JP4508969B2 - Linear interpolation method in drive controller - Google Patents

Linear interpolation method in drive controller Download PDF

Info

Publication number
JP4508969B2
JP4508969B2 JP2005218125A JP2005218125A JP4508969B2 JP 4508969 B2 JP4508969 B2 JP 4508969B2 JP 2005218125 A JP2005218125 A JP 2005218125A JP 2005218125 A JP2005218125 A JP 2005218125A JP 4508969 B2 JP4508969 B2 JP 4508969B2
Authority
JP
Japan
Prior art keywords
axis
speed
drive
amount
reference axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005218125A
Other languages
Japanese (ja)
Other versions
JP2007034758A (en
Inventor
知好 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Shimpo Corp
Original Assignee
Nidec Shimpo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Shimpo Corp filed Critical Nidec Shimpo Corp
Priority to JP2005218125A priority Critical patent/JP4508969B2/en
Publication of JP2007034758A publication Critical patent/JP2007034758A/en
Application granted granted Critical
Publication of JP4508969B2 publication Critical patent/JP4508969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、駆動制御装置における、基準軸の駆動に追従させて他の搬送軸を補間動作させる直線補間方法に関する。   The present invention relates to a linear interpolation method for interpolating other transport axes by following the driving of a reference axis in a drive control device.

従来、例えばNCマシン等の工作機械において、被搬送物を所定の位置に移動させるために、互いに直交する複数の搬送軸とこれらの搬送軸を駆動する複数の駆動モータとを有し、基準の搬送軸(以下、基準軸という。)の駆動に追従するように他の搬送軸(以下、他軸という。)を駆動させ、夫々の搬送軸に沿って被搬送物を駆動させる駆動制御装置を備えているものがある。   2. Description of the Related Art Conventionally, a machine tool such as an NC machine has a plurality of conveying shafts orthogonal to each other and a plurality of drive motors that drive these conveying shafts in order to move a conveyed object to a predetermined position. A drive control device that drives other transport shafts (hereinafter referred to as other shafts) so as to follow the drive of the transport shafts (hereinafter referred to as reference shafts), and drives an object to be transported along each transport shaft. There is something to have.

また、基準軸の駆動に他軸を追従させる際に、基準軸及び他軸の駆動量を表す指令信号と基準軸の速度を表す指令信号に基づき、先ず基準軸を駆動させ、次いで、基準軸の駆動量に応じて他軸を駆動させる補間方法が知られている。この際、基準軸及び他軸の駆動量の指令値に基づいて、基準軸の駆動量に対する他軸の駆動量のベクトル(勾配を予め設定し、次いで、基準軸を所定の速度で駆動させ、次いで、所定の周期毎に、各搬送軸の実際の駆動量を検出して実際に駆動した基準軸と他軸との駆動量のベクトルを演算し、次いで、実際に駆動した駆動量のベクトルが予め設定された駆動量のベクトルに合うように、他軸の速度を演算して設定する補間方法が知られている(例えば、特許文献1参照)。
特開2002−215212
Further, when the other axis follows the drive of the reference axis, the reference axis is first driven based on the command signal indicating the drive amount of the reference axis and the other axis and the command signal indicating the speed of the reference axis, and then the reference axis There is known an interpolation method for driving the other axis in accordance with the driving amount. At this time, a vector ( gradient ) of the driving amount of the other axis with respect to the driving amount of the reference axis is set in advance based on the command value of the driving amount of the reference axis and the other axis, and then the reference axis is driven at a predetermined speed. Then, for each predetermined period, the actual drive amount of each transport axis is detected, the vector of the drive amount between the reference axis actually driven and the other axis is calculated, and then the vector of the drive amount actually driven There is known an interpolation method in which the speeds of the other axes are calculated and set so as to match a preset driving amount vector (see, for example, Patent Document 1).
JP 2002-215212 A

しかしながら、従来の補間方法によれば、所定の周期毎に、基準軸に対する他軸の駆動量のベクトルを演算し、予め設定されたベクトルに合うように他軸の駆動速度を演算して設定するので、補間処理を行うための処理時間が長くなって、処理時間を短縮するためには高速演算プロセッサ集積回路が必要になり、延いては、補間処理に要するハードウェア全体が複雑になり、生産性を損なう虞があった。 However, according to the conventional interpolation method, the vector of the driving amount of the other axis with respect to the reference axis is calculated for each predetermined period, and the driving speed of the other axis is calculated and set so as to match the preset vector. Therefore, the processing time for performing the interpolation process becomes longer, and in order to shorten the processing time, a high-speed arithmetic processor integrated circuit is required. As a result, the entire hardware required for the interpolation process becomes complicated, and production There was a risk of impairing sex.

そこで、本発明は、補間処理に要するハードウェアを簡素化できて補間処理を速やかに行うことができると共に、基準軸に対して他軸を精度良く追従させることができる駆動制御装置の直線補間方法を提供することを目的とする。   Therefore, the present invention can simplify the hardware required for the interpolation processing, can perform the interpolation processing quickly, and can accurately follow the other axis with respect to the reference axis, and the linear interpolation method of the drive control device The purpose is to provide.

かかる目的を達成するためになされた請求項1に記載の発明は、互いに直交する複数の搬送軸を駆動させる駆動制御装置において、基準となる搬送軸の駆動に関連付けて他の搬送軸を駆動させる駆動制御装置における直線補間方法であって、前記複数の搬送軸の駆動量の指令値に基づいて、該搬送軸の中から基準軸を選択し該基準軸の速度を設定する第一ステップと、前記基準軸の速度に基づいて、該基準軸の速度と前記他の搬送軸の速度との比が夫々の基準軸の駆動量の指令値と他の搬送軸の駆動量の指令値の比になるように、前記他の搬送軸の速度を設定する第二ステップと、前記設定された速度に基づいて前記基準軸及び他の搬送軸を駆動させ、所定の周期毎に、該基準軸及び前記他の搬送軸の累積の移動量を検出する第三ステップと、前記基準軸の実際に移動した移動量に対して前記基準軸の駆動量の指令値と前記他の搬送軸の駆動量の指令値の比を掛け算して前記他の搬送軸の移動量の理論値を演算する第四ステップと、前記他の搬送軸の実際に移動した移動量と前記理論値との差を検出し、算出された差を打ち消すように、該他の搬送軸の速度を、予め定められた所定量毎に増減する第五ステップと、
を備えていることを特徴とする。
In order to achieve this object, the invention according to claim 1 is a drive control device for driving a plurality of conveyance shafts orthogonal to each other to drive other conveyance shafts in association with the drive of a reference conveyance shaft. A linear interpolation method in a drive control device , wherein a first step of selecting a reference axis from among the conveying axes and setting a speed of the reference axis based on a command value of a driving amount of the plurality of conveying axes; Based on the speed of the reference axis, the ratio between the speed of the reference axis and the speed of the other transport axis is the ratio of the command value of the drive amount of each reference axis and the command value of the drive amount of the other transport axis. The second step of setting the speed of the other transport axis, and driving the reference axis and the other transport axis based on the set speed, and for each predetermined cycle, A third step of detecting the cumulative travel of other transport axes; Actually moved to the moving amount of theory of the other transport axis by multiplying the ratio of the command value of the drive amount of the command value of the drive amount with the other transport axis of the reference axis with respect to the moving amount of the reference axis A fourth step of calculating a value, and detecting the difference between the actual movement amount of the other transport axis and the theoretical value, so as to cancel the calculated difference, the speed of the other transport axis, A fifth step to increase or decrease by a predetermined amount,
It is characterized by having.

請求項1に記載の駆動制御装置における直線補間方法によれば、各搬送軸の駆動量の指令値に基づいて、基準軸を選択し該基準軸の速度を設定する第一ステップと、基準軸の速度に基づいて、基準軸の速度と他の搬送軸(以下、他軸という。)の速度との比が夫々の基準軸の駆動量の指令値と他の搬送軸の駆動量の指令値の比になるように、他軸の速度を設定する第二ステップと、設定された速度に基づいて基準軸及び他軸を駆動させ、所定の周期毎に、基準軸及び他軸の累積の移動量を検出する第三ステップと、基準軸の実際に移動した移動量に対して基準軸の駆動量の指令値と他の搬送軸の駆動量の指令値の比を掛け算して他軸の移動量の理論値を演算する第四ステップと、他軸の実際に移動した移動量と理論値との差を検出し、算出された差を打ち消すように、他軸の速度を、予め定められた所定量毎に増減する第五ステップと、を備えているので、従来例の補間方法に比べ、補間処理に要する演算時間を短縮できると共に生産性を向上できる。 According to the linear interpolation method in the drive control device according to claim 1, the first step of selecting the reference axis and setting the speed of the reference axis based on the command value of the driving amount of each transport axis, and the reference axis The ratio between the speed of the reference axis and the speed of the other transport axis (hereinafter referred to as another axis) is based on the speed of the reference axis, and the command value of the drive amount of each reference axis and the command value of the drive quantity of the other transport axis The second step of setting the speed of the other axis so that the ratio becomes the ratio, and the reference axis and the other axis are driven based on the set speed, and the cumulative movement of the reference axis and the other axis is performed every predetermined period. The third step of detecting the amount, and the other axis movement by multiplying the actual movement amount of the reference axis by the ratio of the command value of the drive amount of the reference axis and the command value of the drive amount of the other transport axis The fourth step of calculating the theoretical value of the amount and the difference between the actual amount of movement of the other axis and the theoretical value are detected and calculated. The fifth step of increasing or decreasing the speed of the other axis by a predetermined amount so as to cancel out the difference is provided, so that the calculation time required for the interpolation processing is shortened compared to the interpolation method of the conventional example. And improve productivity.

つまり、請求項1に記載の駆動制御装置における直線補間方法によれば、所定の周期毎に、累積の移動量を検出し、他軸の実際に移動した移動量が理論値に合うように、予め定められた所定量を増減して他軸の速度を補正するので、所定の周期毎に基準軸に対する他軸の駆動量の勾配を演算して他軸の駆動速度を演算して設定する従来の方法に較べ、補間処理に要する演算時間を短縮でき、延いては、従来例に記述した高速演算プロセッサが不要になり、補間処理のためのハードウェアを簡素化できる。   That is, according to the linear interpolation method in the drive control device according to claim 1, the accumulated movement amount is detected every predetermined period, and the movement amount actually moved on the other axis matches the theoretical value. Conventionally, the speed of the other axis is corrected by increasing or decreasing a predetermined amount, so that the gradient of the driving amount of the other axis with respect to the reference axis is calculated and the driving speed of the other axis is calculated and set every predetermined cycle. Compared with this method, the calculation time required for the interpolation process can be shortened, and hence the high-speed calculation processor described in the conventional example is not required, and the hardware for the interpolation process can be simplified.

次に、請求項2に記載の発明は、請求項1に記載の駆動制御装置における直線補間方法において、前記基準軸と前記他の搬送軸との加速び減速の際の速度比が該基準軸と該他の搬送軸との駆動量の指令値の比になるように、該他の搬送軸の速度を設定することを特徴とする。 Next, the invention described in claim 2 is the linear interpolation method in the drive control apparatus according to claim 1, the speed ratio of the reference during acceleration beauty deceleration with the other transport axis and said reference axis The speed of the other transport axis is set so that the ratio of the command value of the drive amount between the shaft and the other transport axis is the same.

請求項2に記載の駆動制御装置における直線補間方法によれば、基準軸と他の搬送軸(以下、他軸という。)との加速及び減速の際の速度比が基準軸と他軸との駆動量の指令値の比になるように、他軸の速度を設定するので、基準軸及び他軸が目的の速度に達するまでの時間を合わせることができ、目標位置に至る移動路のずれを低減できる。 According to the linear interpolation method in the drive control device according to claim 2, the speed ratio in acceleration and deceleration between the reference axis and the other transport axis (hereinafter referred to as another axis) is the difference between the reference axis and the other axis. such that the ratio of the command value of the drive amount, so to set the speed of the other shaft, the reference axis and the other axis can match the time to reach the desired speed, the deviation of the movement route leading to the target position Can be reduced.

次に、請求項3に記載の発明は、請求項1又は請求項2に記載の駆動制御装置において、前記基準軸が、前記駆動量の指令値の最も大きい搬送軸が選択され、駆動量の指令値毎に選択される、ことを特徴とする。   Next, according to a third aspect of the present invention, in the drive control device according to the first or second aspect, the transport axis having the largest command value of the drive amount is selected as the reference axis, and the drive amount It is selected for each command value.

請求項3に記載の駆動制御装置における直線補間方法によれば、前記基準軸が、前記駆動量の指令値の最も大きい搬送軸が選択され、駆動量の指令値毎に選択されるので、常に、駆動量の最も大きい搬送軸の駆動に対して他の搬送軸を追従させることができ、精度良く補間を行うことができる。   According to the linear interpolation method in the drive control device according to claim 3, the transport axis having the largest drive amount command value is selected as the reference axis, and is selected for each drive amount command value. The other transport axes can be made to follow the drive of the transport axis having the largest drive amount, and the interpolation can be performed with high accuracy.

本発明の駆動制御装置における直線補間方法は、所定の周期毎に、基準軸及び他軸の累積の移動量を検出し、他軸の実際に移動した移動量が理論値に合うように、予め定められた所定量を増減して他軸の速度を補正するので、従来例に記述した高速演算プロセッサが不要になり、補間処理に要するハードウェアを簡素化できて補間処理を速やかに行うことができると共に、基準軸に対して他軸を精度良く追従させることができる。   The linear interpolation method in the drive control device of the present invention detects the accumulated movement amount of the reference axis and the other axis at every predetermined period, and in advance so that the movement amount actually moved of the other axis matches the theoretical value. Since the speed of other axes is corrected by increasing / decreasing the predetermined amount, the high-speed arithmetic processor described in the conventional example becomes unnecessary, and the hardware required for the interpolation process can be simplified and the interpolation process can be performed quickly. In addition, the other axis can be accurately followed with respect to the reference axis.

また、本発明の駆動制御装置における直線補間方法は、基準軸と他軸との加速率及び減速率の比が、基準軸と他軸との駆動量の指令値の比になるように、他軸の速度を設定するので、基準軸及び他軸が一定の速度に達するまでの時間を合わせることができ、移動路のずれを低減できる。 Further, the linear interpolation method in the drive control device of the present invention is such that the ratio of the acceleration rate and the deceleration rate between the reference axis and the other axis is the ratio of the command value of the drive amount between the reference axis and the other axis. since setting the speed of the shaft, can be the reference axis and the other axes adjust the time to reach a constant speed, it can be reduced the deviation of the movement route.

また、本発明の駆動制御装置における直線補間方法は、前記基準軸が、前記駆動量の指令値の最も大きい搬送軸が選択され、駆動量の指令値毎選択されるので、常に、駆動量の最も大きい搬送軸の駆動に対して他の搬送軸を追従させることができ、精度良く補間を行うことができる。   In the linear interpolation method in the drive control device of the present invention, the reference axis is selected as the transport axis having the largest drive amount command value, and is selected for each drive amount command value. Other transport axes can follow the drive of the largest transport axis, and interpolation can be performed with high accuracy.

次に、本発明の一実施例の駆動制御装置における直線補間方法を図を用いて説明する。本実施例の駆動制御装置は、被搬送物を互いに直交する3方向に搬送させるためのX軸、Y軸、Z軸と、被搬送物を回転させるW軸とを、基準軸に関連付けて駆動制御する。図1は、本実施例の駆動制御装置の制御系を表すブロック図、図2から図5は、本実施例の駆動制御装置における直線補間方法の手順を表すフローチャート、図6は、本実施例の駆動制御装置の直線補間方法における、原点POから目標位置P1まで駆動する際のX軸及びY軸の補間動作例を表す説明図である。   Next, a linear interpolation method in the drive control apparatus of one embodiment of the present invention will be described with reference to the drawings. The drive control apparatus according to the present embodiment drives the X axis, the Y axis, and the Z axis for conveying the conveyed object in three directions orthogonal to each other and the W axis that rotates the conveyed object in association with the reference axis. Control. FIG. 1 is a block diagram showing a control system of the drive control apparatus of the present embodiment, FIGS. 2 to 5 are flowcharts showing the procedure of a linear interpolation method in the drive control apparatus of the present embodiment, and FIG. 6 is the present embodiment. It is explanatory drawing showing the interpolation operation example of the X-axis and the Y-axis at the time of driving from the origin PO to the target position P1 in the linear interpolation method of the drive control apparatus.

図1に表したように、本実施例における高速パルスの生成装置1は、オペレータからの操作信号をMPU(中央演算処理ユニット)1に入力するインターフェース2、インターフェース2から入力された操作信号に基づきROM及びRAMと協働して各機能部の実行を処理するMPU1、X軸を駆動するX軸駆動パルス生成部3、Y軸を駆動するY軸駆動パルス生成部4、Z軸を駆動するZ軸駆動パルス生成部5、W軸を駆動するW軸駆動パルス生成部6等を備えている。 As shown in FIG. 1, the high-speed pulse generating device 1 in this embodiment is based on an interface 2 that inputs an operation signal from an operator to an MPU ( Central Processing Unit ) 1 and an operation signal that is input from the interface 2. MPU1 that processes the execution of each functional unit in cooperation with ROM and RAM, X-axis drive pulse generator 3 that drives the X-axis, Y-axis drive pulse generator 4 that drives the Y-axis, Z that drives the Z-axis An axis drive pulse generator 5, a W axis drive pulse generator 6 for driving the W axis, and the like are provided.

MPU1は、インターフェース2を介して入力されたX、Y、Z、W軸の駆動量の指令値Xp、Yp、Zp、Wpに基づいて、駆動量の値が最も大きい軸を基準軸として設定する基準軸設定部30、基準軸の速度Vと他軸(X軸、Y軸、Z軸、W軸の内、基準軸を除く軸である。)の速度が基準軸の駆動量と他軸の駆動量との比に合うように、他軸の速度を演算する他軸速度演算部31、パルス計数回路19〜22を介して検出した基準軸の駆動量を表すパルス数に基づいて、他軸の駆動量を表すパルス数の理論値を演算する他軸駆動量の理論値演算部32、パルス計数回路19〜22を介して検出した他軸の駆動量を表すパルス数と理論値演算部32で算出した理論値とを比較し、他軸に対する速度補正の要否を判定する他軸速度補正判定部33、等によって構成されている。   The MPU 1 sets the axis with the largest drive amount value as the reference axis based on the command values Xp, Yp, Zp, Wp of the X, Y, Z, and W axis drive amounts input via the interface 2. The reference axis setting unit 30, the speed V of the reference axis and the speed of the other axis (the X axis, the Y axis, the Z axis, and the W axis are the axes excluding the reference axis) are the driving amounts of the reference axis and the other axes. Based on the number of pulses representing the driving amount of the reference axis detected through the other axis speed calculation unit 31 that calculates the speed of the other axis and the pulse counting circuits 19 to 22 so as to match the ratio with the driving amount, The other-axis driving amount theoretical value calculation unit 32 that calculates the theoretical value of the number of pulses that represents the driving amount of the other axis, the number of pulses that represents the driving amount of the other axis detected via the pulse counting circuits 19 to 22 and the theoretical value calculation unit 32 Compare with the theoretical value calculated in step 1, and determine whether or not speed correction is required for the other axis. 33, is constituted by the like.

また、MPU1は、インターフェース2を介して入力されたX、Y、Z、W軸の夫々の駆動量Xp、Yp、Zp、Wpに基づいて、パルス出力回路15〜18に、駆動量に応じたパルス数の出力を指令する。   In addition, the MPU 1 controls the pulse output circuits 15 to 18 according to the drive amount based on the drive amounts Xp, Yp, Zp, and Wp of the X, Y, Z, and W axes input via the interface 2. Command the output of the number of pulses.

次に、駆動パルス生成部3〜6は、所定の周波数でクロック信号を連続して発振する原発振器7〜10、原発振器7〜10から出力されたクロック信号をMPU1から入力された速度指令信号Vx、Vy、Vz、Vwに基づき所定のパルス電圧及びデューティ比に設定してパルス出力回路15〜18に出力する速度制御回路11〜14、MPU1から入力されたパルス数指令信号に基づき駆動モータの駆動量に応じたパルス数の駆動パルス列をモータ駆動回路23〜26に出力するパルス出力回路15〜18、パルス出力回路15〜18から出力されたパルス列のパルス数を計数するパルス計数回路19〜22等を備えている。本実施例では、原発振器の発振周波数が4MHzである。 Next, the drive pulse generators 3 to 6 are the original oscillators 7 to 10 that continuously oscillate the clock signal at a predetermined frequency, and the speed command signal that is input from the MPU 1 to the clock signal that is output from the original oscillators 7 to 10. Based on Vx, Vy, Vz, and Vw , a predetermined pulse voltage and a duty ratio are set and output to the pulse output circuits 15 to 18 and output to the pulse output circuits 15 to 18. Based on the pulse number command signal input from the MPU 1, the drive motor Pulse output circuits 15 to 18 for outputting a drive pulse train having a number of pulses corresponding to the drive amount to the motor drive circuits 23 to 26, and pulse counting circuits 19 to 22 for counting the number of pulses in the pulse train output from the pulse output circuits 15 to 18 Etc. In this embodiment, the oscillation frequency of the original oscillator is 4 MHz.

速度制御回路11〜14は、分周器とマルチプライア(掛算器)で構成され、原発振器7〜10から入力されたパルス列を、MPU1からの速度指令信号Vx、Vy、Vz、Vwに基づいて分周及び掛け算して速度変化させ、速度変化させたパルス列をパルス出力回路15〜18に出力する。本実施例では、マルチプライアの設定範囲が、(1/4096)×(0〜4096)、分周器の設定範囲が、(1/1)〜(1/65535)、指令パルス数設定範囲が1〜99999999、各軸の速度設定範囲が1〜2MHzである。   The speed control circuits 11 to 14 are configured by a frequency divider and a multiplier (multiplier), and the pulse train input from the original oscillators 7 to 10 is based on speed command signals Vx, Vy, Vz, and Vw from the MPU 1. The speed is changed by frequency division and multiplication, and the pulse train whose speed is changed is output to the pulse output circuits 15 to 18. In this embodiment, the multiplier setting range is (1/4096) × (0 to 4096), the frequency divider setting range is (1/1) to (1/65535), and the command pulse number setting range is 1 to 99999999, the speed setting range of each axis is 1 to 2 MHz.

また、パルス出力回路15〜18は、MPU1からの指令に基づいて、駆動モータの回転方向をCW(時計回り)及びCCW(反時計回り)の何れかを設定し、モータ駆動回路23〜26に、駆動モータを駆動させる駆動パルス列を出力する。   Further, the pulse output circuits 15 to 18 set the rotation direction of the drive motor to CW (clockwise) or CCW (counterclockwise) based on a command from the MPU 1, and set the motor drive circuits 23 to 26 to the motor drive circuits 23 to 26. The drive pulse train for driving the drive motor is output.

また、パルス計数回路19〜22は、パルス出力回路15〜18を介して入力されたパルス数を計数してMPU1に入力し、MPU1からの指令(図示略)に基づき、計数したパルス数が駆動量Xp、Yp、Zp、Wpのパルス数(駆動量の指令値である)と等しくなった際に、パルス出力回路15〜18にパルス出力の停止を指令する信号を入力する。詳しくは、パルス計数回路19〜22には、パルス出力回路15〜18のパルスの出力及び停止と関連付けられた起動フラグ(図示略)が備えられ、この起動フラグが、MPU1からの指令に基づいて、パルス出力回路15〜18がパルスを出力すると同時にONし、パルス計数回路19〜22を介して検出したパルス数が所定の駆動量に達した際にOFFされ、このOFF信号がパルス出力回路15〜18に入力され、パルス出力回路15〜18のパルス出力を停止させる。 The pulse counting circuits 19 to 22 count the number of pulses input via the pulse output circuits 15 to 18 and input them to the MPU 1, and the counted number of pulses is driven based on a command (not shown) from the MPU 1. When the number of pulses Xp, Yp, Zp, Wp is equal to the number of pulses (which is a command value for the drive amount), a signal for commanding the pulse output to stop is input to the pulse output circuits 15-18. Specifically, the pulse counting circuits 19 to 22 are provided with a start flag (not shown) associated with the pulse output and stop of the pulse output circuits 15 to 18, and this start flag is based on a command from the MPU 1. The pulse output circuits 15 to 18 are turned on at the same time as the pulses are output, and are turned off when the number of pulses detected via the pulse counting circuits 19 to 22 reaches a predetermined driving amount. ˜18, the pulse output of the pulse output circuits 15-18 is stopped.

次に、MPU1がインターフェース2から入力されたオペレータの操作信号を受けて、モータ駆動回路23〜26に駆動パルス列を出力するまでの手順を、図2から図5に基づき説明する。この処理手順は、図示されないROMにそのプログラムが備えられ、MPU1がそのプログラムを使用して各処理を実行する。   Next, a procedure until the MPU 1 receives an operation signal from the operator input from the interface 2 and outputs a drive pulse train to the motor drive circuits 23 to 26 will be described with reference to FIGS. In this processing procedure, the program is provided in a ROM (not shown), and the MPU 1 executes each processing using the program.

この手順は、インターフェース2を介して、起動信号がMPU1に入力された際にスタートする。   This procedure starts when an activation signal is input to the MPU 1 via the interface 2.

次いで、S101(Sはステップを表す)において、ROM及びRAM(図示略)に記憶されている過去の位置決めデータ(所謂、各搬送軸の駆動量を表すデータである。)及び各搬送軸の速度データを初期化し、その後S102に移る。 Next, in S101 (S represents a step), past positioning data (so-called data representing the driving amount of each conveyance axis) and the speed of each conveyance axis stored in ROM and RAM (not shown) . Data is initialized, and then the process proceeds to S102.

次いで、S102において、インターフェース2を介して入力された搬送軸(X軸、Y軸、Z軸、W軸)の位置決めデータXp、Yp、Zp、Wpを読み込み、その後S103に移る。   Next, in S102, the positioning data Xp, Yp, Zp, Wp of the transport axes (X axis, Y axis, Z axis, W axis) input via the interface 2 are read, and then the process proceeds to S103.

次いで、103において、基準軸設定部30を介して、位置決めデータの最も大きい搬送軸を基準軸に設定する。尚、本発明における第一ステップは、S103によってその機能が発現される。 Next, in S 103, the conveyance axis with the largest positioning data is set as the reference axis via the reference axis setting unit 30. The function of the first step in the present invention is expressed by S103.

次いで、S104において、基準軸の速度V、基準軸が停止状態から駆動する際の加速率α、基準軸が一定の速度での駆動状態から停止する際の減速率β等を、ROMから取得する。基準軸の速度V及び加速率α、減速率βは、オペレータによって予め設定され、ROMに記憶されている。本実施例では、基準軸をX軸とし、基準軸の速度VをX軸の速度Vxに置き換え、以下の説明をする。   Next, in S104, the speed V of the reference axis, the acceleration rate α when the reference axis is driven from the stop state, the deceleration rate β when the reference axis is stopped from the drive state at a constant speed, and the like are acquired from the ROM. . The reference axis speed V, acceleration rate α, and deceleration rate β are preset by an operator and stored in the ROM. In this embodiment, the reference axis is the X axis, and the speed V of the reference axis is replaced with the speed Vx of the X axis, and the following description will be given.

次いで、S105において、ROMに記憶されている演算式を用い、他軸(Y軸、Z軸W軸)の速度Snを算出する。他軸の速度Snの演算式は、Sn=Vx・(他軸の位置決データ)/基準軸の位置決データ)、であって、Y軸の速度Sny=Vx・Yp/Xpで算出し、Z軸の速度Snz=Vx・Zp/Xpで算出し、W軸の速度Snw=Vx・Wp/Xpで算出する。尚、本発明の第二ステップは、S105によってその機能が発現される。 Next, in S105, the speed Sn of the other axis (Y axis, Z axis W axis) is calculated using the arithmetic expression stored in the ROM. The calculation formula of the speed Sn of the other axis is Sn = Vx · (positioning data of the other axis) / ( positioning data of the reference axis), and the Y axis speed Sny = Vx · Yp / Xp is calculated. The Z-axis speed Snz = Vx · Zp / Xp, and the W-axis speed Snw = Vx · Wp / Xp. The function of the second step of the present invention is expressed by S105.

次いで、S106において、速度制御回路11〜14における分周器の分周比Dnを、Dn=(原発振器の発振周波数)/(各軸の速度)、の演算式を用いて算出する。   Next, in S106, the frequency division ratio Dn of the frequency divider in the speed control circuits 11 to 14 is calculated by using an arithmetic expression of Dn = (oscillation frequency of the original oscillator) / (speed of each axis).

次いで、S107において、S105で算出された他軸(Y軸、Z軸、W軸)の速度Sn(Sny、Snz、Snw)の値(絶対値)を予め定められた所定値65535より大きいか否かを判定し、Snが所定値より大きくない(No)場合にはS109に移る。一方、S107において、Snが所定値より大きい(Yes)の場合には、S108に移り、S108において、その軸のSnを所定値65535に置き換える。本実施例では、速度制御回路11〜14における分周器を16ビット構成のハードウェアで構成しているので、その分周比の最大値を、(2の16乗)1=65535にしている。 Next, in S107, whether or not the value (absolute value) of the speed Sn (Sny, Snz, Snw) of the other axes (Y axis, Z axis, W axis) calculated in S105 is greater than a predetermined value 65535. If Sn is not larger than the predetermined value (No), the process proceeds to S109. On the other hand, when Sn is larger than the predetermined value (Yes) in S107, the process proceeds to S108, and Sn of the axis is replaced with the predetermined value 65535 in S108. In this embodiment, since the configuration of the divider in the speed control circuit 11 to 14 in 16-bit structure of hardware, the maximum value of the division ratio, (the sixteenth power of two) - in the 1 = 65535 Yes.

次いで、S109において、S102で読み込みした各軸の位置決めデータXp、Yp、Zp、Wp毎の駆動量を表すパルス数を、パルス計数回路19〜22に入力する。   Next, in S109, the number of pulses representing the driving amount for each axis positioning data Xp, Yp, Zp, Wp read in S102 is input to the pulse counting circuits 19-22.

次いで、S110において、S109で設定された駆動量の指令パルス数Xp、Yp、Zp、Wpが0より大きいか否か(所謂、正であるか負であるか)を判定し、0より大きくない(No)の場合には、S112に移り、パルス出力回路15、16、17、18における駆動モータの回転方向をCCW(反時計回り)に設定し、その後S113に移る。一方、S110において、0より大きい(Yes)の場合には、S111に移り、パルス出力回路15、16、17、18における駆動モータの回転方向をCW(時計回り)に設定し、その後S113に移る。 Next, in S110, it is determined whether or not the command pulse number Xp, Yp, Zp, Wp of the drive amount set in S109 is greater than 0 (so-called positive or negative), and not greater than 0 . In the case of (No), the process proceeds to S112, the rotation direction of the drive motor in the pulse output circuits 15, 16, 17, 18 is set to CCW (counterclockwise), and then the process proceeds to S113. On the other hand, if it is greater than 0 (Yes) in S110, the process proceeds to S111, the rotation direction of the drive motor in the pulse output circuits 15, 16, 17, 18 is set to CW (clockwise), and then the process proceeds to S113. .

次いで、S113において、速度制御回路11〜14におけるマルチプライア(掛け算器)の値Mを1に設定して(所謂、前述したマルチプライアの設定範囲(1/4096)×(0〜4096)において、(1/4096)×(1)が設定される)S114に移り、S114において、X軸(基準軸)の駆動パルス列をパルス出力回路15から出力させる。 Next, in S113, the value M of the multiplier (multiplier) in the speed control circuits 11 to 14 is set to 1 (so-called multiplier setting range (1/4096) × (0 to 4096)). (1/4096) × (1) is set) In S114, the drive pulse train of the X axis (reference axis) is output from the pulse output circuit 15 in S114.

次いで、S115において、パルス出力回路15からの駆動パルス列の出力と同時に、パルス計数回路19〜22における起動フラグをONする。   Next, in S115, simultaneously with the output of the drive pulse train from the pulse output circuit 15, the start flag in the pulse counting circuits 19 to 22 is turned ON.

次いで、S116に移り、1msec.毎の周期で割り込み処理を行う。次に、図4、図5を用いて、割り込み処理の手順を説明する。まず、S201において起動フラグがONされているか否かを判定し、起動フラグがONされていない(No)場合には、S202に移り割り込み処理を終了する。一方、S201において起動フラグがONされている場合にはS203に移る。   Next, the process proceeds to S116, and 1 msec. Interrupt processing is performed at every cycle. Next, an interrupt processing procedure will be described with reference to FIGS. First, it is determined whether or not the activation flag is turned on in S201. If the activation flag is not turned on (No), the process proceeds to S202 and the interrupt process is terminated. On the other hand, if the activation flag is ON in S201, the process proceeds to S203.

次いで、S203において、X軸(基準軸)の駆動量が減速ポイントを過ぎたか否か判定し、減速ポイントを過ぎた(Yes)場合には、S204に移り、S104で取得した減速率βでX軸の速度を減算し、その後S207に移る。一方、S203において、減速ポイントを過ぎていない(No)場合には、S205に移る。この際、減速ポイントは、一定の速度での駆動から停止に移る際の減速位置を表すものであって、基準軸の駆動量Xpに関連付けて予め定められている。   Next, in S203, it is determined whether or not the drive amount of the X axis (reference axis) has passed the deceleration point. If the deceleration point has passed (Yes), the process proceeds to S204, and the deceleration rate β acquired in S104 is X. The speed of the axis is subtracted, and then the process proceeds to S207. On the other hand, in S203, when the deceleration point has not passed (No), the process proceeds to S205. At this time, the deceleration point represents a deceleration position when moving from driving at a constant speed to stopping, and is determined in advance in association with the driving amount Xp of the reference axis.

次いで、S205において、X軸(基準軸)の速度値が上限速度値(S104で取得した速度Vである。)より小さいか否かを判定し、小さい(Yes)場合には、S206に移り、S104で取得した加速率αでX軸の速度を加算し、その後S207に移る。一方S205において、X軸(基準軸)の速度値が上限速度値(S104で取得した速度Vである。)より小さくない(No)場合には、S207に移る。 Next, in S205, it is determined whether or not the speed value of the X axis (reference axis) is smaller than the upper limit speed value (the speed V acquired in S104). If the speed value is smaller (Yes), the process proceeds to S206. The X-axis speed is added at the acceleration rate α acquired in S104, and then the process proceeds to S207. On the other hand, when the speed value of the X axis (reference axis) is not smaller than the upper limit speed value (the speed V acquired in S104) in S205 (No), the process proceeds to S207.

次いで、S207において、X軸(基準軸)の速度値が上限速度値(S104で取得した速度Vである。)より大きい又は等しいか否かを判定し、大きい又は等しい(Yes)場合には、S208に移り、X軸の速度をS104で取得した速度Vとし、その後S209に移る。一方、S207において、X軸の速度値が上限速度値より小さい(No)場合には、S209に移る。   Next, in S207, it is determined whether or not the speed value of the X axis (reference axis) is greater than or equal to the upper limit speed value (the speed V acquired in S104). If greater or equal (Yes), The process proceeds to S208, and the speed of the X axis is set to the speed V acquired in S104, and then the process proceeds to S209. On the other hand, in S207, when the X-axis speed value is smaller than the upper limit speed value (No), the process proceeds to S209.

次いで、S209において、X軸(基準軸)の速度値が0より小さい又は等しいか否かを判定し、小さい又は等しい(Yes)場合には、S210に移り、X軸の速度を1(1は、速度制御できる最小値である。)にする。一方、S209において、X軸(基準軸)の速度値が0より大きい(No)場合には、S211に移る。 Next, in S209, it is determined whether or not the velocity value of the X axis (reference axis) is less than or equal to 0. If the velocity value is smaller or equal (Yes), the process proceeds to S210 and the velocity of the X axis is set to 1 (1 is 1). This is the minimum value that can be controlled.) On the other hand, if the speed value of the X axis (reference axis) is greater than 0 (No) in S209, the process proceeds to S211.

次いで、S211において、X軸(基準軸)の速度制御回路11に、S204、S206、S208、S210で設定したX軸の速度値を速度指令信号Vxとして入力し、その後S212に移る。 Next, in S211, the X-axis speed value set in S204, S206, S208, and S210 is input to the speed control circuit 11 for the X-axis (reference axis) as the speed command signal Vx , and then the process proceeds to S212.

次いで、S212において、パルス出力回路15〜18から出力された各軸の駆動量を表す出力パルス数をパルス計数回路19〜22を介して検出し、その後、S213に移る。尚、本発明における第三ステップは、S212によってその機能が発現される。 Next, in S212, the number of output pulses representing the driving amount of each axis output from the pulse output circuits 15 to 18 is detected via the pulse counting circuits 19 to 22, and then the process proceeds to S213. The function of the third step in the present invention is expressed by S212.

次いで、S213において、検出したX軸(基準軸)の駆動量のパルス数(Xpf)に基づいて、他軸(Y軸、Z軸、W軸)のフィードバックされるべく理論値を、理論値演算部32を用いて算出する。この際、Y軸の理論値(Ypf)を、(Ypf)=(Xpf)・(Yp/Xp)の演算式で算出し、Z軸の理論値(Zpf)を、(Zpf)=(Xpf)・(Zp/Xp)の演算式で算出し、W軸の理論値(Wpf)を、(Wpf)=(Xpf)・(Wp/Xp)の演算式で算出する。尚、本発明における第四ステップは、S213によってその機能が発現される。 Next, in S213, based on the detected number of pulses (Xpf) of the driving amount of the X axis (reference axis), the theoretical value is calculated to be fed back to the other axes (Y axis, Z axis, W axis). Calculation is performed using the unit 32. At this time, the theoretical value (Ypf) of the Y axis is calculated by an arithmetic expression of (Ypf) = (Xpf) · (Yp / Xp), and the theoretical value (Zpf) of the Z axis is calculated as (Zpf) = (Xpf) The calculation is performed using the equation (Zp / Xp), and the theoretical value (Wpf) of the W axis is calculated using the equation (Wpf) = (Xpf) · (Wp / Xp). The function of the fourth step in the present invention is expressed by S213.

次いで、S214において、他軸(Y軸、Z軸、W軸)の速度を、X軸の位置決めデータと他軸の位置決めデータとのと、S211で設定したX軸(基準軸)の速度(Vxf)とより算出する。この際、Y軸の速度(Vyf)を、(Vyf)=(Vxf)・(Yp/Xp)の演算式で算出し、Z軸の速度(Vzf)を、(Vzf)=(Vxf)・(Zp/Xp)の演算式で算出し、W軸の速度(Vwf)を、(Vwf)=(Vxf)・(Wp/Xp)の演算式で算出する。 Next, in S214, the speeds of the other axes (Y axis, Z axis, W axis) are set to the ratio between the positioning data of the X axis and the positioning data of the other axes and the speed of the X axis (reference axis) set in S211 ( Vxf). At this time , the velocity (Vyf) of the Y axis is calculated by an arithmetic expression of (Vyf) = (Vxf) · (Yp / Xp), and the velocity (Vzf) of the Z axis is calculated as (Vzf) = (Vxf) · ( Zp / Xp) is calculated using an arithmetic expression, and the W-axis speed (Vwf) is calculated using an arithmetic expression of (Vwf) = (Vxf) · (Wp / Xp).

次いで、S215において、S213で算出した他軸の駆動量の理論値がS212でフィードバックした駆動量に対して小さいか否かを判定し、小さい(Yes)場合には、S216に移り、他軸の速度をS214で算出された速度(Vyf)、(Vzf)、(Vwf)に、速度補正値を1減算し、その後S217に移る。一方、S215において、小さくない(No)場合には、S217に移る。 Next, in S215, it is determined whether or not the theoretical value of the driving amount of the other axis calculated in S213 is smaller than the driving amount fed back in S212. The speed correction value is subtracted by 1 from the speed (Vyf), (Vzf), (Vwf) calculated in S214, and then the process proceeds to S217. On the other hand, if it is not small (No) in S215, the process proceeds to S217.

次いで、S217において、S213で算出した他軸の駆動量の理論値がS212でフィードバックした駆動量に対して等しいか否かを判定し、等しい(Yes)場合には、S218に移り、他軸の速度をS214で算出された速度(Vyf)、(Vzf)、(Vwf)の速度補正値を0とし、その後S219に移る。一方、S217において、等しくない(No)場合には、S219に移る。 Next, in S217, it is determined whether or not the theoretical value of the driving amount of the other axis calculated in S213 is equal to the driving amount fed back in S212. The speed correction values of the speeds (Vyf), (Vzf), and (Vwf) calculated in S214 are set to 0, and then the process proceeds to S219. On the other hand, if it is not equal (No) in S217, the process proceeds to S219.

次いで、S219において、S213で算出した他軸の駆動量の理論値がS212でフィードバックした駆動量に対して大きいか否かを判定し、大きい(Yes)場合には、S220に移り、他軸の速度をS214で算出された速度(Vyf)、(Vzf)、(Vwf)に速度補正値を1加算し、その後S221に移る。一方、S219において、大きくない(No)場合には、S221に移る。 Then, in S 219, the theoretical value of the drive amount of the other axis calculated in S213 it is determined whether large or not the drive amount of feedback in S212, if it is larger (Yes), move to S220, the other shaft The speed correction value is incremented by 1 to the speeds (Vyf), (Vzf), and (Vwf) calculated in S214, and then the process proceeds to S221. On the other hand, if it is not large (No) in S219, the process proceeds to S221.

次いで、S221において、他軸(Y軸、Z軸、W軸)の速度制御回路12、13、14に、S216、S218、S220で設定した速度補正値をS214で求められた他軸の速度に加算した速度指令信号(Vy、Vz、Vw)として入力し、その後ENDし、図3のS117に移る。尚、本発明における第五ステップは、S215からS221によってその機能が発現される。 Next, in S221, the speed correction values set in S216, S218, and S220 are applied to the speed control circuits 12, 13, and 14 of the other axes (Y axis, Z axis, and W axis) to the speeds of the other axes obtained in S214. adding the speed command signal inputted (Vy, Vz, Vw) as, then END, it moves to S117 in FIG. 3. The function of the fifth step in the present invention is expressed by S215 to S221.

次いで、S117において、全軸(X軸、Y軸、Z軸、W軸)が、パルス計数回路を介して検出した駆動量が、S102で読み込みした駆動量の指令値に対して一致したか否かを判定し、一致していない場合にはS116に移り、一致するまで1msec.毎にS201からS221の割り込み処理を繰り返す。一方、S117において、全軸が一致した場合には、駆動フラグをOFFし、本手順を終了する。   Next, in S117, whether or not the driving amounts detected via the pulse counting circuit for all axes (X axis, Y axis, Z axis, W axis) match the driving amount command value read in S102. If they do not match, the process proceeds to S116, and 1 msec. The interrupt processing from S201 to S221 is repeated every time. On the other hand, if all the axes match in S117, the drive flag is turned off and this procedure is terminated.

そして、前述の手順により、本実施例の駆動制御装置における補間方法は、例えば図6に表したように、X軸及びY軸の目標位置P1へ被搬送物を駆動させる際に、S101において、X軸の駆動量を表すデータXp(6000)と、Y軸の駆動量を表すデータYpが読み込まれ、S103において、X軸が基準軸に設定され、S104からS109において、所定周期(1msec.)毎に、X軸の駆動に合わせてY軸が追従するように補間する。また、S105において、X軸の駆動量(6000)とY軸の駆動量(2000)の比率が、X軸の速度とY軸の速度の比になるように、Y軸の速度を設定し、S116において、所定の周期毎にX軸及びY軸の実際の駆動量を検出してY軸の速度を補正し、実際の移動曲線が理想の移動曲線に合うように、Y軸の駆動を補間する。   Then, according to the above-described procedure, the interpolation method in the drive control apparatus of the present embodiment, as shown in FIG. 6, for example, when driving the conveyed object to the X-axis and Y-axis target position P1, in S101, Data Xp (6000) representing the drive amount of the X axis and data Yp representing the drive amount of the Y axis are read. In S103, the X axis is set as the reference axis, and in S104 to S109, a predetermined cycle (1 msec.) Every time, interpolation is performed so that the Y-axis follows the drive of the X-axis. In S105, the Y-axis speed is set so that the ratio of the X-axis drive amount (6000) and the Y-axis drive amount (2000) is the ratio of the X-axis speed and the Y-axis speed. In S116, the actual drive amount of the X-axis and the Y-axis is detected at every predetermined period to correct the Y-axis speed, and the Y-axis drive is interpolated so that the actual movement curve matches the ideal movement curve. To do.

以下に、前記の構成を有する実施例の、駆動制御装置における直線補間方法の
作用効果を記載する。
Below, the effect of the linear interpolation method in the drive control apparatus of the Example which has the said structure is described.

実施例に記載した駆動制御装置の直線補間方法によれば、各軸の駆動量の指令値Xp、Yp、Zp、Wpに基づいて、基準軸を選択し基準軸の速度を設定する第一ステップ(S103)と、基準軸の速度に基づいて、基準軸の速度と他軸の速度との比が夫々の駆動量の指令値の比になるように、他軸の速度Snを設定する第二ステップ(S105)と、設定された速度に基づいて基準軸及び他軸を駆動させ、所定の周期毎に、基準軸及び他軸の累積の移動量を検出する第三ステップ(S212)と、基準軸の移動量に対して比率を掛け算して他軸の移動量の理論値を演算する第四ステップ(S213)と、他軸の実際に移動した移動量と理論値との差を検出し、算出された差を打ち消すように、他軸の速度を、予め定められた所定量毎に増減する第五ステップ(S215からS221)と、を備えているので、従来の補間方法に比べ、補間処理に要する演算時間を短縮できると共に、補間処理に要するハードウェアを簡素化でき、生産性を向上できる。   According to the linear interpolation method of the drive control apparatus described in the embodiment, the first step of selecting the reference axis and setting the speed of the reference axis based on the command values Xp, Yp, Zp, Wp of the drive amount of each axis Based on (S103) and the speed of the reference axis, the second axis speed Sn is set so that the ratio between the speed of the reference axis and the speed of the other axis becomes the ratio of the command values of the respective drive amounts. A step (S105), a third step (S212) for driving the reference axis and the other axis based on the set speed, and detecting a cumulative movement amount of the reference axis and the other axis for each predetermined period; A fourth step (S213) for calculating the theoretical value of the movement amount of the other axis by multiplying the ratio with the movement amount of the axis, and detecting the difference between the actual movement amount of the other axis and the theoretical value; Increase or decrease the speed of the other axis by a predetermined amount so as to cancel the calculated difference. The fifth step (S215 to S221) is provided, so that the calculation time required for the interpolation process can be reduced and the hardware required for the interpolation process can be simplified and productivity can be improved as compared with the conventional interpolation method. it can.

つまり、本実施例の駆動制御装置における直線補間方法によれば、S116のように、所定の周期1msec.毎に、累積の移動量を検出し、他軸の実際に移動した移動量が理論値に合うように、予め定められた所定量を増減して他軸の速度を補正するので、従来例に記述した高速演算プロセッサが不要になり、補間処理に要するハードウェアを簡素化できて補間処理を速やかに行うことができると共に、基準軸に対して他軸を精度良く追従させることができる。   That is, according to the linear interpolation method in the drive control apparatus of the present embodiment, a predetermined period of 1 msec. Every time, the cumulative amount of movement is detected, and the speed of the other axis is corrected by increasing or decreasing a predetermined amount so that the amount of movement actually moved on the other axis matches the theoretical value. The described high-speed arithmetic processor is not required, the hardware required for the interpolation process can be simplified, the interpolation process can be performed quickly, and the other axes can follow the reference axis with high accuracy.

また、本実施例の駆動制御装置における直線補間方法によれば、S214のように、基準軸と他軸との加速及び減速の際の速度比が、基準軸と他軸との駆動量の指令値の比になるように、他軸の速度を設定するので、基準軸及び他軸が目的の速度に達するまでの時間を合わせることができ、移動路のずれを低減できる。また、本発明の駆動制御装置における直線補間方法は、基準軸が、駆動量の指令値の最も大きい搬送軸が選択され、駆動量の指令値毎選択されるので、常に、駆動量の最も大きい搬送軸の駆動に対して他の搬送軸を追従させることができ、精度良く補間を行うことができる。 Further, according to the linear interpolation method in the drive control apparatus of the present embodiment, as in S214, the speed ratio at the time of acceleration and deceleration between the reference axis and the other axis is the command of the drive amount between the reference axis and the other axis. such that the ratio of the value, so to set the speed of the other shaft, the reference axis and the other axis can match the time to reach the desired speed can be reduced the deviation of the movement route. Further, in the linear interpolation method in the drive control apparatus of the present invention, the reference axis is selected as the transport axis having the largest drive amount command value, and is selected for each drive amount command value. Therefore, the drive amount is always the largest. Other transport axes can be made to follow the drive of the transport axes, and interpolation can be performed with high accuracy.

以上、本発明の一実施例について説明したが、本発明は、前記実施例に限定されるものではなく、種々の態様をとることができる。例えば、本実施例では、S216及びS220における速度補正値を1としたが、1に限定されるものでなく他の数値でもよく、更には、各軸が減速範囲及び加速範囲にある際に小さな数値を設定し、各軸が一定の速度範囲にある際には大きな数値を設定してもよい。また、本実施例において、S116の割り込み処理の周期を1msecとしたが、周期を他の数値にしたり、各軸の駆動範囲に応じて周期を変えてもよい。   As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, It can take a various aspect. For example, in this embodiment, the speed correction value in S216 and S220 is 1. However, the speed correction value is not limited to 1, and may be other numerical values. Furthermore, when each axis is in the deceleration range and the acceleration range, the speed correction value is small. A numerical value may be set, and a large numerical value may be set when each axis is in a certain speed range. In the present embodiment, the interrupt processing period of S116 is set to 1 msec, but the period may be set to other numerical values, or the period may be changed according to the driving range of each axis.

本発明の一実施例の、駆動制御装置の制御系を表すブロック図である。It is a block diagram showing the control system of the drive control apparatus of one Example of this invention. 同実施例の駆動制御装置における直線補間方法の手順の一部を表すフローチャートである。It is a flowchart showing a part of procedure of the linear interpolation method in the drive control apparatus of the embodiment. 同実施例の駆動制御装置における直線補間方法の手順の一部を表すフローチャートである。It is a flowchart showing a part of procedure of the linear interpolation method in the drive control apparatus of the embodiment. 図3中の割り込み処理の手順の一部を表すフローチャートである。4 is a flowchart showing a part of the procedure of interrupt processing in FIG. 3. 図3中の割り込み処理の手順の一部を表すフローチャートである。4 is a flowchart showing a part of the procedure of interrupt processing in FIG. 3. 本実施例の駆動制御装置の直線補間方法における、原点POから目標位置P1まで駆動する際のX軸及びY軸の補間動作を表す説明図である。It is explanatory drawing showing the X-axis and Y-axis interpolation operation | movement at the time of driving from the origin PO to the target position P1 in the linear interpolation method of the drive control apparatus of a present Example.

1…MPU(中央演算処理ユニット)、2…インターフェース、3…X軸駆動パルス生成部、4…Y軸駆動パルス生成部、5…Z軸駆動パルス生成部、6…W軸駆動パルス生成部、7,8,9,10…原発振器、11,12,13,14…速度制御回路、15,16,17,18…パルス出力回路、19,20,21,22…パルス計数回路、23…X軸モータ駆動回路、24…Y軸モータ駆動回路、25…Z軸モータ駆動回路、26…W軸モータ駆動回路、30…基準軸設定部、31…他軸速度演算部、32…理論値演算部、33…他軸速度補正判定部
DESCRIPTION OF SYMBOLS 1 ... MPU (central processing unit), 2 ... Interface, 3 ... X-axis drive pulse generation part, 4 ... Y-axis drive pulse generation part, 5 ... Z-axis drive pulse generation part, 6 ... W-axis drive pulse generation part, 7, 8, 9, 10 ... original oscillator, 11, 12, 13, 14 ... speed control circuit, 15, 16, 17, 18 ... pulse output circuit, 19, 20, 21, 22 ... pulse counting circuit, 23 ... X Axis motor drive circuit, 24 ... Y-axis motor drive circuit, 25 ... Z-axis motor drive circuit, 26 ... W-axis motor drive circuit , 30 ... reference axis setting unit, 31 ... other axis speed calculation unit, 32 ... theoretical value calculation unit 33: Other axis speed correction determination unit .

Claims (3)

互いに直交する複数の搬送軸を駆動させる駆動制御装置において、基準となる搬送軸の駆動に関連付けて他の搬送軸を駆動させる駆動制御装置における直線補間方法であって、
前記複数の搬送軸の駆動量の指令値に基づいて、該搬送軸の中から基準軸を選択し該基準軸の速度を設定する第一ステップと、
前記基準軸の速度に基づいて、該基準軸の速度と前記他の搬送軸の速度との比が夫々の前記基準軸の駆動量の指令値と前記他の搬送軸の駆動量の指令値の比になるように、前記他の搬送軸の速度を設定する第二ステップと、
前記設定された速度に基づいて前記基準軸及び他の搬送軸を駆動させ、所定の周期毎に、該基準軸及び前記他の搬送軸の累積の移動量を検出する第三ステップと、
前記基準軸の実際に移動した移動量に対して前記基準軸の駆動量の指令値と前記他の搬送軸の駆動量の指令値の比を掛け算して前記他の搬送軸の移動量の理論値を演算する第四ステップと、
前記他の搬送軸の実際に移動した移動量と前記理論値との差を検出し、算出された差を打ち消すように、該他の搬送軸の速度を、予め定められた所定量毎に増減する第五ステップと、
を備えていることを特徴とする駆動制御装置における直線補間方法。
In a drive control apparatus that drives a plurality of conveyance axes orthogonal to each other, a linear interpolation method in a drive control apparatus that drives other conveyance axes in association with the drive of a reference conveyance axis,
A first step of selecting a reference axis from among the transport axes and setting a speed of the reference axis based on a command value of a drive amount of the plurality of transport axes;
Based on the speed of the reference axis, the ratio between the speed of the reference axis and the speed of the other transport axis is the command value of the drive amount of the reference axis and the command value of the drive amount of the other transport axis . A second step of setting the speed of the other transport axis so as to be a ratio;
A third step of driving the reference axis and the other transport axis based on the set speed, and detecting a cumulative movement amount of the reference axis and the other transport axis for each predetermined period;
The movement amount of the other transport axis is calculated by multiplying the actual movement amount of the reference axis by the ratio of the command value of the drive amount of the reference axis and the command value of the drive amount of the other transport shaft. A fourth step of calculating a value;
The difference between the actual movement amount of the other transport axis and the theoretical value is detected, and the speed of the other transport axis is increased or decreased by a predetermined amount so as to cancel the calculated difference. And the fifth step
A linear interpolation method in a drive control device comprising:
前記基準軸と前記他の搬送軸との加速び減速の際の速度比が該基準軸と該他の搬送軸との駆動量の指令値の比になるように、該他の搬送軸の速度を設定することを特徴とする請求項1に記載の駆動制御装置における直線補間方法。 As the speed ratio at the time of acceleration beauty deceleration with the other transport axis and said reference axis is the ratio of the command value of the drive amount of the said reference axis and said other conveyor shaft, of the other conveyor shaft The linear interpolation method in the drive control apparatus according to claim 1, wherein a speed is set. 前記基準軸は、前記駆動量の指令値の最も大きい搬送軸が選択され、該駆動量の指令値毎に選択される、
ことを特徴とする請求項1又は請求項2に記載の駆動制御装置における直線補間方法。
As the reference axis, a conveyance axis having the largest command value of the driving amount is selected, and is selected for each command value of the driving amount.
The linear interpolation method in the drive control apparatus according to claim 1, wherein the linear interpolation method is used.
JP2005218125A 2005-07-28 2005-07-28 Linear interpolation method in drive controller Expired - Fee Related JP4508969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218125A JP4508969B2 (en) 2005-07-28 2005-07-28 Linear interpolation method in drive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218125A JP4508969B2 (en) 2005-07-28 2005-07-28 Linear interpolation method in drive controller

Publications (2)

Publication Number Publication Date
JP2007034758A JP2007034758A (en) 2007-02-08
JP4508969B2 true JP4508969B2 (en) 2010-07-21

Family

ID=37793929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218125A Expired - Fee Related JP4508969B2 (en) 2005-07-28 2005-07-28 Linear interpolation method in drive controller

Country Status (1)

Country Link
JP (1) JP4508969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435872B2 (en) * 2015-01-20 2018-12-12 ブラザー工業株式会社 Numerical control device and control method
CN108829032B (en) * 2018-05-31 2021-02-26 深圳市恒晨电器有限公司 Interpolation method for high-precision control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024688A (en) * 1973-07-09 1975-03-15
JPH0421104A (en) * 1990-05-16 1992-01-24 Mitsubishi Electric Corp Positioning device
JPH04260105A (en) * 1991-02-15 1992-09-16 Mitsubishi Electric Corp Motion controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024688A (en) * 1973-07-09 1975-03-15
JPH0421104A (en) * 1990-05-16 1992-01-24 Mitsubishi Electric Corp Positioning device
JPH04260105A (en) * 1991-02-15 1992-09-16 Mitsubishi Electric Corp Motion controller

Also Published As

Publication number Publication date
JP2007034758A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
CN107797515B (en) Control device, control method, and computer-readable medium for machine tool
US10353374B2 (en) Servo controller, control method, and computer-readable recording medium for machine tool used for oscillating cutting
CN108732989B (en) Control device for machine tool for performing swing cutting
JPH07110717A (en) Motor control system
JP2017207806A (en) Servo controller of machine tool performing oscillation cutting, control method and computer program
US20180297163A1 (en) Control device for machine tool performing oscillation cutting
JPWO2013140679A1 (en) Trajectory control device
CN113168155B (en) Numerical control device and numerical control method
JP5991249B2 (en) Numerical controller
JP4508969B2 (en) Linear interpolation method in drive controller
JPH0511824A (en) Backlash acceleration control system
JP7022096B2 (en) Servo controller
JP2003058213A (en) Numerical controller
WO2008053601A1 (en) Working control device, and its program
JP2011113475A (en) Numerical control device and machine tool including the numerical control device
JP2007304714A (en) Numerical control device
JP2001170843A (en) Driving control device for machine tool
JP2020163487A (en) Servo control device
JP2542538B2 (en) Robot position control method
JP6661676B2 (en) Robot controller
KR970002259B1 (en) Method for controlling servomotor
KR970005566B1 (en) Method of controlling backlash acceleration
JP6392726B2 (en) Motor controller for correcting backlash
JP2018181029A (en) Control apparatus for machine tool feeding system
JP2007290128A (en) Robot controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees