JP4509807B2 - Flux-cored wire for high-tensile steel welding - Google Patents

Flux-cored wire for high-tensile steel welding Download PDF

Info

Publication number
JP4509807B2
JP4509807B2 JP2005010219A JP2005010219A JP4509807B2 JP 4509807 B2 JP4509807 B2 JP 4509807B2 JP 2005010219 A JP2005010219 A JP 2005010219A JP 2005010219 A JP2005010219 A JP 2005010219A JP 4509807 B2 JP4509807 B2 JP 4509807B2
Authority
JP
Japan
Prior art keywords
flux
wire
amount
welding
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010219A
Other languages
Japanese (ja)
Other versions
JP2006198630A (en
Inventor
和弘 東条
竜一 志村
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2005010219A priority Critical patent/JP4509807B2/en
Publication of JP2006198630A publication Critical patent/JP2006198630A/en
Application granted granted Critical
Publication of JP4509807B2 publication Critical patent/JP4509807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、建築機械や海洋構造物等における880MPa以上の高張力鋼に使用される高張力鋼溶接用フラックス入りワイヤに関し、特に、溶接作業性が良好で高強度でも優れた低温靭性が得られる高張力鋼溶接用フラックス入りワイヤに関する。   The present invention relates to a high-strength steel welding flux-cored wire used for high-tensile steel of 880 MPa or higher in construction machinery, offshore structures, etc., and in particular, welding workability is good and excellent low-temperature toughness is obtained even at high strength. The present invention relates to a flux cored wire for welding high strength steel.

高張力鋼は、建築機械や海洋構造物等で主に使用されている。これらの溶接には能率性と利便性から、ガスシールドアーク溶接が広く使われており、その溶接用ワイヤにはソリッドワイヤとフラックス入りワイヤがある。   High-tensile steel is mainly used in construction machinery and offshore structures. Gas welding arc welding is widely used for these welding because of efficiency and convenience, and the welding wires include solid wires and flux-cored wires.

ソリッドワイヤは使用目的に応じて成分調整がなされた各種のワイヤが市販されており、従来技術として、例えば780MPa以上の高張力鋼用MIGワイヤ(例えば、特許文献1参照)や、880〜980MPa鋼用のソリッドワイヤが提案されている(例えば、特許文献2参照)。一方、フラックス入りワイヤは大きく分けてスラグ系フラックス入りワイヤと称されているスラグ成分を主としたフラックスを充填したワイヤと、メタル系フラックス入りワイヤと称されている金属成分を主としたフラックスを充填したワイヤがあり、JIS Z 3313他に規格化されている。ソリッドワイヤを用いた場合は、溶接金属中の酸素量が少ないので低温靭性が安定して得られる。また、溶接金属の溶け込みが深い、スラグ生成量が非常に少ない、ヒューム発生量が少ない等の利点がある。しかし、フラックス入りワイヤに比べて溶着量が少ない、スパッタ発生量が多く大電流での溶接ではそれらが顕著になる等の欠点がある。   Various types of solid wires are commercially available that have their components adjusted according to the purpose of use. As conventional techniques, for example, MIG wire for high-tensile steel of 780 MPa or more (see, for example, Patent Document 1) or 880-980 MPa steel. A solid wire has been proposed (see, for example, Patent Document 2). On the other hand, the flux-cored wire is roughly divided into a wire filled with a flux mainly containing a slag component called a slag-based flux-cored wire and a flux mainly containing a metal component called a metal-based flux-cored wire. There are filled wires, which are standardized in JIS Z 3313 and others. When a solid wire is used, the low-temperature toughness can be stably obtained because the amount of oxygen in the weld metal is small. In addition, there are advantages such as deep penetration of the weld metal, very low slag generation, and low fume generation. However, there are disadvantages such as less welding amount than flux-cored wires, and a large amount of spatter generation, which becomes noticeable in welding with a large current.

スラグ系フラックス入りワイヤは、一般的にスラグの主成分がルチールであり、アークが安定してスパッタ発生量が少ない、溶着量が多い、広範囲の溶接条件で全姿勢溶接が可能である等の溶接作業性に優れる利点がある。しかし、ソリッドワイヤに比べて溶接金属の溶け込みが浅い、スラグ生成量が多い、ヒューム発生量が多い、ワイヤ内に充填されるフラックスが酸化物を多く含むため溶接金属の酸素量が高くなり低温靭性を得るのが難しい等の欠点がある。   Slag flux-cored wires are generally welded with slag as the main component, rutile, stable arc, low spatter generation, large amount of welding, and all-position welding under a wide range of welding conditions. There is an advantage of excellent workability. However, the weld metal has a shallower penetration than solid wire, generates a lot of slag, generates a lot of fumes, and the flux filled in the wire contains a lot of oxide, so the oxygen content of the weld metal increases and low temperature toughness There are drawbacks such as difficult to obtain.

メタル系フラックス入りワイヤは、充填フラックスの主成分が金属粉であり、その最大の特徴は溶着量が多いことにある。しかし、一般的にフラックス充填率が10%以上と高充填率であるので、溶接金属の溶け込みが浅い、金属粉が酸化されて比較的スラグ生成量が多い等の欠点がある。   In the metal-based flux-cored wire, the main component of the filling flux is metal powder, and the greatest feature is that the amount of welding is large. However, since the flux filling rate is generally a high filling rate of 10% or more, there are disadvantages such as a poor penetration of the weld metal and a relatively large amount of slag generation due to oxidation of the metal powder.

ソリッドワイヤとフラックス入りワイヤ双方の利点を取り入れる技術として、フラックス中に合金剤およびアーク安定剤を適量添加し、フラックス充填率が3〜10%という低充填率のフラックス入りワイヤで良好な作業性を得るための試みがなされている(例えば、特許文献3参照)。しかし、このフラックス入りワイヤでは、溶接金属中の酸素量が増加し、良好な低温靭性が得られない。一般に、フラックス充填率が10%以上のメタル系フラックス入りワイヤにおいて低温靭性を得るためには、合金剤を適量添加すれば可能であるが、フラックス充填率が3〜10%という低充填率のフラックス入りワイヤの場合、合金剤の添加量に限度があるため、合金成分からの溶接金属の低温靭性を改善することは困難である。   As a technology that incorporates the advantages of both solid wire and flux-cored wire, an appropriate amount of alloying agent and arc stabilizer is added to the flux, and flux-cored wire with a low filling rate of 3 to 10% provides good workability. Attempts have been made to obtain it (see, for example, Patent Document 3). However, with this flux-cored wire, the amount of oxygen in the weld metal increases and good low temperature toughness cannot be obtained. Generally, in order to obtain low temperature toughness in a metal-based flux-cored wire with a flux filling rate of 10% or more, it is possible to add an appropriate amount of an alloying agent, but a flux with a low filling rate of 3 to 10%. In the case of a cored wire, it is difficult to improve the low temperature toughness of the weld metal from the alloy components because the amount of alloying agent is limited.

一方、低温靭性を改善させるために、フラックス中に脱酸剤を適量添加して溶接金属中の酸素量を低減させる技術として、フラックス中に合金剤、アーク安定剤、さらにAl、Mg等の脱酸剤を添加したフラックス充填率を3〜10%という低充填率のメタル系フラックス入りワイヤがあり、良好な作業性を保ちつつ、溶接金属の低温靭性を得るための試みがなされている(例えば、特許文献4参照)。しかし、このフラックス入りワイヤは、Al、Mg等の脱酸反応に伴いスラグ生成量が増加するため、多層盛溶接の場合スラグを除去する必要があり溶接効率の低下、さらにスラグ巻き込み等の溶接欠陥が生じる可能性がある。   On the other hand, in order to improve the low temperature toughness, a technique for reducing the amount of oxygen in the weld metal by adding an appropriate amount of a deoxidizer in the flux is a technique for removing alloying agents, arc stabilizers, Al, Mg, etc. in the flux. There is a metal flux cored wire with a low filling rate of 3 to 10% with a flux filling rate with an acid agent added, and attempts have been made to obtain low temperature toughness of weld metal while maintaining good workability (for example, , See Patent Document 4). However, this flux-cored wire increases the amount of slag generated with the deoxidation reaction of Al, Mg, etc., so it is necessary to remove the slag in the case of multi-layer welding, and welding defects such as a decrease in welding efficiency and slag entrainment May occur.

特開2000−301379号公報JP 2000-301379 A 特開平8−267273号公報JP-A-8-267273 特開2003−112287号公報JP 2003-112287 A 特開2003−94196号公報JP 2003-94196 A

本発明は、880MPa以上の高張力鋼の溶接において、スラグ生成量およびスパッタ発生量が少なく、溶着量が多い等良好な作業性を保ちつつ溶接金属中の酸素量をソリッドワイヤと同程度に低減し、溶接金属の低温靭性を改善する高張力鋼溶接用フラックス入りワイヤを提供することを目的とする。   The present invention reduces the amount of oxygen in the weld metal to the same level as that of solid wire while maintaining good workability such as a small amount of slag generation and spatter generation and a large amount of welding in welding high-tensile steel of 880 MPa or more. And it aims at providing the flux cored wire for high-tensile-strength-steel welding which improves the low-temperature toughness of a weld metal.

本発明の要旨は、高張力鋼溶接用フラックス入りワイヤにおいて、鋼製外皮に充填されたフラックス中の単体Cをワイヤ全質量%で0.05〜0.18%含み、また、鋼製外皮およびフラックス成分の合計がワイヤ全質量でC:0.07〜0.20%、Si:0.1〜1.5%、Mn:0.3〜2.0%、Ni:1.0〜3.5%、Cr:0.4〜0.85%、Mo:0.4〜0.85%、V:0.01〜0.15%を含有し、残部がFeおよび不可避的不純物からなり、前記成分中フラックス分のフラックス充填率が4〜10%であることを特徴とする。   The gist of the present invention is that in a high-strength steel welding flux-cored wire, 0.05% to 0.18% of the total mass% of the simple substance C in the flux filled in the steel outer shell, The total of the flux components is C: 0.07-0.20%, Si: 0.1-1.5%, Mn: 0.3-2.0%, Ni: 1.0-3. 5%, Cr: 0.4 to 0.85%, Mo: 0.4 to 0.85%, V: 0.01 to 0.15%, the balance consisting of Fe and inevitable impurities, The flux filling rate of the flux in the component is 4 to 10%.

また、鋼製外皮に継ぎ目が無いことも特徴とする高張力鋼溶接用フラックス入りワイヤにある。   Further, the present invention is a flux cored wire for welding high strength steel, characterized in that the steel outer skin is seamless.

本発明の高張力鋼溶接用フラックス入りワイヤによれば、880MPa以上の高張力鋼の溶接において、溶着効率が優れ、スラグ生成量およびスパッタ発生量が少なくアークが安定して溶接作業性が良好で、溶接金属中の酸素量が低く低温靭性が良好であるなど、溶接部の品質および溶接能率の向上を図ることができる。   According to the flux cored wire for high strength steel welding of the present invention, in welding high strength steel of 880 MPa or more, welding efficiency is excellent, slag generation amount and spatter generation amount are small, the arc is stable, and welding workability is good. The quality of the welded portion and the welding efficiency can be improved, for example, the amount of oxygen in the weld metal is low and the low temperature toughness is good.

本発明者らは、前記課題を解決するために鋼製外皮とフラックスの合計であるワイヤ成分およびフラックス充填率について種々検討した。   In order to solve the above-mentioned problems, the present inventors have made various studies on the wire component and the flux filling rate, which are the total of the steel outer shell and the flux.

その結果、フラックス中への単体Cの添加とワイヤに適量のSi、Mn、Ni、Cr,Mo、Vを含み、さらにフラックス充填率を低充填とすることにより、溶着効率が優れ、スラグ生成量およびスパッタ発生量の低減、良好な強度、溶接金属中の酸素量低減による良好な低温靭性が安定して得られることを見出した。
以下に本発明の高張力鋼溶接用フラックス入りワイヤの成分等限定理由を述べる。
As a result, the addition of simple substance C into the flux and the wire contains appropriate amounts of Si, Mn, Ni, Cr, Mo, V, and the flux filling rate is low, resulting in excellent welding efficiency and slag generation. It has also been found that good low temperature toughness can be stably obtained by reducing the amount of spatter generated, good strength, and reducing the amount of oxygen in the weld metal.
The reasons for limiting the components of the flux-cored wire for welding high strength steel of the present invention will be described below.

(フラックス中の単体C:0.05〜0.18質量%(以下、%という。))
ワイヤ中のCは、アーク中の酸素と反応して溶接金属の酸素量を低減する。図1は、ワイヤ中の単体C量と溶接金属中の酸素量の関係を示したものである。ワイヤ中の単体Cの増加とともに溶接金属中の酸素量が低くなる。一方、図2に鋼製外皮中のC量および金属粉(高炭素Fe−Mn)中のC量と溶接金属中の酸素量の関係を示すが、図1のフラックス中の単体Cに比べ溶接金属中の酸素低減量が少ない。したがって、溶接金属中の酸素量低減には、フラックス中に単体Cを添加することが有効である。
(Single C in the flux: 0.05 to 0.18% by mass (hereinafter referred to as%))
C in the wire reacts with oxygen in the arc to reduce the amount of oxygen in the weld metal. FIG. 1 shows the relationship between the amount of simple substance C in the wire and the amount of oxygen in the weld metal. As the amount of simple substance C in the wire increases, the amount of oxygen in the weld metal decreases. On the other hand, FIG. 2 shows the relationship between the amount of C in the steel outer shell and the amount of C in the metal powder (high carbon Fe—Mn) and the amount of oxygen in the weld metal. Less oxygen reduction in metal. Therefore, it is effective to add simple substance C to the flux in order to reduce the amount of oxygen in the weld metal.

フラックス中の単体Cが0.05%未満では、前記脱酸効果が得られず、0.18%を超えると過剰なCが溶接金属に歩留り、靭性が低下する。また、単体Cで脱酸を行う場合、ガスとして大気に放出されるため、Si、Mn、Al、Mg等の他の脱酸剤で脱酸を行う場合のようにスラグは生成しない。したがって、スラグ除去作業が不要となると共にスラグ巻き込み欠陥が生じることがない。   If the single C in the flux is less than 0.05%, the deoxidation effect cannot be obtained, and if it exceeds 0.18%, excess C is retained in the weld metal and the toughness is reduced. Further, when deoxidation is performed with the simple substance C, since it is released to the atmosphere as a gas, slag is not generated as in the case where deoxidation is performed with other deoxidizing agents such as Si, Mn, Al, and Mg. Therefore, the slag removal work becomes unnecessary and slag entrainment defects do not occur.

また、前述のように鋼製外皮およびFe−Mn等の金属粉からCを添加すると、単体Cよりも溶接金属へ歩留りやすいので効果的な脱酸が期待できず、さらに溶接金属の靭性が低下する。   Also, as described above, when C is added from the steel outer shell and metal powder such as Fe-Mn, effective deoxidation cannot be expected because the yield is easier to weld metal than single C, and the toughness of the weld metal is further reduced. To do.

なお、本発明にいう単体Cとはグラファイトやコークスをいい、粒径75μm以下であることがアーク中の酸素との反応が容易となるので好ましい。   The simple substance C referred to in the present invention refers to graphite or coke, and a particle size of 75 μm or less is preferable because reaction with oxygen in the arc is facilitated.

(ワイヤ全体のC:0.07〜0.20%)
Cは固溶強化による溶接金属の強度を確保する重要な元素であると共に、アーク中の酸素と反応しアーク雰囲気および溶滴の酸素を低減する効果がある。ワイヤ全体のCが0.07%未満では、前記脱酸および強度確保の効果が得られず、0.20%を超えるとスパッタ発生量が多くなるとともに過剰なCが溶接金属に歩留り、耐力および強度が過多になり、靭性が低下する。
(C of the whole wire: 0.07 to 0.20%)
C is an important element that ensures the strength of the weld metal by solid solution strengthening, and has an effect of reducing oxygen in the arc atmosphere and droplets by reacting with oxygen in the arc. If the C content of the entire wire is less than 0.07%, the effects of deoxidation and ensuring the strength cannot be obtained. Strength becomes excessive and toughness decreases.

(Si:0.1〜1.5%)
Siは、溶接金属の靭性向上を目的とする。鋼製外皮とフラックス成分合計(以下、ワイヤ成分という。)のSiが0.1%未満では靭性が低下する。また、1.5%を超えるとスラグ生成量が多くなって、多層盛溶接した場合スラグ巻き込み欠陥が生じる。また、溶接金属中への歩留が過剰となり、強度が過多となるため靭性が低下する。
(Si: 0.1-1.5%)
Si aims to improve the toughness of the weld metal. If the steel outer shell and flux component total (hereinafter referred to as wire component) Si is less than 0.1%, the toughness is lowered. Moreover, when it exceeds 1.5%, the amount of slag generation increases, and a slag entrainment defect occurs when multi-layer welding is performed. Moreover, since the yield in the weld metal becomes excessive and the strength becomes excessive, the toughness decreases.

(Mn:0.3〜2.0%)
Mnは溶接金属の靭性を確保、強度および耐力の向上を目的とする。ワイヤ成分のMnが0.1%未満では、靭性が低下する。また、2.0%を超えるとスラグ生成量が多くなって、多層盛溶接した場合スラグ巻き込み欠陥が生じる。また、溶接金属中の歩留が過剰となり、強度が過多となるため靭性が低下する。
(Mn: 0.3-2.0%)
Mn aims to secure the toughness of the weld metal and improve the strength and proof stress. If the Mn of the wire component is less than 0.1%, the toughness decreases. On the other hand, if the content exceeds 2.0%, the amount of slag generated increases, and slag entrainment defects occur when multi-layer welding is performed. Moreover, since the yield in the weld metal becomes excessive and the strength becomes excessive, the toughness decreases.

(Ni:1.0〜3.5%)
Niは溶接金属の強度および靭性向上を目的とする。ワイヤ成分のNiが1.0%未満ではその効果が不十分であり、3.5%を超えると、強度が過多となり靭性が低下する。
(Ni: 1.0-3.5%)
Ni is intended to improve the strength and toughness of the weld metal. If the wire component Ni is less than 1.0%, the effect is insufficient, and if it exceeds 3.5%, the strength becomes excessive and the toughness decreases.

(Cr:0.4〜0.85%)
Crは溶接金属の強度向上を目的とする。ワイヤ成分のCrが0.4%未満では耐力および強度が得られず、0.85%を超えると強度が過多となり靭性が低下する。
(Cr: 0.4-0.85%)
Cr aims at improving the strength of the weld metal. When the wire component Cr is less than 0.4%, yield strength and strength cannot be obtained, and when it exceeds 0.85%, the strength becomes excessive and the toughness decreases.

(Mo:0.4〜0.85%)
Moは溶接金属の耐力および強度向上を目的とする。ワイヤ成分のMoが0.4%未満では目的の耐力および強度が得られず、0.85%を超えると強度が過多となり靭性が低下する。
(Mo: 0.4-0.85%)
Mo aims at improving the yield strength and strength of the weld metal. If the Mo content of the wire component is less than 0.4%, the desired yield strength and strength cannot be obtained, and if it exceeds 0.85%, the strength becomes excessive and the toughness decreases.

(V:0.01〜0.15%)
Vは微細な窒炭化物を析出し、溶接金属の強度向上を目的とする。ワイヤ成分のVが0.01%未満ではその効果が不十分であり、0.15%を超えると強度が過多となり靭性が低下する。
(V: 0.01 to 0.15%)
V aims to improve the strength of the weld metal by precipitating fine nitrocarbides. If V of the wire component is less than 0.01%, the effect is insufficient, and if it exceeds 0.15%, the strength becomes excessive and the toughness decreases.

(フラックス充填率:4〜10%)
前述のワイヤ成分を除いたフラックス分のフラックス充填率は、4〜10%とする。フラックス充填率が4%未満では、成形が困難となり、生産性が悪くなる。また、10%を超えると、スラグ生成量が多くなりスラグ巻き込み欠陥が生じやすくなる。また、酸素を持ち込む鉄粉量が増えるため、単体Cによる脱酸を行っても溶接金属中の酸素量が増加して靭性を低下させる。さらに、ワイヤ製造時の伸線性が劣り、断線による生産性の低下をきたす。
(Flux filling rate: 4 to 10%)
The flux filling rate excluding the wire component described above is 4 to 10%. When the flux filling rate is less than 4%, molding becomes difficult and productivity is deteriorated. On the other hand, if it exceeds 10%, the amount of slag generation increases and slag entrainment defects tend to occur. In addition, since the amount of iron powder that brings in oxygen increases, the amount of oxygen in the weld metal increases and the toughness decreases even if the deoxidation with the simple substance C is performed. Furthermore, the wire drawability at the time of wire manufacture is inferior, resulting in a decrease in productivity due to wire breakage.

なお、フラックス中の合金成分は、鋼製外皮の成分とその含有量を考慮して、各限定した範囲内で配合成分を調整する。フラックス中の合金成分を調整することで、種々の高張力鋼(母材)の成分に応じたフラックス入りワイヤとすることができる。   In addition, the alloy component in a flux adjusts a compounding component in each limited range in consideration of the component and content of a steel outer shell. By adjusting the alloy components in the flux, it is possible to obtain flux-cored wires according to the components of various high-tensile steels (base materials).

その他、PおよびSは共に低融点の化合物を生成して粒界の強度を低下させ、溶接金属の靭性を低下させるため、できるだけ低いのが好ましい。また、鉄粉はフラックス充填率を調整するために用いることができるが、酸素を持ち込むため、少ない方が望ましい。   In addition, both P and S are preferably as low as possible because they produce a low melting point compound to lower the grain boundary strength and lower the toughness of the weld metal. Moreover, although iron powder can be used in order to adjust a flux filling rate, since oxygen is brought in, it is desirable that it is less.

本発明の高張力鋼溶接用フラックス入りワイヤは、拡散性水素量を極力低減するために鋼製外皮に継ぎ目の無い断面形状とする。なお、ワイヤ表面に銅めっきを施すことによりアークがさらに安定するので好ましい。   The flux cored wire for high-tensile steel welding of the present invention has a cross-sectional shape that is seamless to the steel outer sheath in order to reduce the amount of diffusible hydrogen as much as possible. It is preferable to apply copper plating to the wire surface because the arc is further stabilized.

本発明の高張力鋼溶接用フラックス入りワイヤの製造方法は、鋼製パイプにフラックスを振動充填した後、縮径、焼鈍して素線とする。または、帯鋼を成型工程でU字型に成型してフラックスを充填し、O字型に成型して溶接後、縮径、焼鈍して素線とし、更に必要に応じてめっきした後伸線して0.8〜2.0mmの所定径の製品とする。   In the method for producing a high-strength steel welding flux cored wire according to the present invention, a steel pipe is vibration-filled with a flux, and then reduced in diameter and annealed to form a strand. Alternatively, the steel strip is molded into a U-shape in the molding process, filled with flux, molded into an O-shape, welded, reduced in diameter, annealed to form a strand, and then plated as necessary. Thus, a product having a predetermined diameter of 0.8 to 2.0 mm is obtained.

本発明の高張力鋼溶接用フラックス入りワイヤの径は、溶接時の電流密度を高くし、高溶着率を得るために直径0.8〜2.0mmが望ましい。また、溶接時のシールドガスは、溶接金属中の酸素量を低減するためにAr−5〜25%COの混合ガスであることが好ましい。 The diameter of the high-strength steel welding flux-cored wire of the present invention is preferably 0.8 to 2.0 mm in diameter in order to increase the current density during welding and obtain a high deposition rate. Moreover, it is preferable that the shielding gas at the time of welding is a mixed gas of Ar-5 to 25% CO 2 in order to reduce the amount of oxygen in the weld metal.

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effect of the present invention will be described in detail with reference to examples.

表1に示す鋼製外皮を用いて、成型工程でU字型に成型してフラックスを充填し、O字型に成型して溶接後、縮径、焼鈍して素線とし、めっきした後、表2に示すワイヤ成分のワイヤを1.2mm径まで伸線して、各種フラックス入りワイヤを試作してスプール巻きワイヤとした。   Using the steel outer skin shown in Table 1, it is molded into a U-shape in the molding process, filled with flux, molded into an O-shape, welded, reduced in diameter, annealed into a strand, plated, Wires of the wire components shown in Table 2 were drawn to a diameter of 1.2 mm, and various flux-cored wires were prototyped to form spool winding wires.

Figure 0004509807
Figure 0004509807

Figure 0004509807
Figure 0004509807

各試作ワイヤにつきスパッタ発生量を測定した後、溶着金属試験を行い溶接欠陥の有無と機械的性能の調査を行った。   After measuring the amount of spatter generated for each prototype wire, a weld metal test was conducted to investigate the presence of weld defects and the mechanical performance.

スパッタ発生量は、銅製の捕集箱を用いて、ビードオンプレート溶接により表3に示す溶接条件で5回溶接(1回の溶接時間1.5min)して捕集したスパッタを1分間の発生量に換算した。スパッタ発生量が0.5g/min以下を良好とした。   The amount of spatter generated is 1 minute of spatter collected by welding 5 times (1 welding time 1.5 min) under the welding conditions shown in Table 3 by bead-on-plate welding using a copper collection box. Converted to quantity. A spatter generation amount of 0.5 g / min or less was considered good.

溶着量は、ビードオンプレート溶接により表3に示す溶接条件で1回溶接(溶接時間1min)して、溶接前およびスラグ除去後の鋼板質量から求めた。溶着量が70g/min以上を良好とした。   The amount of welding was determined from the mass of the steel plate before welding and after removing the slag after welding once (welding time 1 min) under the welding conditions shown in Table 3 by bead-on-plate welding. A welding amount of 70 g / min or more was considered good.

Figure 0004509807
Figure 0004509807

溶着金属試験は、表4に示す板厚20mmの鋼板を開先角度:45°、ルートギャップ:12mmのV型開先形状として表3に示す溶接条件で多層盛溶接を実施した。なお、各パスで生成したスラグは除去しない状態で最終層まで溶接した。   The weld metal test was performed by multi-layer welding under the welding conditions shown in Table 3 using a steel plate having a thickness of 20 mm shown in Table 4 as a V-shaped groove shape having a groove angle of 45 ° and a root gap of 12 mm. In addition, it welded to the last layer, without removing the slag produced | generated at each pass.

Figure 0004509807
Figure 0004509807

溶接終了後X線透過試験を行い溶接欠陥の有無を調査した。また、溶着金属の機械的性質は、引張試験片(JIS Z 3111 A1号)および衝撃試験片(JIS Z 3111 4号)をそれぞれ板厚中央部から採取して試験に供した。機械的性能の評価は、0.2%耐力が780MPa以上、引張強さが880MPa以上および−20℃における吸収エネルギーが50J以上であれば合格とした。それらの結果を表5にまとめて示す。また、溶着金属成分を表6に示す。   After the end of welding, an X-ray transmission test was performed to investigate the presence or absence of welding defects. Further, the mechanical properties of the weld metal were obtained by taking a tensile test piece (JIS Z 3111 A1) and an impact test piece (JIS Z 3111 4) from the center of the plate thickness. The mechanical performance was evaluated as acceptable if the 0.2% proof stress was 780 MPa or more, the tensile strength was 880 MPa or more, and the absorbed energy at −20 ° C. was 50 J or more. The results are summarized in Table 5. Table 6 shows the weld metal components.

Figure 0004509807
Figure 0004509807

Figure 0004509807
Figure 0004509807

表2、表5および表6中、ワイヤ記号W1〜9が本発明例、ワイヤ記号W10〜25は比較例である。   In Tables 2, 5, and 6, wire symbols W1 to W9 are examples of the present invention, and wire symbols W10 to W25 are comparative examples.

本発明例であるワイヤ記号W1〜W9は、フラックス中の単体C量、ワイヤ中のC、Si、Mn、Ni、Cr、MoおよびV量が適正で、フラックス充填率も適正であるので、スパッタ発生量が少なく溶着量が多くなった。また、スラグ生成量が少ないのでX線透過試験も良好で、溶接金属の0.2%耐力および引張強さが十分得られ、溶接金属中の酸素量が低いので吸収エネルギーも良好であるなど、極めて満足な結果であった。   The wire symbols W1 to W9, which are examples of the present invention, are suitable because the amount of simple substance C in the flux, the amount of C, Si, Mn, Ni, Cr, Mo and V in the wire are appropriate, and the flux filling rate is also appropriate. The amount generated was small and the amount welded was large. In addition, since the amount of slag generation is small, the X-ray transmission test is also good, 0.2% proof stress and tensile strength of the weld metal are sufficiently obtained, and the absorbed energy is also good because the amount of oxygen in the weld metal is low. The result was very satisfactory.

比較例中ワイヤ記号W10は、フラックス充填率が低く、生産性が悪くなった。したがって評価は行わなかった。   In the comparative example, the wire symbol W10 had a low flux filling rate and deteriorated productivity. Therefore, no evaluation was performed.

ワイヤ記号W11は、単体C量が少ないので、脱酸が不十分となり溶接金属中の酸素量が多くなったため、吸収エネルギーが低かった。   Since the wire symbol W11 has a small amount of simple substance C, deoxidation was insufficient and the amount of oxygen in the weld metal increased, so that the absorbed energy was low.

ワイヤ記号W12は、Crが高いので、引張強さが過多となり吸収エネルギーが低かった。   Since the wire symbol W12 is high in Cr, the tensile strength is excessive and the absorbed energy is low.

ワイヤ記号W13は、Vが高いので、引張強さが過多となり吸収エネルギーが低かった。   Since the wire symbol W13 had a high V, the tensile strength was excessive and the absorbed energy was low.

ワイヤ記号W14は、Moが高いので、引張強さが過多となり吸収エネルギーが低かった。   Since the wire symbol W14 had high Mo, the tensile strength was excessive and the absorbed energy was low.

ワイヤ記号W15は、Crが低いので、0.2%耐力および引張強さが低下した。また、Mnが低いので、吸収エネルギーが低かった。   Since the wire symbol W15 is low in Cr, the 0.2% proof stress and tensile strength decreased. Moreover, since Mn was low, the absorbed energy was low.

ワイヤ記号W16は、フラックスのC源にFe−Mnを用いたため、脱酸が不十分となり、溶接金属中の酸素量が多く吸収エネルギーが低かった。また、多量のCが溶接金属中に歩留ったため、引張強さが過多となり吸収エネルギーが低かった。   Since the wire symbol W16 used Fe—Mn as the C source of the flux, deoxidation was insufficient, and the amount of oxygen in the weld metal was large and the absorbed energy was low. Further, since a large amount of C was retained in the weld metal, the tensile strength was excessive and the absorbed energy was low.

ワイヤ記号W17は、Vが低いので、0.2%耐力および引張強さが低かった。また、Siが低いので、吸収エネルギーが低かった。   Since the wire symbol W17 had a low V, the 0.2% yield strength and tensile strength were low. Moreover, since Si was low, the absorbed energy was low.

ワイヤ記号W18は、Siが高いので、引張強さが過多となり吸収エネルギーが低くかった。また、スラグ生成量が多く、スラグ巻き込み欠陥も発生した。   Since the wire symbol W18 is high in Si, the tensile strength is excessive and the absorbed energy is low. Moreover, the amount of slag generation was large, and slag entrainment defects occurred.

ワイヤ記号W19は、Niが高いので、引張強さが過多となり吸収エネルギーが低かった。   Since the wire symbol W19 is high in Ni, the tensile strength is excessive and the absorbed energy is low.

ワイヤ記号W20は、Niが低いので、吸収エネルギーが低かった。   The wire symbol W20 had a low absorbed energy because Ni was low.

ワイヤ記号W21は、Mnが高いので、引張強さが過多となり吸収エネルギーが低かった。また、スラグ生成量が多く、スラグ巻き込み欠陥も発生した。   Since the wire symbol W21 had high Mn, the tensile strength was excessive and the absorbed energy was low. Moreover, the amount of slag generation was large, and slag entrainment defects occurred.

ワイヤ記号W22は、Moが低いので、0.2%耐力および引張強さが低かった。また、全体Cが低いので、脱酸が不十分となり溶接金属中の酸素量が多くなって吸収エネルギーが低かった。   Since the wire symbol W22 had low Mo, the 0.2% yield strength and tensile strength were low. Further, since the total C was low, deoxidation was insufficient, the amount of oxygen in the weld metal was increased, and the absorbed energy was low.

ワイヤ記号W23は、単体Cが多いので、多量のCが溶接金属中に歩留ったため、引張強さが過多となり、吸収エネルギーが低かった。また、スパッタ発生量が多かった。   Since the wire symbol W23 has a large amount of simple substance C, since a large amount of C was retained in the weld metal, the tensile strength was excessive and the absorbed energy was low. Moreover, there was much spatter generation amount.

ワイヤ記号W24は、充填率が高いため、スラグ生成量が多く、スラグ巻き込み欠陥も発生した。また、鉄粉中の多量の酸素が溶接金属中に混入し、吸収エネルギーが低かった。   Since the wire symbol W24 has a high filling rate, a large amount of slag was generated, and slag entrainment defects also occurred. In addition, a large amount of oxygen in the iron powder was mixed in the weld metal, and the absorbed energy was low.

ワイヤ記号W25は、ソリッドワイヤであり、0.2%耐力、引張強さおよび吸収エネルギーは良好であったが、スパッタ発生量が多く、溶着量は少なかった。   The wire symbol W25 was a solid wire, and 0.2% proof stress, tensile strength and absorbed energy were good, but the amount of spatter was large and the amount of welding was small.

ワイヤ中の単体C量と溶着金属中の酸素量の関係を示した図である。It is the figure which showed the relationship between the simple substance C amount in a wire, and the oxygen amount in a deposit metal. 外皮Cおよび金属粉中のC量と溶着金属中の酸素量の関係を示した図である。It is the figure which showed the relationship between the amount of C in the outer skin C and the metal powder, and the amount of oxygen in the weld metal.

Claims (2)

鋼製外皮にフラックスを充填した高張力鋼溶接用フラックス入りワイヤにおいて、鋼製外皮に充填されたフラックス中の単体Cをワイヤ全質量%で0.05〜0.18%含み、また、鋼製外皮およびフラックス成分の合計がワイヤ全質量%でC:0.07〜0.20%、Si:0.1〜1.5%、Mn:0.3〜2.0%、Ni:1.0〜3.5%、Cr:0.4〜0.85%、Mo:0.4〜0.85%、V:0.01〜0.15%を含有し、残部がFeおよび不可避的不純物からなり、前記成分中のフラックス分のフラックス充填率が4〜10%であることを特徴とする高張力鋼溶接用フラックス入りワイヤ。   The flux cored wire for welding high-strength steel with a steel outer shell filled with flux contains 0.05 to 0.18% of the total amount of the single element C in the flux filled in the steel outer shell, and made of steel. The total of the outer sheath and the flux component is C: 0.07 to 0.20%, Si: 0.1 to 1.5%, Mn: 0.3 to 2.0%, Ni: 1.0 in the total mass% of the wire -3.5%, Cr: 0.4-0.85%, Mo: 0.4-0.85%, V: 0.01-0.15%, the balance from Fe and inevitable impurities A flux-cored wire for welding high-strength steel, wherein a flux filling rate of the flux in the components is 4 to 10%. 鋼製外皮に継ぎ目の無いことを特徴とする請求項1記載の高張力鋼溶接用フラックス入りワイヤ。   The high-strength steel welding flux cored wire according to claim 1, wherein the steel outer skin is seamless.
JP2005010219A 2005-01-18 2005-01-18 Flux-cored wire for high-tensile steel welding Expired - Fee Related JP4509807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010219A JP4509807B2 (en) 2005-01-18 2005-01-18 Flux-cored wire for high-tensile steel welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010219A JP4509807B2 (en) 2005-01-18 2005-01-18 Flux-cored wire for high-tensile steel welding

Publications (2)

Publication Number Publication Date
JP2006198630A JP2006198630A (en) 2006-08-03
JP4509807B2 true JP4509807B2 (en) 2010-07-21

Family

ID=36957067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010219A Expired - Fee Related JP4509807B2 (en) 2005-01-18 2005-01-18 Flux-cored wire for high-tensile steel welding

Country Status (1)

Country Link
JP (1) JP4509807B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005309B2 (en) 2006-10-02 2012-08-22 株式会社神戸製鋼所 Gas shielded arc welding flux cored wire for high strength steel
JP4722811B2 (en) * 2006-10-23 2011-07-13 日鐵住金溶接工業株式会社 Flux-cored wire for submerged arc welding for high-strength steel.
JP5064928B2 (en) * 2007-08-06 2012-10-31 日鐵住金溶接工業株式会社 Flux-cored wire for submerged arc welding for high-strength steel.
JP5339871B2 (en) * 2008-11-28 2013-11-13 日鐵住金溶接工業株式会社 Flux-cored wire for submerged arc welding of low temperature steel and welding method.
AT507914B1 (en) * 2009-03-11 2010-11-15 Boehler Schweisstechnik Flux cored wire
EP2289661B1 (en) 2009-08-27 2014-04-02 Nippon Steel & Sumikin Welding Co., Ltd. Flux cored wire for gas shielded arc welding of high strength steel
KR101535399B1 (en) * 2012-05-08 2015-07-08 신닛테츠스미킨 카부시키카이샤 Flux-containing wire for welding ultrahigh-tensile steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079191A (en) * 1993-04-26 1995-01-13 Nippon Steel Corp Mag welding flux cored wire having less welding deformation
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
JPH081378A (en) * 1994-04-22 1996-01-09 Nippon Steel Corp Flux-cored wire excellent in high speed welding and small in welding deformation
JPH08174275A (en) * 1994-12-22 1996-07-09 Nippon Steel Corp Gas shield arc welding flux cored wire for high tension steel
JPH08267273A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Wire for gas metal arc welding for high tensile steel
JP2002144084A (en) * 2000-09-04 2002-05-21 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas-shielded arc welding
JP2003145291A (en) * 2001-08-27 2003-05-20 Nippon Steel & Sumikin Welding Co Ltd Wire with flux for gas shield arc welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079191A (en) * 1993-04-26 1995-01-13 Nippon Steel Corp Mag welding flux cored wire having less welding deformation
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
JPH081378A (en) * 1994-04-22 1996-01-09 Nippon Steel Corp Flux-cored wire excellent in high speed welding and small in welding deformation
JPH08174275A (en) * 1994-12-22 1996-07-09 Nippon Steel Corp Gas shield arc welding flux cored wire for high tension steel
JPH08267273A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Wire for gas metal arc welding for high tensile steel
JP2002144084A (en) * 2000-09-04 2002-05-21 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas-shielded arc welding
JP2003145291A (en) * 2001-08-27 2003-05-20 Nippon Steel & Sumikin Welding Co Ltd Wire with flux for gas shield arc welding

Also Published As

Publication number Publication date
JP2006198630A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5136466B2 (en) Flux-cored wire for welding high-strength steel and method for producing the same
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
JP4509807B2 (en) Flux-cored wire for high-tensile steel welding
JP5356142B2 (en) Gas shield arc welding method
WO2017038610A1 (en) Flux-cored wire for gas-shielded arc welding
JP6219259B2 (en) Flux-cored wire for gas shielded arc welding of high strength steel
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
WO2016175154A1 (en) Flux cored wire for gas-shielded arc welding and welding method
JP2017131950A (en) Flux-cored wire for gas shield arc welding
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP2016187828A (en) Flux-cored wire for gas shield arc welding
JP2016124023A (en) HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP2007136547A (en) Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength
JP2014198344A (en) Submerged arc welding method for high strength steel
JP5064928B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP5843164B2 (en) Flux-cored wire for submerged arc welding
JP5340014B2 (en) Submerged arc welding method for low temperature steel
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP4722811B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP2020157315A (en) Flux cored wire for electro-gas arc welding
JP2015182094A (en) Gas shielded arc welding method
JP3880826B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees