JP4507799B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4507799B2
JP4507799B2 JP2004284615A JP2004284615A JP4507799B2 JP 4507799 B2 JP4507799 B2 JP 4507799B2 JP 2004284615 A JP2004284615 A JP 2004284615A JP 2004284615 A JP2004284615 A JP 2004284615A JP 4507799 B2 JP4507799 B2 JP 4507799B2
Authority
JP
Japan
Prior art keywords
particle size
size distribution
cell
particles
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004284615A
Other languages
Japanese (ja)
Other versions
JP2006098212A (en
Inventor
秋博 深井
慎一郎 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004284615A priority Critical patent/JP4507799B2/en
Priority to CNB2005100853414A priority patent/CN100432652C/en
Publication of JP2006098212A publication Critical patent/JP2006098212A/en
Application granted granted Critical
Publication of JP4507799B2 publication Critical patent/JP4507799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は粉体粒子の大きさの分布を測定する粒度分布測定装置に関する。なかでも、液体中に分散している粉体試料にレーザ光を照射し、その粉体粒子からの回折光あるいは散乱光の空間強度分布を測定し、その分布からフラウンホーファの回折理論あるいはミーの散乱理論に基づく演算により被測定粒子群の粒度分布を算出するレーザ回折散乱式粒度分布測定装置に関する。   The present invention relates to a particle size distribution measuring apparatus for measuring the size distribution of powder particles. Among them, the powder sample dispersed in the liquid is irradiated with laser light, the spatial intensity distribution of the diffracted light or scattered light from the powder particles is measured, and Fraunhofer's diffraction theory or Mie scattering is determined from the distribution. The present invention relates to a laser diffraction / scattering particle size distribution measuring apparatus that calculates a particle size distribution of a group of particles to be measured by calculation based on theory.

分散の媒体となる水などの液体と粉体試料とは通常比重が異なっており、ほとんどの測定試料では試料の比重の方が液体の比重より大きいので、試料と液体を混合した後に放置すれば粉体試料は試料容器の底に沈降することとなる。したがって粒度分布を測定する目的で粉体試料を液体に分散させるためには液体の攪拌が必要となる。測定対象となる粉体試料が豊富にある場合には、液体の循環機構を用いて粉体試料を含んだ液体をフローセルの中を流し、そのフローセルに対してレーザ光を照射することで粒度分布測定を行う手法がよく採用されている。フローセルを使用する場合は液体が常に流動しているので粉体試料も液体中に適度に分散されることとなる。   The specific gravity of a liquid sample such as water, which is a dispersion medium, is usually different from that of a powder sample. In most measurement samples, the specific gravity of the sample is greater than the specific gravity of the liquid. The powder sample will settle to the bottom of the sample container. Therefore, in order to disperse the powder sample in the liquid for the purpose of measuring the particle size distribution, the liquid must be stirred. When there are abundant powder samples to be measured, the liquid circulation mechanism is used to flow the liquid containing the powder sample through the flow cell and irradiate the flow cell with laser light to distribute the particle size. A technique for measuring is often employed. When a flow cell is used, the liquid always flows, so that the powder sample is appropriately dispersed in the liquid.

また、粉体試料の量が少ない場合などには少量の試料を個別の試料容器(測定セル)にとり、それを液体で分散させて粒度分布を測定することも行われる。この方法はフローセル方式に対してバッチセル式とも呼ばれる。この場合には粉体試料が適度に液体に分散された状態にするために、測定セル内の液体をかき混ぜるための攪拌機構を設け、測定中はその攪拌機構を作動させつつ粒度分布を測定することが行われる。もし攪拌機構を設けないとすると粉体試料は速やかに測定セルの底に沈殿してしまって精度よく粒度分布を測定することができない。   In addition, when the amount of the powder sample is small, a small sample is placed in an individual sample container (measurement cell) and dispersed in a liquid to measure the particle size distribution. This method is also called a batch cell type as opposed to a flow cell type. In this case, in order to make the powder sample appropriately dispersed in the liquid, a stirring mechanism for stirring the liquid in the measurement cell is provided, and during the measurement, the particle size distribution is measured while operating the stirring mechanism. Is done. If the stirring mechanism is not provided, the powder sample quickly settles on the bottom of the measurement cell, and the particle size distribution cannot be measured with high accuracy.

バッチセル式の粒度分布測定方法はたとえば特許文献1に記載されている。   A batch cell type particle size distribution measuring method is described in Patent Document 1, for example.

特開平5−72106号公報(図1)Japanese Patent Laid-Open No. 5-72106 (FIG. 1)

液体を循環するための循環機構や、液体の攪拌のための攪拌機構を装備するということは粒度分布測定装置を複雑化することであり、信頼性の低下やコストの上昇を招いていた。それらの機構がなくても粒度分布が精度よく測定できればそれに越したことはない。   Equipped with a circulation mechanism for circulating the liquid and a stirring mechanism for stirring the liquid complicates the particle size distribution measuring apparatus, leading to a decrease in reliability and an increase in cost. Even if there is no such mechanism, if the particle size distribution can be measured with high accuracy, it will not be over.

またバッチセル式では何らかの攪拌機構が必須であった。たとえば、測定セル内部には簡単な羽根状のもののみを配置し、動かすための動力は外部から磁力を介して伝えるマグネチックスターラを使用する場合もあるが、しかしこの場合には磁性体粉末の測定ができない等の問題も生じていた。   In the batch cell type, some kind of stirring mechanism is essential. For example, a magnetic stirrer may be used in which only a simple wing-shaped object is placed inside the measurement cell and the power to move is transmitted from the outside via magnetic force. However, in this case, the magnetic powder There were also problems such as inability to measure.

本発明は上記課題に鑑みてなされたものであり、装置を簡便化して信頼性向上を図るとともに、装置コストの低減を図ることを目的とする。また、マグネチックスターラを使用せず磁性体粉末の測定もできるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to simplify the apparatus to improve reliability and to reduce the apparatus cost. It is another object of the present invention to enable measurement of magnetic powder without using a magnetic stirrer.

本発明は、上記課題を解決するために、測定セル内の液体中に分散させた粒子にレーザ光を照射し該粒子によって散乱される散乱光の空間強度分布を測定して該粒子の粒度分布を算出する粒度分布測定装置において、被測定対象となる粒子群の密度と最大直径、および、前記液体の密度と粘度を元に得られる前記粒子の最大沈降速度と測定に要する時間とから導かれる前記粒子群の最大沈降距離よりも前記測定セルの鉛直方向の長さを長くするとともに、該長さを250mm以上とする。 In order to solve the above-mentioned problems, the present invention irradiates particles dispersed in a liquid in a measurement cell with laser light and measures the spatial intensity distribution of scattered light scattered by the particles, thereby measuring the particle size distribution of the particles. Is derived from the density and maximum diameter of the particles to be measured, the maximum sedimentation velocity of the particles obtained based on the density and viscosity of the liquid, and the time required for the measurement. with increasing the length of the vertical direction of the measurement cell than the maximum sedimentation distance of the particles, and more 250mm the said length.

そして、さらに、前記測定セルに対する前記レーザ光の照射部位を前記測定セル内の液面から下方に計って前記最大沈降距離よりも下の部分とする。(請求項1)Further, the portion of the measurement cell irradiated with the laser light is measured downward from the liquid surface in the measurement cell to be a portion below the maximum settling distance. (Claim 1)

重力が作用することによる液体中における粒子の沈降速度は一つの物質に関しては粒子径ごとに一定であり、大きい粒子ほど早く沈降する。すなわち最大粒子径の粒子の沈降速度が一番速く、その速度と測定に要する時間とから測定時間内に最大粒子径の粒子が沈降する最大沈降距離を計算できる。その最大沈降距離よりも測定セルの重力方向の長さが長ければ測定中に液体を攪拌しなくても粒度分布が測定できることとなる。そして測定セルの長さが250mm以上であれば実用的に十分な測定時間が確保できる。The sedimentation rate of particles in the liquid due to the action of gravity is constant for each particle size for one substance, and larger particles settle faster. That is, the sedimentation speed of the particles with the maximum particle diameter is the fastest, and the maximum sedimentation distance at which the particles with the maximum particle diameter settle within the measurement time can be calculated from the speed and the time required for measurement. If the length of the measuring cell in the direction of gravity is longer than the maximum settling distance, the particle size distribution can be measured without stirring the liquid during the measurement. If the length of the measurement cell is 250 mm or more, a practically sufficient measurement time can be secured.

このようにレーザ光の照射位置を決めることで、レーザ光が照射されている部位には最も沈降速度の大きい粒子すなわち最も大きな粒径の粒子も測定期間中には存在することになるので、粒子群全体の正確な粒度分布を測定できることとなる。 By determining the irradiation position of the laser beam in this way, particles having the highest sedimentation speed, that is, particles having the largest particle diameter, are also present during the measurement period in the portion irradiated with the laser beam. The exact particle size distribution of the entire group can be measured.

さらにそのような粒度分布測定装置において、前記測定セルは前記レーザ光の照射部位のみを該レーザ光を透過する材料で構成し、他の部分は他の材料で構成するようにすれば安価に試料セルを製作することができる。(請求項Further, in such a particle size distribution measuring apparatus, the measurement cell can be formed at a low cost by constituting only the laser light irradiation portion with a material that transmits the laser light and other portions with other materials. A cell can be produced. (Claim 2 )

粒度分布測定には弱い散乱光を計測する必要があることから、レーザ光が通過する壁面としての試料セルの材料には光学的材料として一般的に使用されている石英ガラスを通常使用する必要がある。この石英ガラスを用いてセル全体を製作すると、本発明の試料セルは比較的長さが長くなるので使用する石英ガラスも多くなるが、上記のようにレーザ光の照射部位以外を例えば安価な金属やプラスチック材料を利用すれば試料セルの製作にかかる費用を削減することができる。   Since it is necessary to measure weak scattered light for particle size distribution measurement, it is necessary to use quartz glass, which is generally used as an optical material, as the material of the sample cell as the wall surface through which the laser light passes. is there. When the entire cell is manufactured using this quartz glass, the sample cell of the present invention is relatively long, so that the quartz glass to be used is also increased. If a plastic material is used, the cost for manufacturing the sample cell can be reduced.

請求項1にかかる粒度分布測定装置では、分散媒体となる液体の循環機構や攪拌機構を必要とせず、単に鉛直方向に長い試料セルを用いるだけなので安価に装置を構成できる。また、機構が簡単なので故障を少なくでき、信頼性の向上を果たすことができる。   The particle size distribution measuring apparatus according to the first aspect of the present invention does not require a liquid circulation mechanism or a stirring mechanism as a dispersion medium, and simply uses a long sample cell in the vertical direction, so that the apparatus can be configured at low cost. Moreover, since the mechanism is simple, failures can be reduced and reliability can be improved.

また、さらに、測定が終わる前に最大粒子径の粒子がレーザ照射部位より下に沈降してしまうことがなく、粒子群全体の正確な粒度分布を測定することができる。 Also, further, without resulting in settling below the laser irradiation site maximum particle size particles before the measurement is finished, it is possible to accurately measure the particle size distribution of the entire particles.

さらに、請求項にかかる粒度分布測定装置では、安価な材料で試料セルを製作することができ、さらに安価に装置を構成することができる。 Furthermore, in the particle size distribution measuring apparatus according to claim 2 , the sample cell can be manufactured with an inexpensive material, and the apparatus can be configured at a lower cost.

本発明の粒度分布装置を図1に示す概略構成図によって説明する。レーザ光源1から発射されたレーザ光は集光レンズ2や空間フィルタ3、コリメートレンズ4を介して所定の大きさのビーム径を持つ平行ビームに形成されたのち試料セル5に照射される。本発明装置においては照射レーザ光の光軸10はほぼ水平に配置される。試料セル5の中には純水などの液体が満たされ、その中に被測定試料である粉体試料が分散されている。粉体試料に照射されたレーザ光は粉体試料の粒子により散乱あるいは回折の作用により光軸10から離れた方向に放射され、その散乱光が集光レンズ6によってリングディテクタ7の表面に集光される。   The particle size distribution apparatus of the present invention will be described with reference to the schematic configuration diagram shown in FIG. The laser light emitted from the laser light source 1 is formed into a parallel beam having a predetermined beam diameter via the condenser lens 2, the spatial filter 3, and the collimator lens 4, and then irradiated to the sample cell 5. In the apparatus of the present invention, the optical axis 10 of the irradiation laser light is arranged almost horizontally. The sample cell 5 is filled with a liquid such as pure water, and a powder sample as a sample to be measured is dispersed therein. The laser light applied to the powder sample is emitted by particles of the powder sample in a direction away from the optical axis 10 due to scattering or diffraction, and the scattered light is condensed on the surface of the ring detector 7 by the condenser lens 6. Is done.

リングディテクタ7は光軸10を中心にしてリング状に配置された多数の光検出素子から構成され、試料セル内の粉体試料によって生じた散乱光の強度を散乱角度ごとに検出することができる。リングディテクタ7の出力は散乱角度ごとにデータサンプリング回路8を介して制御装置9に取り込まれる。制御装置9はコンピュータを含む装置であり、上述のようにして取得された散乱光の空間強度分布からミーの散乱理論あるいはフラウンホーファの回折理論に基づく演算を行って試料セル5の中に分散されている粉体試料の粒度分布を算出する。   The ring detector 7 is composed of a large number of light detection elements arranged in a ring shape with the optical axis 10 as the center, and can detect the intensity of the scattered light generated by the powder sample in the sample cell for each scattering angle. . The output of the ring detector 7 is taken into the control device 9 via the data sampling circuit 8 for each scattering angle. The control device 9 is a device including a computer, and performs an operation based on the Mie scattering theory or the Fraunhofer diffraction theory from the spatial intensity distribution of the scattered light obtained as described above, and is dispersed in the sample cell 5. The particle size distribution of the powder sample is calculated.

試料セル5についてさらに説明する。本発明における試料セル5は鉛直方向の上端が大気に開放された立方体形状の容器であり、バッチ式のセルとして用いられるものである。これは単に粉体試料を分散させるための媒体となる液体を入れるものであって、フロー式セルのように他の循環装置などと連通させるようにしたものではない。そして少なくとも照射レーザ光の照射部位は透明な材料すなわち石英ガラスなどで構成され、試料セル内の粉体試料にレーザ光が照射されるとともに粉体試料による散乱光が試料セル外に放出されるようになっている。   The sample cell 5 will be further described. The sample cell 5 in the present invention is a cubic container whose upper end in the vertical direction is open to the atmosphere, and is used as a batch type cell. This is merely for containing a liquid as a medium for dispersing the powder sample, and is not intended to communicate with other circulation devices such as a flow type cell. At least the irradiated part of the irradiated laser beam is made of a transparent material, such as quartz glass, so that the powder sample in the sample cell is irradiated with the laser beam and the scattered light from the powder sample is emitted outside the sample cell. It has become.

この試料セルの特徴は鉛直方向の長さが比較的長く構成されており、その試料セルの下部の方にレーザ光の照射部位が設定されていることである。このようなセルを使用することで攪拌装置を使わずに被測定対象である粉体粒子群の正しい粒度分布を得ることができる。   The feature of this sample cell is that the length in the vertical direction is relatively long, and a laser beam irradiation site is set at the lower part of the sample cell. By using such a cell, the correct particle size distribution of the powder particle group to be measured can be obtained without using a stirring device.

図2を用いてこの試料セルの動作および作用を説明する。試料に対してレーザ光を照射して散乱光の強度を測定する直前に試料セル内の液体を攪拌しておく。このときの攪拌はオペレータが攪拌棒などを用いて簡単に攪拌すればよい。よく攪拌した後に対流がある程度収まるまで静置するとすべての大きさの粒子が液体内で均一に分散した状態となる。簡単のために、3つの粒子径D1,D2,D3(D1<D2<D3)の粒子が存在した状態を考えると、図2(a)に示した状態となる。   The operation and action of this sample cell will be described with reference to FIG. The liquid in the sample cell is stirred immediately before irradiating the sample with laser light and measuring the intensity of scattered light. The stirring at this time may be performed simply by the operator using a stirring rod or the like. If the mixture is allowed to stand until the convection is settled to some extent after stirring well, all the particles of all sizes are uniformly dispersed in the liquid. For simplicity, the state shown in FIG. 2 (a) is considered when there are particles having three particle diameters D1, D2, and D3 (D1 <D2 <D3).

その後各大きさの粒子はそれぞれ沈降していくが、一粒一粒の粒子が沈降する速度は一定速度であり、その速度は粒子の大きさにより異なっている。すなわち、粒子の沈降速度はストークス則に従うので、次式のストークスの式で表される速度Vで沈降する。
=(ρ−ρ)Dg/18μ …(1)
ここで、ρ:粒子の密度、ρ:媒液の密度、D:粒子の直径、g:重力加速度、μ:媒液の粘度、である。この式は粒子径が大きい方が速く沈降することを示している。粒子径の条件によっては粒子の沈降速度はアレン則やニュートン則に従うが、いずれにしても粒子径の大きい方が速く沈降する。
Thereafter, the particles of each size settle, but the speed at which each particle settles is a constant speed, and the speed varies depending on the size of the particles. That is, since the settling velocity of the particles according to Stokes law, settle at a speed V t of the formula of Stokes equation.
V t = (ρ p −ρ w ) D 2 g / 18 μ (1)
Here, ρ p is the density of the particles, ρ w is the density of the medium, D is the diameter of the particles, g is the acceleration of gravity, and μ is the viscosity of the medium. This equation indicates that the larger the particle size, the faster the sedimentation. Depending on the condition of the particle size, the sedimentation rate of the particle follows the Allen rule or Newton's law, but in any case, the larger the particle size, the faster the sedimentation.

図2において、一番大きい粒子D3が液面からレーザ照射部の上端まで沈降する時間をt秒とすると、図2(a)の状態からt秒後には図2(b)の状態となる。粒子D3の沈降した距離をX3とすると、粒子D2の沈降距離はX2であり、粒子D1の沈降距離はX1である。そして、それぞれの大小関係は、X1<X2<X3となる。   In FIG. 2, when the time for the largest particle D3 to settle from the liquid surface to the upper end of the laser irradiation unit is t seconds, the state shown in FIG. 2B is obtained after t seconds from the state of FIG. If the distance that the particle D3 settles is X3, the sedimentation distance of the particle D2 is X2, and the sedimentation distance of the particle D1 is X1. Each magnitude relationship is X1 <X2 <X3.

粒子径が同じである各粒子の沈降速度は互いに同じ値であって時間的にも変化せず一定であり、さらに、レーザ照射部は液面から距離X3の位置より下側にあることからレーザ照射部における各粒子の濃度はこのt秒間に変化していない。すなわちこのt秒の間は沈降による粒度分布の偏りを受けずに粒度分布を測定することが可能である。ここで粒度分布の偏りとは、例えば、t秒よりも多くの時間が経過するとレーザ照射部においては粒子D3が存在しなくなるので、存在粒子がD1とD2のみとなって粒度分布があたかも小さい粒子の側にシフトしたかのように観測されることを指している。   The sedimentation speeds of the particles having the same particle diameter are the same value and do not change with time and are constant, and further, the laser irradiation part is below the position of the distance X3 from the liquid surface. The concentration of each particle in the irradiation part does not change during this t seconds. That is, during this t seconds, it is possible to measure the particle size distribution without being biased in the particle size distribution due to sedimentation. Here, the deviation of the particle size distribution means, for example, that the particle D3 does not exist in the laser irradiation portion when a time longer than t seconds elapses, so that the existing particles are only D1 and D2 and the particle size distribution is as small as possible. It is observed as if it were shifted to the side.

図2(b)の状態についてさらに説明する。液面から距離X1までの間はすべての大きさの粒子が沈降してしまっているのでこの領域に粒子は存在しない。距離X1からX2までの間は粒子D1のみが存在する領域となる。距離X2からX3までの間は粒子D1と粒子D2が存在し、粒子D3は存在しない。そして、距離X3より大きい部分では粒子D1,D2,D3のすべてが存在し、しかもそれぞれの濃度は最初の状態と同じである。したがって、上述のように、レーザ照射部を液面から距離X3の位置より下側に配置し、さらに測定の時間をt秒以内にすることによって粒子群全体としての正確な粒度分布を測定することができる。   The state of FIG. 2B will be further described. Since particles of all sizes have settled between the liquid level and the distance X1, there are no particles in this region. Between the distances X1 and X2 is an area where only the particles D1 exist. Between distance X2 and X3, particle D1 and particle D2 exist, and particle D3 does not exist. And in the part larger than the distance X3, all of the particles D1, D2, and D3 exist, and the respective concentrations are the same as in the initial state. Therefore, as described above, the accurate particle size distribution of the entire particle group is measured by disposing the laser irradiation part below the position of the distance X3 from the liquid level and further setting the measurement time within t seconds. Can do.

このことを一般的に言うと、測定対象の一番大きな粒子が沈降する速度を見積もり、その値と測定に要する時間から測定時間中に最大粒子が沈降する最大沈降距離を見積もれば、その距離よりも大きな長さの試料セルを用いることで正確な粒度分布測定を行うことが可能となる。より正確には、媒液の液面からレーザ光の照射部位までの距離が最大沈降距離よりも大きければ沈降による粒度分布の偏りを受けずに正しい粒度分布測定を行うことができる。   Generally speaking, if you estimate the settling speed of the largest particle to be measured and estimate the maximum settling distance in which the largest particle settles during the measurement time from the value and the time required for measurement, In addition, accurate particle size distribution measurement can be performed by using a sample cell having a large length. More precisely, if the distance from the liquid surface to the laser beam irradiation site is larger than the maximum sedimentation distance, the correct particle size distribution measurement can be performed without being subject to a deviation in the particle size distribution due to sedimentation.

粒子の大きさや試料セルの大きさについて具体的な数字を例示する。たとえばガラスビーズを粒子試料として水に分散させ、最大粒子径が100μmであるとする。粒子密度:2500 kg/m3、媒液の密度:1000 kg/m3、媒液の粘度:0.001 Pa・s、重力加速度:9.8 m/s2、を上述の式(1)に当てはめて計算すると、沈降速度は8.2 mm/sとなる。 Specific numbers for the particle size and sample cell size are illustrated. For example, it is assumed that glass beads are dispersed in water as a particle sample and the maximum particle size is 100 μm. Calculation by applying particle density: 2500 kg / m 3 , liquid density: 1000 kg / m 3 , liquid viscosity: 0.001 Pa · s, gravitational acceleration: 9.8 m / s 2 to the above equation (1) Then, the sedimentation speed becomes 8.2 mm / s.

従来から使用される通常のセルの長さはおよそ100 mm、液面からレーザ照射部の上端までの距離は50mm程度である。このとき最大径100μmの粒子がレーザ照射部の上端に到着するのは上記の沈降速度8.2 mm/sを用いて計算すると約6秒後となる。   The length of a conventional cell used conventionally is about 100 mm, and the distance from the liquid surface to the upper end of the laser irradiation unit is about 50 mm. At this time, the particles having a maximum diameter of 100 μm arrive at the upper end of the laser irradiation portion after about 6 seconds when calculated using the settling velocity of 8.2 mm / s.

ここで本発明のように、試料セルを鉛直方向にたとえば300mmに延長すると、液面からレーザ照射部上端までの距離は250mmとなる。このとき最大径100μmの粒子がレーザ照射部の上端に到着するのは約30秒後と計算される。従来のセルを使用したときの6秒では手馴れたオペレータが手早く測定しても1回測れるかどうかということになり、通常は測定は無理である。しかし本発明のように試料セルを延長することで30秒の時間ができれば誰でも測定が可能となり、また繰り返し測定も可能となる。   Here, when the sample cell is extended to, for example, 300 mm in the vertical direction as in the present invention, the distance from the liquid level to the upper end of the laser irradiation unit is 250 mm. At this time, it is calculated that the particles having the maximum diameter of 100 μm arrive at the upper end of the laser irradiation portion after about 30 seconds. In 6 seconds when a conventional cell is used, it is determined whether or not the operator who is accustomed to can measure once even if it is quickly measured, and measurement is usually impossible. However, as long as the sample cell is extended as in the present invention and a time of 30 seconds can be obtained, anyone can perform the measurement, and a repeated measurement is also possible.

本発明装置に使用する試料セルは全体が石英ガラスや透明プラスチックのような透明な材料で製作してもよい。また容器が透明である必要があるのはレーザ光の照射部位のみなので、その部分はガラス等の透明材料を用いて、他の部分は金属や不透明なプラスチックを用いて2つ以上の部材を組み合わせて容器としてもよい。透明な部分はレーザ光が通過する光軸部分だけでもよいので、2枚の透明板を向かい合わせて光軸付近を構成し、他の部分については他の形状や材料で製作することも可能である。   The entire sample cell used in the apparatus of the present invention may be made of a transparent material such as quartz glass or transparent plastic. Also, since the container needs to be transparent only for the laser beam irradiation part, the part is made of a transparent material such as glass, and the other part is made of metal or opaque plastic, and two or more members are combined. It is good also as a container. Since the transparent part may be only the optical axis part through which the laser beam passes, the two transparent plates face each other to form the vicinity of the optical axis, and other parts can be manufactured in other shapes and materials. is there.

また上述の例では、試料セルの形状は上端が開放された直方体としたが、他の形状たとえば円柱状の形状でもよい。また、上端が開放されていることは必須要件ではなく、最初に粉体試料を分散させる方法を工夫すれば蓋によって密封された試料セルに対しても本発明は有効である。たとえば蓋のされた試料セルを手に持って振り動かし、その後所定の測定位置に試料セルを取り付けるようにしてもよい。   In the above example, the shape of the sample cell is a rectangular parallelepiped with the upper end opened, but other shapes such as a cylindrical shape may be used. Moreover, it is not essential that the upper end is open, and the present invention is also effective for a sample cell sealed with a lid if a method for initially dispersing a powder sample is devised. For example, the sample cell with the lid may be held and shaken, and then the sample cell may be attached to a predetermined measurement position.

本発明の粒度分布測定装置の概略構成図である。It is a schematic block diagram of the particle size distribution measuring apparatus of this invention. 本発明の作用を説明する図である。It is a figure explaining the effect | action of this invention.

符号の説明Explanation of symbols

1…レーザ光源、2…集光レンズ、3…空間フィルタ、4…コリメートレンズ、5…試料セル、6…集光レンズ、7…リングディテクタ、8…データサンプリング回路、9…制御装置、10…光軸 DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Condensing lens, 3 ... Spatial filter, 4 ... Collimating lens, 5 ... Sample cell, 6 ... Condensing lens, 7 ... Ring detector, 8 ... Data sampling circuit, 9 ... Control apparatus, 10 ... optical axis

Claims (2)

測定セル内の液体中に分散させた粒子にレーザ光を照射し該粒子によって散乱される散乱光の空間強度分布を測定して該粒子の粒度分布を算出する粒度分布測定装置において、被測定対象となる粒子群の密度と最大直径、および、前記液体の密度と粘度を元に得られる前記粒子の最大沈降速度と測定に要する時間とから導かれる前記粒子群の最大沈降距離よりも前記測定セルの鉛直方向の長さを長くするとともに、該長さを250mm以上とし、さらに、前記測定セルに対する前記レーザ光の照射部位を前記測定セル内の液面から下方に計って前記最大沈降距離よりも下の部分としたことを特徴とする粒度分布測定装置。 In a particle size distribution measuring apparatus that irradiates particles dispersed in a liquid in a measurement cell with laser light, measures the spatial intensity distribution of scattered light scattered by the particles, and calculates the particle size distribution of the particles. The measurement cell is larger than the maximum settling distance of the particle group derived from the density and maximum diameter of the particle group and the maximum settling velocity of the particle obtained based on the density and viscosity of the liquid and the time required for measurement. The length in the vertical direction of the measuring cell is increased to 250 mm or more, and the irradiation part of the laser beam with respect to the measuring cell is measured downward from the liquid level in the measuring cell to be larger than the maximum settling distance. A particle size distribution measuring apparatus characterized by having a lower part . 請求項1記載の粒度分布測定装置において、前記測定セルは前記レーザ光の照射部位のみを該レーザ光を透過する材料で構成し、他の部分は他の材料で構成したことを特徴とする粒度分布測定装置。 2. The particle size distribution measuring apparatus according to claim 1, wherein the measurement cell includes only a portion irradiated with the laser beam with a material that transmits the laser beam, and the other portion includes another material. Distribution measuring device.
JP2004284615A 2004-09-29 2004-09-29 Particle size distribution measuring device Active JP4507799B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004284615A JP4507799B2 (en) 2004-09-29 2004-09-29 Particle size distribution measuring device
CNB2005100853414A CN100432652C (en) 2004-09-29 2005-07-22 Particle size distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284615A JP4507799B2 (en) 2004-09-29 2004-09-29 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2006098212A JP2006098212A (en) 2006-04-13
JP4507799B2 true JP4507799B2 (en) 2010-07-21

Family

ID=36238178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284615A Active JP4507799B2 (en) 2004-09-29 2004-09-29 Particle size distribution measuring device

Country Status (2)

Country Link
JP (1) JP4507799B2 (en)
CN (1) CN100432652C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881719B (en) * 2010-06-28 2012-01-04 中国科学院西安光学精密机械研究所 Test method of gel particles in polyacrylonitrile polymer solution
KR101458320B1 (en) * 2013-08-29 2014-11-04 전북대학교산학협력단 Viscometer using Terminal setting velocity and Method of measuring viscosity
CN104483165B (en) * 2014-11-21 2017-07-28 江苏博迁新材料股份有限公司 The sampling method of big particle diameter powder in a kind of ultra-fine magnetic powder
JP6260521B2 (en) * 2014-11-25 2018-01-17 株式会社島津製作所 Particle analysis apparatus and particle analysis method
CN104458512B (en) * 2014-12-01 2016-09-07 华中科技大学 A kind of method measuring particle swarm fractal dimension
JP6864908B2 (en) * 2016-03-28 2021-04-28 国立研究開発法人 海上・港湾・航空技術研究所 Ore wear evaluation method and ore wear measuring device
CN106290087B (en) * 2016-09-21 2023-05-02 迈安德集团有限公司 Automatic grading experiment system for micro-fine particle grade material
US11047786B2 (en) 2016-11-16 2021-06-29 Horiba, Ltd. Apparatus and method for measuring particle size distribution, and program for particle size distribution measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062248A (en) * 2000-07-01 2002-02-28 Malvern Instruments Ltd Device and method for specifying particle size distribution

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160842A (en) * 1982-03-18 1983-09-24 Horiba Ltd Light transmitting type measuring method of particle size distribution
US4457624A (en) * 1982-05-10 1984-07-03 The United States Of America As Represented By The Secretary Of The Interior Suspended sediment sensor
AT393169B (en) * 1985-06-05 1991-08-26 Staudinger Gernot METHOD AND DEVICE FOR GRANE SIZE ANALYSIS
US4696571A (en) * 1985-10-25 1987-09-29 The United States Of America As Represented By The Secretary Of The Interior Suspended sediment sensor
CN2041041U (en) * 1987-11-19 1989-07-12 河海大学 Detecting device for wide-range particle size analyzer
JPH02212742A (en) * 1989-02-13 1990-08-23 Kowa Co Measuring apparatus for fine particle in liquid
JPH0438442A (en) * 1990-06-04 1992-02-07 Sumitomo Chem Co Ltd Automatic particle size distribution measuring device
JPH0572106A (en) * 1991-09-17 1993-03-23 Shimadzu Corp Particle size distribution measuring device
JPH10213534A (en) * 1997-01-29 1998-08-11 Shimadzu Corp Particle size distribution measuring device
CN1202412C (en) * 2003-07-01 2005-05-18 武汉理工大学 Settling type laser reflection image point granularity measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062248A (en) * 2000-07-01 2002-02-28 Malvern Instruments Ltd Device and method for specifying particle size distribution

Also Published As

Publication number Publication date
JP2006098212A (en) 2006-04-13
CN1755347A (en) 2006-04-05
CN100432652C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
Geisler et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy
US10234370B2 (en) Particle size measuring method and device
Poon et al. On measuring colloidal volume fractions
US20070155017A1 (en) Method and apparatus for characterizing solutions of small particles
Tang et al. A model to describe the settling behavior of fractal aggregates
Chase Settling behavior of natural aquatic particulates 1
JP6872558B2 (en) Particle size distribution measuring device, particle size distribution measuring method, and program for particle size distribution measuring device
JP4507799B2 (en) Particle size distribution measuring device
Ma et al. Colloidal transport and diffusion over a tilted periodic potential: dynamics of individual particles
NL8303640A (en) METHOD FOR DETERMINING THE HYDROGEN CONTENT OF A SUBSTANCE AND DEVICE FOR USING THIS METHOD
CN109116041B (en) Method for measuring and calculating cell density in physiological environment
EP1808687A2 (en) Absolute measurement centrifuge
Abbireddy et al. A review of modern particle sizing methods
US3621243A (en) Apparatus and process for determining particle size by x-ray absorption analysis
Joshi et al. Measurement of hydrodynamic parameters in multiphase sparged reactors
WO2012045846A1 (en) Apparatus and method for supporting a liquid sample for measuring scattering of electromagnetic radiation
JPH0658865A (en) Method and apparatus for obtaining grain-size distribution with spectrum-light absorbing measurement during sedimentation
Eckhoff Experimental indication of the volume proportional response of the Coulter counter for irregularly shaped particles
JP2000131233A (en) Optical in-process control type nephelometry analyzing and detecting unit
Russell An absolute intensity standard for small-angle X-ray scattering measured with position-sensitive detectors
CN216309714U (en) Device for measuring content of ultra-large particles in particle material
JP2006047064A (en) Particle diameter distribution measuring method and particle diameter distribution measuring instrument
Nichols Centrifugal Methods for Determining the Size and Distribution of Size of Suspended Particles
JP2019117079A (en) Optical measurement device
JP4574962B2 (en) Method and apparatus for characterizing small particle solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4507799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4