JP4507341B2 - Steel cooling method - Google Patents

Steel cooling method Download PDF

Info

Publication number
JP4507341B2
JP4507341B2 JP2000082119A JP2000082119A JP4507341B2 JP 4507341 B2 JP4507341 B2 JP 4507341B2 JP 2000082119 A JP2000082119 A JP 2000082119A JP 2000082119 A JP2000082119 A JP 2000082119A JP 4507341 B2 JP4507341 B2 JP 4507341B2
Authority
JP
Japan
Prior art keywords
water
cooling
cooled
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082119A
Other languages
Japanese (ja)
Other versions
JP2001262220A (en
Inventor
一晃 原
一成 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000082119A priority Critical patent/JP4507341B2/en
Publication of JP2001262220A publication Critical patent/JP2001262220A/en
Application granted granted Critical
Publication of JP4507341B2 publication Critical patent/JP4507341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材の冷却方法に係わり、特に、鋼材の被冷却面に水分が残らない所謂「乾燥状態」に維持しつつ、短時間で冷却が可能な冷却技術に関するものである。
【0002】
【従来の技術】
製鉄所では、連続鋳造された鋳片を品質良く凝固したり、熱間圧延された鋼帯を所望通りに熱処理したり、あるいは常温まで冷却したりするため、鋼種やサイズの種々異なる鋼材(この場合、鋳片、鋼帯、形鋼、鋼板等の全てを指す)を水で冷却することが多い。従って、従来より、冷却に使用する水噴射ノズルや冷却方法に関して多くの研究がなされ、公表されたものも数えきれない。
【0003】
ノズルの構造についてみると、最近は、従来から用いられている高圧水のみを噴射させる単相流体噴霧ノズルに代わり、冷却能力を適宜調整可能とするために、水と圧縮気体(主として空気)とを、それぞれの量比を変えて混合し、冷媒とする二流体噴霧ノズルが一般に用いられるようになってきた。例えば、特開昭59−29055号公報は、連続鋳造された鋳片の幅方向で水量分布をできるだけ均一にするため、「ノズルチップの内側端面を凹んだ球面状にすると共に、該先端部に開設された先端開口部の入側部に凹んだ混合流体の流入ガイド面を設けた」ことを特徴とする気水ノズルを提案している。また、特開昭62−7400号公報は、製造ラインを走行中の鋼帯の幅方向で均一な冷却を行なうため、気体と水の混合状態をノズル内の流路を広くしたり、狭くすることで改良することを開示している。さらに、特開平3−238062号公報は、「気体導入部並びに液体導入部を有する混合器に噴出オリフィスを有するノズル部が装着され、混合器内において気体導入部から導入された気体と液体導入部から導入された液体とが混合されてノズル部の噴出オリフィスから気液が噴出される噴霧用ノズルにおいて、噴出オリフィスからの気液の噴霧角をミストの噴霧状態、分布を損なうことなく調整可能な空気流を噴出する調整オリフィスを別途設けた」ことを特徴とするノズルを開示している。つまり、気液流に加え、該気液流を加速する空気をも同時に吹ける構造のノズルである。
【0004】
熱延鋼帯の冷却方法については、ノズルの他、特開平2−197312号公報に開示されたように、走行中の熱延鋼帯に注水された冷却水が膜沸騰する高温域では、鋼帯搬送路の上下両側に設けた冷却水ヘッダから両面に注水し、冷却水の沸騰が膜沸騰から核沸騰に移行する遷移沸騰領域では、下面に冷却水を注水する」技術が開示されている。
【0005】
ところで、かかる従来の技術は、鋼鋳片、鋼板等、鋼材の幅方向あるいは全体の均一冷却に主眼がある。しかしながら、鋼材の冷却では、例えば熱処理、表面処理のように、冷却に用いた冷媒(水が多いが)を冷却後にいつまでも該鋼材に保持しておきたくない場合もある。つまり、残留した水が鋼材の熱処理条件に影響を与えたり、錆や冷却ムラの発生等が生じ、製品の品質を損なう恐れがあるからである。かかる問題を解消するには、冷却時及び冷却後の鋼材表面が極力乾燥状態(以下、ドライ状態ともいい、噴霧した水が被冷却面に残らない状態をいう)で、且つ短時間での冷却が必要である。しかしながら、このような観点での研究、開発は従来見られず、鋼材の冷却方法は、もっと改良する余地があるのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、高温状態の鋼材を、水で濡らすことなく短時間で冷却可能な鋼材の冷却方法を提供することを目的としている。
【0007】
【課題を解決するたのの手段】
発明者は、上記目的を達成するため、鋼材の冷却について鋭意研究し、その成果を本発明に具現化した。
【0008】
すなわち、本発明は、高温の鋼材に、空気と水の混合冷媒を噴霧し、該鋼材を常温まで冷却するに際し、前記水の水滴径を、被冷却面温度>200℃の時は、最大粒径が100μm超えとし、200℃≧被冷却面温度≧50℃の時は、最大粒径が100μm以下とすると共に、最大粒径の水滴の被冷却面における衝突速度をその破壊衝突速度超えとして前記噴霧を行い被冷却面温度が50℃未満では空気のみで冷却することを特徴とする鋼材の冷却方法である。
【0010】
また、本発明は、前記混合冷媒を別途に圧縮空気で加速することを特徴とする鋼材の冷却方法である。
【0011】
さらに、本発明は、前記鋼材が、製造ラインを鉛直方向に走行中の鋼板あるいは鋼帯であることを特徴とする鋼材の冷却方法である。
【0012】
本発明によれば、鋼材の被冷却面にかかった水を速やかに蒸発するようにしたので、高温状態の鋼材を、水で濡らすことなく短時間で常温まで冷却できるようになる。その結果、冷却ムラ、錆等のない品質に優れた製品鋼材が製造できるようになった。
【0013】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
【0014】
本発明は、製鉄所において鋼材を連続的に冷却する工程で利用される。例えば、図6に示すような溶鋼を連続鋳造する際の鋳片の二次冷却、図7に示すような表面処理工程で溶融亜鉛めっきを合金化した後の鋼帯の冷却等が挙げられ、鋼材の進行方向に沿って複数の水噴射ノズルを配列して行なわれる。これらの冷却は、鋼材を水平に走行させて水をかける場合と、図6及び7に示したように、鉛直方向に走行させた場合とがあるが、本発明では、後者への適用がより好ましい。
【0015】
発明者は、被冷却面にかかった水を速やかに蒸発することが、乾燥状態を維持した冷却の要件と考え、その要件を達成するための具体的手段について鋭意研究した。そして、噴霧する水の水滴径を適正にすること(第1要件)及び水滴の被冷却面に衝突した際の破壊程度を増加させること(第2要件)で、目的を達成させたのである。
【0016】
まず、第1の要件である噴霧する水の水滴径の適正化について説明する。
【0017】
それは、水の蒸発速度が温度に依存していることに着眼し、鋼材の被冷却面温度が高い時には、水滴が大きく、低い時には、水滴が小さなるように水を噴霧することである。鋼材はある一定速度で走行しているので、進行方向の位置に沿って温度が低下して行く。従って、具体的には、進行方向に沿い離隔して多段に配列した各ノズルの噴霧する水の水滴径(実際には径分布)を調整することでこの要件を達成する。
【0018】
図1に、発明者が試験で得た噴霧水の水滴の最大粒径及び被冷却面温度と鋼材被冷却面の湿潤状態との関係を示す。図1に示すように、被冷却面の湿潤状態は、噴霧水の水滴の最大粒径及び被冷却面温度に依存していることが明らかである。
【0019】
なお、図1に示す被冷却面が乾き状態と湿り状態の境界線(1)及び湿り状態と濡れ状態の境界線(2)は、それぞれ下記(1)式及び(2)式で表される。
【0020】
max =−0.002933×T2+1.200T−22.67……(1)
max =−0.002597×T2+1.422T−23.51……(2)
ここで、Tは被冷却面温度(℃)、Rmaxは噴霧水の水滴の最大粒径を示す。また、水滴の粒径の測定は、公知の所謂「液浸法」を用いて行い、粒径分布はフラホーフェル法を用いて求めている。
【0021】
図1より、(1)式より上方になるように噴霧水の水滴の最大粒径Rmaxを調整すれば、被冷却面を乾き状態に維持できる。つまり、各ノズル毎に上記関係を満足させるように、水を噴霧させるのである。
【0022】
しかしながら、実用に際しては、各ノズル毎に水滴径を調整するのは、煩雑でわずらわしい。そこで、本発明では、前記水の水滴径を、被冷却面温度>200℃の時は、最大粒径が100μm超え又は平均粒径が85μm超えとし、200℃≧被冷却面温度≧50℃の時は、最大粒径が100μm以下又は平均粒径が85μm以下として、最低2種類の水滴径の利用でも良いように簡略化した。
【0023】
これは、図1に基づいた下記の考えによるものである。
【0024】
(a):被冷却面温度>200℃の時は、被冷却面の濡れは発生しにくいため、破壊衝突速度の小さい液滴径の大きい噴霧水を用いる方が、有効に水の蒸発潜熱を利用できるため急速冷却が可能である。
【0025】
(b):200℃≧被冷却面温度≧50℃の時は、被冷却面が濡れ易いため、液滴径を小さくすることで破壊される水量を制限しつつ、破壊されない液滴は気流にのせて排気することで冷却能力の向上と被冷却面のドライ条件の確保が可能である。
【0026】
つまり、図1から明らかなように、冷却面温度が200℃以下の場合、水滴の最大粒径が100μm超え又は水滴の平均粒径が85μm超えの噴霧水を用いて冷却を行った場合、被冷却面は湿った状態もしくは濡れた状態となるためである。
そして、最終的に、50℃>被冷却面温度になったら、被冷却面が非常に濡れ易いので、空気のみの冷却によって、水滴による濡れの防止と一部湿り状態となっている箇所の乾燥を行なうのである。
【0027】
なお、以下、水滴の最大粒径が100μm超え又は水滴の平均粒径が85μm超えの噴霧水を用いた直接冷却を「ミスト冷却」、水滴の最大粒径が100μm以下又は水滴の平均粒径が85μm以下の噴霧水を用いた噴霧水による直接冷却を「フォグ冷却」、送風機からの空気を用いた空気冷却を「ファン冷却」と記す。
【0028】
本発明では、この水滴径の調整を実際に行なうには、鋼材の温度が50℃になるまでは、空気と水の混合冷媒を噴霧するノズルを、50℃未満では送風機を使用する。そして、ノズルからの噴霧水の水滴径を噴霧水の量と圧縮空気のノズルへの供給圧力とを変更して調整する。発明者は、このノズルからの噴霧水の水滴径と、噴霧水の量及び圧縮空気のノズルへの供給圧力との関係を別途求め、それを図2に示す。図2から明らかなように、同一のノズルで、水噴霧用の圧縮空気の供給圧力と噴霧水量とを変更することで、噴霧水の水滴径が調整できる、つまり、ミスト冷却とフォグ冷却の両者が選択可能である。
【0029】
次に、第2の要件である噴霧水の流速について説明する。それは、噴霧水の流速を、水滴が被冷却面に衝突した時に破壊する流速以上とすることである。発明者が衝突流速について検討した結果を図3に示す。図3は、平均粒径30μmの水滴を固体面に衝突させた場合の例であるが、流速が2.5m/secであると、噴霧水のうち水滴径が30μm以上の水滴が破壊される。また、図4に、水滴径と破壊衝突速度との関係を示す。図4によれば、平均粒径30μmの噴霧水では、最大粒径の水滴、すなわち45μmの水滴は、衝突速度が2.2m/sec以上で破壊され、最小粒径の水滴すなわち15μmの水滴は、衝突速度が3.6m/sec以上で破壊されることが明らかである。
【0030】
これらの検討結果から、発明者は、この程度の衝突速度は実際の冷却で実施可能であると判断し、衝突速度を水滴の破壊速度超えとする第2の要件を考えた。つまり、これによって、水の蒸発が起き易くすると共に、水滴をできるだけ破壊して水の蒸発を促進するばかりでなく、蒸発潜熟を有効に利用するようにしたのである。
【0031】
従って、本発明は、この第2の要件を前記第1の要件と併用することで、噴霧した水を速やかに蒸発さえても(乾燥状態で)、従来より冷却効果が高まり、短時間での冷却を達成されるのである。
【0032】
また、本発明では、前記水滴の被冷却面における衝突速度を具体的に増す手段として、別途に準備した圧縮空気を、水と圧縮空気を混合した冷媒とは別流路で、同一ノズルに供給し、吐出せしめることも考えた。すなわち、水噴霧用の圧縮空気とは別個に、ノズルチップの前記冷媒吐出孔の外周から該冷媒の吐出方向に圧縮空気を吐出せしめ、前記した冷却効果を高めるようにした。
【0033】
なお、前記した平均粒径が30μmの水滴の場合、被冷却面への水滴の衝突速度と被冷却面の熱伝達係数βとの関係は、図5に示すようになる。図5より、噴霧水の最大粒径の水滴の衝突速度が、最大粒径の水滴の破壊衝突速度超えに達した時点で、水の蒸発潜熱が有効に作用し、被冷却面の熱伝達係数βが急激に上昇し、最小粒径の水滴がほぼ完全に破壊する衝突速度を満足する段階で、熱伝達係数βの上昇はほぼ飽和することがわかる。つまり、図5の関係は、噴霧する水の最大粒径の水滴が鋼材に衝突する速度を、最大粒径の水滴の破壊衝突速度超えとすれば、鋼材の短時間冷却が達成できることを示唆している。
【0034】
【実施例】
合金化溶融亜鉛めっき鋼板の製造ラインに、本発明に係る冷却方法を適用した。
【0035】
つまり、前記図7に示した製造ラインにおいて、合金化炉から抜け出し、鉛直方向に走行している鋼帯の表面に、水と圧縮空気からなる混合冷媒に加速用空気を加えて、鋼帯に吹き付けた。その際のノズル配置状況を図8に示す。鋼帯1の表面温度は、450℃、走行速度は100m/minである。また,鋼帯1の幅は、1200mmであったので、幅方向に長いスリット状開口を有するノズル2を水平にして65段に配置し、高さ方向における各ノズル2の間隔は、300mmとした。各ノズル2からの混合冷媒3の噴霧条件、及び圧縮空気の流量を表1に示す。つまり、表1から明らかなように、鋼帯1の進行方向に沿って鋼帯1の温度変化が生じるので、本発明に従い、その温度に応じて混合冷媒3の噴霧条件を変化させた。また、別途の圧縮空気での加速も行なっている。
【0036】
その結果、本発明の実施中は、鋼帯1下方への水だれは一切起きなかった。鋼帯1の冷却状況を温度で評価し、図9に示す。図9より、450℃より100℃まで、12秒分という短時間で冷却ができている。
【0037】
一方、従来通りの混合冷媒の噴霧条件(表1及び図9のミスト冷却のみに相当)で冷却した場合も、表1及び図9に同時に示すが、水だれが発生した。
【0038】
なお、表1に示した本発明の実施条件は、フォグ冷却時(No.15ノズルからNo.65ノズルまで)は、水滴の平均粒径が30μmの噴霧水であり、噴霧水の最大粒径45μmの水滴が被冷却面に速度2.2m/sec以上で衝突することになる。
【0039】
【表1】

Figure 0004507341
【0040】
なお、上記実施例は、合金化溶融亜鉛めっき鋼帯の冷却の場合であるが、本発明は、それに限らず、連続鋳造機での鋳片の二次冷却、鋼板の連続焼入れのための冷却等にも、噴霧条件を適宜選択することで適用できることは、言うまでもない。
【0041】
【発明の効果】
以上述べたように、本発明により、高温の鋼材を、その表面を濡らすことはく、短時間で冷却することが可能となる。その結果、冷却ムラ、錆等のない品質に優れた製品鋼材が製造できるようになった。
【図面の簡単な説明】
【図1】噴霧水の水滴の最大粒径及び被冷却面温度と、被冷却面の湿潤状態との関係を示す図である。
【図2】噴霧水量及び水噴霧用の圧縮空気のノズルへの供給圧力と、噴霧水の液滴径との関係を示す図である。
【図3】平均粒径30μmの水滴が、衝突速度2.5m/secで固体面に衝突した時の水滴の破壊割合を示すグラフである。
【図4】液滴径と破壊衝突速度との関係を示すグラフである。
【図5】被冷却面への水滴の衝突速度と被冷却面の熱伝達係数との関係を示すグラフである。
【図6】一般的な連続鋳造機で鋳片の二次冷却を示す図である。
【図7】一般的な合金化溶融亜鉛めっき鋼板の製造ラインを示す図である。
【図8】図7に示した合金化炉の下流に配置した冷却ノズル群例を示す図である。
【図9】本発明に係る鋼材の冷却方法を実施した結果としての、鋼材の温度変化を示す図である。
【符号の説明】
1 鋼帯
2 ノズル
3 混合冷媒
4 取鍋
5 タンディッシュ
6 二次冷却ノズル
7 ピンチロール
8 鋳片
9 めっき浴槽
10 スナウト
11 シンクロール
12 サポートロール
13 ワイピングノズル
14 合金化炉
15 送風機
16 めっき浴
17 空気[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling a steel material, and more particularly, to a cooling technique capable of cooling in a short time while maintaining a so-called “dry state” in which moisture does not remain on a surface to be cooled of the steel material.
[0002]
[Prior art]
In steelworks, continuously cast slabs are solidified with good quality, hot-rolled steel strips are heat-treated as desired, or cooled to room temperature. In many cases, the slab, steel strip, shape steel, steel plate, etc. are all cooled with water. Therefore, many studies have been made on water injection nozzles and cooling methods used for cooling, and the published ones cannot be counted.
[0003]
Looking at the structure of the nozzle, recently, in order to be able to adjust the cooling capacity appropriately, instead of the single-phase fluid spray nozzle that injects only high-pressure water that has been conventionally used, water and compressed gas (mainly air) In general, a two-fluid spray nozzle is used in which refrigerants are mixed at different ratios and used as a refrigerant. For example, in Japanese Patent Laid-Open No. 59-29055, in order to make the water volume distribution as uniform as possible in the width direction of a continuously cast slab, “the inner end surface of the nozzle tip is made concave and spherical, An air / water nozzle is proposed in which an inflow guide surface for the mixed fluid is provided in the entrance side of the open end opening. Japanese Patent Application Laid-Open No. 62-7400 discloses a method for making a mixed state of gas and water wider or narrower in a nozzle in order to perform uniform cooling in the width direction of a steel strip traveling on a production line. The improvement is disclosed. Further, Japanese Patent Laid-Open No. 3-238062 discloses that “a nozzle having a jet orifice is attached to a mixer having a gas introduction part and a liquid introduction part, and the gas introduced from the gas introduction part in the mixer and the liquid introduction part. The spray angle of gas and liquid from the jet orifice can be adjusted without impairing the spray state and distribution of the mist in the spray nozzle in which gas and liquid are jetted from the jet orifice of the nozzle part by mixing with the liquid introduced from the nozzle A nozzle is disclosed in which an adjustment orifice for ejecting an air flow is provided separately. In other words, in addition to the gas-liquid flow, the nozzle has a structure that can simultaneously blow air that accelerates the gas-liquid flow.
[0004]
As for the method for cooling the hot-rolled steel strip, as disclosed in JP-A-2-197312, in addition to the nozzle, in a high-temperature region where the cooling water injected into the hot-rolled steel strip running is boiling, `` Technology is disclosed in which water is injected on both sides from the cooling water headers provided on the upper and lower sides of the belt conveyance path, and in the transition boiling region where the boiling of the cooling water transitions from film boiling to nucleate boiling, the cooling water is injected on the lower surface. '' .
[0005]
By the way, this conventional technique is mainly focused on uniform cooling of the steel material in the width direction or the whole, such as steel slabs and steel plates. However, in the cooling of a steel material, there are cases where it is not desired to keep the coolant used for cooling (although much water) in the steel material forever after cooling, such as heat treatment and surface treatment. That is, the remaining water may affect the heat treatment conditions of the steel material, or rust and cooling unevenness may occur, which may impair product quality. In order to solve this problem, the steel surface after cooling and after cooling is in a dry state as much as possible (hereinafter also referred to as a dry state, in which sprayed water does not remain on the surface to be cooled), and cooling in a short time is required. However, research and development from this point of view have not been seen so far, and there is room for further improvement in the cooling method of steel materials.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a steel material cooling method capable of cooling a steel material in a high temperature state in a short time without being wetted with water.
[0007]
[Means for solving the problems]
In order to achieve the above-mentioned object, the inventor diligently studied the cooling of steel materials and realized the result in the present invention.
[0008]
That is, the present invention sprays a mixed refrigerant of air and water on a high-temperature steel material and cools the steel material to room temperature. When the water droplet diameter is a surface temperature to be cooled> 200 ° C., the maximum grain size diameter and greater than 100 [mu] m, when the 200 ° C. ≧ surface to be cooled a temperature ≧ 50 ° C., with a maximum particle size to 100 [mu] m or less, the collision speed in the surface to be cooled of water droplets maximum particle size as exceeding the breaking impact speed It is a steel cooling method characterized by spraying and cooling with air only when the surface to be cooled is less than 50 ° C.
[0010]
Moreover , this invention is a cooling method of the steel materials characterized by accelerating the said mixed refrigerant separately with compressed air.
[0011]
Furthermore , the present invention is the steel material cooling method, wherein the steel material is a steel plate or a steel strip that is traveling in a vertical direction on a production line.
[0012]
According to the present invention, since the water applied to the surface to be cooled of the steel material is quickly evaporated, the steel material in a high temperature state can be cooled to room temperature in a short time without getting wet with water. As a result, it has become possible to produce a product steel excellent in quality free from uneven cooling and rust.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
The present invention is used in a process of continuously cooling a steel material in an ironworks. For example, secondary cooling of the slab when continuously casting the molten steel as shown in FIG. 6, cooling of the steel strip after alloying the hot dip galvanizing in the surface treatment step as shown in FIG. A plurality of water injection nozzles are arranged along the direction of travel of the steel material. These cooling methods include a case where the steel material is run horizontally and water is applied, and a case where the steel material is run in the vertical direction as shown in FIGS. 6 and 7, but in the present invention, the latter is more applicable. preferable.
[0015]
The inventor considered that the rapid evaporation of water applied to the surface to be cooled is a requirement for cooling while maintaining a dry state, and intensively studied specific means for achieving the requirement. And the objective was achieved by making the water droplet diameter of the sprayed water appropriate (first requirement) and increasing the degree of destruction when the water droplet collides with the surface to be cooled (second requirement).
[0016]
First, optimization of the water droplet diameter of water to be sprayed, which is the first requirement, will be described.
[0017]
That is, the evaporation rate of water depends on the temperature, and when the surface temperature of the steel material to be cooled is high, water droplets are large, and when it is low, water is sprayed so that the water droplets are small. Since the steel material travels at a certain speed, the temperature decreases along the position in the traveling direction. Therefore, specifically, this requirement is achieved by adjusting the diameter of the water droplets sprayed (actually the diameter distribution) of the nozzles arranged in multiple stages apart in the traveling direction.
[0018]
FIG. 1 shows the relationship between the maximum particle diameter of water droplets of spray water obtained by the inventors and the temperature of the surface to be cooled, and the wet state of the steel material to be cooled. As shown in FIG. 1, it is clear that the wet state of the surface to be cooled depends on the maximum particle diameter of the water droplets of the spray water and the temperature of the surface to be cooled.
[0019]
In addition, the boundary line (1) of the to-be-cooled surface shown in FIG. 1 in a dry state and a wet state, and the boundary line (2) in a wet state and a wet state are represented by the following formulas (1) and (2), respectively. .
[0020]
R max = -0.002933 × T 2 + 1.200T-22.67 ...... (1)
R max = −0.002597 × T 2 + 1.422T−23.51 (2)
Here, T is the surface temperature to be cooled (° C.), and R max is the maximum particle size of water droplets of the spray water. The particle size of the water droplets is measured using a so-called “immersion method”, and the particle size distribution is obtained using the Frahoefel method.
[0021]
From FIG. 1, the surface to be cooled can be maintained in a dry state by adjusting the maximum particle size R max of the water droplets of the spray water so as to be higher than the expression (1). That is, water is sprayed so as to satisfy the above relationship for each nozzle.
[0022]
However, in practical use, adjusting the water droplet diameter for each nozzle is cumbersome and cumbersome. Therefore, in the present invention, when the water droplet diameter is the surface temperature to be cooled> 200 ° C., the maximum particle diameter exceeds 100 μm or the average particle diameter exceeds 85 μm, and 200 ° C. ≧ cooled surface temperature ≧ 50 ° C. In some cases, the maximum particle size was set to 100 μm or less or the average particle size was set to 85 μm or less so that at least two types of water droplet sizes could be used.
[0023]
This is based on the following idea based on FIG.
[0024]
(A): When the surface to be cooled> 200 ° C., the surface to be cooled is less likely to get wet. Therefore, it is more effective to use the spray water having a small droplet collision speed and a large droplet diameter to increase the latent heat of evaporation of water. Quick cooling is possible because it can be used.
[0025]
(B): When 200 ° C. ≧ cooled surface temperature ≧ 50 ° C., the surface to be cooled is easily wetted. It is possible to improve the cooling capacity and secure the dry condition of the surface to be cooled by exhausting the air.
[0026]
That is, as apparent from FIG. 1, when the cooling surface temperature is 200 ° C. or lower, when cooling is performed using spray water having a maximum water droplet size exceeding 100 μm or a water droplet average particle size exceeding 85 μm, This is because the cooling surface becomes wet or wet.
Finally, when the temperature of the surface to be cooled becomes 50 ° C.> the surface to be cooled, the surface to be cooled is very easily wetted, so that only air is cooled to prevent wetting by water droplets and to dry a part that is partially wet. Is done.
[0027]
In the following, direct cooling using spray water having a maximum water droplet size exceeding 100 μm or a water droplet average particle size exceeding 85 μm is referred to as “mist cooling”, and the water droplet maximum particle size is 100 μm or less or the water droplet average particle size is Direct cooling with spray water using spray water of 85 μm or less is referred to as “fog cooling”, and air cooling using air from a blower is referred to as “fan cooling”.
[0028]
In the present invention, in order to actually adjust the water droplet diameter, a nozzle for spraying a mixed refrigerant of air and water is used until the temperature of the steel material reaches 50 ° C., and a blower is used at less than 50 ° C. And the water droplet diameter of the spray water from the nozzle is adjusted by changing the amount of spray water and the supply pressure of the compressed air to the nozzle. The inventor separately obtained the relationship between the water droplet diameter of the spray water from the nozzle, the amount of spray water and the supply pressure of the compressed air to the nozzle, which is shown in FIG. As is clear from FIG. 2, the water droplet diameter of the spray water can be adjusted by changing the supply pressure of the compressed air for spraying water and the amount of spray water with the same nozzle, that is, both mist cooling and fog cooling. Can be selected.
[0029]
Next, the flow rate of the spray water that is the second requirement will be described. That is, the flow rate of spray water is set to be equal to or higher than the flow rate at which water droplets break when they collide with the surface to be cooled. The result of the inventor's investigation on the collision flow velocity is shown in FIG. FIG. 3 shows an example in which water droplets having an average particle diameter of 30 μm collide with a solid surface. When the flow velocity is 2.5 m / sec, water droplets having a water droplet diameter of 30 μm or more are destroyed. . FIG. 4 shows the relationship between the water droplet diameter and the fracture collision speed. According to FIG. 4, in spray water having an average particle size of 30 μm, water droplets with the maximum particle size, that is, water droplets with 45 μm, are destroyed when the collision speed is 2.2 m / sec or more, and water droplets with the minimum particle size, that is, water droplets with 15 μm are It is clear that the vehicle is destroyed when the collision speed is 3.6 m / sec or more.
[0030]
From these examination results, the inventor determined that such a collision speed can be implemented by actual cooling, and considered the second requirement that the collision speed exceed the destruction speed of water droplets. In other words, this not only facilitates the evaporation of water, but also destroys water droplets as much as possible to promote the evaporation of water, and also effectively utilizes the evaporation latency.
[0031]
Therefore, the present invention uses the second requirement in combination with the first requirement, so that even if the sprayed water quickly evaporates (in a dry state), the cooling effect is enhanced as compared with the conventional case, and in a short time. Cooling is achieved.
[0032]
Further, in the present invention, as a means for specifically increasing the collision speed of the water droplets on the surface to be cooled, separately prepared compressed air is supplied to the same nozzle through a flow path different from the refrigerant mixed with water and compressed air. And we thought about discharging. That is, separately from the compressed air for spraying water, compressed air is discharged in the discharge direction of the refrigerant from the outer periphery of the refrigerant discharge hole of the nozzle tip so as to enhance the cooling effect described above.
[0033]
In the case of water droplets having an average particle diameter of 30 μm, the relationship between the collision speed of water droplets to the surface to be cooled and the heat transfer coefficient β of the surface to be cooled is as shown in FIG. From FIG. 5, when the collision speed of the water droplet having the maximum particle diameter of the spray water reaches the breaking collision speed of the water droplet having the maximum particle diameter, the latent heat of water evaporation acts effectively, and the heat transfer coefficient of the surface to be cooled. It can be seen that the rise in the heat transfer coefficient β is almost saturated at the stage where β rises rapidly and satisfies the collision speed at which the water droplets of the minimum particle size are almost completely destroyed. That is, the relationship shown in FIG. 5 suggests that the steel material can be cooled for a short time if the speed at which the water droplets with the maximum particle diameter of the sprayed water collide with the steel material exceeds the fracture collision speed of the water droplets with the maximum particle diameter. ing.
[0034]
【Example】
The cooling method according to the present invention was applied to a production line for galvannealed steel sheets.
[0035]
That is, in the production line shown in FIG. 7, acceleration air is added to the mixed refrigerant composed of water and compressed air on the surface of the steel strip that has been pulled out of the alloying furnace and is traveling in the vertical direction. Sprayed. The nozzle arrangement at that time is shown in FIG. The surface temperature of the steel strip 1 is 450 ° C., and the traveling speed is 100 m / min. Moreover, since the width of the steel strip 1 was 1200 mm, the nozzles 2 having slit-like openings long in the width direction were horizontally arranged in 65 stages, and the interval between the nozzles 2 in the height direction was set to 300 mm. . Table 1 shows the spray conditions of the mixed refrigerant 3 from each nozzle 2 and the flow rate of the compressed air. That is, as apparent from Table 1, since the temperature change of the steel strip 1 occurs along the traveling direction of the steel strip 1, according to the present invention, the spraying condition of the mixed refrigerant 3 was changed according to the temperature. In addition, acceleration with separate compressed air is also performed.
[0036]
As a result, no dripping down the steel strip 1 occurred during the implementation of the present invention. The cooling state of the steel strip 1 is evaluated by temperature and is shown in FIG. From FIG. 9, cooling can be performed in a short time of 12 seconds from 450 ° C. to 100 ° C.
[0037]
On the other hand, in the case of cooling under the conventional mixed refrigerant spray conditions (corresponding only to the mist cooling in Table 1 and FIG. 9), dripping occurred as shown in Table 1 and FIG.
[0038]
In addition, the implementation conditions of the present invention shown in Table 1 are spray water with an average particle diameter of water droplets of 30 μm during fog cooling (from No. 15 nozzle to No. 65 nozzle), and the maximum particle diameter of spray water A 45 μm water droplet collides with the surface to be cooled at a speed of 2.2 m / sec or more.
[0039]
[Table 1]
Figure 0004507341
[0040]
In addition, although the said Example is a case of cooling of an galvannealed steel strip, this invention is not restricted to this, Secondary cooling of the slab in a continuous casting machine, Cooling for continuous quenching of a steel plate Needless to say, the present invention can be applied by appropriately selecting spraying conditions.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to cool a high-temperature steel material in a short time without wetting the surface thereof. As a result, it has become possible to produce a product steel excellent in quality free from uneven cooling and rust.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the maximum particle diameter of water droplets of spray water and the temperature of a surface to be cooled, and the wet state of the surface to be cooled.
FIG. 2 is a diagram showing the relationship between the amount of spray water and the supply pressure of compressed air for spraying water to the nozzle and the droplet diameter of the spray water.
FIG. 3 is a graph showing the destruction rate of water droplets when water droplets having an average particle diameter of 30 μm collide with a solid surface at a collision speed of 2.5 m / sec.
FIG. 4 is a graph showing a relationship between a droplet diameter and a fracture collision speed.
FIG. 5 is a graph showing the relationship between the collision speed of water droplets on the surface to be cooled and the heat transfer coefficient of the surface to be cooled.
FIG. 6 is a diagram showing secondary cooling of a slab in a general continuous casting machine.
FIG. 7 is a view showing a production line for a general alloyed hot-dip galvanized steel sheet.
8 is a diagram showing an example of a cooling nozzle group disposed downstream of the alloying furnace shown in FIG.
FIG. 9 is a diagram showing a temperature change of a steel material as a result of carrying out the steel material cooling method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Nozzle 3 Mixed refrigerant 4 Ladle 5 Tundish 6 Secondary cooling nozzle 7 Pinch roll 8 Slab 9 Plating bath 10 Snout 11 Sink roll 12 Support roll 13 Wiping nozzle 14 Alloying furnace 15 Blower 16 Plating bath 17 Air

Claims (3)

高温の鋼材に、空気と水の混合冷媒を噴霧し、該鋼材を常温まで冷却するに際し、
前記水の水滴径を、被冷却面温度>200℃の時は、最大粒径が100μm超えとし、200℃≧被冷却面温度≧50℃の時は、最大粒径が100μm以下とすると共に、最大粒径の水滴の被冷却面における衝突速度をその破壊衝突速度超えとして前記噴霧を行い被冷却面温度が50℃未満では空気のみで冷却することを特徴とする鋼材の冷却方法。
When spraying a mixed refrigerant of air and water on high-temperature steel and cooling the steel to room temperature,
When the water droplet diameter is the surface temperature to be cooled> 200 ° C., the maximum particle size exceeds 100 μm, and when 200 ° C. ≧ the surface temperature to be cooled ≧ 50 ° C., the maximum particle size is 100 μm or less, performs the spray collision speed in the surface to be cooled of water droplets maximum particle size as exceeding the breaking impact speed, cooling method of steel, characterized in that the cooling only air in the surface to be cooled temperature is less than 50 ° C..
前記混合冷媒を別途に圧縮空気で加速することを特徴とする請求項1記載の鋼材の冷却方法。 The method for cooling a steel material according to claim 1, wherein the mixed refrigerant is separately accelerated with compressed air . 前記鋼材が、製造ラインを鉛直方向に走行中の鋼板あるいは鋼帯であることを特徴とする請求項1又は2記載の鋼材の冷却方法。 The method for cooling a steel material according to claim 1 or 2 , wherein the steel material is a steel plate or a steel strip traveling in a vertical direction on a production line .
JP2000082119A 2000-03-23 2000-03-23 Steel cooling method Expired - Fee Related JP4507341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082119A JP4507341B2 (en) 2000-03-23 2000-03-23 Steel cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082119A JP4507341B2 (en) 2000-03-23 2000-03-23 Steel cooling method

Publications (2)

Publication Number Publication Date
JP2001262220A JP2001262220A (en) 2001-09-26
JP4507341B2 true JP4507341B2 (en) 2010-07-21

Family

ID=18598965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082119A Expired - Fee Related JP4507341B2 (en) 2000-03-23 2000-03-23 Steel cooling method

Country Status (1)

Country Link
JP (1) JP4507341B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102113B2 (en) * 2002-06-06 2008-06-18 新日本製鐵株式会社 Cooling method in continuous annealing line of steel strip
JP4760303B2 (en) * 2005-10-28 2011-08-31 Jfeスチール株式会社 Secondary cooling method for continuous cast slabs
JP4998712B2 (en) * 2007-03-15 2012-08-15 Jfeスチール株式会社 Cooling method for continuous cast slab
JP5428499B2 (en) * 2009-04-28 2014-02-26 Jfeスチール株式会社 Secondary cooling method for continuous cast slabs with two-fluid mist spray nozzle
JP5588661B2 (en) 2009-12-11 2014-09-10 株式会社Ihi Mist cooling device and heat treatment device
JP6148447B2 (en) * 2012-09-10 2017-06-14 新日鐵住金株式会社 Secondary cooling method for continuous casting
JP6079522B2 (en) * 2013-09-13 2017-02-15 Jfeスチール株式会社 Steel plate cooling device and steel plate cooling method
DE112017001506T5 (en) * 2016-03-23 2019-01-03 Ihi Corporation Cooling device and heat treatment device
JP2019147087A (en) * 2018-02-27 2019-09-05 Jfeスチール株式会社 Mist nozzle spray type cooling method and cooling device
JP7444149B2 (en) * 2020-12-01 2024-03-06 Jfeスチール株式会社 Cooling method and cooling device for coiled hot rolled steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000633A1 (en) * 1997-06-30 1999-01-07 Kawasaki Steel Corporation Method and apparatus for cooling heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000633A1 (en) * 1997-06-30 1999-01-07 Kawasaki Steel Corporation Method and apparatus for cooling heating furnace

Also Published As

Publication number Publication date
JP2001262220A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP2647198B2 (en) Method and apparatus for cooling an object
JP4507341B2 (en) Steel cooling method
KR19980702237A (en) Primary cooling method in continuous annealing of steel strip
KR100432093B1 (en) Strip casting
WO2002081760A1 (en) Rapid cooling device for steel band in continuous annealing equipment
CN114126782A (en) Secondary cooling method and secondary cooling device for continuous casting of cast piece
JP3765535B2 (en) Continuous casting method of aluminum ingot
JPH042338B2 (en)
JPH09141322A (en) Method and device for removing cooling after on steel strip
CA2218781C (en) Process and device for cooling an article
US7073564B2 (en) System for homogenizing a molten metal film
JP2964905B2 (en) Method and apparatus for cooling hot-dip coated steel sheet
JP2004162167A (en) Cooling unit for steel strip
JPH07178526A (en) Continuous casting method anf apparatus therefor
JPS6326248A (en) Method and device for atomizing casting
JPH04319057A (en) Secondary cooling method and cooling nozzle for continuously cast slab
JPH0740517Y2 (en) Steel plate cooling system
JP3905487B2 (en) Method and apparatus for cooling hot-dip galvanized steel strip
JPH11285723A (en) Method for uniformly cooling thin steel plate
JP3546300B2 (en) H-beam cooling method
JPS638752Y2 (en)
JP2000119757A (en) Method for cooling steel strip in continuous annealing
JPH07290136A (en) Method and device for cooling wide flange shape
JP3902568B2 (en) Top surface cooling method for hot rolled steel sheet
JPH079100A (en) Secondary cooling method in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100208

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees