the actuator 2 of the pressure cylinder for lifting and lowering the slide can be accurately controlled. It can also be placed close to.
[0015]
【Example】
1 to 3 show an embodiment implemented in the hydraulic press 1 of the present invention. The hydraulic press 1 of the throttle actuator 2 of the pressure cylinder slide elevation for for hydraulic control, a servo valve 3 as well as pipe connections as shown in Figure 1, the primary side of the hydraulic supply side of the servo valve 3 plumbing 6 and the actuator side secondary pipes 7 and 8 are provided with analog or digital pressure sensors 9, 10 and 11, respectively, to detect the pressure difference between the primary and secondary hydraulic pressures. Like to do.
[0016]
Then, as shown in FIG. 2, the detected pressure value by the pressure sensor 9 on the primary side of the servo valve 3 is added to a value obtained by adding a predetermined pressure difference ΔP to the detected pressure value on the secondary hydraulic load side of the servo valve 3. Is subtracted, and the hydraulic pump 4 is tilted so as to be before and after this value, so that the hydraulic pressure is supplied so as to minimize the discharge amount.
[0017]
That is, the discharge amount of the hydraulic pump 4 is minimized so that the pressure difference ΔP before and after the servo valve 3 becomes, for example, about 0.9 to 1.0 MPa, which is about 3 to 6% of the normal pressure 30 MPa. The tilt angle is controlled to prevent the energy loss of the hydraulic pump 4 as much as possible, and the noise of the hydraulic pump 4 can be reduced.
[0018]
Also, for raising and lowering controlling the actuator 2 of the pressure cylinder servo valve 3, it is possible to perform the position of the slide 13 by the actuator 2 of the pressure cylinder, the speed, the pressing force control accurately.
[0019]
In the press-stroke diagram as shown in FIG. 3, at the time of approach or return, hydraulic control is performed with a pressure difference of about 0.6 to 0.9 MPa, which is 2 to 3% of the normal pressure of 30 MPa. Sometimes, the energy loss of the hydraulic pump 4 can be further reduced to about 0.9 to 1.8 MPa, which is 3 to 6% of the normal pressure of 30 MPa. Thus, it is preferable to control the pressure difference between the primary side and the secondary side of the servo valve in a variable manner in accordance with the necessity of the load.
[0020]
FIG. 4 shows another embodiment of the present invention in which the servo valve 3 is disposed on the hydraulic pump 4 side. Even in this embodiment, Ru can be obtained the same effect as described above.
[0021]
While the invention has been particularly shown and described drawing press Press hydraulic, it is also applicable to FRP press or forging press, other hydraulic pre scan.
[0021]
【The invention's effect】
As described above, according to the present invention, there is provided a press hydraulic source control method in which a hydraulic pressure source is connected to a pressurizing cylinder to control the slide position, speed, and pressing force. It is a hydraulic pump with a variable discharge volume that is not a servo pump, and a servo valve is connected to the actuator of the pressurizing cylinder, and pressure sensors are arranged on the primary and secondary sides of the servo valve's hydraulic piping to provide the hydraulic pressure of the servo valve. The pressure difference between the primary side and the secondary side of the piping is detected, and the pressure difference between the primary side and the secondary side of the servo valve is within the range of 2 to 10% of the normal pressure. By controlling the discharge amount of the hydraulic pump with the pressure difference, the pressure difference between the hydraulic oil on the primary side and the secondary side of the servo valve during press squeezing and pressurizing load is 3 to 6% of normal pressure. When approaching or returning, the hydraulic pressure of the hydraulic source is set to 2 to 3% normal pressure. By controlling the driving of the flop, and minimize the load on the hydraulic pump can be hydraulic control in a stable necessary and sufficient pressure for the operation was of the servo valve, it is possible to prevent loss of energy, and the hydraulic pump noise Can also be reduced.
[0022]
Then, those pressure difference between the primary side and the secondary side of the servo valve in the 2-10% range of normal pressure, especially when squeezing the press, the primary side and the secondary side of the servo valve when the pressure load The pressure difference of the hydraulic oil is 3-6% of the normal pressure, the pressure of the hydraulic pump is controlled at the press approach and return at the normal pressure of 2-3% at the time of return, the load of the hydraulic pump of the hydraulic press is reduced as much as possible, energy The loss of the hydraulic pump can be prevented and the noise of the hydraulic pump can be reduced.
[0023]
In addition, the pressure difference is detected by arranging pressure sensors in the hydraulic piping on both the load side and the anti-load side of the secondary side, which are the actuator side of the pressurizing cylinder of the servo valve. At the same time as switching, it can be switched to the pressure sensor on the hydraulic load side, or the pressure sensor with the larger detection pressure value is always used to detect the pressure difference with the primary side pressure sensor. Hydraulic control can be performed at a pressure necessary and sufficient for stable operation of the valve, the load on the hydraulic pump can be reduced as much as possible, energy loss can be prevented, and noise of the hydraulic pump can be reduced.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram of an embodiment of the present invention;
FIG. 2 is an explanatory diagram of control as above;
[Fig. 3] Press-stroke diagram as above
FIG. 4 is a hydraulic circuit diagram of a hydraulic power source unit according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hydraulic press 2 ... Actuator 3 ... Servo valve 4 ... Hydraulic pump 9, 10, 11 ... Pressure sensor

Claims (2)

プレスの加圧シリンダーに油圧源を接続してスライドの位置や速度、押圧力の油圧制御をするプレスの油圧源の制御方法であって、
油圧源をサーボポンプでない可変吐出量の油圧ポンプとするとともに、加圧シリンダーのアクチュエーターにサーボ弁を接続してこのサーボ弁の油圧配管の一次側と二次側に圧力センサーを配設してサーボ弁の油圧配管の一次側と二次側の差圧を検出し、
サーボ弁の一次側と二次側の圧力差が常圧時の2〜10%の範囲内で、負荷の要否に対応した可変の圧力差で油圧ポンプを吐出量制御するようにして、
プレスの絞り時、加圧負荷時にサーボ弁の一次側と二次側の油圧油の圧力差が常圧の3〜6%とし、プレスのアプローチやリターン時に常圧2〜3%として油圧源の油圧ポンプを駆動制御するようにしたことを特徴とするプレスの油圧源の制御方法。
Pre scan of the pressure cylinder to the hydraulic source connected position and speed of the slide, a control method of the pre-scan hydraulic source for the hydraulic control of the pressing force,
The hydraulic source is a variable displacement hydraulic pump that is not a servo pump, and a servo valve is connected to the actuator of the pressurizing cylinder, and pressure sensors are placed on the primary and secondary sides of the hydraulic piping of this servo valve. Detects the differential pressure between the primary and secondary sides of the valve's hydraulic piping,
The pressure difference between the primary side and the secondary side of the servo valve is within the range of 2 to 10% of the normal pressure, and the discharge amount of the hydraulic pump is controlled with a variable pressure difference corresponding to the necessity of the load.
When the press is squeezed, when the pressure is applied, the pressure difference between the primary and secondary hydraulic fluids of the servo valve is 3 to 6% of the normal pressure. the method of pre-scan hydraulic source, characterized in that so as to drive control of the hydraulic pump.
サーボ弁の加圧シリンダーのアクチュエーター側である二次側の油圧の負荷側と反負荷側の両方の油圧配管に圧力センサーをそれぞれ配設して、サーボ弁の切り換えと同時に油圧の負荷側の圧力センサー側に切り替え、または常に大きな検出圧力値の方の圧力センサーを採用して一次側の圧力センサーとの圧力差を検出して油圧ポンプを吐出量制御する請求項1に記載のプレスの油圧源の制御方法。Pressure sensors are installed in both the hydraulic load piping on the secondary side, which is the actuator side of the pressurizing cylinder of the servo valve, and the pressure on the hydraulic load side at the same time as the servo valve is switched. switching the sensor side, or always pre scan according to claim 1, discharge amount control hydraulic pump detects the pressure difference between the pressure sensor on the primary side adopts a pressure sensor towards large detection pressure hydraulic Source control method.
JP2000137351A 2000-05-10 2000-05-10 Control method of press hydraulic power source Expired - Lifetime JP4510992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137351A JP4510992B2 (en) 2000-05-10 2000-05-10 Control method of press hydraulic power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137351A JP4510992B2 (en) 2000-05-10 2000-05-10 Control method of press hydraulic power source

Publications (2)

Publication Number Publication Date
JP2001317502A JP2001317502A (en) 2001-11-16
JP4510992B2 true JP4510992B2 (en) 2010-07-28

Family

ID=18645142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137351A Expired - Lifetime JP4510992B2 (en) 2000-05-10 2000-05-10 Control method of press hydraulic power source

Country Status (1)

Country Link
JP (1) JP4510992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436081B2 (en) * 2015-06-18 2019-10-08 Hyundai Motor Company Method for reducing noise of electric oil pump for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234863B1 (en) * 2012-07-31 2013-02-18 주식회사 동해기계항공 Load sensing type automatic hydraulic feeding apparatus for hydraulic tools

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195633A (en) * 1981-05-14 1982-12-01 Hehl Karl Controller for hydraulic circuit of plastic injection molding machine
JPH01153801A (en) * 1987-12-10 1989-06-16 Daikin Ind Ltd Positioning control hydraulic circuit
JPH026021A (en) * 1988-06-24 1990-01-10 Daikin Ind Ltd Controller for working machine
JPH0276904A (en) * 1988-06-29 1990-03-16 Hitachi Constr Mach Co Ltd Hydraulic drive device
JPH04247131A (en) * 1991-01-28 1992-09-03 Hitachi Constr Mach Co Ltd Hydraulic control device for hydraulic construction equipment
JPH07167106A (en) * 1993-10-18 1995-07-04 Karl Hehl Hydraulic device
JPH08270019A (en) * 1995-04-03 1996-10-15 Mitsubishi Heavy Ind Ltd Construction machine
JPH10220406A (en) * 1997-02-04 1998-08-21 Daikin Ind Ltd Control device for processing machine
JPH11303147A (en) * 1998-04-24 1999-11-02 Komatsu Ltd Controller for hydraulic drive machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195633A (en) * 1981-05-14 1982-12-01 Hehl Karl Controller for hydraulic circuit of plastic injection molding machine
JPH01153801A (en) * 1987-12-10 1989-06-16 Daikin Ind Ltd Positioning control hydraulic circuit
JPH026021A (en) * 1988-06-24 1990-01-10 Daikin Ind Ltd Controller for working machine
JPH0276904A (en) * 1988-06-29 1990-03-16 Hitachi Constr Mach Co Ltd Hydraulic drive device
JPH04247131A (en) * 1991-01-28 1992-09-03 Hitachi Constr Mach Co Ltd Hydraulic control device for hydraulic construction equipment
JPH07167106A (en) * 1993-10-18 1995-07-04 Karl Hehl Hydraulic device
JPH08270019A (en) * 1995-04-03 1996-10-15 Mitsubishi Heavy Ind Ltd Construction machine
JPH10220406A (en) * 1997-02-04 1998-08-21 Daikin Ind Ltd Control device for processing machine
JPH11303147A (en) * 1998-04-24 1999-11-02 Komatsu Ltd Controller for hydraulic drive machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436081B2 (en) * 2015-06-18 2019-10-08 Hyundai Motor Company Method for reducing noise of electric oil pump for vehicle

Also Published As

Publication number Publication date
JP2001317502A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP5058426B2 (en) Control device for hydraulic press and operation method of hydraulic press
CA2587711C (en) Die cushion device of pressing machine
US10767667B2 (en) Electronically controlled valve, hydraulic pump, and hydraulic pump system
CN107201757B (en) Excavator
US7797122B2 (en) Electrohydraulic valve control circuit with velocity fault detection and rectification
JP4510992B2 (en) Control method of press hydraulic power source
US8833391B2 (en) Valve arrangement
US5533336A (en) Hydroelectric cylinder for improved power amplification and control
JPH0512706U (en) Pilot control circuit for load-sensing hydraulic system
CN104652523B (en) A kind of loading machine electronic-hydraulic complex control hydraulic system and its control method
JPH0621697Y2 (en) Hydraulic oil temperature raising device for injection molding machine
CN1034981A (en) Leak electronic compensating volume-type hydraulic pump constant flow regulation system and method
JPH1150968A (en) Adjustable hydraulic working machine
JPH0579003U (en) Continuous high pressure control hydraulic circuit
JPH074322Y2 (en) Boom cylinder operating device
CN219472451U (en) Quick-change system and loader
CN214894053U (en) Jack test system
JPH0752390Y2 (en) Hydraulic supply device
CN110410115B (en) Self-adaptive control system for pressure of stand column
JP3201889B2 (en) Hydraulic press equipment
CN105645282B (en) Proportional-type subregion stability control moment limiting system
JP3065570B2 (en) Control device for variable displacement pump
JPS6334799Y2 (en)
JP4283958B2 (en) Electro-hydraulic adjustment device
JPH02280028A (en) Hydraulic display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4510992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term