JP4508183B2 - Dot-coupled pattern magnetic recording medium - Google Patents

Dot-coupled pattern magnetic recording medium Download PDF

Info

Publication number
JP4508183B2
JP4508183B2 JP2006308907A JP2006308907A JP4508183B2 JP 4508183 B2 JP4508183 B2 JP 4508183B2 JP 2006308907 A JP2006308907 A JP 2006308907A JP 2006308907 A JP2006308907 A JP 2006308907A JP 4508183 B2 JP4508183 B2 JP 4508183B2
Authority
JP
Japan
Prior art keywords
magnetic
dots
recording
medium
dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006308907A
Other languages
Japanese (ja)
Other versions
JP2008123638A (en
Inventor
直樹 本多
清志 山川
祐治 近藤
一弘 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006308907A priority Critical patent/JP4508183B2/en
Publication of JP2008123638A publication Critical patent/JP2008123638A/en
Application granted granted Critical
Publication of JP4508183B2 publication Critical patent/JP4508183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,記録ビットがパターン化された磁性膜を有するパターン磁気記録媒体に関する。このようなビットパターン磁気記録媒体は,コンピュータ,ビデオレコーダ等の各種記録機器に搭載される磁気記録装置に関する。   The present invention relates to a patterned magnetic recording medium having a magnetic film in which recording bits are patterned. Such a bit pattern magnetic recording medium relates to a magnetic recording device mounted on various recording devices such as a computer and a video recorder.

磁気記録装置の記録密度を高める技術として,垂直磁気記録方式が注目されている。この方式では垂直方向に磁気異方性を持つ微粒子構造の磁性薄膜が記録媒体として用いられ,情報が磁気ヘッドにより微小な磁化パターンとして記録される。
垂直磁気記録方式は,磁化転移を境に隣接する磁化が反平行に結合するため,面内磁気記録方式と比較すると,熱磁気緩和に対してより安定な記録状態を維持することが可能となり,高密度化に適している。
As a technique for increasing the recording density of a magnetic recording apparatus, a perpendicular magnetic recording method has attracted attention. In this method, a magnetic thin film having a fine particle structure with magnetic anisotropy in the vertical direction is used as a recording medium, and information is recorded as a minute magnetization pattern by a magnetic head.
In the perpendicular magnetic recording method, adjacent magnetizations are coupled antiparallel with the magnetization transition as a boundary, so it becomes possible to maintain a more stable recording state against thermal magnetic relaxation compared to the in-plane magnetic recording method. Suitable for high density.

しかし,垂直磁気記録方式といえども面内磁気記録方式と同様に,記録ビット長が小さくなるのに対応して,記録媒体の微粒子の寸法もその1/10ほどに小さくする必要があり,記録ビット長の減少に伴い磁性粒子が保持する磁気エネルギーが低下し熱磁気緩和の影響が現れてくる。
磁性粒子の磁気エネルギーを大きくするには磁性体の磁気異方性を大きくすることが有効であるが,記録の際の磁化反転に必要な磁界強度も大きくなってしまい,磁気ヘッドでの記録が出来なくなってしまうという問題があった。
However, even in the perpendicular magnetic recording system, as in the case of the in-plane magnetic recording system, it is necessary to reduce the size of the fine particles of the recording medium to about 1/10 as the recording bit length decreases. As the bit length decreases, the magnetic energy held by the magnetic particles decreases and the effect of thermal magnetic relaxation appears.
Increasing the magnetic anisotropy of the magnetic material is effective for increasing the magnetic energy of the magnetic particles. However, the magnetic field strength required for magnetization reversal during recording also increases, and recording with a magnetic head is difficult. There was a problem that it could not be done.

この磁気記録媒体の熱磁気緩和現象による限界をブレークスルーする方法として,磁性ドットの面積をビットの大きさとするビットパターン磁気記録媒体が提案されている(非特許文献1および非特許文献2参照)。
ビットパターン磁気記録媒体は,磁性ドットの面積をビットの大きさとすることで,磁性粒子の体積を増して磁気エネルギーを飛躍的に大きくでき,磁気異方性を大きくすることなしに熱磁気安定性を確保できるようになる。
ビットパターン磁気記録媒体に関して,面記録密度1 Tbit/inを目指した熱磁気安定性を持った記録媒体の提案はすでにされている(本多直樹,「1 Tbit/in記録用パターンドメディアの設計」,電子情報通信学会技術研究報告,vol.105,no.115,pp.51−56,2005年参照)。
しかし,より高密度の,例えば2 Tbit/inの記録を実現するためにはビットパターンを2倍の密度で配置する必要がある。この場合,単に磁性ドット間の距離を小さくすると,ドット間の静磁気相互作用が増大し,磁性ドットアレーの磁化反転開始磁界の低下と飽和磁界の上昇が生じる。
このため,熱磁気安定性を確保するためには磁化反転開始磁界の低下を補うため,より大きな磁気異方性を持たせる必要がある。しかし,このようにすると,静磁気相互作用により増加した飽和磁界がさらに上昇してしまい,記録に必要な磁界強度が極端に大きくなってしまう。このため,磁気ヘッドでは実現不可能な記録磁界が必要となってしまう。
また,磁化反転開始磁界と飽和磁界の差も大きくなるため,磁化反転ができても,意図した記録が得られるヘッド磁界のトラック長手方向のずれ許容量がビット長の減少に比べ極端に小さくなってしまう。
一方,磁性ドット間の距離を大きく保つため,磁性ドットの寸法を小さくすることも考えられるが,これもドット体積が小さくなった分,磁気異方性を増して磁気エネルギーを大きくして熱磁気安定性を確保する必要がある。このため,磁性ドット寸法を小さくしても,記録できなくなるという問題の解決策とはならない。
As a method of breaking through the limit due to the thermomagnetic relaxation phenomenon of this magnetic recording medium, a bit pattern magnetic recording medium in which the area of a magnetic dot is the size of a bit has been proposed (see Non-Patent Document 1 and Non-Patent Document 2). .
Bit pattern magnetic recording media can increase the magnetic particle volume by increasing the size of the magnetic dots, thereby increasing the magnetic energy and increasing the magnetic energy without increasing the magnetic anisotropy. Can be secured.
Regarding bit pattern magnetic recording media, there has already been proposed a recording medium with thermomagnetic stability aimed at an areal recording density of 1 Tbit / in 2 (Naoki Honda, “1 Tbit / in 2 patterned media for recording”). Design, "IEICE Technical Report, vol. 105, no. 115, pp. 51-56, 2005).
However, in order to realize higher density recording, for example, 2 Tbit / in 2 , it is necessary to arrange bit patterns at twice the density. In this case, simply reducing the distance between the magnetic dots increases the magnetostatic interaction between the dots, resulting in a decrease in the magnetization reversal start magnetic field and an increase in the saturation magnetic field of the magnetic dot array.
For this reason, in order to ensure the thermomagnetic stability, it is necessary to provide a larger magnetic anisotropy to compensate for the decrease in the magnetization reversal starting magnetic field. However, if this is done, the saturation magnetic field increased by the magnetostatic interaction will further increase, and the magnetic field strength required for recording will become extremely large. For this reason, a recording magnetic field that cannot be realized by a magnetic head is required.
In addition, since the difference between the magnetization reversal start magnetic field and the saturation magnetic field becomes large, even if the magnetization reversal is possible, the allowable deviation in the track longitudinal direction of the head magnetic field for obtaining the intended recording becomes extremely small compared to the reduction of the bit length. End up.
On the other hand, in order to keep the distance between the magnetic dots large, it is conceivable to reduce the size of the magnetic dots, but this also increases the magnetic anisotropy and increases the magnetic energy by the amount of the dot volume. It is necessary to ensure stability. For this reason, even if the magnetic dot size is reduced, it is not a solution to the problem that recording is impossible.

Robert L. White, Richard M. H. New, and R. Fabian W. Pease, “Patterned Media: A Viable Route to 50 Gbit/in2 and up for Magnetic Recording?,” IEEE Trans. Magn., vol. 33, no. 1, pp. 990−995, Jan. 1997年。Robert L. White, Richard M. et al. H. New, and R.C. Fabian W. Pease, “Patterned Media: A Viable Route to 50 Gbit / in2 and up for Magnetic Recording ?,” IEEE Trans. Magn. , Vol. 33, no. 1, pp. 990-995, Jan. 1997.

Gordon F. Hughes, “Patterned Media Write Designs,” IEEE Trans. Magn., vol. 36, no. 2, pp. 521−526, March 2000年。Gordon F. Hughes, “Patterned Media Write Designs,” IEEE Trans. Magn. , Vol. 36, no. 2, pp. 521-526, March 2000.

上述したように,ビットパターン磁気記録媒体で,面記録密度1 Tbit/in以上を実現する場合には,磁性ドット寸法を小さくすることなしに磁性ドット間の静磁気相互作用の増大を抑制する手段の導入が必須である。 As described above, when the bit pattern magnetic recording medium achieves a surface recording density of 1 Tbit / in 2 or more, an increase in magnetostatic interaction between the magnetic dots is suppressed without reducing the magnetic dot size. The introduction of means is essential.

本発明の目的は,1 Tbit/in以上の記録密度を実現するため,高密度配置をしても磁性ドット間の静磁気相互作用の増大を実効的に抑制できるビットパターン磁気記録媒体を提供することにある。 An object of the present invention is to provide a bit pattern magnetic recording medium capable of effectively suppressing an increase in magnetostatic interaction between magnetic dots even when arranged at a high density in order to realize a recording density of 1 Tbit / in 2 or more. There is to do.

請求項1の本発明は,垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性膜からなる磁性ドットを含むパターン磁気記録媒体において、前記磁性ドット間の一部がトラック長手方向で結合されており,前記磁性ドット間の結合部断面積が前記磁性ドットのトラック幅方向最大断面積の30%以下であり,面記録密度が2Tbit/in 以上であることを特徴とするビットパターン磁気記録媒体である。
さらに,請求項2の本発明は,前記磁性ドット間の結合部断面積が前記磁性ドットのトラック幅方向最大断面積の10〜25%であることを特徴とする請求項1に記載のビットパターン磁気記録媒体である。
The present invention of claim 1 is a patterned magnetic recording medium comprising magnetic dots comprising a magnetic film having a magnetic anisotropy in a vertical direction and patterned in a dot shape , wherein a part of the magnetic dots is in the track longitudinal direction. The coupling section cross-sectional area between the magnetic dots is 30% or less of the maximum cross-sectional area in the track width direction of the magnetic dots, and the surface recording density is 2 Tbit / in 2 or more. This is a patterned magnetic recording medium.
Furthermore, the present invention of claim 2 is characterized in that the cross-sectional area of the coupling portion between the magnetic dots is 10 to 25% of the maximum cross-sectional area of the magnetic dots in the track width direction. It is a magnetic recording medium.

本発明によれば,垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性膜を含むビットパターン磁気記録媒体において,ドット間をドット端のトラック長手方向で一部結合することにより,実効的にドット間の静磁気相互作用を抑制する方法が提供され,1 Tbit/in以上の記録密度を持つ磁気情報記録装置が十分なヘッドずれ許容度を持って実現可能となる。 According to the present invention, in a bit pattern magnetic recording medium having a magnetic anisotropy in the vertical direction and including a magnetic film patterned in a dot shape, the dots are partially coupled in the track longitudinal direction of the dot end. Thus, a method for effectively suppressing the magnetostatic interaction between dots is provided, and a magnetic information recording apparatus having a recording density of 1 Tbit / in 2 or more can be realized with a sufficient head deviation tolerance.

本発明のドット結合型パターン磁気記録媒体において,前記ドット結合部断面積は,交換結合の影響による記録特性の劣化を回避するため,ドットのトラック幅方向最大断面積の30%以下とする必要があり,10−25%で大きな効果が得られる。   In the dot-coupled pattern magnetic recording medium of the present invention, the cross-sectional area of the dot coupling portion needs to be 30% or less of the maximum cross-sectional area of the dot in the track width direction in order to avoid deterioration of recording characteristics due to the influence of exchange coupling. Yes, a great effect is obtained at 10-25%.

以下,本発明をより詳細に説明する。
本発明に係る結合型ビットパターン磁気記録媒体は,垂直磁気異方性を持つ磁性ドットが非磁性中間層を設けた軟磁性裏打層上に高密度に配置されており,かつ,磁性ドット間に交換結合が働くようにドットの記録トラック長手方向端の一部が結合されている。
この結合断面積はドットのトラック幅方向断面積に対して30 %以下に設定されている。望ましくは10−25 %の間に設定する。
ビットパターン媒体では,ドット間の間隔が小さくなるとドット間に働く静磁気相互作用が大きくなる。このため,磁性ドットの磁化反転開始磁界の低下と飽和磁界の上昇が生じ,大きな記録磁界が必要となるだけでなく,これらの差である磁化反転磁界幅が大きくなり,記録磁界のスイッチングタイミングの長手方向でのずれに対して許容幅がドット間隔の減少に比べ極端に小さくなってしまう。
しかし,ドット間に結合を持たせることによりドット間に働く静磁気相互作用が交換結合により実効的に抑制され,磁性ドットの磁化反転磁界幅が狭くなる。このため,必要な記録磁界強度が小さくなることの他に,記録磁界のスイッチングタイミングの長手方向でのずれに対してより大きな許容幅を持つようにできる。
さらに,トラック長手方向への異方性が付与されるため,記録磁界がトラック幅方向にずれても隣接トラックへの記録が抑制され,より大きなずれ許容量を持つようになる。
このため,本発明を適用すれば,1 Tbit/in2の以上の高密度配置のパターン媒体に対して,トラック長手および幅方向への十分なシフトマージンが確保され,高密度磁気記録システムを実現することが可能となる。
Hereinafter, the present invention will be described in more detail.
In the coupled bit pattern magnetic recording medium according to the present invention, magnetic dots having perpendicular magnetic anisotropy are arranged at high density on a soft magnetic backing layer provided with a nonmagnetic intermediate layer, and between the magnetic dots. Part of the longitudinal ends of the recording tracks of the dots are coupled so that exchange coupling works.
This combined cross-sectional area is set to 30% or less with respect to the cross-sectional area of the dot in the track width direction. Desirably, it is set between 10-25%.
In the bit pattern medium, the magnetostatic interaction acting between the dots increases as the distance between the dots decreases. For this reason, the magnetization reversal start magnetic field of the magnetic dots decreases and the saturation magnetic field increases, and not only a large recording magnetic field is required, but also the magnetization reversal magnetic field width, which is the difference between them, increases, and the switching timing of the recording magnetic field The allowable width for the shift in the longitudinal direction becomes extremely small compared to the decrease in the dot interval.
However, by providing the coupling between the dots, the magnetostatic interaction acting between the dots is effectively suppressed by the exchange coupling, and the magnetization reversal magnetic field width of the magnetic dots is narrowed. For this reason, in addition to reducing the required recording magnetic field strength, it is possible to have a larger allowable width with respect to the deviation in the longitudinal direction of the switching timing of the recording magnetic field.
Further, since anisotropy in the track longitudinal direction is imparted, even if the recording magnetic field is shifted in the track width direction, recording on the adjacent track is suppressed, and a larger displacement tolerance is obtained.
For this reason, if the present invention is applied, a sufficient shift margin in the track longitudinal and width directions is secured for a patterned medium having a high density of 1 Tbit / in 2 or more, and a high density magnetic recording system is realized. It becomes possible to do.

磁性ドット間が結合することにより磁化反転磁界幅が小さくなることを確認した結果について説明する。
DCマグネトロンスパッタリング堆積により,ガラス基板上に膜厚50 nmのCo−Zr−Nb合金軟磁性膜を形成し,その上にカーボン膜を5 nm,さらにPtを10 nm形成後,垂直磁気異方性を持つCo80Pt20合金膜を20 nm形成した。このCo80Pt20合金層の1 μm四方の領域をFIB(集束イオンビーム)加工装置でドット寸法70 nm角,ドット間スペーシングを20 nmに設定して10×10個のドットを作製した。このとき,ドット間の磁性体高さが25 %残るようにエッチング深さを制御して試料Aを作製した。また,比較としてドット間の磁性体を全て除去した比較試料Bも作製した。
これら試料に最初に垂直方向に15 kOeの磁界を印加して磁化を飽和させ,この後逆向きに磁界を印加し,磁界をゼロとして残留状態での磁化反転ドット数NrevをMFM(磁気力顕微鏡)で調べ,全ドット数Ntotとの比[1−2(Ntot−Nrev)/Ntot]を規格化残留磁化とした。さらに,1 kOeステップで逆向き磁界の強度を増加させ,印加磁界強度に対する反転ドット数を調べた。
図1に示すように,試料Aの印加磁界強度に対する規格化残留磁化曲線は,比較試料Bに比べゼロ磁化近傍での傾きが大きい。即ち,ドット間の一部を結合した試料Aでは反転磁界幅が小さくなったことを示している。
これは磁性ドット間の分離が十分な試料Bの場合には,ドット間のスペーシンが20 nmと小さいため,ドット間の静磁気相互作用により磁化曲線の傾きが小さくなったと解釈できる(近藤祐治,経徳敏明,高橋慎吾,本多直樹,大内一弘,「軟磁性裏打ち層を有する磁気ドットアレイの磁気特性」,日本応用磁気学会誌,vol.30,No.2,ページ112−115,2006年参照)。
また,一部が結合した試料Aでは,ドット間に交換結合が働き,これがドット間の静磁気相互作用を打ち消す向きに働くため,同図に見られるように残留磁化曲線の傾きが大きくなったと解釈できる。即ち,ドット間の結合により,静磁気相互作用の影響を緩和し,残留磁化曲線の傾きを大きくできる。これにより,反転磁界幅を小さくできることを示している。
The result of confirming that the magnetization reversal magnetic field width is reduced by coupling between magnetic dots will be described.
By DC magnetron sputtering deposition, a Co-Zr-Nb alloy soft magnetic film with a thickness of 50 nm is formed on a glass substrate, a carbon film is formed thereon with a thickness of 5 nm, and further Pt is formed with a thickness of 10 nm. A Co 80 Pt 20 alloy film having a thickness of 20 nm was formed. A 1 μm square region of this Co 80 Pt 20 alloy layer was set to a dot size of 70 nm square and an inter-dot spacing of 20 nm using a FIB (focused ion beam) processing apparatus, thereby producing 10 × 10 dots. At this time, the sample A was manufactured by controlling the etching depth so that the magnetic material height between the dots remained 25%. For comparison, a comparative sample B from which all the magnetic material between dots was removed was also produced.
First, a magnetic field of 15 kOe is applied to these samples in the vertical direction to saturate the magnetization, and then the magnetic field is applied in the opposite direction, and the number of magnetic reversal dots N rev in the residual state is set to MFM (magnetic force). The ratio [1-2 (N tot −N rev ) / N tot ] with the total number of dots N tot was defined as the normalized residual magnetization. Furthermore, the strength of the reverse magnetic field was increased in 1 kOe step, and the number of inverted dots with respect to the applied magnetic field strength was examined.
As shown in FIG. 1, the normalized remanent magnetization curve with respect to the applied magnetic field strength of sample A has a larger slope in the vicinity of zero magnetization than that of comparative sample B. That is, it is shown that the reversal magnetic field width is small in the sample A in which a part between the dots is combined.
In the case of sample B with sufficient separation between the magnetic dots, the spacing between the dots is as small as 20 nm, so it can be interpreted that the slope of the magnetization curve is reduced by the magnetostatic interaction between the dots (Yuji Kondo, Toshiaki Keitoku, Shingo Takahashi, Naoki Honda, Kazuhiro Ouchi, “Magnetic Properties of Magnetic Dot Array with Soft Magnetic Underlayer”, Journal of Japan Society of Applied Magnetics, vol.30, No.2, pages 112-115, 2006 reference).
In sample A, which is partially bonded, exchange coupling works between the dots, which works in a direction that cancels out the magnetostatic interaction between the dots, so that the slope of the remanent magnetization curve increases as shown in the figure. Can be interpreted. That is, the coupling between dots can alleviate the influence of magnetostatic interaction and increase the slope of the remanent magnetization curve. This shows that the reversal magnetic field width can be reduced.

面記録密度2 Tbit/inビットパターン磁気記録媒体について,ビット間のトラック長手方向端の一部を結合した場合の,媒体の膜面垂直方向に測定した残留磁化曲線の変化をマイクロマグネティックシミュレーションにより調べた例について説明する。 Surface recording density 2 Tbit / in For a 2- bit pattern magnetic recording medium, the change in the remanent magnetization curve measured in the direction perpendicular to the film surface of the medium when a part of the track longitudinal direction end between bits is coupled is analyzed by micromagnetic simulation. An example of the investigation will be described.

図11に検討したビットパターン媒体の諸元を示す。図2にビットパターン媒体のモデルを媒体C2の場合について示す。媒体1Tを除き,各トラックは51個のドットを持ち,トラックピッチが25 nmの3本の記録トラックを持つ。ドット間の結合は,一辺2.5 nmの立方体要素を1〜4個ドット間に挿入することで行った。
また,比較のためドットの長手方向の数を半分とした1 Tbit/inの媒体1Tも用いた。結合部を含む各磁性ドットを一辺2.5nmの立方体要素に分割し,各立方体要素間には交換スティフネス定数A=4.9×10−7erg/cmで交換結合が働くとした。これにより,ドット内やドット結合部で磁化の向きが異なる非一斉磁化回転モードも含んだ非常に現実的なシミュレーションモデルとなっている。
各立方体要素のパラメーターは,飽和磁化Ms=1000emg/cm,平均垂直異方性磁界H=18 kOeとし,要素間で異方性分散(標準偏差)σH=15%,異方性軸の垂直方向からの配向分散σθ=2度を導入した。
膜厚1 nmの非磁性中間層を介して設けた軟磁性裏打層はミラーイメージ層として計算に取り込んだ。また,計算はエネルギー平衡法で行い,時間依存性は考慮していない。したがって,得られた残留磁化曲線は記録過程に相当する短時間での磁化挙動と見做すことができる。
これらの条件の下で垂直方向残留磁化曲線をシミュレーションで得た。シミュレーションソフトとしてEuxine Technologies社(Dayton,Ohio,USA)の「Advanced Recording Model,ver.6」を使用した。
図3は得られた残留磁化曲線を示す。ここでは残留磁化を飽和値で規格化して示してある。媒体1Tはビット間隔の広い1 Tbit/in密度相当の媒体(この媒体のみH=16 kOe)の曲線,また媒体C0はビット間隔の狭い2 Tbit/in密度相当の媒体の曲線,また,媒体C1〜C4はそれぞれドット間を1〜4個の立方体要素で結合した媒体の曲線を示す。
それぞれの残留磁化反転開始磁界Hnrと残留飽和磁界Hsrの差である反転磁界幅は,ドット間隔の広い媒体T1が4.2 kOeであるのに対し,ドット間隔を狭めた媒体C0では7.8 kOeと倍ほどに広がっている。これは先にも述べたように,ドット間の静磁気相互作用によるものである。
しかし,媒体C0と同一のドット配置で,ドット間を立方要素1つで結合した媒体C1では反転磁界幅は6.0 kOeと減少した。さらに,立方要素2つおよび4つで結合した媒体C2およびC4ではそれぞれ3.6 kOe,0.3 kOeと大幅に減少した。これらはドット間の交換結合が静磁気相互作用と丁度逆の働きをすることを示している。
FIG. 11 shows specifications of the bit pattern medium studied. FIG. 2 shows a model of the bit pattern medium for the medium C2. Except for the medium 1T, each track has 51 dots and 3 recording tracks with a track pitch of 25 nm. The connection between dots was performed by inserting 1 to 4 cubic elements each having a side of 2.5 nm.
For comparison, a 1 Tbit / in 2 medium 1T in which the number of dots in the longitudinal direction is halved was also used. Each magnetic dot including the coupling portion was divided into cubic elements having a side of 2.5 nm, and the exchange coupling worked between the cubic elements with an exchange stiffness constant A = 4.9 × 10 −7 erg / cm. As a result, a very realistic simulation model including a non-simultaneous magnetization rotation mode in which the direction of magnetization differs within a dot or at a dot coupling portion.
The parameters of each cubic element are as follows: saturation magnetization Ms = 1000 emg / cm 3 , average perpendicular anisotropy magnetic field H k = 18 kOe, anisotropic dispersion (standard deviation) σH k = 15% between elements, anisotropy axis The orientation dispersion σθ = 2 degrees from the vertical direction was introduced.
A soft magnetic backing layer provided via a nonmagnetic intermediate layer having a thickness of 1 nm was taken into the calculation as a mirror image layer. The calculation is performed by the energy balance method, and time dependence is not considered. Therefore, the obtained residual magnetization curve can be regarded as a magnetization behavior in a short time corresponding to the recording process.
Under these conditions, the perpendicular remanent magnetization curve was obtained by simulation. “Advanced Recording Model, ver. 6” from Euxine Technologies (Dayton, Ohio, USA) was used as simulation software.
FIG. 3 shows the obtained remanent magnetization curve. Here, the remanent magnetization is normalized by a saturation value. Medium 1T is a curve of a medium corresponding to 1 Tbit / in 2 density with a wide bit interval (only this medium is H k = 16 kOe), and medium C0 is a curve of a medium corresponding to 2 Tbit / in 2 density with a small bit interval, , Media C1 to C4 show the curves of the media in which the dots are connected by 1 to 4 cubic elements, respectively.
The reversal magnetic field width, which is the difference between the remanent magnetization reversal start magnetic field H nr and the residual saturation magnetic field H sr , is 4.2 kOe for the medium T1 with a wide dot interval, whereas it is 7 for the medium C0 with a narrow dot interval. .8 kOe and doubled. This is due to the magnetostatic interaction between the dots as described above.
However, in the medium C1 having the same dot arrangement as that of the medium C0 and connecting the dots with one cubic element, the reversal magnetic field width is reduced to 6.0 kOe. Furthermore, the media C2 and C4 connected by two and four cubic elements showed a significant decrease to 3.6 kOe and 0.3 kOe, respectively. These indicate that the exchange coupling between dots works just the opposite of the magnetostatic interaction.

比較例Comparative example

実施例2で示したビットパターン媒体より,面記録密度1 Tbit/inと2 Tbit/inに相当する媒体1Tと媒体C0について,記録におけるヘッド磁界の長手方向およびトラック幅方向のシフトマージンをシミュレーションにより調べた例について説明する。
実施例2と同様に,シミュレーションソフトとしてEuxine Technologies社(Dayton,Ohio,USA)の「Advanced Recording Model,ver.6」を使用した。記録ヘッド磁界として,シールドプレーナーヘッド(K. Ise, S. Takahashi, K. Yamakawa, and N. Honda,“New Shielded Single−Pole Head with Planar Structure,” IEEE Transactions on Magnetics, vol.42,No.10,pp.2422−2424,2006参照)を電磁界解析ソフト(Ansoft社(Pittsburgh, PA,USA)の「Maxwell 3D」)により解析して得た磁界分布を用いた。
図4に磁極トラック幅14 nm,磁極厚45 nm,シールドギャップ長12 nm,シールド高さ25 nm,磁極先端面−軟磁性層面間距離12 nmとした時の,媒体磁性ドット位置でのトラック長手方向(Down track方向)および幅方向(Cross track方向)の垂直方向磁界分布を示す。図ではヘッドの起磁力が60 mATの場合について示す。
図5は媒体1TとC0について,ヘッド磁極先端面−媒体磁性ドット表面間スペーシングを6 nmとして,それぞれ1016 kFCI(磁束反転/インチ)と2032 kFCIの矩形波信号をヘッド磁界のスイッチングタイミングをトラック長手方向にずらして記録し,記録パターンが正常に行われなかったエラーレートを調べた結果を示す。
媒体1Tでは20.5 nmの範囲でタイミングがずれても正常な記録パターンが得られたが,倍のドット密度とした媒体C0では媒体1Tの半分よりも遥かに狭い2.5 nmのシフトマージンとなった。これは実施例2の図3で示したように,媒体C0ではドット間の静磁気相互作用が大きくなり,反転磁界幅が大きくなったためである。
さらに,ヘッド磁界のトラック幅方向のずれによる隣接トラックへの書き込み率を調べたところ,図6に示すように,トラック幅方向シフトマージンも媒体1Tの6.5 nmから5.0 nmへと減少した。これもドット間隔が狭くなり,ドット間の静磁気相互作用が増加したことによると考えられる。
いずれにしても,ドット間隔を面記録密度1 Tbit/inよりも大きくするとトラック長手および幅方向のヘッド磁界のシフトマージンが減少し,高密度記録システムの実現は不可能となってしまう。
For the medium 1T and medium C0 corresponding to the surface recording densities 1 Tbit / in 2 and 2 Tbit / in 2 from the bit pattern medium shown in the second embodiment, the shift margins in the longitudinal direction and the track width direction of the head magnetic field in recording are provided. An example examined by simulation will be described.
As in Example 2, “Advanced Recording Model, ver. 6” from Euxine Technologies (Dayton, Ohio, USA) was used as simulation software. As a recording head magnetic field, a shield planar head (K. Ise, S. Takahashi, K. Yamakawa, and N. Honda, “New Shielded Single-Pole Head with Plane Structure. , Pp. 2422-2424, 2006) was used to analyze the magnetic field distribution obtained by electromagnetic field analysis software (“Maxwell 3D” from Ansoft (Pittsburgh, PA, USA)).
FIG. 4 shows the track length at the magnetic dot position of the medium when the magnetic pole track width is 14 nm, the magnetic pole thickness is 45 nm, the shield gap length is 12 nm, the shield height is 25 nm, and the distance between the magnetic pole tip surface and the soft magnetic layer surface is 12 nm. The vertical direction magnetic field distribution of a direction (Down track direction) and a width direction (Cross track direction) is shown. The figure shows the case where the magnetomotive force of the head is 60 mAT.
FIG. 5 shows 1016 kFCI (magnetic flux reversal / inch) and 2032 kFCI rectangular wave signals for the head magnetic pole tip surface and medium magnetic dot surface spacing for media 1T and C0, respectively, and track the switching timing of the head magnetic field. The result of checking the error rate when recording was performed by shifting in the longitudinal direction and the recording pattern was not performed normally is shown.
In the medium 1T, a normal recording pattern was obtained even when the timing was shifted in the range of 20.5 nm. However, in the medium C0 having a double dot density, a shift margin of 2.5 nm that is much narrower than half of the medium 1T. It became. This is because, as shown in FIG. 3 of Example 2, in the medium C0, the magnetostatic interaction between dots is increased and the reversal magnetic field width is increased.
Further, when the writing rate to the adjacent track due to the deviation of the head magnetic field in the track width direction was examined, as shown in FIG. 6, the track width direction shift margin also decreased from 6.5 nm to 5.0 nm of the medium 1T. did. This is thought to be due to the fact that the dot spacing is narrowed and the magnetostatic interaction between the dots is increased.
In any case, if the dot interval is made larger than the surface recording density 1 Tbit / in 2 , the shift margin of the head magnetic field in the track longitudinal direction and the width direction is reduced, making it impossible to realize a high-density recording system.

比較例と同様に,面記録密度2 Tbit/inに相当するビットパターン媒体について,磁性ドット間を一部結合した場合について,記録におけるヘッド磁界の長手方向およびトラック幅方向のシフトマージンをシミュレーションにより調べた例について説明する。
比較例と同様に,シミュレーションソフトとしてEuxine Technologies社(Dayton,Ohio,USA)の「Advanced Recording Model,ver.6」を,記録ヘッド磁界として,シールドプレーナーヘッド(K. Ise, S. Takahashi, K. Yamakawa, and N. Honda,“New Shielded Single−Pole Head With planar structure,” IEEE Transactions on Magnetics, vol.42,No.10,pp.2422−2424,2006)を有限要素法解析して得た磁界分布を用いた。
ヘッドは比較例と同様に,磁極トラック幅14 nm,磁極厚45 nm,シールドギャップ長12 nm,シールド高さ25 nm,磁極先端面−軟磁性層面間距離12 nmとし,ヘッドの起磁力も同様に60 mATとした。
ドット間を部分的に結合した媒体C1〜C4について,ヘッド磁極先端面−媒体磁性ドット表面間スペーシングを6 nmとして,2032 kFCIの矩形波信号をヘッド磁界のスイッチングタイミングをトラック長手方向にずらして記録し,記録パターンが正常に行われなかったエラーレートを調べた。
結果を図7に示す。結合個数が1〜3の媒体C1〜C3では比較例の媒体C0よりも大きなタイミングずれマージンが得られた。これは,実施例2の図3に示したように,ドット間の結合の導入により反転磁界幅が減少することによる。ただし,あまり結合が大きくなると磁性ドットの磁化が同一方向を向き易くなるため,タイミングシフトマージンは減少してしまう。
さらに,ヘッド磁界のトラック幅方向のずれによる隣接トラックへの書き込み率を調べたところ,図8に示すように,ドットを結合した媒体では全て媒体C0よりも大きなトラック幅方向シフトマージンが得られた。これはドットのトラック長手方向での結合により長手方向に磁気異方性が誘起されることによっていると考えられる。
図9に示すように,ドット間の結合を持つパターン媒体C2での,残留磁化抗磁力(スイッチング磁界)の印加磁界角度依存性の印加方向による違いからもトラック長手方向に異方性が誘起されることを確認している。
図10に2 Tbit/in2配置のパターン媒体(媒体C0−C4)での,トラック長手方向タイミングシフトマージンおよびトラック幅方向シフトマージンのドット間結合断面積比による変化を示す。トラック幅方向シフトマージンはドット間の結合が大きくなっても減少しないが,トラック長手方向シフトマージンは結合断面積比がドット断面積の30 %以下で大きくなることがわかる。
特に,面積比10−25 %で大きな効果が得られた。このように磁性ドット間を部分的に結合することによりトラック長手および幅方向のシフトマージンを大きくすることができることが明らかとなった。
As in the comparative example, for a bit pattern medium corresponding to a surface recording density of 2 Tbit / in 2 , the shift margins in the longitudinal direction and the track width direction of the head magnetic field in recording are simulated by simulation when the magnetic dots are partially coupled. An example of the investigation will be described.
Similarly to the comparative example, “Advanced Recording Model, ver. 6” by Euxine Technologies (Dayton, Ohio, USA) as simulation software and shield planar head (K. Ise, S. Takahashi, K., K.) as a recording head magnetic field. Yamakawa, and N. Honda, “New Shielded Single-Pole Head With Planar Structure,” IEEE Transactions on Magnetics, Vol.42, No.10, p.42, No.10, p. Distribution was used.
As in the comparative example, the head has a magnetic pole track width of 14 nm, a magnetic pole thickness of 45 nm, a shield gap length of 12 nm, a shield height of 25 nm, a magnetic pole tip surface-soft magnetic layer surface distance of 12 nm, and the magnetomotive force of the head is the same. 60 mAT.
For the media C1 to C4 in which the dots are partially coupled, the head magnetic pole tip surface-medium magnetic dot surface spacing is set to 6 nm, and the 2032 kFCI rectangular wave signal is shifted in the track longitudinal direction by switching the head magnetic field switching timing. The error rate was recorded and the recording pattern was not performed normally.
The results are shown in FIG. In the media C1 to C3 having the number of couplings of 1 to 3, a timing deviation margin larger than that of the medium C0 of the comparative example was obtained. This is because, as shown in FIG. 3 of the second embodiment, the width of the reversal magnetic field is reduced by introducing the coupling between dots. However, if the coupling becomes too large, the magnetization of the magnetic dots tends to point in the same direction, and the timing shift margin is reduced.
Further, when the writing rate to the adjacent track due to the deviation of the head magnetic field in the track width direction was examined, as shown in FIG. 8, all the media combined with dots obtained a shift width direction shift margin larger than that of the medium C0. . This is considered to be due to magnetic anisotropy being induced in the longitudinal direction due to the coupling of dots in the longitudinal direction of the track.
As shown in FIG. 9, the anisotropy is induced in the track longitudinal direction due to the difference in the applied magnetic field angle dependence of the remanent coercive force (switching magnetic field) depending on the applied direction in the patterned medium C2 having the coupling between dots. I have confirmed that.
FIG. 10 shows changes in the track longitudinal direction timing shift margin and the track width direction shift margin depending on the inter-dot coupling cross-sectional area ratio in the pattern medium (medium C0 to C4) of 2 Tbit / in 2 arrangement. It can be seen that the track width direction shift margin does not decrease as the coupling between dots increases, but the track longitudinal direction shift margin increases when the coupling cross-sectional area ratio is 30% or less of the dot cross-sectional area.
In particular, a large effect was obtained at an area ratio of 10-25%. Thus, it has become clear that the shift margin in the track longitudinal and width directions can be increased by partially coupling the magnetic dots.

垂直磁気異方性ドットパターン膜の垂直方向残留磁化曲線のドット結合による変化を示す図。媒体A:面積比25 %が結合,媒体B:完全分離。The figure which shows the change by the dot coupling | bonding of the perpendicular direction residual magnetization curve of a perpendicular magnetic anisotropic dot pattern film. Medium A: 25% area ratio combined, medium B: complete separation. 垂直磁気異方性ビットパターン媒体の構造を示す図(媒体C2)。磁性ドットと軟磁性裏打層との間に膜厚1 nmの非磁性中間層を持つ。The figure (medium C2) which shows the structure of a perpendicular magnetic anisotropic bit pattern medium. A nonmagnetic intermediate layer having a thickness of 1 nm is provided between the magnetic dots and the soft magnetic backing layer. 計算機シミュレーションにより得た,垂直磁気異方性ビットパターン膜の垂直方向残留磁化曲線のドット間結合面積よる変化を示す図。The figure which shows the change by the coupling area between dots of the perpendicular direction residual magnetization curve of a perpendicular magnetic anisotropic bit pattern film obtained by computer simulation. 記録シミュレーションに用いた磁気ヘッドの断面構造と発生磁界のトラック長手および幅方向分布を示す図。The figure which shows the cross-sectional structure of the magnetic head used for recording simulation, and the track length and width direction distribution of the generated magnetic field. 1 Tbit/in2配置と2 Tbit/in2配置のパターン媒体での,矩形波信号記録磁界のスイッチングタイミングをトラック長手方向にずらした時の,中央トラックでの記録エラー率のタイミングシフト量依存性を示す図。Dependence of the recording error rate on the center track when the switching timing of the rectangular wave signal recording magnetic field is shifted in the longitudinal direction of the track in the 1 Tbit / in 2 and 2 Tbit / in 2 layout pattern media FIG. 1 Tbit/in2配置と2 Tbit/in2配置のパターン媒体での,記録磁界をトラック幅方向にずらした時の,隣接トラックへの書き込み率のシフト量依存性を示す図。The figure which shows the shift amount dependence of the writing rate to an adjacent track when the recording magnetic field is shifted in the track width direction in the patterned media of 1 Tbit / in 2 arrangement and 2 Tbit / in 2 arrangement. 2 Tbit/in2配置のパターン媒体での,矩形波信号記録磁界のスイッチングタイミングをトラック長手方向にずらした時の,中央トラックでの記録エラー率のタイミングシフト量依存性のドット間結合面積による違いを示す図。Differences in the timing shift amount dependence of the recording error rate at the center track when the switching timing of the rectangular wave signal recording magnetic field is shifted in the track longitudinal direction on a patterned medium with 2 Tbit / in 2 layout FIG. 2 Tbit/in2配置のパターン媒体での,記録磁界をトラック幅方向にずらした時の,隣接トラックへの書き込み率のシフト量依存性のドット間結合面積による違いを示す図。The figure which shows the difference by the coupling area between dots of the shift amount dependence of the writing rate to an adjacent track when the recording magnetic field is shifted to the track width direction in the pattern medium of 2 Tbit / in 2 arrangement. トラック長手方向にドット間の結合を持つビットパターン媒体での,残留磁化抗磁力(スイッチング磁界)の印加磁界角度依存性の印加方向による違いを示す図。The figure which shows the difference by the applied direction of the applied magnetic field angle dependence of the residual magnetization coercive force (switching magnetic field) in the bit pattern medium which has the coupling between dots in the track longitudinal direction. 2 Tbit/in2配置のパターン媒体での,トラック長手方向タイミングシフトマージンおよびトラック幅方向シフトマージンのドット間結合断面積比による変化を示す図。The figure which shows the change by the cross-sectional area ratio between dots of a track longitudinal direction timing shift margin and a track width direction shift margin in the pattern medium of 2 Tbit / in 2 arrangement. 実施例および比較例で用いた媒体の諸元を示す図。The figure which shows the item of the medium used by the Example and the comparative example.

Claims (2)

垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性膜からなる磁性ドットを含むパターン磁気記録媒体において、前記磁性ドット間の一部がトラック長手方向で結合されており,前記磁性ドット間の結合部断面積が前記磁性ドットのトラック幅方向最大断面積の30%以下であり,面記録密度が2Tbit/in 以上であることを特徴とするビットパターン磁気記録媒体。 In a patterned magnetic recording medium including magnetic dots having a magnetic anisotropy in the vertical direction and formed of a dot-patterned magnetic film, a part of the magnetic dots is coupled in the track longitudinal direction, and the magnetic A bit pattern magnetic recording medium characterized in that the cross-sectional area of the connecting portion between dots is 30% or less of the maximum cross-sectional area of the magnetic dots in the track width direction and the surface recording density is 2 Tbit / in 2 or more . 前記磁性ドット間の結合部断面積が前記磁性ドットのトラック幅方向最大断面積の10〜25%であることを特徴とする請求項1に記載のビットパターン磁気記録媒体。2. The bit pattern magnetic recording medium according to claim 1, wherein the cross-sectional area of the coupling portion between the magnetic dots is 10 to 25% of the maximum cross-sectional area of the magnetic dots in the track width direction.
JP2006308907A 2006-11-15 2006-11-15 Dot-coupled pattern magnetic recording medium Expired - Fee Related JP4508183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308907A JP4508183B2 (en) 2006-11-15 2006-11-15 Dot-coupled pattern magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308907A JP4508183B2 (en) 2006-11-15 2006-11-15 Dot-coupled pattern magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2008123638A JP2008123638A (en) 2008-05-29
JP4508183B2 true JP4508183B2 (en) 2010-07-21

Family

ID=39508220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308907A Expired - Fee Related JP4508183B2 (en) 2006-11-15 2006-11-15 Dot-coupled pattern magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4508183B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135024A (en) 2008-12-05 2010-06-17 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium and magnetic recording method
JP2010160867A (en) * 2009-01-09 2010-07-22 Fujitsu Ltd Magnetic recording and reproducing device, magnetic recording medium, and method of manufacturing magnetic recording medium
JP4929384B2 (en) 2010-07-23 2012-05-09 株式会社東芝 Magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359138A (en) * 2001-03-30 2002-12-13 Toshiba Corp Patterning method of magnetic substance, magnetic recording medium and magnetic random access memory
JP2005190624A (en) * 2003-12-26 2005-07-14 Fujitsu Ltd Patterned media, its manufacturing method, and its evaluating method
JP2007066475A (en) * 2005-09-02 2007-03-15 Toshiba Corp Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359138A (en) * 2001-03-30 2002-12-13 Toshiba Corp Patterning method of magnetic substance, magnetic recording medium and magnetic random access memory
JP2005190624A (en) * 2003-12-26 2005-07-14 Fujitsu Ltd Patterned media, its manufacturing method, and its evaluating method
JP2007066475A (en) * 2005-09-02 2007-03-15 Toshiba Corp Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording device

Also Published As

Publication number Publication date
JP2008123638A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US6813115B2 (en) Perpendicular magnetic recording head with improved write field gradient
US10446178B1 (en) Writer with recessed spin flipping element in the write gap
US6728065B2 (en) Single pole magnetic recording head for perpendicular magnetic recording
CN101022009B (en) Perpendicular magnetic recording head and method of manufacturing the same
US7609478B2 (en) Magnetic writer pole with a graded magnetic moment
WO2011052021A1 (en) Magnetic recording device
JP2007294059A (en) Perpendicular recording magnetic head
JP4215198B2 (en) Magnetic head and magnetic disk drive having the same
KR100866956B1 (en) Perpendicular magnetic recording head
Zhu et al. Recording, noise, and servo characteristics of patterned thin film media
KR20080096463A (en) Magnetic element, magnetic recording head and magnetic recording device
JP2009070439A (en) Magnetic recording head and magnetic recording device
JP2010040060A (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using the same
US6741421B2 (en) Magnetic head for perpendicular recording and magnetic disk storage apparatus mounting the head
US10937450B1 (en) Magnetic flux guiding device with spin torque oscillator (STO) film having one or more negative spin polarization layers in assisted writing application
US8619390B2 (en) Transducing head writer having write pole bridge feature, and devices thereof
US7038882B2 (en) Low moment-high moment write pole with non-magnetic layer for establishing a magnetic path discontinuity between layers of the write pole
US8098456B2 (en) Perpendicular magnetic recording head having a tapered main pole
US7872831B2 (en) Thin-film magnetic head having a recording head portion configured to record magnetic information on a patterned media, head gimbal assembly, and hard disk system
JPH1186218A (en) Thin film magnetic head
JP4508183B2 (en) Dot-coupled pattern magnetic recording medium
Muraoka et al. Modeling and simulation of the writing process on bit-patterned perpendicular media
CN101266799A (en) Magnetic head
US20220199113A1 (en) Writer with Laterally Graded Spin Layer MsT
Kanai et al. A single-pole-type head design for 400 Gb/in/sup 2/recording

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4508183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees