JP4509708B2 - Purification method for heavy metal contaminated soil - Google Patents

Purification method for heavy metal contaminated soil Download PDF

Info

Publication number
JP4509708B2
JP4509708B2 JP2004262190A JP2004262190A JP4509708B2 JP 4509708 B2 JP4509708 B2 JP 4509708B2 JP 2004262190 A JP2004262190 A JP 2004262190A JP 2004262190 A JP2004262190 A JP 2004262190A JP 4509708 B2 JP4509708 B2 JP 4509708B2
Authority
JP
Japan
Prior art keywords
soil
cadmium
washing
heavy metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004262190A
Other languages
Japanese (ja)
Other versions
JP2006075721A (en
Inventor
知之 牧野
勇治 前島
和夫 菅原
博幸 高野
隆 神谷
博 小津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
National Institute for Agro Environmental Sciences
Original Assignee
Taiheiyo Cement Corp
National Institute for Agro Environmental Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, National Institute for Agro Environmental Sciences filed Critical Taiheiyo Cement Corp
Priority to JP2004262190A priority Critical patent/JP4509708B2/en
Publication of JP2006075721A publication Critical patent/JP2006075721A/en
Application granted granted Critical
Publication of JP4509708B2 publication Critical patent/JP4509708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、重金属汚染土壌を効率良く浄化する方法に関する。   The present invention relates to a method for efficiently purifying heavy metal contaminated soil.

重金属含有農用地の対策には、客土法、排土客土法、アルカリ資材施用法、還元条件下での栽培法、種々の薬剤を用いて洗浄する方法(例えば、特許文献1等)等が知られている。
特に、カドミウム含有水田土壌においては、土壌中のカドミウム濃度が低濃度(例えば2ppm程度)でも、玄米中のカドミウム濃度が1ppm以上(食品衛生法で流通禁止)になる危険性がある。これらカドミウム含有量が1ppm以上の玄米を産する水田については、農林水産省の予算補助を受け、公害防除特別土地改良事業等により、客土又は排土客土による対策がなされている。
Measures for heavy metal-containing agricultural land include the land-and-soil method, the soil-discharging land-and-soil method, the alkaline material application method, the cultivation method under reducing conditions, and the method of washing with various chemicals (for example, Patent Document 1). Are known.
In particular, in a cadmium-containing paddy field soil, even if the cadmium concentration in the soil is low (for example, about 2 ppm), there is a risk that the cadmium concentration in brown rice will be 1 ppm or more (distribution prohibited by the Food Sanitation Law). These paddy fields that produce brown rice with a cadmium content of 1 ppm or more have been subsidized by special land improvement projects such as special land improvement projects under the assistance of the Ministry of Agriculture, Forestry and Fisheries.

一方、CODEX(WHOとFAO合同の食品規格委員会)では、食品のカドミウム基準値案を検討中で、コメについては0.4mg/kgあるいは0.2mg/kgが提案されており、例えば0.2mg/kgが採択された場合、これまでに指定された地域の10倍程度のカドミウム汚染農用地が顕在化すると想定されている。この膨大な面積の浄化対策を、これまでの排土、客土で行なうと、大量の排土の処理と水田土壌に適した土壌を準備する必要があり、しかも客土した土壌がもとの生産性を回復するのに10年近い年月を要することや、対策をしても20〜30年経過するとまた汚染が再発するということもあり、物理的、またコスト的に現実的な対策法ではなく、より効率の良い土壌の浄化方法が求められている。   On the other hand, CODEX (Food Standard Committee of WHO and FAO) is considering a cadmium standard value for food, and 0.4 mg / kg or 0.2 mg / kg is proposed for rice. When 2 mg / kg is adopted, it is assumed that about 10 times as much cadmium-contaminated agricultural land will appear. If this huge amount of area cleanup measures are carried out with conventional soil removal and soil removal, it will be necessary to prepare a large amount of soil removal and soil suitable for paddy soil. It may take nearly 10 years to recover productivity, and even if measures are taken, pollution will recur after 20 to 30 years. Rather, there is a need for more efficient methods for soil purification.

また、薬剤を用いて洗浄する方法として、例えば、特許文献2には、汚染された土壌を、カルシウムあるいは鉄の硫酸塩、塩化物又はこれらの混合物を加えて混合し、水分の存在下に土壌中の重金属を水溶性にして、溶出除去する方法が記載されている。さらに、非特許文献1には、カドミウム含有水田土壌を塩化カルシウム、酢酸等によって処理すると、土壌中のカドミウム濃度が低下することが記載され、非特許文献2には、同様に、EDTAを用いた例が記載されている。
しかしながら、これらの文献では、実際のカドミウム含有水田土壌において、どのように洗浄すれば、効率良くカドミウムを除去して、浄化できるかについては示されていない。特に、浄化対象土壌の環境によっては、想定の浄化効果が得られないこともあり、重金属汚染土壌を効率良く浄化することは困難である。
特開2002−355662号公報 特開昭54−13466号公報 尾川文朗,「秋田県における水稲のカドミウム汚染の実態とその被害軽減に関する研究」,秋田県農業試験場研究報告,1994年,第35号,p31-38 中島征志郎,小野末太,「対馬の重金属汚染に関する調査研究」,長崎県総合農林試験場研究報告,1979年,第7号,p359-364
Further, as a method for washing with a chemical, for example, Patent Document 2 discloses that contaminated soil is mixed with calcium or iron sulfate, chloride or a mixture thereof, and the soil is present in the presence of moisture. A method is described in which the heavy metal contained therein is made water-soluble and removed by elution. Furthermore, Non-Patent Document 1 describes that when cadmium-containing paddy soil is treated with calcium chloride, acetic acid, etc., the cadmium concentration in the soil decreases, and Non-Patent Document 2 similarly uses EDTA. An example is given.
However, these documents do not show how cadmium can be efficiently removed and cleaned in an actual cadmium-containing paddy soil. In particular, depending on the environment of the soil to be purified, an expected purification effect may not be obtained, and it is difficult to efficiently purify heavy metal contaminated soil.
JP 2002-355562 A Japanese Patent Laid-Open No. 54-13466 Fumio Ogawa, “Study on the Actual Condition of Cadmium Contamination of Rice in Akita Prefecture and Mitigation of the Damage”, Akita Prefectural Agricultural Experiment Station Research Report, 1994, No. 35, p31-38 Seijiro Nakajima, Sueta Ono, “Survey on Heavy Metal Contamination in Tsushima”, Nagasaki Prefectural Agricultural and Forestry Laboratory, 1979, No. 7, p359-364

従って、本発明の目的は、重金属汚染土壌を効率良く浄化する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for efficiently purifying heavy metal contaminated soil.

本発明者らは、斯かる実情に鑑み、種々検討した結果、汚染土壌を酸化状態とするか又は乾燥させた後、薬剤を用いて土壌中の重金属を抽出洗浄すれば、土壌を効率良く浄化できることを見出し、本発明を完成した。   As a result of various investigations in view of such circumstances, the present inventors have efficiently purified the soil by extracting and washing heavy metals in the soil using chemicals after the contaminated soil is oxidized or dried. The present invention has been completed by finding out what can be done.

すなわち、本発明は、重金属汚染土壌を、酸化状態及び/又は乾燥状態とした後、塩化第二鉄を用いて洗浄することを特徴とする重金属汚染土壌の浄化方法を提供するものである。 That is, the present invention provides a method for purifying heavy metal-contaminated soil, characterized in that the heavy metal-contaminated soil is made into an oxidized state and / or dry state and then washed with ferric chloride .

本発明によれば、重金属汚染土壌を効率良く浄化することができる。   According to the present invention, heavy metal-contaminated soil can be efficiently purified.

本発明で浄化対象となる重金属汚染土壌としては、市街地、山林、工場跡地、農用地、沼地、更には排土等で、鉛、カドミウム、ヒ素等の重金属元素の単体、化合物又はイオンを含有する土壌が挙げられる。例えば平成3年環境庁告示第46号に定める方法によって測定される重金属類の溶出量が土壌環境基準を超える土壌や、土壌1kg当たり鉛重量で400mg以上の鉛を含有する鉛含有土壌、土壌1kg当たりカドミウム重量で2mg以上のカドミウムを含有するカドミウム含有土壌、土壌1kg当たりヒ素重量で30mg以上のヒ素を含有するヒ素含有土壌等の土壌に好適に適用することができる。
特に、カドミウム含有水田土壌、更に、カドミウム濃度が0.1〜5ppmの水田土壌の浄化に好適である。
The heavy metal-contaminated soil to be purified in the present invention is an urban area, a forest, a factory site, an agricultural land, a swamp, or even a soil, and a soil containing a simple substance, compound or ion of lead, cadmium, arsenic, etc. Is mentioned. For example, soil with heavy metal elution measured by the method stipulated in Notification No. 46 of the Environment Agency in 1991, soil containing lead that contains 400 mg or more of lead per kg of soil, 1 kg of soil The present invention can be suitably applied to soil such as cadmium-containing soil containing 2 mg or more of cadmium by weight per cadmium and arsenic-containing soil containing arsenic of 30 mg or more per kg of soil.
In particular, it is suitable for purification of cadmium-containing paddy soil and paddy soil having a cadmium concentration of 0.1 to 5 ppm.

本発明においては、まず、このような浄化対象汚染土壌を、酸化状態とするか及び/又は乾燥状態とする。酸化又は乾燥方法としては、例えば現位置にて耕耘機により土壌と空気を接触させて酸化させる方法、土壌を一旦掘削除去し、攪拌機等により土壌と空気を接触させて酸化させる方法などが挙げられる。   In the present invention, first, such soil to be purified is brought into an oxidized state and / or dried. Examples of the oxidation or drying method include a method in which soil and air are brought into contact with a tiller at the current position to oxidize, a method in which soil is excavated and removed, and a soil and air is brought into contact with a stirrer to oxidize. .

土壌の酸化状態としては、酸化還元電位(Eh)が100mV以上、特に200mV以上であるのが好ましい。土壌の酸化還元電位は、駒田充生、「酸化還元電位(Eh)白金電極法」博友社、p.197−199に記載の方法により、測定することができる。すなわち、酸化還元電位とは、例えば野外で測定する場合は、湛水条件下の水田土壌の作土層に不反応電極である白金電極を挿入し、十分な接触時間を保った後、基準電極である甘コウ電極との電位差を測定することにより、電子が電極から溶液方向に、あるいはその反対方向に移動して、電極と土壌溶液との間に生じた一定の電位差をいう。   As the oxidation state of the soil, the redox potential (Eh) is preferably 100 mV or more, particularly 200 mV or more. The oxidation-reduction potential of the soil was determined by Mitsuko Komada, “Oxidation-reduction potential (Eh) platinum electrode method” Hirotosha, p. It can be measured by the method described in 197-199. That is, the oxidation-reduction potential is, for example, when measured outdoors, after inserting a platinum electrode, which is a non-reactive electrode, in the soil layer of paddy soil under flooded conditions, and after maintaining a sufficient contact time, the reference electrode By measuring the potential difference between the electrode and the sweet potato electrode, it means a certain potential difference generated between the electrode and the soil solution as electrons move from the electrode in the solution direction or in the opposite direction.

また、土壌の乾燥状態としては、水分ポテンシャルが−1Mpa以下、特に−5Mpa以下であるのが好ましい。土壌の水分ポテンシャルは、中野政詩、宮崎毅、塩沢択、「サイクロメーター法、土壌物理環境測定法」東京大学出版会、p.82−87に記載の方法により測定される。土壌水分ポテンシャルとは、土壌に含まれる水の化学ポテンシャルを指し、水の表面張力や土粒子の吸着力によるマトリックポテンシャル成分、溶質を含むことによる浸透ポテンシャル成分、そして重力ポテンシャル成分から構成されている。土壌が水分を多く含むときは、高い土壌水分ポテンシャルをもち、少ないときは低いポテンシャルをもつと表現される。土壌水分ポテンシャルを計測するには、土壌に含まれる水と平衡状態にある空気の相対湿度を測定する。具体的には、小さなチャンバー内で土壌試料の水ポテンシャルと空気の水蒸気圧を平衡させ、その相対湿度を湿球と乾球との湿度差として測定するものである。   Moreover, as a dry state of soil, it is preferable that the water potential is -1 Mpa or less, particularly -5 Mpa or less. The water potential of the soil is described by Masayoshi Nakano, Satoshi Miyazaki, Choshi Shiozawa, “Cyclometer Method, Soil Physical Environment Measurement Method”, University of Tokyo Press, p. It is measured by the method described in 82-87. Soil moisture potential refers to the chemical potential of water contained in soil, and consists of a matrix potential component due to the surface tension of water and the adsorption power of soil particles, an osmotic potential component due to the inclusion of solutes, and a gravity potential component. . When soil contains a lot of water, it is expressed as having a high soil water potential, and when it is low, it has a low potential. To measure soil moisture potential, the relative humidity of air in equilibrium with the water contained in the soil is measured. Specifically, the water potential of the soil sample and the water vapor pressure of the air are balanced in a small chamber, and the relative humidity is measured as the humidity difference between the wet bulb and the dry bulb.

このように、重金属汚染土壌を酸化状態及び/又は乾燥状態とした後、薬剤を用いて洗浄する。薬剤としては特に制限されず、従来土壌洗浄に用いられているものを使用することができる。例えば、塩化カルシウム、硝酸カルシウム、酢酸カルシウム、ヨウ化カルシウム等のカルシウム塩;クエン酸、コハク酸、酢酸、酒石酸、乳酸、酪酸、リンゴ酸、イタコン酸、グルコン酸、プロピオン酸等の有機酸;塩酸、硝酸、硫酸等の無機酸が挙げられる。   Thus, after making heavy metal contamination soil into an oxidation state and / or a dry state, it wash | cleans using a chemical | medical agent. It does not restrict | limit especially as a chemical | medical agent, The thing conventionally used for soil washing | cleaning can be used. For example, calcium salts such as calcium chloride, calcium nitrate, calcium acetate, calcium iodide; organic acids such as citric acid, succinic acid, acetic acid, tartaric acid, lactic acid, butyric acid, malic acid, itaconic acid, gluconic acid, propionic acid; hydrochloric acid Inorganic acids such as nitric acid and sulfuric acid.

また、アミノカルボン酸として、カドミウムとともに錯体を形成するもの、例えばアラニン、グルタミン酸、グリシン、システイン等のアミノ酸や、エチレンジアミン4酢酸(EDTA)、エチレンクリコールビス(2−アミノエチルエーテル)4酢酸(EGTA)、1,2−ジアミノシクロヘキサン4酢酸(DCTA)、ジエチレントリアミン5酢酸(DTPA)、2−ヒドロキシエチルジアミン3酢酸(HEDTA)、ニトリロ3酢酸(NTA)、グルタミン酸二酢酸4ソーダ、アスパラギン酸二酢酸4ソーダ(ASDA)、メチルグリシン二酢酸3ソーダ(MGDA)、S,S−エチレンジアミンコハク酸(EDDS4H)、S,S−エチレンジアミンジコハク酸3ソーダ(EDDS3Na)等が挙げられる。   Further, aminocarboxylic acids that form complexes with cadmium, such as amino acids such as alanine, glutamic acid, glycine, and cysteine, ethylenediaminetetraacetic acid (EDTA), ethylenecricolbis (2-aminoethylether) tetraacetic acid (EGTA) ), 1,2-diaminocyclohexanetetraacetic acid (DCTA), diethylenetriaminepentaacetic acid (DTPA), 2-hydroxyethyldiaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), glutamic acid diacetic acid 4 soda, aspartic acid diacetic acid 4 Examples include soda (ASDA), methylglycine diacetic acid 3 soda (MGDA), S, S-ethylenediamine succinic acid (EDDS4H), S, S-ethylenediamine disuccinic acid 3 soda (EDDS3Na), and the like.

さらに、薬剤として、土壌pH(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物を用いることもできる。浄化対象土壌のpHは、概ねpH9以下であり、このpH以下において、水酸イオンが金属塩に配位して、金属水酸化物を生成するものである。
かかる金属塩化合物としては、例えば塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、ポリ硫酸鉄等の鉄塩;硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム等のアルミニウム塩;塩化マンガン、硝酸マンガン、硫酸マンガン等のマンガン塩;塩化コバルト、硝酸コバルト、硫酸コバルト等のコバルト塩;塩化銅、硝酸銅、硫酸銅等の銅塩などが挙げられる。
In addition, agents as may be used metal salt compound coordinated to hydroxyl ions by hydrolysis in soil pH (H 2 O) or less to produce a metal hydroxide. The pH of the soil to be purified is approximately pH 9 or lower, and at this pH or lower, hydroxide ions are coordinated to the metal salt to generate metal hydroxide.
Examples of such metal salt compounds include iron salts such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and polyiron sulfate; aluminum sulfate, chloride Aluminum salts such as aluminum and polyaluminum chloride; manganese salts such as manganese chloride, manganese nitrate and manganese sulfate; cobalt salts such as cobalt chloride, cobalt nitrate and cobalt sulfate; copper salts such as copper chloride, copper nitrate and copper sulfate Can be mentioned.

これらの金属塩化合物は、例えば下式のように、加水分解により水酸イオンを配位して金属水酸化物(M(OH)n)を生成する。本発明においては、生成する金属水酸化物の溶解度積が10-10未満、特に10-15未満である金属塩化合物を用いるのが、水酸イオンの配位するpHが低くなり、重金属の除去効果が向上するので好ましい。特に、塩化第二鉄は、生成する鉄の水酸化物Fe(OH)3の沈殿生成pHが2.3以上と低く、更に生成した沈殿の溶解度積が10-33と低いので好ましい。 These metal salt compounds generate metal hydroxides (M (OH) n ) by coordinating hydroxide ions by hydrolysis, for example, as shown in the following formula. In the present invention, the use of a metal salt compound having a solubility product of the produced metal hydroxide of less than 10 −10 , particularly less than 10 −15 , lowers the pH at which the hydroxide ions are coordinated, and removes heavy metals. Since an effect improves, it is preferable. In particular, ferric chloride is preferable because the precipitation pH of the iron hydroxide Fe (OH) 3 produced is as low as 2.3 or more, and the solubility product of the produced precipitate is as low as 10 −33 .

MXn + nH2O → M(OH)n + nX- + nH+
(式中、Mは金属イオンを示し、Xは1価の陰イオンを示し、nは金属イオンの価数を示す)
MX n + nH 2 O → M (OH) n + nX + nH +
(In the formula, M represents a metal ion, X represents a monovalent anion, and n represents the valence of the metal ion)

特に、薬剤として、土壌pH(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物を用いた場合、土壌が酸化・乾燥状態であると、下記式のように、プロトン放出量が、還元状態の1.5倍となり、更に生成する3価の金属水酸化物は2価の金属水酸化物より溶解度積が低く、水酸イオンの配位するpHが低く、pH低減効果が高まることにより、重金属浄化効果がより高まる。 In particular, when a metal salt compound that coordinates a hydroxide ion by hydrolysis and generates a metal hydroxide at a soil pH (H 2 O) or lower is used as a chemical, when the soil is in an oxidized / dry state, As shown in the following formula, the proton emission amount is 1.5 times that of the reduced state, and the trivalent metal hydroxide produced has a lower solubility product than the divalent metal hydroxide, and the coordination of hydroxide ions When the pH to be reduced is low and the pH reduction effect is enhanced, the heavy metal purification effect is further enhanced.

(酸化・乾燥土壌での反応)
MX3 + 3H2O → M(OH)3 + 3X- + 3H+
(還元土壌での反応)
MX2 + X- + 2H2O → M(OH)2 + 3X- + 2H+
(Reaction in oxidized / dry soil)
MX 3 + 3H 2 O → M (OH) 3 + 3X + 3H +
(Reaction in reduced soil)
MX 2 + X + 2H 2 O → M (OH) 2 + 3X + 2H +

さらに、土壌洗浄廃水の廃水処理において、凝集沈殿法を採用した場合、還元土壌中で施用した薬剤の金属塩化合物が水酸化物を生成せず、廃水中に大量の金属塩化合物が混入することで、発生する汚泥量が増加するほか、曝気による廃水の酸化処理に長時間必要となるので、土壌を酸化・乾燥状態にすることが非常に重要である。   In addition, when the coagulation sedimentation method is adopted in the wastewater treatment of soil washing wastewater, the metal salt compound of the drug applied in the reduced soil does not generate hydroxide, and a large amount of metal salt compound is mixed in the wastewater. In addition to increasing the amount of sludge generated, it is necessary to oxidize wastewater by aeration for a long time, so it is very important to make the soil oxidized and dry.

このような薬剤を用いて土壌を洗浄する方法は特に制限されず、公知の方法により、行なうことができる。例えば、薬剤を用いて土壌中の重金属を抽出洗浄する際には、水溶液として用いるのが好ましく、その濃度は、1〜200mM、特に3〜100mMであるのが、重金属の除去効果が大きいとともに、土壌への残留が少ないので好ましい。   The method for washing the soil with such a chemical is not particularly limited, and can be performed by a known method. For example, when extracting and washing heavy metals in soil using a chemical, it is preferably used as an aqueous solution, and the concentration thereof is 1 to 200 mM, particularly 3 to 100 mM. Since there is little residue to soil, it is preferable.

このような水溶液を用いて土壌中の重金属を抽出洗浄する方法としては、特に制限されず、現場にて洗浄する方法、土壌を掘削して洗浄した後、浄化土壌を埋め戻す方法等のいずれでも良い。   The method for extracting and washing heavy metals in the soil using such an aqueous solution is not particularly limited, and any of a method for washing on-site, a method for excavating and washing the soil, and then refilling the purified soil, etc. good.

また、本発明において、抽出洗浄するとは、土壌と薬剤水溶液を直接混合する以外に、土壌に薬剤と水を別々に加えて混合して洗浄する方法、水を含む土壌に薬剤を混合して洗浄する方法も含まれる。
水を含む土壌を洗浄する方法の一例としては、河川や湖沼の底土を水とともに浚渫し、ミキサーに投入して、薬剤粉末を所定濃度になるよう添加して混合する方法が挙げられる。
Further, in the present invention, extraction washing means not only mixing the soil and the chemical aqueous solution directly, but also a method of adding the chemical and water separately to the soil and washing them by mixing, and washing the soil containing water by mixing the chemicals. The method of doing is also included.
As an example of a method for washing soil containing water, there is a method in which bottom soil of rivers and lakes is dredged with water, put into a mixer, and drug powder is added to a predetermined concentration and mixed.

抽出洗浄に用いる水溶液の量は、浄化対象土壌の1〜5重量倍、特に1〜2.5重量倍であるのが好ましい。
このように処理することにより、土壌中の重金属は水溶液中に抽出される。
洗浄は、土壌の重金属含有量のうち、洗浄水溶液に溶出しない重金属含有量が土壌汚染対策法(平14・5・29法律第53号)に定める含有量基準値以下になるまで繰り返すのが好ましく、さらに、洗浄処理後の土壌から溶出する重金属濃度が「土壌の汚染に係る環境基準について」(平3・8・23環告40号)に定める溶出基準値以下になるまで洗浄するのが好ましい。
The amount of the aqueous solution used for the extraction washing is preferably 1 to 5 times by weight, particularly 1 to 2.5 times by weight of the soil to be purified.
By treating in this way, heavy metals in the soil are extracted into an aqueous solution.
Washing is preferably repeated until the heavy metal content of the soil that does not elute in the washing aqueous solution falls below the content reference value stipulated in the Soil Contamination Countermeasures Law (Act No. 53, No. 53). Furthermore, it is preferable to wash until the concentration of heavy metals eluted from the soil after the washing treatment is equal to or less than the elution standard value stipulated in “Environmental standards for soil contamination” (Health 3, 8, 23 notification No. 40). .

なお、土壌中の重金属含有量は、「土壌含有量調査に係る測定方法を定める件」(平15・3・6環告19号)により、また、土壌から溶出する重金属濃度は、「土壌の汚染に係る環境基準について」(平3・8・23環告40号)に定める方法により、原子吸光法、ICP発光法、ICP質量分析法の分析機器により測定される。   In addition, the heavy metal content in the soil is determined according to the “Procedure for measuring methods related to soil content survey” (Heisei 15, 3, 6 notification 19), and the concentration of heavy metals eluted from the soil It is measured by an atomic absorption method, an ICP emission method, and an ICP mass spectrometry analyzer according to the method defined in “Environmental standards for pollution” (Heisei 3, 8, 23 Circular 40)

重金属を抽出した水溶液は、自然沈降又は積極的な脱水などにより固液分離し、土壌から分離除去し、排出された重金属含有水は、イオン交換、電気分解、不溶化凝集沈殿等により、重金属の除去処理を行えば良い。   The aqueous solution from which heavy metals have been extracted is solid-liquid separated by natural sedimentation or aggressive dehydration, and separated and removed from the soil. The discharged heavy metal-containing water is removed by ion exchange, electrolysis, insolubilized coagulation precipitation, etc. What is necessary is just to process.

一方、処理された土壌には、用いた水溶液中の薬剤の一部が残存する場合や、洗浄により抽出されたカドミウムの一部が残存する場合があるため、更に土壌を水で洗浄することにより、これらを除去するのが好ましい。
水による洗浄は、水溶液による洗浄と同様に行えば良く、土壌中の重金属の濃度、及び水溶液洗浄で用いた薬剤の残留量が土壌環境基準以下になるまで繰り返し行うのが好ましく、少なくとも1回、特に1〜6回、水で洗浄するのが好ましい。
On the other hand, in the treated soil, some of the chemicals in the aqueous solution used may remain or some of the cadmium extracted by washing may remain, so by further washing the soil with water These are preferably removed.
Washing with water may be performed in the same manner as washing with an aqueous solution, and is preferably repeated until the concentration of heavy metals in the soil and the residual amount of the chemical used in the aqueous solution washing are below the soil environmental standard, at least once. It is particularly preferable to wash with water 1 to 6 times.

本発明方法は、カドミウム含有水田土壌、特にカドミウム濃度が0.1〜5ppmの水田土壌の浄化に好適である。
この場合には、前記のような薬剤の水溶液を浄化対象土壌の1〜5重量倍、特に1〜2.5重量倍用いて洗浄した後、更に水で洗浄するのが好ましい。
The method of the present invention is suitable for the purification of cadmium-containing paddy soil, particularly paddy soil having a cadmium concentration of 0.1 to 5 ppm.
In this case, it is preferable to wash with an aqueous solution of the drug as described above using 1 to 5 times by weight, particularly 1 to 2.5 times by weight of the soil to be purified, and then wash with water.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに何ら制限されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited to these at all.

実施例1
カドミウム含有量(固液比1:5、0.1M塩酸で抽出されるカドミウム量)が0.67mg/kgである水田土壌を、5mm篩に通し、夾雑物を除いた後、含水率26.24%まで温室内で風乾処理し、100Lコンテナに充填した。このとき、土壌の酸化還元電位(Eh)は300mVであった。
コンテナへ充填後、速やかに土壌洗浄処理を行なった。洗浄は、15mM塩化第2鉄水溶液を用い、固液比(土壌に対する洗浄水溶液の量)1:1.5で行ない、コンクリート混練用のハンドミキサーにより、20秒間均一に撹拌した後、20分間静置し、これを3回くり返した。その後、10時間静置し、上澄液10cm分を洗浄廃液として排水した。更に、排水した量の水をコンテナに注入し、洗浄水溶液の場合と同様に撹拌静置し、上澄液10cm分を水洗浄廃液として排水し、これを3回くり返した。
洗浄廃液、水洗浄廃液のpH、鉄濃度、カドミウム濃度を表1に示す。洗浄後の土壌中のカドミウム含有量は0.33mg/kgであり、含有されていたカドミウムのうち、51%が除去された。
Example 1
Paddy soil with a cadmium content (solid-liquid ratio of 1: 5, cadmium extracted with 0.1 M hydrochloric acid) of 0.67 mg / kg is passed through a 5 mm sieve to remove impurities, and a moisture content of 26. Air-dried to 24% in a greenhouse and filled into 100 L containers. At this time, the oxidation-reduction potential (Eh) of the soil was 300 mV.
After filling the container, the soil was quickly washed. Washing is performed using a 15 mM ferric chloride aqueous solution at a solid-liquid ratio (amount of the washing aqueous solution with respect to the soil) of 1: 1.5, stirred uniformly for 20 seconds with a hand mixer for concrete kneading, and then allowed to stand for 20 minutes. And repeated this three times. Thereafter, the mixture was allowed to stand for 10 hours, and 10 cm of the supernatant was drained as washing waste. Further, the drained amount of water was poured into the container, and the mixture was left to stir in the same manner as in the case of the cleaning aqueous solution, and 10 cm of the supernatant liquid was drained as a water cleaning waste liquid, and this was repeated three times.
Table 1 shows the pH, iron concentration, and cadmium concentration of the cleaning waste liquid and the water cleaning waste liquid. The cadmium content in the soil after washing was 0.33 mg / kg, and 51% of the cadmium contained was removed.

比較例1
実施例1と同様の土壌を、風乾処理せず、コンテナに充填し、湛水状態を2ヶ月間維持した。このとき、土壌の酸化還元電位(Eh)は−100mVであった。この土壌について、実施例1と同様にして、土壌洗浄処理を行なった。
洗浄廃液、水洗浄廃液のpH、鉄濃度、カドミウム濃度を表1に示す。洗浄後の土壌中のカドミウム含有量は0.52mg/kgであり、含有されていたカドミウムのうち、23%が除去された。
Comparative Example 1
The soil similar to Example 1 was not air-dried, filled in a container, and maintained in a flooded state for 2 months. At this time, the oxidation-reduction potential (Eh) of the soil was −100 mV. About this soil, it carried out similarly to Example 1, and performed the soil washing process.
Table 1 shows the pH, iron concentration, and cadmium concentration of the cleaning waste liquid and the water cleaning waste liquid. The cadmium content in the soil after washing was 0.52 mg / kg, and 23% of the cadmium contained was removed.

Figure 0004509708
Figure 0004509708

実施例2
茨城県内で採取した水田土壌を、5mm篩に通して夾雑物を除き、土壌水分ポテンシャルが−0.75Mpaの生土を土壌材料として得た。この生土を6段階に風乾処理し、固液比1:10、1M硝酸アンモニウムで抽出されるカドミウム量を定量した。生土のカドミウム抽出量を100とし、風乾処理を行なった各土壌から抽出されるカドミウム量を、相対値で示した。結果を表2に示す。
Example 2
The paddy soil collected in Ibaraki Prefecture was passed through a 5 mm sieve to remove impurities, and a raw soil having a soil water potential of -0.75 Mpa was obtained as a soil material. The raw soil was air-dried in six stages, and the amount of cadmium extracted with a solid-liquid ratio of 1:10 and 1M ammonium nitrate was quantified. The amount of cadmium extracted from each soil subjected to air drying treatment was shown as a relative value, with the amount of cadmium extracted from the raw soil being 100. The results are shown in Table 2.

Figure 0004509708
Figure 0004509708

Claims (3)

重金属汚染土壌を、酸化状態及び/又は乾燥状態とした後、塩化第二鉄を用いて洗浄することを特徴とする重金属汚染土壌の浄化方法。 A method for purifying heavy metal-contaminated soil, characterized by washing heavy metal-contaminated soil with oxidized and / or dried state and then using ferric chloride . 土壌の酸化状態が、酸化還元電位(Eh)100mV以上である請求項1記載の浄化方法。   The purification method according to claim 1, wherein the oxidation state of the soil is an oxidation-reduction potential (Eh) of 100 mV or more. 土壌の乾燥状態が、水分ポテンシャル−1Mpa以下である請求項1又は2記載の浄化方法。   The purification method according to claim 1 or 2, wherein the dry state of the soil is a water potential of -1 Mpa or less.
JP2004262190A 2004-09-09 2004-09-09 Purification method for heavy metal contaminated soil Expired - Fee Related JP4509708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262190A JP4509708B2 (en) 2004-09-09 2004-09-09 Purification method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262190A JP4509708B2 (en) 2004-09-09 2004-09-09 Purification method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2006075721A JP2006075721A (en) 2006-03-23
JP4509708B2 true JP4509708B2 (en) 2010-07-21

Family

ID=36155625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262190A Expired - Fee Related JP4509708B2 (en) 2004-09-09 2004-09-09 Purification method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4509708B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247960A (en) * 2008-04-03 2009-10-29 Adeka Corp Purification method for purifying contaminated soil
JP2010201385A (en) * 2009-03-05 2010-09-16 Taiheiyo Cement Corp Method of cleaning heavy metal-containing field soil
JP6125824B2 (en) * 2012-12-19 2017-05-10 株式会社竹中工務店 Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107964A (en) * 1976-02-27 1977-09-10 Sumitomo Cement Co Process for treating polluted soil with heavy metals
JPS58137497A (en) * 1982-02-08 1983-08-15 Ebara Infilco Co Ltd Treatment of heavy metal-containing waste matter
JP2004122007A (en) * 2002-10-03 2004-04-22 Taiheiyo Cement Corp Cleaning method for cadmium-containing soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107964A (en) * 1976-02-27 1977-09-10 Sumitomo Cement Co Process for treating polluted soil with heavy metals
JPS58137497A (en) * 1982-02-08 1983-08-15 Ebara Infilco Co Ltd Treatment of heavy metal-containing waste matter
JP2004122007A (en) * 2002-10-03 2004-04-22 Taiheiyo Cement Corp Cleaning method for cadmium-containing soil

Also Published As

Publication number Publication date
JP2006075721A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Seshadri et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil
Wang et al. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils
Sharma Oxidation of nitrogen-containing pollutants by novel ferrate (VI) technology: A review
Liu et al. Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge
JP2007301491A (en) Method for cleaning heavy metal-containing paddy soil
US7491335B2 (en) Removal of arsenic from water with oxidized metal coated pumice
Nurchi et al. Chelating agents in soil remediation: A new method for a pragmatic choice of the right chelator
CN103819064A (en) Method for removing heavy metals from sludge by pickling of composite acids
Liao et al. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate-and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation
Xu et al. Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment
CN106281341A (en) A kind of heavy metal-polluted soil high-efficiency cleaning processes material
JP4116988B2 (en) Purification method for heavy metal contaminated soil
JP3245138B2 (en) Heavy metal removal method
Sailo et al. Efficient use of ferrate (VI) for the remediation of wastewater contaminated with metal complexes
Wang et al. Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater
JP4509708B2 (en) Purification method for heavy metal contaminated soil
JP6125824B2 (en) Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil
RU2457909C2 (en) Method of treating sewage sludge
JPH05126995A (en) Separation by precipitation of radioactive iodine compound
JP5164074B2 (en) Purification method of paddy soil containing cadmium
JP4116975B2 (en) Purification method for contaminated soil
JP2010201385A (en) Method of cleaning heavy metal-containing field soil
Krishnamurti Chemical methods for assessing contaminant bioavailability in soils
Li et al. Simultaneous immobilization of sediment internal phosphorus, arsenic and tungsten by lanthanum carbonate capping
Gylienė et al. Sorption of tartrate, citrate, and EDTA onto chitosan and its regeneration applying electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees