JP4508300B2 - Thermoplastic resin composition for blow molding and blow-molded product thereof - Google Patents

Thermoplastic resin composition for blow molding and blow-molded product thereof Download PDF

Info

Publication number
JP4508300B2
JP4508300B2 JP12433498A JP12433498A JP4508300B2 JP 4508300 B2 JP4508300 B2 JP 4508300B2 JP 12433498 A JP12433498 A JP 12433498A JP 12433498 A JP12433498 A JP 12433498A JP 4508300 B2 JP4508300 B2 JP 4508300B2
Authority
JP
Japan
Prior art keywords
weight
parts
blow
resin composition
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12433498A
Other languages
Japanese (ja)
Other versions
JPH11314266A (en
Inventor
高男 柴田
和明 橋本
繁美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
Techno Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Polymer Co Ltd filed Critical Techno Polymer Co Ltd
Priority to JP12433498A priority Critical patent/JP4508300B2/en
Publication of JPH11314266A publication Critical patent/JPH11314266A/en
Application granted granted Critical
Publication of JP4508300B2 publication Critical patent/JP4508300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ブロー成形品の表面性に優れかつブロー成形加工性、耐衝撃性のバランスに優れたブロー成形用ABS系樹脂組成物およびそれからなるブロー成形品に関するものである。
【0002】
【従来の技術】
従来より、ボトルなどを得るためのブロー成形(吹込成形)用材料としては、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレンおよびポリ塩化ビニルなどの熱可塑性樹脂が用いられている。また最近では、エアーダクトおよび照明用器具などの電気・電子部品、エアースポイラーおよびコンソールなどの自動車用部品、机の天板などの家具などを得るためには、熱的性質および機械的性質に優れた、いわゆるエンジニアリングプラスチック(例えば、特開平7−032454号公報に記載のものなど)が用いられる。
【0003】
従来、該特開平7−032454号公報に記載のブロー成形用樹脂組成物は、ブロー成形における酸化劣化を改良しているものの、得られるブロー成形品では成形品表面に小さいながらも多量の凹(以降ヘコ)が発生し、エアースポイラーの様に平滑な塗装表面を要求される用途では、サンディングによる二次加工が必要となるケースが多かった。そこで、ブロー成形用金型の表面をシボ面化したり、特開平7−108534号公報のように、加熱する手段と冷却する手段を備えたブロー成形用金型が提案されている。しかし、このようなブロー成形用金型は高価なばかりでなく、成形サイクルが従来に比べ長くなり生産性を犠牲にするだけでなく、必ずしも満足できる状況に至っていない。特公平5−76500号公報に記載の熱可塑性樹脂組成物は、射出成形における成形品の艶消しされた外観を効果として挙げているが、ブロー成形における効果はいっさい触れられていない。
【0004】
【発明が解決しようとする課題】
本発明は、ブロー成形品の表面性に優れ、同時にブロー成形加工性、耐衝撃性のバランスに優れるABS系樹脂組成物およびそのブロー成形品を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
これらの課題を解決するため本発明者らは鋭意検討した結果、特定の成分を含有したグラフト共重合体(A)とビニル系共重合体(B)と特定の添加剤とを配合して得た組成物が、ブロー成形品の表面を均一にし、サンディング工程をなくし塗装を行っても良品を得ることが出来、しかも耐衝撃性、ブロー成形加工性に優れることを見出し本発明を完成するに至った。
【0006】
即ち、本発明の第1は、(A)ゴム重合体40〜95重量部にビニル系化合物60〜5重量部を重合させる際に、α、β−不飽和酸のグシジルエステル化合物0.1〜30重量%を必須成分とし、シアン化ビニル化合物10〜40重量%、芳香族ビニル化合物60〜90重量%(但し、三者の合計で100重量%)を反応させてなるグラフト共重合体80〜5重量部と、(B)シアン化ビニル化合物10〜40重量%、芳香族ビニル化合物60〜90重量%、他の共重合可能なビニル化合物としてマレイミド0〜30重量%(但し、三者の合計で100重量%)を反応させてなる共重合体20〜95重量部からなりかつメチルエチルケトン可溶分の還元粘度が0.3〜1.5dl/g(N,N−ジメチルホルムアミド0.3%溶液、30℃)である樹脂組成物に、滑剤と、酸化防止剤と、タルクと、水酸化カルシウムとからなる添加剤を配合してなり、ブロー成形した成形品表面の光沢が60度反射率で3.5%以下であるブロー成形用ABS系樹脂組成物を、本発明の第2は、上記熱可塑性樹脂組成物をブロー成形してなる熱可塑性樹脂ブロー成形品を、それぞれ内容とする。
【0007】
【発明の実施の形態】
本発明のグラフト共重合体(A)は、ゴム重合体40〜95重量部にビニル系化合物60〜5重量部を重合させる際に、α、β−不飽和酸のグシジルエステル化合物0.1〜30重量%、より好ましくは0.5〜30重量%を必須成分とし、シアン化ビニル化合物10〜40重量%、芳香族ビニル化合物60〜90重量%を反応させてなるグラフト共重合体である。
【0008】
このグラフト共重合体(A)において、ゴム重合体が、40重量部未満では耐衝撃性が低下し、95重量部を越えると成形加工性が低下するので好ましくない。
α,β−不飽和酸のグリシジルエステル化合物0.1重量%未満では表面の均一効果が不十分であり、30重量%を越えると耐衝撃性が低下して好ましくない。シアン化ビニル化合物が10重量%未満では耐衝撃性が低下し、40重量%を越えると成形時の熱着色が生じるので好ましくない。芳香族ビニル化合物が60重量%未満では成形加工性の低下が生じ、90重量%を越えると耐衝撃性が低下するので好ましくない。
グラフト共重合体(A)で使用されるゴム重合体は、ポリブタジエン、ブタジエン−スチレン共重合体(SBR)、ブタジエン−アクリロニトリル共重合体(NBR)、ブタジエン−アクリル酸エステル共重合体などのジエン系ゴム、スチレン−プロピレン共重合体(EPR)、エチレン−プロピレン−非共役ジエン共重合体(EPDM)などのオレフィン系ゴム、ポリブチルアクリレート、ポリ2−エチルヘキシルアクリレートなどのアクリル系ゴム、シリコンゴム、シリコン−アクリル複合ゴムなどのシリコーン系ゴムなどが挙げられ、特に好ましくはポリブタジエンであり、重量平均粒子径0.05〜2μのものが好ましい。
α、β−不飽和酸のグリシジルエステルとしては、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジルなどが挙げられる。
シアン化ビニル化合物としては、アクリロニトリル、メタクリルニトリルなどが挙げられ、芳香族ビニル化合物としては、スチレン、α−メチルスチレン、p−メチルスチレン、クロロスチレン、ブロモスチレン、ビニルナフタレンなどが挙げられる。
さらに共重合可能なビニル化合物としては、メチルメタクリレート、エチルメタクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレートなどの(メタ)アクリル酸エステルやマレイミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、N−(p−メチルフェニル)マレイミドなどが挙げられる。
本発明における共重合体(B)において、シアン化ビニル化合物は10〜40重量%が好ましく、10重量%未満では耐衝撃性が低下し、40重量%を越えると成形時の熱着色が生じるので好ましくない。芳香族ビニル化合物は90〜60重量%が好ましく、60重量%未満では成形加工性の低下が生じ、90重量%を越えると耐衝撃性が低下するので好ましくない。
シアン化ビニル化合物としては、アクリロニトリル、メタクリルニトリルなどが挙げられ、芳香族ビニル化合物としては、スチレン、α−メチルスチレン、p−メチルスチレン、クロロスチレン、ブロモスチレン、ビニルナフタレンなどが挙げられる。
さらに共重合可能なビニル化合物としては、メチルメタクリレート、エチルメタクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレートなどの(メタ)アクリル酸エステル、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、N−(p−メチルフェニル)マレイミドなどが挙げられ、これらの中で、マレイミドが好ましい
上記グラフト共重合体(A)および共重合体(B)の製造法は特に限定されず、乳化重合法、懸濁重合法、溶液重合法等が適用できるが、乳化重合法がゴム粒子の粒子径をコントロールしやすく、成形体の耐衝撃性の点から好ましく用いられる。
乳化重合法は通常の方法が適用可能である。即ち前記化合物を水性媒体中、ラジカル開始剤の存在下に反応させればよい。その際、前記化合物を混合物として使用しても、また必要に応じ、分割して使用してもよい。更に、前記化合物の添加方法としては一度に全量仕込んでも、また逐時添加してもよく、特に制限されるものではない。
ラジカル開始剤としては過硫酸カリ、過硫酸アンモニウム、キュメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイドなどの水溶性または油溶性の過酸化物が挙げられる。その他重合促進剤、重合度調整剤、乳化剤も公知の乳化重合法で使用されているものを適宣選択しうる。
本発明のグラフト共重合体(A)と共重合体(B)からなる組成物の成形品表面性、耐衝撃性、耐熱性、剛性、および成形加工性は、前記(A)、(B)の組成、重合度のみならず、それらのブレンド比率によって左右される。従って目的とする特性を得るためにブレンド比率を決定すればよいが、グラフト共重合体(A)が、80〜5重量部、共重合体(B)が20〜95重量部の配合が好ましい。即ち、グラフト共重合体(A)が80重量部を越えると成形加工性、剛性、耐熱変形性が低下し好ましくなく、5重量部未満では耐衝撃性が低下し好ましくない。
グラフト共重合体(A)と共重合体(B)からなる本発明組成物のメチルエチルケトン可溶分の還元粘度が0.3〜1.5dl/g(N,N−ジメチルホルムアミド0.3%溶液、30℃)の範囲が好ましい。より好ましくは0.4〜1.0dl/gであり、更に好ましくは0.5〜0.9dl/gである。0.3dl/g未満では耐衝撃性、耐シンナー性、耐油性が低下し、1.5dl/gを越えるとブロー成形性が低下する。
【0009】
樹脂組成物の成分や配合物のブレンド、その造粒化(ペレット化)、ブロー成形はそれ自体公知の方法で実施すればよい。
例えば、グラフト共重合体(A)と共重合体(B)の各々のラテックスの混合物を塩析し、凝固、脱水、乾燥して得たパウダーをヘンシェルミキサーで混合し、単軸または多軸の押出機で溶融押出しペレット化し、ブロー成形してもよい。
また、熱可塑性樹脂組成物には、更に必要に応じて、顔料、可塑剤、紫外線吸収剤、光安定剤などを1種または2種以上混合してもよい。
【0010】
前記樹脂組成物は、スチレン系樹脂、ポリカーボネート、ポリアミド、ポリブチレンテレフタレート等の1種または2種以上と組み合わせて用いてもよい。
前記スチレン系樹脂としては、一般用(GP)ポリスチレン、耐衝撃性(HIPS)ポリスチレン、スチレンとアクリロニトリルとの共重合体であるAS樹脂、スチレン−ブタジエン−アクリロニトリルからなるABS樹脂、前記ABS樹脂のスチレンの一部または大部分をα−メチルスチレンまたはマレイミド等に置き換えた耐熱ABS樹脂、前記ブタジエンをエチレン−プロピレン系ゴムやポリブチルアクリレート等に置き換えた(耐熱)AES樹脂や(耐熱)AAS樹脂等のABS系樹脂、前記ブタジエンをシリコンゴム、シリコン−アクリル複合ゴムに置き換えた(耐熱)ABS系樹脂が挙げられる。
【0011】
ブロー成形成形方法としては、通常のブロー成形の他、シートパリソン法、コールドパリソン法、ボトルパック法、インジェクションブロー成形法、延伸ブロー成形法など各種の方法があるが、いずれの方法も採用できる。このブロー成形工程では、ブローアップ性、表面性等の点から、得られた樹脂組成物を200℃以上のパリソンまたはシートでブロー成形することが好ましい。更に、より良い効果を得るためには、パリソンおよびシートを膨らませる際に、空気に代えて、窒素、二酸化炭素、ヘリウム、アルゴン、ネオンなどの不活性ガスを用いてもよい。
【0012】
本発明の熱可塑性樹脂組成物は、上記のようなブロー成形に特に好適であるが、押出成形においてもブロー成形の場合と同様、優れた成形品を提供することが出来る。
【0013】
【実施例】
以下に実施例および比較例を示すが、本発明はこれらに何ら限定されるものではない。
なお、本実施例および比較例における評価方法を以下にまとめて示す。
(還元粘度)
えられたペレットをメチルエチルケトンに23℃で12時間溶解させたのち、遠心分離し、可溶分をメタノールで析出させた。析出物を真空乾燥機で乾燥させ、サンプルをえた。えられたサンプルをN,N−ジメチルホルムアミド0.3%溶液とし、ウベ・ローデ粘度計で30℃で測定した。
(熱変形温度:HDT)
ASTM D−648に準拠して4.6kg/cm2荷重で測定した。
(曲げ強度および曲げ弾性率)
ASTM D−790に準拠して23℃で測定した。
(ブロー成形評価)
得られたペレット状の樹脂組成物をプラコー(株)製のDA−50型ブロー成形機でブロー成形し、成形体をえた。成形条件は、パリソン温度が約240℃、射出速度(指数)が150、スクリュー回転数が60rpm、ブロー圧が6kg/cm2G(エア)、冷却時間が100秒、金型温度が60℃であった。
得られたブロー成形体について、以下の評価を行った。
【0014】
ドローダウン性
パリソンを長さ約500mm(パリソン重量500g)を射出後放置し、パリソンがダイスからはずれ、落下するまでの時間を測定し評価した。
○:パリソン射出後、パリソン落下までの時間が60秒をこえる。
△:パリソン射出後、パリソン落下までの時間が20〜60秒。
×:パリソン射出後、パリソン落下までの時間が20秒未満。
【0015】
表面外観
(W)60×(L)400×(H)30(mm)、平均肉厚3.5mmの箱型状ブロー成形を用い、成形品表面に40×80(mm)の長方形を描き、長方形内のヘコ(大きさは、0.02〜0.2mm)を目視で数え、長方形5点のヘコ数の平均値を求めた。以下の基準により評価した。
○:平均ヘコ数が1個以下である。
×:平均ヘコ数が個以上である。
【0016】
表面光沢
60(W)×400(L)×30(H)(mm)、平均肉厚3.5mmの箱型状ブロー成形体を得て、その成形体表面の60度反射率を測定した。
落錘強度
外径70mm、長さ400mm、平均肉厚3.2mmの円筒状ブロー成形体を用い、−30℃での落錘強度(錘の重量×半数破壊高さ(kg・m))を測定した。
なお、以下に示す「部」はいずれも「重量部」を意味する。
実施例1
攪拌機付き重合器に、水280部および重量平均粒子径0.3μm、ゲル分率90%のポリブタジエンラテックス60部(固形分換算)、ナトリウムホルムアルデヒドスルホキシレート0.3部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み、脱酸素後、窒素気流中で撹拌しながら60℃に加熱した後、アクリロニトリル10部、スチレン25部、グリシジルメタクリレート5部、キュメンハイドロパーオキサイド0.3部からなる単量体混合物を60℃で5時間かけて連続的に滴下した。滴下終了後、重合温度を65℃にし、1時間撹拌続けた後、重合を終了させ、グラフト共重合体(I)のラテックスをえた。重合転化率は98%、グラフト率は45%であった。
また、別途撹拌機付き重合容器に、水250部およびアルキルベンゼンスルホン酸ナトリウム2部を仕込み、脱酸素後、窒素気流中で撹拌しながら70℃まで加熱した。さらに過硫酸カリウム0.2部を添加した後、α−メチルスチレン65部、アクリロニトリル30部、スチレン5部、t−ドデシルメルカプタン0.3部からなる単量体混合物を、重合温度70℃で連続的に7時間かけて滴下した。滴下終了後、重合温度を75℃にし、1時間撹拌を続けて重合を終了させ、共重合体(I)のラテックスをえた。重合転化率は98%であった。
グラフト共重合体(I)30部と共重合体(I)70部とをラテックスのまま混合した。得られた混合物を塩化カルシウムで塩析し、洗浄、濾過および乾燥工程を経てパウダー状の樹脂組成物(1)をえた。えられたパウダー状の樹脂組成物(1)100部に対して、リン系安定剤(アデカスタブHP−10、旭電化工業(株)製)0.3部、フェノール系安定剤(アデカスタブAO−30旭電化工業(株)製)0.3部、滑剤としてエチレンビスステアリルアミド0.5部、タルク(ミクロエースL−1、日本タルク(株)製)0.5部、水酸化カルシウム(スーパーミクロスター、丸尾カルシウム(株)製)1.0部を添加し、ヘンシェルミキサーで混合し、ベント式単軸押出機(HV−40−28、田端機械工業(株)製)で270℃の設定温度で押し出し、樹脂組成物(1)のペレットをえた。得られた樹脂組成物(1)は、MEK可溶分の還元粘度0.58dl/g、HDT(ブロー成形体を切り出してテストピースを作成し測定した)118℃、曲げ強度(ブロー成形体を切り出してテストピースを作成し測定した)715kg/cm2 、曲げ弾性率23000kg/cm2 であった。その他、ドローダウン性、表面外観、表面光沢、落錘強度を測定した。結果を表1に示す。
実施例2
共重合体(I)のかわりに、下記の方法で製造した共重合体(II)を用いた以外は実施例1と同様にして行った。えられた樹脂組成物(2)は、MEK可溶分の還元粘度0.53dl/g、HDT127℃、曲げ強度730kg/cm2 、曲げ弾性率24000kg/cm2 であった。ドローダウン性、表面外観、表面光沢、落錘強度を測定した。結果を表1に示す。
共重合体(I)の単量体混合物をフェニルマレイミド23部、アクリロニトリル20部およびスチレン60部に変更して製造した共重合体(II)を共重合体(I)のかわりに用いた以外は実施例1と同様にして行った。
共重合体(II)の重合転化率は97%であった。
実施例3
共重合体(I)35部とグラフト共重合体(I)65部に配合比を変更した以外は実施例1と同様にして行った。えられた樹脂組成物(3)のMEK可溶分の還元粘度は0.53dl/g、HDTは93℃、曲げ強度は320kg/cm2 、曲げ弾性率は10500kg/cm2 であった。その他の特性値を同様に測定した。結果を表1に示す。
実施例4
グラフト共重合体(I)のかわりに、下記の方法で製造したグラフト共重合体(II)を用いた以外実施例1と同様にして行った。得られた樹脂組成物(4)は、MEK可溶分の還元粘度0.58dl/g、HDT118℃、曲げ強度720kg/cm2 、曲げ弾性率23000kg/cm2 であった。同様にその他の測定結果を表1に示す。
【0017】
グラフト共重合体(I)のポリブタジエンラテックスを70部、アクリロニトリル9部、スチレン19部、グリシジルメタクリレート2部からなる単量体混合物に変更して製造したグラフト共重合体(II)をグラフト共重合体(I)のかわりに用いた以外は実施例1と同様にして行った。グラフト共重合体(II)の重合転化率は98%、グラフト率は30%であった。
実施例5
グラフト共重合体(I)のかわりに、以下の方法で製造したグラフト共重合体(III)を用いた以外実施例1と同様にして行った。得られた樹脂組成物(5)は、可溶分の還元粘度0.55dl/g、HDT117℃、曲げ強度710kg/cm2、曲げ弾性率22500kg/cm2であった。同様にその他の測定結果を表1に示す。
【0018】
グラフト共重合体(I)のポリブタジエンラテックス50部、単量体混合物をアクリロニトリル10部、スチレン30部、グリシジルメタクリレート10部からなる単量体混合物に変更して製造したグラフト共重合体(III)をグラフト共重合体(I)のかわりに用いた以外は実施例1と同様にして行った。グラフト共重合体(III)の重合転化率は97%、グラフト率は50%であった。
実施例6
グラフト共重合体(I)のかわりに、以下の方法で製造したグラフト共重合体(IV)を用いた以外実施例1と同様にして行った。得られた樹脂組成物(6)は、MEK可溶分の還元粘度0.54dl/g、HDT118℃、曲げ強度720kg/cm2、曲げ弾性率23500kg/cm2であった。同様にその他の測定結果を表1に示す。
【0019】
グラフト共重合体(I)のポリブタジエンラテックスを重量平均粒子径0.08μm、ゲル分率90%に変更して製造したグラフト共重合体(IV)をグラフト共重合体(I)のかわりに用いた以外は実施例1と同様にして行った。
グラフト共重合体(IV)の重合転化率は97%、グラフト率は48%であった。
比較例1
グラフト共重合体(I)のかわりに、以下の方法で製造したグラフト共重合体()を用いた以外実施例1と同様にして行った。えられた樹脂組成物(7)は、MEK可溶分の還元粘度0.6dl/g、HDT119℃、曲げ強度720kg/cm2 、曲げ弾性率23000kg/cm2 であった。同様にその他の測定結果を表1に示す。
【0020】
グラフト共重合体(I)の単量体混合物をアクリロニトリル15部、スチレン25部からなる単量体混合物に変更して製造したグラフト共重合体(V)をグラフト共重合体(I)のかわりに用いた以外は実施例1と同様にして行った。グラフト共重合体(IV)の重合転化率は98%、グラフト率は40%であった。
比較例2
グラフト共重合体(II)のかわりに、グラフト共重合体(V)を用いた以外は実施例2と同様にして行った。えられた樹脂組成物(8)は、MEK可溶分の還元粘度0.54dl/g、HDT127℃、曲げ強度735kg/cm2、曲げ弾性率24000kg/cm2であった。同様にその他の測定結果を表1に示す。比較例3
グラフト共重合体(I)のかわりに、グラフト共重合体(V)を用いた以外は実施例3と同様にして行った。えられた樹脂組成物(9)は、MEK可溶分の還元粘度0.55dl/g、HDT94℃、曲げ強度335kg/cm2、曲げ弾性率11000kg/cm2であった。同様にその他の測定結果を表1に示す。
【0021】
【表1】

Figure 0004508300
【0022】
実施例7
樹脂組成物(1)35部と樹脂組成物(7)65部とを混合、ペレット化し樹脂組成物(10)をえた。HDT117℃、曲げ強度720kg/cm2、曲げ弾性率23000kg/cm2であった。その他の結果を表2に示す。
実施例8
樹脂組成物(6)30部と樹脂組成物(8)70部とを混合、ペレット化し樹脂組成物(11)をえた。HDT125℃、曲げ強度730kg/cm2、曲げ弾性率23500kg/cm2であった。同様にその他の測定結果を表2に示す。
【0023】
【表2】
Figure 0004508300
【0024】
表1、2の結果から明らかのように、本発明のブロー成形用樹脂組成物はブロー成形品の表面性、ブロー成形加工性に優れていることがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ABS resin composition for blow molding excellent in the surface properties of a blow-molded product and having an excellent balance of blow molding processability and impact resistance, and a blow-molded product comprising the same.
[0002]
[Prior art]
Conventionally, thermoplastic resins such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and polyvinyl chloride have been used as blow molding (blow molding) materials for obtaining bottles and the like. Recently, it has excellent thermal and mechanical properties to obtain electrical and electronic parts such as air ducts and lighting equipment, automotive parts such as air spoilers and consoles, and furniture such as desk tops. In addition, so-called engineering plastics (for example, those described in JP-A-7-032454) are used.
[0003]
Conventionally, the blow molding resin composition described in JP-A-7-032454 has improved oxidative degradation in blow molding, but the resulting blow molded product has a small but large amount of concaves ( In applications where a smooth coating surface is required, such as an air spoiler, secondary processing by sanding is often required. In view of this, a blow molding die has been proposed which is provided with a means for heating the surface of the blow molding die and a means for heating and cooling as disclosed in JP-A-7-108534. However, such a mold for blow molding is not only expensive, but the molding cycle is longer than the conventional one, and not only the productivity is sacrificed, but the situation is not always satisfactory. The thermoplastic resin composition described in JP-B-5-76500 mentions the matte appearance of a molded product in injection molding as an effect, but does not mention any effect in blow molding.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an ABS-based resin composition excellent in the surface properties of a blow-molded product, and at the same time having an excellent balance of blow-molding workability and impact resistance, and a blow-molded product thereof.
[0005]
[Means for Solving the Problems]
In order to solve these problems, the present inventors have intensively studied, and as a result, obtained by blending a graft copolymer (A), a vinyl copolymer (B) containing a specific component, and a specific additive. In order to complete the present invention, the present invention finds that the composition has a uniform surface of the blow molded product, can eliminate the sanding process, and can obtain a good product, and is excellent in impact resistance and blow molding processability. It came.
[0006]
That is, the first present invention, (A) when polymerizing the vinyl compound 60-5 parts by weight of the rubber polymer of 40 to 95 parts by weight, alpha, grayed glycidyl ester compounds β- unsaturated acids 0. A graft copolymer comprising 1 to 30 % by weight of an essential component and 10 to 40% by weight of a vinyl cyanide compound and 60 to 90% by weight of an aromatic vinyl compound (however, the total of the three is 100% by weight). and 80 to 5 parts by weight, (B) a vinyl cyanide compound 10-40 wt%, an aromatic vinyl compound from 60 to 90 wt%, maleimide 0-30 wt% other copolymerizable vinyl compounds (where tripartite And a reduced viscosity of 0.3-1.5 dl / g (N, N-dimethylformamide 0.3) of a methyl ethyl ketone-soluble component. % Solution, 30 ° C ) And an additive composed of a lubricant, an antioxidant, talc, and calcium hydroxide, and the gloss of the surface of the blow-molded molded article is 3.5 with a reflectivity of 60 degrees. % Of the ABS-based resin composition for blow molding, and the second aspect of the present invention includes a thermoplastic resin blow-molded product obtained by blow-molding the thermoplastic resin composition.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The graft copolymer (A) of the present invention, when the polymerization of vinyl compound 60-5 parts by weight of the rubber polymer of 40 to 95 parts by weight, alpha, grayed glycidyl ester compounds β- unsaturated acids 0. 1 to 30 % by weight, more preferably 0.5 to 30 % by weight, and a graft copolymer obtained by reacting 10 to 40% by weight of a vinyl cyanide compound and 60 to 90 % by weight of an aromatic vinyl compound. is there.
[0008]
In the graft copolymer (A), if the rubber polymer is less than 40 parts by weight, the impact resistance is lowered, and if it exceeds 95 parts by weight, the molding processability is lowered.
If the glycidyl ester compound of α, β-unsaturated acid is less than 0.1% by weight, the surface uniformity effect is insufficient, and if it exceeds 30 % by weight, the impact resistance is lowered, which is not preferable. If the vinyl cyanide compound is less than 10% by weight, the impact resistance is lowered, and if it exceeds 40% by weight, thermal coloring occurs during molding. If the aromatic vinyl compound is less than 60% by weight, the molding processability is lowered, and if it exceeds 90% by weight, the impact resistance is lowered.
The rubber polymer used in the graft copolymer (A) is a diene such as polybutadiene, butadiene-styrene copolymer (SBR), butadiene-acrylonitrile copolymer (NBR), and butadiene-acrylate copolymer. Rubber, olefin rubber such as styrene-propylene copolymer (EPR), ethylene-propylene-nonconjugated diene copolymer (EPDM), acrylic rubber such as polybutyl acrylate and poly 2-ethylhexyl acrylate, silicone rubber, silicone -Silicone rubbers such as acrylic composite rubbers are mentioned, and polybutadiene is particularly preferred, and those having a weight average particle diameter of 0.05 to 2 μm are preferred.
Examples of the glycidyl ester of α, β-unsaturated acid include glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate.
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile, and examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, bromostyrene, and vinylnaphthalene.
Further, copolymerizable vinyl compounds include (meth) acrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, maleimide, N-methylmaleimide, N- Examples thereof include ethyl maleimide, N-propyl maleimide, N-butyl maleimide, N-phenyl maleimide, and N- (p-methylphenyl) maleimide.
In the copolymer (B) in the present invention, the vinyl cyanide compound is preferably 10 to 40% by weight, and if it is less than 10% by weight, the impact resistance is lowered, and if it exceeds 40% by weight, thermal coloring during molding occurs. It is not preferable. The aromatic vinyl compound is preferably 90 to 60% by weight, and if it is less than 60% by weight, the molding processability is lowered, and if it exceeds 90% by weight, the impact resistance is lowered.
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile, and examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, bromostyrene, and vinylnaphthalene.
Further, copolymerizable vinyl compounds include (meth) acrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, maleimide, N-methylmaleimide, N- Examples thereof include ethyl maleimide, N-propyl maleimide, N-butyl maleimide, N-phenyl maleimide, N- (p-methylphenyl) maleimide, and among these, maleimide is preferable .
The method for producing the graft copolymer (A) and the copolymer (B) is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a solution polymerization method, and the like can be applied. It is easy to control the diameter and is preferably used from the viewpoint of impact resistance of the molded product.
A usual method can be applied to the emulsion polymerization method. That is, the compound may be reacted in an aqueous medium in the presence of a radical initiator. In that case, the said compound may be used as a mixture, and may be divided | segmented and used as needed. Furthermore, the method for adding the compound may be charged all at once or added every time, and is not particularly limited.
Examples of the radical initiator include water-soluble or oil-soluble peroxides such as potassium persulfate, ammonium persulfate, cumene hydroperoxide, and paramentane hydroperoxide. Other polymerization accelerators, polymerization degree adjusting agents, and emulsifiers may be appropriately selected from those used in known emulsion polymerization methods.
The surface properties, impact resistance, heat resistance, rigidity, and molding processability of the composition comprising the graft copolymer (A) and the copolymer (B) of the present invention are the above-mentioned (A) and (B). Depends on not only the composition and degree of polymerization, but also their blend ratio. Accordingly, the blending ratio may be determined in order to obtain the desired properties, but the blending of the graft copolymer (A) at 80 to 5 parts by weight and the copolymer (B) at 20 to 95 parts by weight is preferred. That is, if the graft copolymer (A) exceeds 80 parts by weight, the moldability, rigidity and heat distortion resistance are undesirably lowered, and if it is less than 5 parts by weight, the impact resistance is undesirably lowered.
The reduced viscosity of methyl ethyl ketone soluble matter of the composition of the present invention comprising the graft copolymer (A) and the copolymer (B) is 0.3 to 1.5 dl / g (0.3% solution of N, N-dimethylformamide) , 30 ° C.). More preferably, it is 0.4-1.0 dl / g, More preferably, it is 0.5-0.9 dl / g. If it is less than 0.3 dl / g, impact resistance, thinner resistance, and oil resistance are lowered, and if it exceeds 1.5 dl / g, blow moldability is lowered.
[0009]
What is necessary is just to implement the blend of the component and compound of a resin composition, its granulation (pelletization), and blow molding by a well-known method.
For example, a mixture of latexes of the graft copolymer (A) and the copolymer (B) is salted out, and the powder obtained by coagulation, dehydration, and drying is mixed with a Henschel mixer to obtain a uniaxial or multiaxial It may be melt-extruded and pelletized with an extruder and blow-molded.
Further, the thermoplastic resin composition may optionally be further, pigments, plasticizers, UV absorbers, light stabilizers, etc. may be mixed alone or in combination.
[0010]
The resin composition may be used in combination with one or more of styrenic resin, polycarbonate, polyamide, polybutylene terephthalate and the like.
Examples of the styrenic resin include general purpose (GP) polystyrene, impact resistant (HIPS) polystyrene, AS resin which is a copolymer of styrene and acrylonitrile, ABS resin made of styrene-butadiene-acrylonitrile, and styrene of the ABS resin. A heat-resistant ABS resin in which a part or most of the resin is replaced with α-methylstyrene or maleimide or the like, (heat-resistant) AES resin or (heat-resistant) AAS resin in which the butadiene is replaced with ethylene-propylene rubber or polybutyl acrylate, etc. Examples include ABS resins and (heat resistant) ABS resins in which the butadiene is replaced with silicon rubber or silicon-acrylic composite rubber.
[0011]
As the blow molding method, there are various methods such as a sheet parison method, a cold parison method, a bottle pack method, an injection blow molding method, and a stretch blow molding method, in addition to the usual blow molding. In this blow molding step, the obtained resin composition is preferably blow-molded with a parison or sheet at 200 ° C. or higher from the viewpoint of blow-up property, surface property, and the like. Further, in order to obtain a better effect, an inert gas such as nitrogen, carbon dioxide, helium, argon, or neon may be used instead of air when the parison and the sheet are inflated.
[0012]
The thermoplastic resin composition of the present invention is particularly suitable for blow molding as described above, but an excellent molded product can be provided in extrusion molding as well as blow molding.
[0013]
【Example】
Examples and Comparative Examples are shown below, but the present invention is not limited to these.
In addition, the evaluation method in a present Example and a comparative example is shown collectively below.
(Reduced viscosity)
The obtained pellet was dissolved in methyl ethyl ketone at 23 ° C. for 12 hours and then centrifuged, and the soluble component was precipitated with methanol. The precipitate was dried with a vacuum dryer to obtain a sample. The obtained sample was made into a 0.3% solution of N, N-dimethylformamide and measured at 30 ° C. with an Ube-Rohde viscometer.
(Heat deformation temperature: HDT)
The measurement was performed at a load of 4.6 kg / cm 2 according to ASTM D-648.
(Bending strength and flexural modulus)
It measured at 23 degreeC based on ASTMD-790.
(Blow molding evaluation)
The obtained pellet-shaped resin composition was blow-molded with a DA-50 type blow molding machine manufactured by Plako Co., Ltd. to obtain a molded body. The molding conditions are: a parison temperature of about 240 ° C., an injection speed (index) of 150, a screw speed of 60 rpm, a blow pressure of 6 kg / cm 2 G (air), a cooling time of 100 seconds, and a mold temperature of 60 ° C. there were.
The following evaluation was performed about the obtained blow molded object.
[0014]
About 500 mm (Parison weight 500 g) of the drawdown parison was allowed to stand after injection, and the time until the parison fell off the die and dropped was measured and evaluated.
○: After the parison injection, the time until the parison falls exceeds 60 seconds.
(Triangle | delta): The time until a parison fall after a parison injection is 20 to 60 seconds.
X: The time until the parison falls after the parison injection is less than 20 seconds.
[0015]
Surface appearance (W) 60 x (L) 400 x (H) 30 (mm), using a box-shaped blow molding with an average thickness of 3.5 mm, draw a 40 x 80 (mm) rectangle on the surface of the molded product, The squares in the rectangle (size: 0.02 to 0.2 mm) were visually counted, and the average value of the number of squares in the five rectangles was obtained. Evaluation was made according to the following criteria.
◯: The average number of cats is 1 or less.
X: The average number of lie is 2 or more.
[0016]
A box-shaped blow molded article having a surface gloss of 60 (W) × 400 (L) × 30 (H) (mm) and an average thickness of 3.5 mm was obtained, and the 60-degree reflectivity of the surface of the molded article was measured.
Using a cylindrical blow molded product with a falling weight strength outer diameter of 70 mm, a length of 400 mm, and an average wall thickness of 3.2 mm, the falling weight strength at -30 ° C. (weight weight × half-heavy fracture height (kg · m)) It was measured.
“Parts” shown below means “parts by weight”.
Example 1
In a polymerizer equipped with a stirrer, 280 parts of water, 60 parts of a polybutadiene latex having a weight average particle size of 0.3 μm and a gel fraction of 90% (in terms of solid content), 0.3 part of sodium formaldehyde sulfoxylate, 0.1 part of ferrous sulfate. 0025 parts, 0.01 parts of disodium ethylenediaminetetraacetate, deoxygenated, heated to 60 ° C. with stirring in a nitrogen stream, 10 parts of acrylonitrile, 25 parts of styrene, 5 parts of glycidyl methacrylate, cumene hydroperoxide A monomer mixture consisting of 0.3 part was continuously added dropwise at 60 ° C. over 5 hours. After completion of the dropwise addition, the polymerization temperature was set to 65 ° C. and stirring was continued for 1 hour, and then the polymerization was terminated to obtain a latex of the graft copolymer (I). The polymerization conversion rate was 98%, and the graft rate was 45%.
Separately, 250 parts of water and 2 parts of sodium alkylbenzenesulfonate were charged into a polymerization vessel equipped with a stirrer, and after deoxygenation, the mixture was heated to 70 ° C. with stirring in a nitrogen stream. Further, after adding 0.2 parts of potassium persulfate, a monomer mixture composed of 65 parts of α-methylstyrene, 30 parts of acrylonitrile, 5 parts of styrene and 0.3 part of t-dodecyl mercaptan was continuously produced at a polymerization temperature of 70 ° C. It was dripped over 7 hours. After completion of the dropwise addition, the polymerization temperature was raised to 75 ° C., and stirring was continued for 1 hour to complete the polymerization, thereby obtaining a latex of copolymer (I). The polymerization conversion rate was 98%.
30 parts of graft copolymer (I) and 70 parts of copolymer (I) were mixed as latex. The obtained mixture was salted out with calcium chloride, and a powdery resin composition (1) was obtained through washing, filtration and drying steps. For 100 parts of the obtained powdery resin composition (1), 0.3 part of a phosphorus stabilizer (ADK STAB HP-10, manufactured by Asahi Denka Kogyo Co., Ltd.), a phenol stabilizer (ADK STAB AO-30) Asahi Denka Co., Ltd.) 0.3 parts, 0.5 parts of ethylenebisstearylamide as a lubricant, made of talc (micro Ace L-1, Nippon talc Co.) 0.5 parts of water of calcium oxide (Super micro Star, Maruo Calcium Co., Ltd. (1.0 part) is added, mixed with a Henschel mixer, and set at a temperature of 270 ° C. with a vent type single screw extruder (HV-40-28, manufactured by Tabata Machinery Co., Ltd.). To obtain pellets of the resin composition (1). The obtained resin composition (1) had a reduced viscosity of 0.58 dl / g of MEK solubles, HDT (measured by cutting out a blow molded product and preparing a test piece), 118 ° C., bending strength (blow molded product The test piece was cut out and measured), and the flexural modulus was 23000 kg / cm 2 . In addition, the drawdown property, surface appearance, surface gloss, and falling weight strength were measured. The results are shown in Table 1.
Example 2
It carried out like Example 1 except having used copolymer (II) manufactured by the following method instead of copolymer (I). The obtained resin composition (2), the reduction viscosity of MEK-soluble matter 0.53dl / g, HDT127 ℃, bending strength 730 kg / cm 2, was flexural modulus 24,000 kg / cm 2. The drawdown, surface appearance, surface gloss, and falling weight strength were measured. The results are shown in Table 1.
The copolymer (II) produced by changing the monomer mixture of the copolymer (I) to 23 parts phenylmaleimide, 20 parts acrylonitrile and 60 parts styrene was used in place of the copolymer (I). The same operation as in Example 1 was performed.
The polymerization conversion rate of the copolymer (II) was 97%.
Example 3
The same procedure as in Example 1 was conducted except that the blending ratio was changed to 35 parts of copolymer (I) and 65 parts of graft copolymer (I). The reduced viscosity of the MEK-soluble component of the obtained resin composition (3) is 0.53 dl / g, HDT is 93 ° C., the flexural strength 320 kg / cm 2, a flexural modulus of 10500kg / cm 2. Other characteristic values were measured in the same manner. The results are shown in Table 1.
Example 4
It carried out similarly to Example 1 except having used the graft copolymer (II) manufactured by the following method instead of the graft copolymer (I). The resulting resin composition (4) is reduced viscosity of MEK-soluble matter 0.58dl / g, HDT118 ℃, bending strength 720 kg / cm 2, was flexural modulus 23000kg / cm 2. Similarly, other measurement results are shown in Table 1.
[0017]
Graft copolymer (II) produced by changing the polybutadiene latex of graft copolymer (I) to a monomer mixture comprising 70 parts of acrylonitrile, 9 parts of acrylonitrile, 19 parts of styrene and 2 parts of glycidyl methacrylate The same procedure as in Example 1 was performed except that it was used instead of (I). The polymerization conversion rate of the graft copolymer (II) was 98%, and the graft rate was 30%.
Example 5
It carried out similarly to Example 1 except having used the graft copolymer (III) manufactured with the following method instead of the graft copolymer (I). The resulting resin composition (5) is soluble matter of reduced viscosity 0.55dl / g, HDT117 ℃, bending strength 710 kg / cm 2, was flexural modulus 22500kg / cm 2. Similarly, other measurement results are shown in Table 1.
[0018]
Graft copolymer (III) produced by changing the graft copolymer (I) to 50 parts of polybutadiene latex and the monomer mixture into a monomer mixture consisting of 10 parts of acrylonitrile, 30 parts of styrene and 10 parts of glycidyl methacrylate. The same procedure as in Example 1 was carried out except that the graft copolymer (I) was used instead. The polymerization conversion rate of the graft copolymer (III) was 97%, and the graft rate was 50%.
Example 6
It carried out similarly to Example 1 except having used the graft copolymer (IV) manufactured with the following method instead of the graft copolymer (I). The obtained resin composition (6) had a reduced viscosity of 0.54 dl / g of MEK solubles, HDT of 118 ° C., a bending strength of 720 kg / cm 2 , and a flexural modulus of 23500 kg / cm 2 . Similarly, other measurement results are shown in Table 1.
[0019]
A graft copolymer (IV) produced by changing the polybutadiene latex of the graft copolymer (I) to a weight average particle size of 0.08 μm and a gel fraction of 90% was used instead of the graft copolymer (I). Except for this, the same procedure as in Example 1 was performed.
The polymerization conversion rate of the graft copolymer (IV) was 97%, and the graft rate was 48%.
Comparative Example 1
It carried out similarly to Example 1 except having used the graft copolymer ( V ) manufactured with the following method instead of the graft copolymer (I). The obtained resin composition (7) is reduced viscosity of MEK-soluble matter 0.6dl / g, HDT119 ℃, bending strength 720 kg / cm 2, was flexural modulus 23000kg / cm 2. Similarly, other measurement results are shown in Table 1.
[0020]
The graft copolymer (V) produced by changing the monomer mixture of the graft copolymer (I) to a monomer mixture comprising 15 parts of acrylonitrile and 25 parts of styrene is used instead of the graft copolymer (I). The same procedure as in Example 1 was performed except that it was used. The polymerization conversion rate of the graft copolymer (IV) was 98%, and the graft rate was 40%.
Comparative Example 2
The same procedure as in Example 2 was performed except that the graft copolymer (V) was used instead of the graft copolymer (II). The obtained resin composition (8) had a reduced viscosity of ME4 solubles of 0.54 dl / g, HDT of 127 ° C., a bending strength of 735 kg / cm 2 , and a flexural modulus of 24,000 kg / cm 2 . Similarly, other measurement results are shown in Table 1. Comparative Example 3
The same procedure as in Example 3 was conducted except that the graft copolymer (V) was used instead of the graft copolymer (I). The obtained resin composition (9), a reduced viscosity of MEK-soluble matter 0.55dl / g, HDT94 ℃, bending strength 335 kg / cm 2, was flexural modulus 11000kg / cm 2. Similarly, other measurement results are shown in Table 1.
[0021]
[Table 1]
Figure 0004508300
[0022]
Example 7
35 parts of the resin composition (1) and 65 parts of the resin composition (7) were mixed and pelletized to obtain a resin composition (10). HDT117 ℃, bending strength 720 kg / cm 2, was flexural modulus 23000kg / cm 2. Other results are shown in Table 2.
Example 8
30 parts of the resin composition (6) and 70 parts of the resin composition (8) were mixed and pelletized to obtain a resin composition (11). HDT125 ℃, bending strength 730 kg / cm 2, was flexural modulus 23500kg / cm 2. Similarly, other measurement results are shown in Table 2.
[0023]
[Table 2]
Figure 0004508300
[0024]
As is clear from the results in Tables 1 and 2, it can be seen that the blow molding resin composition of the present invention is excellent in the surface properties and blow molding processability of blow molded products.

Claims (2)

(A)ゴム重合体40〜95重量部にビニル系化合物60〜5重量部を重合させる際に、α、β−不飽和酸のグシジルエステル化合物0.1〜30重量%を必須成分とし、シアン化ビニル化合物10〜40重量%、芳香族ビニル化合物60〜90重量%(但し、三者の合計で100重量%)を反応させてなるグラフト共重合体80〜5重量部と、(B)シアン化ビニル化合物10〜40重量%、芳香族ビニル化合物60〜90重量%、他の共重合可能なビニル化合物としてマレイミド0〜30重量%(但し、三者の合計で100重量%)を反応させてなる共重合体20〜95重量部からなりかつメチルエチルケトン可溶分の還元粘度が0.3〜1.5dl/g(N,N−ジメチルホルムアミド0.3%溶液、30℃)である樹脂組成物に、滑剤と、酸化防止剤と、タルクと、水酸化カルシウムとからなる添加剤を配合してなり、ブロー成形した成形品表面の光沢が60度反射率で3.5%以下であるブロー成形用ABS系樹脂組成物。(A) when polymerizing the vinyl compound 60-5 parts by weight of the rubber polymer of 40 to 95 parts by weight, alpha, and β- unsaturated acids grayed glycidyl ester compound 0.1 to 30% by weight as essential components 80 to 5 parts by weight of a graft copolymer obtained by reacting 10 to 40% by weight of a vinyl cyanide compound and 60 to 90% by weight of an aromatic vinyl compound (however, the total of the three are 100% by weight) ; ) 10 to 40% by weight of vinyl cyanide compound, 60 to 90% by weight of aromatic vinyl compound, and 0 to 30% by weight of maleimide as other copolymerizable vinyl compound (however, 100% by weight in total of the three) Resin comprising 20 to 95 parts by weight of the copolymer having a reduced viscosity of methyl ethyl ketone solubles of 0.3 to 1.5 dl / g (0.3% solution of N, N-dimethylformamide, 30 ° C.) In the composition, ABS for blow molding comprising a lubricant, an antioxidant, talc, and calcium hydroxide additive, and the gloss of the surface of the blow-molded molded product is 3.5 % or less at 60 degrees reflectivity. -Based resin composition. 請求項1記載のブロー成形用ABS系樹脂組成物を成形してなるブロー成形品。A blow molded product obtained by molding the ABS resin composition for blow molding according to claim 1.
JP12433498A 1998-05-07 1998-05-07 Thermoplastic resin composition for blow molding and blow-molded product thereof Expired - Lifetime JP4508300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12433498A JP4508300B2 (en) 1998-05-07 1998-05-07 Thermoplastic resin composition for blow molding and blow-molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12433498A JP4508300B2 (en) 1998-05-07 1998-05-07 Thermoplastic resin composition for blow molding and blow-molded product thereof

Publications (2)

Publication Number Publication Date
JPH11314266A JPH11314266A (en) 1999-11-16
JP4508300B2 true JP4508300B2 (en) 2010-07-21

Family

ID=14882779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12433498A Expired - Lifetime JP4508300B2 (en) 1998-05-07 1998-05-07 Thermoplastic resin composition for blow molding and blow-molded product thereof

Country Status (1)

Country Link
JP (1) JP4508300B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4159693B2 (en) * 1999-03-01 2008-10-01 テクノポリマー株式会社 Thermoplastic resin composition for blow molding and blow-molded product thereof
CN101679716B (en) * 2007-05-30 2013-03-27 大科能树脂有限公司 Thermoplastic resin composition for blow molding and products of blow molding

Also Published As

Publication number Publication date
JPH11314266A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP4508300B2 (en) Thermoplastic resin composition for blow molding and blow-molded product thereof
JP4159693B2 (en) Thermoplastic resin composition for blow molding and blow-molded product thereof
JPH08259777A (en) Rubber latex with increased particle size and abs resin composition obtained therefrom
JP3685939B2 (en) Graft copolymer and resin composition
JP4365930B2 (en) Blow molding
JP4368002B2 (en) ABS resin composition and blow-molded product thereof
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP2000001596A (en) Thermoplastic resin composition
JP3850504B2 (en) Thermoplastic resin composition
US5516842A (en) Polycarbonate resin composition and molded product thereof
JP2001279049A (en) Abs-based resin composition for blow molding use and the resultant blow molded product
JPS63156847A (en) Delustered thermoplastic resin composition
JPH11116767A (en) Thermoplastic resin composition excellent in coloring property
JP2002179866A (en) Resin composition and interior and exterior automotive trim obtained by molding the same
CN115427506B (en) Thermoplastic resin composition, method for preparing the same, and molded article comprising the same
JP2001214026A (en) Abs-based resin composition for blow molding and its blow molded product
JP2000086848A (en) Thermoplastic resin composition for extrusion molding and molding made therefrom
JP2001049076A (en) Abs resin composition for blow molding and blow-molded item therefrom
JP2011168778A (en) Resin composition for profile extrusion molding, and profile extrusion resin molded article
JP3985287B2 (en) Thermoplastic resin composition
JPH11343380A (en) Thermoplastic resin composition
JPH06166795A (en) Thermoplastic resin composition for blowing use
JP2000186178A (en) Styrene-based resin composition and its blow molded product
JP2003020384A (en) Matte resin composition, and matte resin molding having uniform matte surface, obtained by molding it
JP2000302936A (en) Thermoplastic resin composition excellent in scuff resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070925

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term