JP4510766B2 - Extracellular electrode - Google Patents

Extracellular electrode Download PDF

Info

Publication number
JP4510766B2
JP4510766B2 JP2006022328A JP2006022328A JP4510766B2 JP 4510766 B2 JP4510766 B2 JP 4510766B2 JP 2006022328 A JP2006022328 A JP 2006022328A JP 2006022328 A JP2006022328 A JP 2006022328A JP 4510766 B2 JP4510766 B2 JP 4510766B2
Authority
JP
Japan
Prior art keywords
electrode
extracellular
conductive circuit
insulating base
nerve cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006022328A
Other languages
Japanese (ja)
Other versions
JP2007205756A (en
Inventor
ナイベルヒ トビアス
明佳 島田
奈保子 河西
慶一 鳥光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006022328A priority Critical patent/JP4510766B2/en
Publication of JP2007205756A publication Critical patent/JP2007205756A/en
Application granted granted Critical
Publication of JP4510766B2 publication Critical patent/JP4510766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、神経細胞の電気的活動の記録、および、神経細胞に対して電気的刺激あるいは薬理学的刺激を加えるために、電気生理学および医療分野にて有効な細胞外電極に関する。   The present invention relates to an extracellular electrode that is effective in the fields of electrophysiology and medicine in order to record electrical activity of nerve cells and to apply electrical or pharmacological stimuli to nerve cells.

生体の神経系は、神経細胞から構成される信号伝達経路を有している。この神経細胞は、情報を伝達する際に活動電位と呼ばれる信号を発する。この活動電位の発生は、神経細胞の細胞膜におけるイオン透過性の変化に伴う電位の変化に起因する。このような活動電位の発生に伴って生じる神経細胞近傍の電位、すなわち、細胞外電位を、神経細胞の電気的活動として測定するために、細胞外電極が用いられている。   The living nervous system has a signal transmission path composed of nerve cells. These nerve cells emit signals called action potentials when transmitting information. The generation of this action potential is caused by a change in potential accompanying a change in ion permeability in the cell membrane of a nerve cell. An extracellular electrode is used to measure a potential in the vicinity of a nerve cell generated by the generation of such an action potential, that is, an extracellular potential as an electrical activity of the nerve cell.

細胞外電極としては、例えば、導電性物質からなる複数の微小電極と、配線を形成する多点電極とからなるものが挙げられる(例えば、非特許文献1参照。)。多点電極は、電極上に神経細胞あるいは組織を培養することにより、長時間安定した状態で細胞外電位を記録したり、神経細胞に対して電気的刺激を加えることができる。   As the extracellular electrode, for example, an electrode composed of a plurality of microelectrodes made of a conductive substance and a multipoint electrode forming a wiring can be mentioned (for example, see Non-Patent Document 1). By culturing nerve cells or tissues on the electrodes, the multipoint electrode can record an extracellular potential in a stable state for a long time or can apply electrical stimulation to the nerve cells.

また、細胞外電極のインピーダンス−周波数特性を向上させるために、細胞外電極の表面に白金黒めっき処理を施したり(例えば、特許文献1参照。)、細胞外電極の表面を無機化合物からなる多孔質導電材料により被覆したりすることが行われている。このような細胞外電極を、図6に例示する。
図6に示す細胞外電極100は、絶縁基材101と、その一面101aに設けられた導電回路102と、この導電回路102と電気的に接続され、導電回路102上に設けられた電極103と、導電回路102を覆うように設けられた絶縁層104とから構成されている。
この細胞外電極100において、電極103は、導電回路102が設けられた絶縁基材101の一面101aに白金黒の多孔性めっき処理を施すことにより形成される。そして、この電極103は、細胞外電極100のインピーダンスを50kΩ以下に抑制する役割を果たす。
また、電極103をなす材料としては、白金黒の代わりに、金、窒化チタン、酸化銀、タングステンなどの無機物からなる導電性多孔質材料も用いられる。
In addition, in order to improve the impedance-frequency characteristics of the extracellular electrode, the surface of the extracellular electrode is subjected to platinum black plating (see, for example, Patent Document 1), or the surface of the extracellular electrode is made of an inorganic compound. For example, coating with a conductive material is performed. Such an extracellular electrode is illustrated in FIG.
The extracellular electrode 100 shown in FIG. 6 includes an insulating substrate 101, a conductive circuit 102 provided on one surface 101a thereof, and an electrode 103 electrically connected to the conductive circuit 102 and provided on the conductive circuit 102. The insulating layer 104 is provided so as to cover the conductive circuit 102.
In this extracellular electrode 100, the electrode 103 is formed by subjecting one surface 101a of the insulating base material 101 provided with the conductive circuit 102 to a platinum black porous plating process. The electrode 103 serves to suppress the impedance of the extracellular electrode 100 to 50 kΩ or less.
As a material for forming the electrode 103, a conductive porous material made of an inorganic material such as gold, titanium nitride, silver oxide, tungsten, or the like is used instead of platinum black.

また、神経細胞同士は、グルタミン酸やγ―アミノ酪酸などの神経細胞が分泌する化学物質を伝達物質として、情報の伝達を行っている。これらの化学物質は、神経細胞の細胞膜を構成するタンパク質の化学構造を変化させる。このタンパク質の化学構造の変化によって、神経細胞内外のイオンの細胞膜に対する透過性が変化する。このタンパク質の化学構造の変化を制御するには、アゴニストあるいはアンタゴニストと呼ばれる有機化合物または無機化合物が用いられている。
アゴニストは、神経細胞の細胞膜を構成するタンパク質の受容体と相互作用して、イオン透過性を上昇させる。一方、アンタゴニストは、アゴニストと拮抗的に作用して、イオン透過性を減少させる。電気生理学に関する研究分野では、これらの物質は、通常ガラス微小電極や培養液の灌流装置を介して、神経細胞に投与される。
In addition, nerve cells transmit information using a chemical substance secreted by nerve cells such as glutamic acid and γ-aminobutyric acid as a transmitter. These chemical substances change the chemical structure of the protein that constitutes the cell membrane of nerve cells. Changes in the chemical structure of the protein change the permeability of ions inside and outside the neuron to the cell membrane. In order to control the change in the chemical structure of the protein, an organic compound or an inorganic compound called an agonist or antagonist is used.
An agonist interacts with a receptor for a protein constituting the cell membrane of a nerve cell, and increases ion permeability. On the other hand, antagonists act antagonistically with agonists to decrease ion permeability. In the field of research relating to electrophysiology, these substances are usually administered to nerve cells via glass microelectrodes or culture medium perfusion devices.

上記のように、白金黒の多孔性めっきや、無機物質の導電性多孔質材料からなる電極を形成することにより、細胞外電極のインピーダンスが低下し、細胞外電極は電気的な外部雑音に対するS/N比が向上する。その結果、この細胞外電極を用いることにより、神経細胞に対して、より微小な細胞外電位を計測することが可能となる。
Jimbo,Y.and Kawana,A.,Electrical stimulation of cultured neural cells by planar electrode array,Anuual International Conference of the IEEE Engineering in Medicine and Biology Tokyo,(1990),pp.1741−1742(Fig.1). 特許第3193471号公報
As described above, by forming an electrode made of platinum black porous plating or an inorganic conductive porous material, the impedance of the extracellular electrode is reduced, and the extracellular electrode is resistant to electrical external noise. / N ratio is improved. As a result, by using this extracellular electrode, it becomes possible to measure a finer extracellular potential for nerve cells.
Jimbo, Y .; and Kawana, A .; , Electrical simulation of structured neural cells by planar electrode array, Annual International Conference of the IEEE IEEE in 19 and Biotech. 1741-1742 (FIG. 1). Japanese Patent No. 3193471

しかしながら、神経細胞の細胞外電位は、通常、数kHzから数十kHz程度のサンプリング周波数で記録されるが、この範囲におけるインピーダンス−周波数特性は、非線形的である。そのため、従来、細胞外電位の波形を正確に記録するのは困難であった。
また、このような細胞外電極を用いて神経細胞の細胞外電位を計測しながら、神経細胞に薬物を投与する場合、ガラス微小電極を用いて神経細胞の外部から内部へ薬物を投与したり、灌流装置により神経細胞の周囲全体の溶液を交換して、神経細胞の内部へ薬物を投与する必要があった。
However, the extracellular potential of nerve cells is usually recorded at a sampling frequency of about several kHz to several tens of kHz, but the impedance-frequency characteristics in this range are non-linear. For this reason, conventionally, it has been difficult to accurately record the waveform of the extracellular potential.
In addition, when administering a drug to a nerve cell while measuring the extracellular potential of the nerve cell using such an extracellular electrode, the drug is administered from the outside to the inside of the nerve cell using a glass microelectrode, It was necessary to administer the drug to the inside of the nerve cell by exchanging the solution around the nerve cell with the perfusion device.

本発明は、前記事情に鑑みてなされたもので、インピーダンス−周波数特性が、神経細胞を容易に電気的に刺激することができ、電気的信号の記録を行うのに十分な特性を有し、溶液中で帯電する有機化合物または無機化合物を電極に含有可能な導電性多孔質高分子を主とする細胞外電極を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the impedance-frequency characteristics can easily stimulate nerve cells electrically, and have characteristics sufficient for recording electrical signals, An object of the present invention is to provide an extracellular electrode mainly composed of a conductive porous polymer capable of containing an organic compound or an inorganic compound that is charged in a solution.

本発明の細胞外電極は、絶縁基材と、該絶縁基材の一面に設けられた導電回路と、前記絶縁基材の一面側に、前記導電回路の少なくとも接続部に重なるように設けられた電極と、前記導電回路の前記電極が重なっていない領域を覆うように設けられた絶縁層とを備えた細胞外電極であって、前記電極はエチレンジオキシチオフェンと、ポリ(エチレンジオキシチオフェン)−ポリ(スチレン・スルフォン酸)とからなる混合物から構成される導電性多孔質高分子を主とすることを特徴とする。 The extracellular electrode of the present invention is provided on an insulating base, a conductive circuit provided on one surface of the insulating base, and on one side of the insulating base so as to overlap at least a connection portion of the conductive circuit. An extracellular electrode comprising an electrode and an insulating layer provided so as to cover a region where the electrode of the conductive circuit does not overlap, wherein the electrode is ethylenedioxythiophene and poly (ethylenedioxythiophene) -Mainly a conductive porous polymer composed of a mixture of poly (styrene / sulfonic acid).

前記電極は、溶液中にて帯電する有機化合物または無機化合物を含有することもできる。   The electrode may contain an organic compound or an inorganic compound that is charged in a solution.

本発明の細胞外電極は、絶縁基材と、該絶縁基材の一面に設けられた導電回路と、前記絶縁基材の一面側に、前記導電回路の少なくとも接続部に重なるように設けられた複数の電極と、前記導電回路の前記複数の電極が重なっていない領域を覆うように設けられた絶縁層とを備えた細胞外電極であって、前記複数の電極はエチレンジオキシチオフェンと、ポリ(エチレンジオキシチオフェン)−ポリ(スチレン・スルフォン酸)とからなる混合物から構成される導電性多孔質高分子を主とすることを特徴とする。 The extracellular electrode of the present invention is provided on an insulating base, a conductive circuit provided on one surface of the insulating base, and on one side of the insulating base so as to overlap at least a connection portion of the conductive circuit. An extracellular electrode comprising a plurality of electrodes and an insulating layer provided so as to cover a region where the plurality of electrodes of the conductive circuit do not overlap, the plurality of electrodes comprising ethylenedioxythiophene, It is characterized by being mainly composed of a conductive porous polymer composed of a mixture of (ethylenedioxythiophene) -poly (styrene / sulfonic acid).

本発明の細胞外電極は、絶縁基材と、該絶縁基材の一面に設けられた導電回路と、前記絶縁基材の一面側に、前記導電回路の少なくとも接続部に重なるように設けられた電極と、前記導電回路の前記電極が重なっていない領域を覆うように設けられた絶縁層とを備えた細胞外電極であって、前記電極はエチレンジオキシチオフェンと、ポリ(エチレンジオキシチオフェン)−ポリ(スチレン・スルフォン酸)とから構成される導電性多孔質高分子を主とするので、神経細胞に接触させることにより、神経細胞の電気的活動を計測することができるとともに、神経細胞に対して電気的刺激として電圧を印加することができる。
また、本発明の細胞外電極を構成する電極が、溶液中にて帯電する有機化合物または無機化合物を含有すれば、これらの有機化合物または無機化合物を、細胞外電極に通電することにより、有機化合物または無機化合物の溶液中への溶出を制御できる。したがって、本発明の細胞外電極は、細胞外電極に接触あるいは近接した神経細胞に薬物の投与を行うことができる。
The extracellular electrode of the present invention is provided on an insulating base, a conductive circuit provided on one surface of the insulating base, and on one side of the insulating base so as to overlap at least a connection portion of the conductive circuit. An extracellular electrode comprising an electrode and an insulating layer provided so as to cover a region where the electrode of the conductive circuit does not overlap, wherein the electrode is ethylenedioxythiophene and poly (ethylenedioxythiophene) -Since it is mainly made of conductive porous polymer composed of poly (styrene sulfonic acid), it is possible to measure the electrical activity of nerve cells by bringing them into contact with nerve cells. On the other hand, a voltage can be applied as an electrical stimulus.
Further, if the electrode constituting the extracellular electrode of the present invention contains an organic compound or an inorganic compound that is charged in a solution, the organic compound or the inorganic compound is energized to the extracellular electrode, thereby providing an organic compound. Alternatively, the elution of the inorganic compound into the solution can be controlled. Therefore, the extracellular electrode of the present invention can administer a drug to nerve cells that are in contact with or close to the extracellular electrode.

以下、本発明を実施した細胞外電極について、図面を参照して詳細に説明する。   Hereinafter, an extracellular electrode embodying the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る細胞外電極の一実施形態を示す概略断面図である。
この実施形態の細胞外電極10は、絶縁基材11と、絶縁基材11の一面11aに設けられた導電回路12と、絶縁基材11の一面11a側に、導電回路12の接続部12aに重なるように設けられた電極13と、導電回路12の電極13が重なっていない領域を覆うように設けられた絶縁層14とから概略構成されている。また、この細胞外電極10では、電極13が導電回路12と電気的に接続されている。
そして、電極12は、エチレンジオキシチオフェン(Ethylenedioxythiophene、以下、「EDOT」と略記する。)と、ポリ(エチレンジオキシチオフェン)(poly(3,4−Ethylenedioxythiophene)、以下、「PEDOT」と略記する。)−ポリ(スチレン・スルフォン酸)(poly(styrenesulfonate)、以下、「PSS」と略記する。)からなる混合物から構成される導電性多孔質高分子を主とするものである。
EDOTの化学式を下記の式(1)に、PEDOTの化学式を下記の式(2)に、PSSの化学式を下記の式(3)にそれぞれ示す。
FIG. 1 is a schematic cross-sectional view showing an embodiment of an extracellular electrode according to the present invention.
The extracellular electrode 10 of this embodiment includes an insulating base material 11, a conductive circuit 12 provided on one surface 11a of the insulating base material 11, and a connection surface 12a of the conductive circuit 12 on the one surface 11a side of the insulating base material 11. The electrode 13 is provided so as to overlap, and the insulating layer 14 is provided so as to cover a region where the electrode 13 of the conductive circuit 12 does not overlap. In the extracellular electrode 10, the electrode 13 is electrically connected to the conductive circuit 12.
The electrode 12 is made of ethylenedioxythiophene (hereinafter abbreviated as “EDOT”) and poly (ethylenedioxythiophene) (poly (3,4-ethylenediothiophene)), hereinafter abbreviated as “PEDOT”. .)-Conducting porous polymer composed mainly of a mixture of poly (styrene sulfonic acid) (hereinafter abbreviated as “PSS”).
The chemical formula of EDOT is shown in the following formula (1), the chemical formula of PEDOT is shown in the following formula (2), and the chemical formula of PSS is shown in the following formula (3).

Figure 0004510766
Figure 0004510766

Figure 0004510766
Figure 0004510766

Figure 0004510766
Figure 0004510766

また、電極13は、溶液中にて帯電する有機化合物または無機化合物を含有させることもできる。
この実施形態において、溶液としては、例えば、一般的な細胞培養液などが挙げられる。
The electrode 13 can also contain an organic compound or an inorganic compound that is charged in a solution.
In this embodiment, examples of the solution include a general cell culture solution.

また、上記の溶液中にて帯電する有機化合物としては、神経細胞の神経伝達物質であるアミノ酸などが挙げられ、具体的にはグルタミン酸やガンマアミノ酪酸、グリシンなどが挙げられる。   Examples of the organic compound that is charged in the above solution include amino acids that are neurotransmitters of nerve cells, and specific examples include glutamic acid, gamma aminobutyric acid, and glycine.

また、上記の溶液中にて帯電する無機化合物としては、無機化合物としては、塩などが挙げられ、具体的にはナトリウムやカリウムなどの塩化物が挙げられる。   Moreover, as an inorganic compound charged in said solution, a salt etc. are mentioned as an inorganic compound, Specifically, chlorides, such as sodium and potassium, are mentioned.

絶縁基材11としては、細胞外電極10を神経細胞に接触させた状態で、この神経細胞を観察する必要があるため透明な材質のものが好ましく用いられ、例えば、石英ガラス、鉛ガラス、ホウ珪酸ガラスなどのガラス、もしくは石英などの無機物質、または、ポリメタクリル酸メチルまたはその共重合体、ポリスチレン、ポリ塩化ビニル、ポリエステル、ポリプロピレン、尿素樹脂、メラミン樹脂などの透明性の有機物質などが挙げられる。機械的強度と透明性に優れることから、無機物質が好ましい。   As the insulating substrate 11, a transparent material is preferably used because it is necessary to observe the nerve cell in a state where the extracellular electrode 10 is in contact with the nerve cell. For example, quartz glass, lead glass, boron Examples include inorganic materials such as glass such as silicate glass or quartz, or transparent organic materials such as polymethyl methacrylate or copolymers thereof, polystyrene, polyvinyl chloride, polyester, polypropylene, urea resin, and melamine resin. It is done. Inorganic substances are preferred because of their excellent mechanical strength and transparency.

導電回路12をなす材料としては、例えば、スズ添加酸化インジウム(Indium Tin Oxide、以下「ITO」と略記する。)、酸化スズ、クロム(Cr)、金(Au)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)などが用いられる。これらの中でも、導電回路12が透明なものとなり、神経細胞を観察するために好適である点から、ITOまたは酸化スズが好ましく用いられ、導電性が高い点からITOがより好ましく用いられる。   Examples of the material forming the conductive circuit 12 include tin-doped indium oxide (Indium Tin Oxide, hereinafter abbreviated as “ITO”), tin oxide, chromium (Cr), gold (Au), copper (Cu), nickel ( Ni), aluminum (Al), or the like is used. Among these, ITO or tin oxide is preferably used because the conductive circuit 12 becomes transparent and is suitable for observing nerve cells, and ITO is more preferably used because of its high conductivity.

また、導電回路12の厚みは、特に限定されるものではなく、電極13の厚みや形状などに応じて適宜設定される。   Further, the thickness of the conductive circuit 12 is not particularly limited, and is appropriately set according to the thickness and shape of the electrode 13.

電極13の形状および配置は、特に限定されるものではなく、対象となる神経細胞の大きさや数などに応じて適宜設定される。   The shape and arrangement of the electrode 13 are not particularly limited, and are appropriately set according to the size and number of target nerve cells.

絶縁層14をなす絶縁材料としては、細胞外電極10を、神経細胞を培養下で観察する必要があるため透明な樹脂が用いられ、例えば、ポリイミド樹脂、エポキシ樹脂、アクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂などが挙げられる。   As the insulating material forming the insulating layer 14, a transparent resin is used because it is necessary to observe the extracellular cells 10 in culture. For example, polyimide resin, epoxy resin, acrylate resin, polyester resin, polyamide Resin etc. are mentioned.

次に、図1および図2を参照して、この実施形態の細胞外電極10の製造方法を説明する。
まず、その一面11aに、導電回路12が設けられた絶縁基材11を用意する。
次いで、導電回路12を覆い、所定の厚みおよび形状をなすように、上記の透明な樹脂からなる絶縁層14を設ける。この際、導電回路12の絶縁層14と接する側の面12b(以下、導電回路12の「一面12b」と言う。)における所定の領域、すなわち、電極13と電気的に接続する領域が露出するように絶縁層14を設ける。これにより、絶縁層14には、図2に示すように、電極13を設けるための開口部14aが形成される。
Next, with reference to FIG. 1 and FIG. 2, the manufacturing method of the extracellular electrode 10 of this embodiment is demonstrated.
First, the insulating base material 11 provided with the conductive circuit 12 is prepared on the one surface 11a.
Next, the insulating layer 14 made of the transparent resin is provided so as to cover the conductive circuit 12 and to have a predetermined thickness and shape. At this time, a predetermined region on the surface 12b of the conductive circuit 12 on the side in contact with the insulating layer 14 (hereinafter referred to as “one surface 12b” of the conductive circuit 12), that is, a region electrically connected to the electrode 13 is exposed. Thus, the insulating layer 14 is provided. As a result, an opening 14a for providing the electrode 13 is formed in the insulating layer 14 as shown in FIG.

次いで、空気プラズマなどのプラズマ処理により、絶縁層14の開口部14a内に露出している導電回路12の一面12b(接続部12a)を洗浄する。
次いで、EDOTとPEDOT−PSSに、導電回路12および絶縁層14が設けられた絶縁基材11を浸漬する。
Next, the one surface 12b (connecting portion 12a) of the conductive circuit 12 exposed in the opening 14a of the insulating layer 14 is cleaned by plasma treatment such as air plasma.
Next, the insulating base material 11 provided with the conductive circuit 12 and the insulating layer 14 is immersed in EDOT and PEDOT-PSS.

次いで、上記の絶縁基材11を混合溶液に浸漬した状態で、所定の電圧および電流にて、この混合溶液に通電すると、図2に示すように、開口部14a内の導電回路12の一面12b上に、EDOTの分子15とPEDOT−PSSの分子16とが次第に堆積して、導電性多孔質高分子17が形成される。
そして、この導電性多孔質高分子17が所定の厚みとなったところで通電を終了すると、図1に示すように、導電性多孔質高分子17を主とする電極13が設けられた細胞外電極10を得る。
なお、電極13の厚みを、混合溶液への通電時間によって、適宜制御することができる。
Next, when this mixed solution is energized with a predetermined voltage and current while the insulating base material 11 is immersed in the mixed solution, as shown in FIG. 2, one surface 12b of the conductive circuit 12 in the opening 14a. On top of this, EDOT molecules 15 and PEDOT-PSS molecules 16 are gradually deposited to form a conductive porous polymer 17.
When the conductive porous polymer 17 is energized when the predetermined thickness is reached, as shown in FIG. 1, the extracellular electrode provided with the electrode 13 mainly composed of the conductive porous polymer 17 is provided. Get 10.
In addition, the thickness of the electrode 13 can be appropriately controlled by the energization time to the mixed solution.

この実施形態の細胞外電極10は、絶縁基材11と、絶縁基材11の一面11aに設けられた導電回路12と、絶縁基材11の一面11a側に、導電回路12に重なるように設けられた電極13と、導電回路12を覆うように設けられた絶縁層14とから概略構成され、電極13が、EDOTと、PEDOT−PSSとから構成される導電性多孔質高分子を主とするものであるから、周波数が100Hzから100kHzの範囲において、インピーダンスがほとんど変化せず、また、位相のずれも小さいから、ITO電極などとよりもインピーダンスが小さく、かつ、インピーダンス−周波数特性が優れている。   The extracellular electrode 10 of this embodiment is provided on the insulating base 11, the conductive circuit 12 provided on the one surface 11a of the insulating base 11, and on the one surface 11a side of the insulating base 11 so as to overlap the conductive circuit 12. The electrode 13 and the insulating layer 14 provided so as to cover the conductive circuit 12 are roughly configured, and the electrode 13 mainly includes a conductive porous polymer composed of EDOT and PEDOT-PSS. Therefore, in the frequency range of 100 Hz to 100 kHz, the impedance hardly changes and the phase shift is small, so that the impedance is smaller than that of the ITO electrode and the impedance-frequency characteristics are excellent. .

また、この細胞外電極10を用いて神経細胞の電気的活動(細胞外電位)を測定すると、同じ電圧の電気信号を神経細胞に印加した場合、ITO電極を用いたときよりも、数多くの神経細胞の電気的活動を励起することができる。さらに、同じ電圧の電気信号を神経細胞に印加した場合、ITO電極を用いたときよりも、細胞外電極10には、より大きな電流が流れる。これは、細胞外電極10に接続された神経細胞において、広範な領域の細胞が励起されるからであると考えられる。   Further, when the electrical activity (extracellular potential) of a nerve cell is measured using the extracellular electrode 10, when an electrical signal having the same voltage is applied to the nerve cell, more nerves are used than when the ITO electrode is used. It can excite the electrical activity of cells. Furthermore, when an electrical signal having the same voltage is applied to the nerve cell, a larger current flows through the extracellular electrode 10 than when the ITO electrode is used. This is presumably because a wide range of cells are excited in the nerve cells connected to the extracellular electrode 10.

また、EDOTとPEDOT−PSSを溶解した混合溶液に、上記の溶液中にて帯電する有機化合物または無機化合物を混合してもよい。このようにすれば、上記の溶液への通電によって形成された導電性多孔質高分子17を主とする電極13は、溶液中にて帯電する有機化合物または無機化合物を含有したものとなる。   Moreover, you may mix the organic compound or inorganic compound which is charged in said solution with the mixed solution which melt | dissolved EDOT and PEDOT-PSS. In this way, the electrode 13 mainly composed of the conductive porous polymer 17 formed by energizing the solution contains an organic compound or an inorganic compound that is charged in the solution.

これにより、電極13に、溶液中にて帯電する有機化合物または無機化合物を含有させれば、電極13に印加する電圧に応じて、この有機化合物または無機化合物が電極13から溶出し、細胞外電極10に接続された神経細胞の電気的活動を活性化あるいは抑制することができる。例えば、溶液中にて負に帯電する有機化合物または無機化合物を電極13に含有させて、溶液中にて電極13が陰極となるように、細胞外電極10に電圧を印加することにより、電極13に接している神経細胞および電極13の近傍の神経細胞に対して、有機化合物または無機化合物の投与、すなわち、薬理学的刺激の印加を行うことができる。   Thereby, if the electrode 13 contains an organic compound or an inorganic compound that is charged in the solution, the organic compound or the inorganic compound is eluted from the electrode 13 according to the voltage applied to the electrode 13, and the extracellular electrode The electrical activity of the nerve cell connected to 10 can be activated or suppressed. For example, the electrode 13 contains an organic compound or an inorganic compound that is negatively charged in the solution, and a voltage is applied to the extracellular electrode 10 so that the electrode 13 becomes a cathode in the solution. It is possible to administer an organic compound or an inorganic compound, that is, to apply a pharmacological stimulus, to a nerve cell in contact with the electrode and a nerve cell in the vicinity of the electrode 13.

また、この実施形態では、絶縁基材11の一面11aに1つの電極13が設けられてなる細胞外電極10を例示したが、本発明の細胞外電極はこれに限定されない。本発明の細胞外電極は、絶縁基材の一面に、所定の配置かつ所定の形状で、EDOTと、PEDOT−PSSとから構成される導電性多孔質高分子を主とする複数(2個以上)の電極が設けられたものであってもよい。
このように複数の電極を備えた細胞外電極は、同時に、より多数の神経細胞の電気的活動を励起することができる。
Further, in this embodiment, the extracellular electrode 10 in which one electrode 13 is provided on the one surface 11a of the insulating base material 11 is illustrated, but the extracellular electrode of the present invention is not limited to this. The extracellular electrode of the present invention has a plurality (two or more) of conductive porous polymers mainly composed of EDOT and PEDOT-PSS in a predetermined arrangement and a predetermined shape on one surface of an insulating substrate. ) Electrode may be provided.
Thus, the extracellular electrode provided with a plurality of electrodes can excite the electrical activity of a larger number of nerve cells at the same time.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

(実施例1)
図1に示すような、一面11aにITOからなる導電回路12が設けられた絶縁基材11(50μm×50μm)を用意した。
次いで、導電回路12を覆い、所定の厚みをなし、かつ、所定の位置に開口部14aが形成された、透明な樹脂からなる絶縁層14を設けた。
次いで、空気プラズマ処理により、絶縁層14の開口部14a内に露出している導電回路12の一面12aを洗浄した。
次いで、EDOTとPEDOT−PSSを、塩化ナトリウム水溶液に溶解して調製した混合溶液に、導電回路12および絶縁層14が設けられた絶縁基材11を浸漬した。
次いで、上記の絶縁基材11を混合溶液に浸漬した状態で、所定の電圧および電流にて、この混合溶液に通電し、EDOTと、PEDOT−PSSとから構成される導電性多孔質高分子を主とする電極13を形成し、細胞外電極10を得た。
Example 1
As shown in FIG. 1, an insulating base 11 (50 μm × 50 μm) provided with a conductive circuit 12 made of ITO on one surface 11a was prepared.
Next, an insulating layer 14 made of a transparent resin was provided so as to cover the conductive circuit 12, have a predetermined thickness, and have an opening 14a formed at a predetermined position.
Next, the one surface 12a of the conductive circuit 12 exposed in the opening 14a of the insulating layer 14 was cleaned by air plasma treatment.
Next, the insulating substrate 11 provided with the conductive circuit 12 and the insulating layer 14 was immersed in a mixed solution prepared by dissolving EDOT and PEDOT-PSS in a sodium chloride aqueous solution.
Next, in a state where the insulating base material 11 is immersed in the mixed solution, the mixed solution is energized at a predetermined voltage and current, and a conductive porous polymer composed of EDOT and PEDOT-PSS is obtained. The main electrode 13 was formed, and the extracellular electrode 10 was obtained.

(細胞外電極の電気的特性)
以下に示す条件にて、実施例1で得られた細胞外電極10の電気的特性を測定した。
細胞外電極10を0.15Mの塩化ナトリウム溶液中に浸漬し、この状態で細胞外電極10に|0.1|V〜|0.5|Vの双極パルス電圧(パルス幅100μs)を印加し、1Hzから100kHzまでの周波数における細胞外電極10のインピーダンスと位相の応答を測定した。この測定を10回繰り返し、図3に、この10回の測定値の平均値をボード線図として示す。なお、図3において、(a)はITO電極のインピーダンス、(b)はITO電極の位相差、(c)は細胞外電極10のインピーダンス、(d)は細胞外電極10の位相差をそれぞれ表す。また、図3において、右側の縦軸は位相、左側の縦軸はゲイン、横軸は周波数をそれぞれ表す。
図3の結果から、周波数が100Hzから100kHzの範囲において、細胞外電極10のインピーダンスはほとんど変化せず、また、位相のずれも小さくなっていることが確認された。したがって、細胞外電極10は、ITO電極と比較して、インピーダンス−電気的特性が向上していることが分かった。
(Electrical characteristics of extracellular electrode)
The electrical characteristics of the extracellular electrode 10 obtained in Example 1 were measured under the following conditions.
The extracellular electrode 10 is immersed in a 0.15 M sodium chloride solution, and a bipolar pulse voltage (pulse width 100 μs) of | 0.1 | V to | 0.5 | V is applied to the extracellular electrode 10 in this state. The response of impedance and phase of the extracellular electrode 10 at frequencies from 1 Hz to 100 kHz was measured. This measurement is repeated 10 times, and FIG. 3 shows an average value of these 10 measurements as a Bode diagram. 3, (a) shows the impedance of the ITO electrode, (b) shows the phase difference of the ITO electrode, (c) shows the impedance of the extracellular electrode 10, and (d) shows the phase difference of the extracellular electrode 10, respectively. . In FIG. 3, the right vertical axis represents phase, the left vertical axis represents gain, and the horizontal axis represents frequency.
From the results in FIG. 3, it was confirmed that the impedance of the extracellular electrode 10 hardly changed and the phase shift was small in the frequency range of 100 Hz to 100 kHz. Therefore, it was found that the extracellular electrode 10 has improved impedance-electric characteristics as compared with the ITO electrode.

(細胞外電位の測定1)
以下に示す条件にて、実施例1で得られた細胞外電極10を用いて、神経細胞の細胞外電位を測定した。
ラット(胎齢8日)の大脳皮質から単離した神経細胞を、細胞外電極10上、前記細胞培養液中で培養した。また、比較のために、同じラット由来の大脳皮質から単離した神経細胞を、ITO電極上で培養した。
次に、神経細胞の自発的な細胞外電位を測定した。その結果を図4(a)に示す。
なお、図4(a)、(b)において、縦軸は電位、横軸は時間をそれぞれ表す。
図4(a)、(b)の結果から、細胞外電極10は、ITO電極と同様に、神経細胞の細胞外電位を測定できることが確認された。
(Measurement of extracellular potential 1)
Using the extracellular electrode 10 obtained in Example 1, the extracellular potential of the nerve cell was measured under the following conditions.
Nerve cells isolated from the cerebral cortex of rats (embryonic day 8) were cultured on the extracellular electrode 10 in the cell culture medium. For comparison, neurons isolated from the same rat-derived cerebral cortex were cultured on ITO electrodes.
Next, the spontaneous extracellular potential of nerve cells was measured. The result is shown in FIG.
4A and 4B, the vertical axis represents potential and the horizontal axis represents time.
From the results of FIGS. 4A and 4B, it was confirmed that the extracellular electrode 10 can measure the extracellular potential of the nerve cell similarly to the ITO electrode.

(細胞外電位の測定2)
上述の細胞外電位の測定1で用いた神経細胞を培養した細胞外電極10に対して、|0.5|Vの双極パルス(パルス幅200μs)を印加して、細胞外電位の数を測定した。
また、同様にして、上述の細胞外電位の測定1で用いたITO電極に対して、|0.5|Vの双極パルス(パルス幅200μs)を印加して、細胞外電位の数を測定した。
細胞外電位の数は、刺激後10msから315msで観測された細胞外電位において、個々の細胞外電位の振幅と時間幅の分布が一定の範囲内にあるときは、同一細胞由来の信号であるとするクラスター・カッティング法を用いて計測した。
その結果を図5に示す。
図5の結果から、細胞外電極10は、同じ電圧の電気信号を印加した場合、ITO電極よりも数多くの神経細胞の電気的活動を励起していることが分かった。これは、 同じ大きさの電圧を印加した場合、細胞外電極10には、より大きな電流が流れ、広範囲な領域に存在する神経細胞を励起することができるためであると考えられる。
(Measurement of extracellular potential 2)
The number of extracellular potentials is measured by applying a | 0.5 | V bipolar pulse (pulse width 200 μs) to the extracellular electrode 10 in which the nerve cells used in the above-described extracellular potential measurement 1 are cultured. did.
Similarly, a bipolar pulse (pulse width 200 μs) of | 0.5 | V was applied to the ITO electrode used in the above-described extracellular potential measurement 1 to measure the number of extracellular potentials. .
The number of extracellular potentials is a signal derived from the same cell when the amplitude and time width distribution of each extracellular potential are within a certain range in the extracellular potential observed from 10 ms to 315 ms after stimulation. It measured using the cluster cutting method.
The result is shown in FIG.
From the results of FIG. 5, it was found that the extracellular electrode 10 excites more electrical activities of nerve cells than the ITO electrode when an electrical signal of the same voltage is applied. This is considered to be because when a voltage of the same magnitude is applied, a larger current flows through the extracellular electrode 10 and it is possible to excite neurons existing in a wide area.

(実施例2)
EDOTとPEDOT−PSS混合溶液に、導電回路12および絶縁層14が設けられた絶縁基材11を浸漬して、上記の絶縁基材11を混合溶液に浸漬した状態で、所定の電圧および電流にて、この混合溶液に通電し、EDOTと、PEDOT−PSSとから構成され、グルタミン酸を含有する導電性多孔質高分子を主とする電極13を形成した以外は実施例1と同様にして、細胞外電極10を得た。
(Example 2)
In the EDOT and PEDOT-PSS mixed solution, the insulating base material 11 provided with the conductive circuit 12 and the insulating layer 14 is immersed, and the insulating base material 11 is immersed in the mixed solution. Then, the mixture solution was energized, and the cell 13 was formed in the same manner as in Example 1 except that the electrode 13 mainly composed of a conductive porous polymer containing glutamic acid and composed of EDOT and PEDOT-PSS was formed. An outer electrode 10 was obtained.

(神経細胞への有機化合物の投与)
以下に示す条件にて、実施例2で得られた細胞外電極10を用いて、電極13に直接、接している神経細胞、および、電極13の近傍の神経細胞に、グルタミン酸を投与した。
ラット(胎齢8日)の大脳皮質から単離した神経細胞を、細胞外電極10上で培養した。
次に、細胞外電極10上に培養された神経細胞の自発的活動を測定した。
その結果、上述の神経細胞の細胞外電位を測定できることが確認された。
次に、神経細胞と接触させた細胞外電極10に対して、神経細胞の電気的活動が励起されない程度の負のパルス電圧(パルス幅500ms)を1秒おきに10回印加した前後1分間において、神経細胞の自発的な電気的活動の変化を、細胞外電位の数として測定した。
その結果、パルス電圧を印加した後に、神経細胞の細胞外電位の数に変化が見られなかった。したがって、電極13に含有させたグルタミン酸が塩化ナトリウム水溶液中に溶出し、神経細胞の電気的活動を励起したものと考えられる。
(Administration of organic compounds to nerve cells)
Using the extracellular electrode 10 obtained in Example 2, glutamic acid was administered to nerve cells in direct contact with the electrode 13 and nerve cells in the vicinity of the electrode 13 under the conditions shown below.
Nerve cells isolated from the rat cerebral cortex (embryonic day 8) were cultured on the extracellular electrode 10.
Next, the spontaneous activity of nerve cells cultured on the extracellular electrode 10 was measured.
As a result, it was confirmed that the extracellular potential of the above-described nerve cell could be measured.
Next, for 1 minute before and after applying a negative pulse voltage (pulse width 500 ms) that does not excite the electrical activity of the nerve cell to the extracellular electrode 10 brought into contact with the nerve cell 10 times every second. Changes in the spontaneous electrical activity of neurons were measured as the number of extracellular potentials.
As a result, no change was observed in the number of extracellular potentials of nerve cells after applying the pulse voltage. Therefore, it is considered that glutamic acid contained in the electrode 13 was eluted into the aqueous sodium chloride solution and excited the electrical activity of the nerve cells.

以上の結果から、本実施例の細胞外電極によれば、低いインピーダンスで、同じ電圧を印加した場合、ITO電極を用いた場合よりも、より多くの神経細胞の電気的活動を励起することができることが確認された。
また、本実施例の細胞外電極によれば、神経細胞と接触させた細胞外電極を溶液中に浸漬し、この細胞外電極に対して電圧を印加することにより、電極に直接、接している神経細胞、および、電極の近傍の神経細胞に対して、特別な器具を用いずに、局所的に薬物の投与をすることができることが確認された。
From the above results, according to the extracellular electrode of this example, when the same voltage is applied with a low impedance, it is possible to excite the electrical activity of more nerve cells than when the ITO electrode is used. It was confirmed that it was possible.
Further, according to the extracellular electrode of this example, the extracellular electrode brought into contact with the nerve cell is immersed in the solution, and a voltage is applied to the extracellular electrode, thereby directly contacting the electrode. It was confirmed that the drug can be locally administered to nerve cells and nerve cells in the vicinity of the electrode without using a special instrument.

本発明の細胞外電極は、医療分野における薬物投与にも適用できる。   The extracellular electrode of the present invention can also be applied to drug administration in the medical field.

本発明に係る細胞外電極の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the extracellular electrode which concerns on this invention. 本発明に係る細胞外電極の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the extracellular electrode which concerns on this invention. 本発明の実施例において、細胞外電極のインピーダンスと位相の応答を測定した結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of having measured the response of the impedance and phase of an extracellular electrode. 本発明の実施例において、神経細胞の細胞外電位を測定したを示すグラフである。In the Example of this invention, it is the graph which shows having measured the extracellular potential of the nerve cell. 本発明の実施例において、細胞外電位の数を測定した結果を示すグラフである。In the Example of this invention, it is a graph which shows the result of having measured the number of the extracellular potential. 従来の細胞外電極を示す概略断面図である。It is a schematic sectional drawing which shows the conventional extracellular electrode.

符号の説明Explanation of symbols

10・・・細胞外電極、11・・・絶縁基材、12・・・導電回路、13・・・電極、14・・・絶縁層。
DESCRIPTION OF SYMBOLS 10 ... Extracellular electrode, 11 ... Insulating base material, 12 ... Conductive circuit, 13 ... Electrode, 14 ... Insulating layer.

Claims (3)

絶縁基材と、該絶縁基材の一面に設けられた導電回路と、前記絶縁基材の一面側に、前記導電回路の少なくとも接続部に重なるように設けられた電極と、前記導電回路の前記電極が重なっていない領域を覆うように設けられた絶縁層とを備えた細胞外電極であって、
前記電極はエチレンジオキシチオフェンと、ポリ(エチレンジオキシチオフェン)−ポリ(スチレン・スルフォン酸)とからなる混合物から構成される導電性多孔質高分子を主とすることを特徴とする細胞外電極。
An insulating base, a conductive circuit provided on one surface of the insulating base, an electrode provided on one side of the insulating base so as to overlap at least a connection portion of the conductive circuit, and the conductive circuit An extracellular electrode provided with an insulating layer provided so as to cover a region where the electrodes do not overlap,
The electrode is mainly composed of a conductive porous polymer composed of a mixture of ethylenedioxythiophene and poly (ethylenedioxythiophene) -poly (styrene / sulfonic acid). .
前記電極は、溶液中にて帯電する有機化合物または無機化合物を含有することを特徴とする請求項1に記載の細胞外電極。  The extracellular electrode according to claim 1, wherein the electrode contains an organic compound or an inorganic compound that is charged in a solution. 絶縁基材と、該絶縁基材の一面に設けられた導電回路と、前記絶縁基材の一面側に、前記導電回路の少なくとも接続部に重なるように設けられた複数の電極と、前記導電回路の前記複数の電極が重なっていない領域を覆うように設けられた絶縁層とを備えた細胞外電極であって、
前記複数の電極はエチレンジオキシチオフェンと、ポリ(エチレンジオキシチオフェン)−ポリ(スチレン・スルフォン酸)とからなる混合物から構成される導電性多孔質高分子を主とすることを特徴とする細胞外電極。
An insulating base, a conductive circuit provided on one surface of the insulating base, a plurality of electrodes provided on one side of the insulating base so as to overlap at least a connection portion of the conductive circuit, and the conductive circuit An extracellular electrode provided with an insulating layer provided so as to cover a region where the plurality of electrodes are not overlapped,
The plurality of electrodes are mainly composed of a conductive porous polymer composed of a mixture of ethylenedioxythiophene and poly (ethylenedioxythiophene) -poly (styrene / sulfonic acid). Outer electrode.
JP2006022328A 2006-01-31 2006-01-31 Extracellular electrode Expired - Fee Related JP4510766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022328A JP4510766B2 (en) 2006-01-31 2006-01-31 Extracellular electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022328A JP4510766B2 (en) 2006-01-31 2006-01-31 Extracellular electrode

Publications (2)

Publication Number Publication Date
JP2007205756A JP2007205756A (en) 2007-08-16
JP4510766B2 true JP4510766B2 (en) 2010-07-28

Family

ID=38485369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022328A Expired - Fee Related JP4510766B2 (en) 2006-01-31 2006-01-31 Extracellular electrode

Country Status (1)

Country Link
JP (1) JP4510766B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075017B2 (en) * 2008-05-29 2012-11-14 日本電信電話株式会社 Peripheral nerve type flexible nerve electrode and manufacturing method thereof
JP4990869B2 (en) * 2008-11-20 2012-08-01 日本電信電話株式会社 Biosensor and method for manufacturing the biosensor
JP6603190B2 (en) * 2016-09-21 2019-11-06 日本電信電話株式会社 Electrode forming method and electrode forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678889A (en) * 1992-09-04 1994-03-22 Matsushita Electric Ind Co Ltd Integrated composite electrode
JP2002526769A (en) * 1998-10-02 2002-08-20 カリフォルニア インスティチュート オブ テクノロジー Conductive organic sensors, arrays and methods of use
JP2005145987A (en) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd Conductive polymer gel and its manufacturing method, actuator, patch label for introducing ion, and bioelectrode
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678889A (en) * 1992-09-04 1994-03-22 Matsushita Electric Ind Co Ltd Integrated composite electrode
JP2002526769A (en) * 1998-10-02 2002-08-20 カリフォルニア インスティチュート オブ テクノロジー Conductive organic sensors, arrays and methods of use
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications
JP2005145987A (en) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd Conductive polymer gel and its manufacturing method, actuator, patch label for introducing ion, and bioelectrode

Also Published As

Publication number Publication date
JP2007205756A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Aqrawe et al. Conducting polymers for neuronal microelectrode array recording and stimulation
Dipalo et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes
CN102445477B (en) Ex-vivo nerve information dual-mode detection microelectrode array chip and preparation method thereof
US5810725A (en) Planar electrode
JP3570715B2 (en) Signal detection sensor with multiple electrodes
Vara et al. Biofunctionalized conducting polymer/carbon microfiber electrodes for ultrasensitive neural recordings
Kim et al. Gold nanograin microelectrodes for neuroelectronic interfaces
JP3193471B2 (en) Integrated composite electrode
Bozkurt et al. Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system
CN110623655A (en) Implantable micro-nano electrode array chip for simulating weightless rat and preparation method thereof
JP3101122B2 (en) Integrated composite electrode
Kim et al. Iridium oxide–electrodeposited nanoporous gold multielectrode array with enhanced stimulus efficacy
US20050237065A1 (en) Compartment-arrayed probe for measuring extracellular electrical potential and method of measuring pharmacological effect using the same
CN110367979A (en) It is a kind of to record and regulate and control based on nanometer pin electrode flexible microfluidic control device and preparation method thereof for brain tissue electric signal
Wu et al. Opportunities and dilemmas of in vitro nano neural electrodes
Zhou et al. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis
US20170038362A1 (en) Combination of Single-Cell Electroporation and Electrical Recording Using the Same Electrode
JP4510766B2 (en) Extracellular electrode
Azim et al. Precision plating of human electrogenic cells on microelectrodes enhanced with precision electrodeposited nano-porous platinum for cell-based biosensing applications
Xu et al. Porous polyethylene terephthalate nanotemplate electrodes for sensitive intracellular recording of action potentials
Iwama et al. Fabrication of High-Density Vertical Closed Bipolar Electrode Arrays by Carbon Paste Filling Method for Two-Dimensional Chemical Imaging
Robinson et al. Impedimetric characterization of bipolar nanoelectrodes with cancer cells
Muguet et al. Combining PEDOT: PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications
Lee et al. Characterization of tetrodes coated with Au nanoparticles (AuNPs) and PEDOT and their application to thalamic neural signal detection in vivo
JP6893647B6 (en) Method of measuring intracellular potential with a capacitive potential measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees