JP4505906B2 - Photocatalyst sheet - Google Patents

Photocatalyst sheet Download PDF

Info

Publication number
JP4505906B2
JP4505906B2 JP33591399A JP33591399A JP4505906B2 JP 4505906 B2 JP4505906 B2 JP 4505906B2 JP 33591399 A JP33591399 A JP 33591399A JP 33591399 A JP33591399 A JP 33591399A JP 4505906 B2 JP4505906 B2 JP 4505906B2
Authority
JP
Japan
Prior art keywords
fiber
titania
fibers
sheet
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33591399A
Other languages
Japanese (ja)
Other versions
JP2001205106A (en
Inventor
宏信 小池
泰行 沖
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33591399A priority Critical patent/JP4505906B2/en
Publication of JP2001205106A publication Critical patent/JP2001205106A/en
Application granted granted Critical
Publication of JP4505906B2 publication Critical patent/JP4505906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Paper (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光触媒シートに関する。特に汚染河川や湖沼の清浄化、染色排水の脱色、上水及び排水の処理等に好適に用いられる光触媒シートに関する。
【0002】
【従来の技術】
半導体に特定波長の光を照射すると、強い還元作用を持つ電子と強い酸化作用を持つ正孔が生成することが知られ、半導体に接触した分子種を酸化還元作用(光触媒作用)により分解できることは公知である。このような光触媒作用を利用することによって、大気中NOxの分解、居住空間や作業空間での悪臭物質、有害物質及びカビ等の分解除去、水中の有機溶剤、農薬、界面活性剤等の環境汚染物質の分解除去等有害物質処理を行うことが検討されている。
【0003】
このような光触媒作用を有する物質として、チタニア(酸化チタン)が着目されている。しかしながら、従来、入手可能なチタニアは粒子であったため、上述の分解除去等に適用した場合、チタニア粒子が飛散、流出する問題があった。
【0004】
チタニア粒子の飛散や流出を防止するために、チタニア粒子を十分大きな基体上に固定化させる方法、例えば、チタニア粒子とフッ素系ポリマーとの混合物を積層、圧着する方法(特開平4−284851号公報)、チタニア粒子をフッ素系ポリマーに熱融着する方法(特開平4−334552号公報)、基材上への接着剤として難分解性結着剤を用いる方法(特開平7−171408号公報)等が提案されている。
【0005】
また、チタニア粒子に限らず基材上にチタニアを接着させる方法としては、チタニアゾルを基材にコーティングした後、熱処理して基材上にチタニア薄膜を形成させる方法(特開平7−100378号公報)、ガラス繊維からなる織布にチタニアをコーティングさせる方法(特開平6−320010号公報)等が提案されている。
【0006】
以上のように、チタニア粒子等チタニアを基材上に固定化させる方法として種々提案されているが、特開平4−284851号公報、特開平4−334552号公報、特開平7−171408号公報記載の方法等は接着方法が特殊な方法であり、また、特開平7−100378号公報、特開平6−320010号公報記載の方法等は、分解除去等に適用した時に接着剤や基材が劣化し、チタニアが脱落して飛散、流出する問題があり、水処理等へのチタニア光触媒の適用が制限されていた。
【0007】
本発明者等は以前にチタニアの固定化に伴う上記問題点を解決するために、特別な固定化の為の操作を必要としない、それ自身が光触媒作用を有するチタニア質繊維を見い出し、該チタニア繊維を織物等に加工した光触媒体を提案した(特開平9−276705号公報)。
【0008】
しかしながら、光触媒体を加工し得られた織物等は、長期間の使用におけるチタニアの流出等といったチタニアの固定化に伴う問題点は解決されているものの、柔軟性が十分でなく、有害物質分解装置等へ巻装することが困難であるため、その適用は制限されていた。
【0009】
【発明が解決しようとする課題】
本発明の課題は、NOxや悪臭物質、有害物質の分解除去、汚染河川や湖沼の清浄化、染色排水の脱色、排水処理、上水処理など、空気と水の浄化に用いることのできる光触媒シートにおいて、前述したような光触媒粒子の担持、固定化に伴う問題点がなく、かつ、柔軟性を有する光触媒シートを提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討した結果、基材に光触媒粒子を担持、固定化するのではなく、それ自身が光触媒機能を有するチタニア質繊維と、特定の繊維とを用いてなる光触媒シートが、光触媒粒子の脱落といった問題がなく、さらに実用上十分な強度、柔軟性を有する優れた光触媒シートとなることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明は、表面が平滑であり、繊維長が50μm以上であるチタニア質繊維と、植物繊維、合成樹脂繊維、シリコーン系繊維、フッ素系繊維、ガラス繊維、アルミナ繊維及び金属繊維からなる群より選ばれた少なくとも1種である繊維を用いてなる光触媒シートを提供することにある。
【0012】
【発明の実施の形態】
本発明の光触媒シートに用いられるチタニア質繊維は、表面が平滑であり、繊維長が50μm以上であることを特徴とする。
【0013】
表面が平滑であるチタニア質繊維を用いることにより、柔軟性を有し、十分な光触媒性能を有する光触媒シートが得られる。理由は詳らかではないが、表面が平滑であるチタニア質繊維は、光触媒シートの製作時に於いて分散性が良好であり、チタニア質繊維が均一分散した光触媒シートが得られている為と考えられる。また、光触媒シートの巻き付け等加工時に於いては、樹脂繊維等の網目構造中で、剛性が高く柔軟性が低いチタニア質繊維が滑ることにより、光触媒シートに柔軟性を付与しているものと考えられる。勿論、従来知られた粒子を担持して得られた表面に凸部のあるチタニア質繊維と異なり、粒子の脱落等がなく、光触媒性能が低下しないことも影響していると考えられる。
【0014】
本発明において、表面が平滑であるとは、前記効果が得られる程度に表面が平滑であればよく、例えば、ガラス繊維にチタニア粒子を担持して得られる繊維に見られる様な凸部が実質的に無いものである。具体例としては、チタニア質繊維の繊維部位(繊維部位の長さが平均繊維径の約10倍の長さである。)に存在する凸部の個数(凸部の高さが平均繊維径の約30%以上の高さである。)が1ヶ未満であり、好ましくは該繊維部位に存在する凸部の個数(凸部の高さが平均繊維径の約10%以上の高さである。)が1ヶ未満である。尚、凸部の個数は、繊維5本の凸部の平均個数で示し、平均繊維径は凸部の無いところを測定し求めた。チタニア質繊維の繊維部位に存在する凸部の個数が1ヶを超える場合には、柔軟性を有し、十分な光触媒性能を有する光触媒シートが得られない場合がある。
【0015】
前記チタニア質繊維の繊維長は50μm以上であり、好ましくは100μm以上である。繊維長が50μmより小さい場合、光触媒シートからチタニア質繊維が脱落するため、十分な光触媒性能を有する光触媒シートを得ることが困難となる。
【0016】
本発明の光触媒シートにおいて、チタニア質繊維の目付けは、光触媒シートの製造方法、照射される光の強度等により異なり一義的でないが、通常、約1〜約500g/m2、好ましくは約10〜約500g/m2である。前記範囲を外れる場合、十分な光触媒性能を有する光触媒シートが得られない場合がある。理由は詳らかではないが、目付けが約1g/m2より少ない場合は光触媒シートに照射される励起光の一部がチタニア質繊維に当たらないことから、十分に励起光を利用することできなくなる傾向にあり、500g/m2より多い場合は光触媒シートに照射される励起光が、他のチタニア質繊維により遮られ、励起光が到達しないチタニア質繊維が増加する傾向にあることから、十分な光触媒性能を有する光触媒シートが得られないと考えられる。
【0017】
また、前記チタニア質繊維の結晶形は、高い光触媒活性が得られることから、アナターゼが好ましい。また、前記チタニア質繊維のBET比表面積は、通常、約10m2/g以上、好ましくは約30m2/g以上であり、平均繊維径は、通常、約3μm〜約100μm、好ましくは約5μm〜約50μm、さらに好ましくは約8μm〜約20μmである。BET比表面積が約10m2/gより低い場合には、十分な光触媒活性が得られない場合がある。平均繊維径が前記範囲を外れる場合には、本発明の光触媒シートの製造が困難になる場合がある。
【0018】
本発明に用いるチタニア質連続繊維の製造方法としては、例えば、ポリメタノキサン(ポリチタノキサン)を含む液を紡糸して焼成する方法(例えば、特開昭49−124336号公報、特開昭60−215815号公報、特開平9−276705号公報)、ゾルーゲル法による方法(例えば、特開昭62−223323号公報)があり、好ましくはポリメタノキサン(ポリチタノキサン)とエチルシリケート等珪素化合物とを含む液を紡糸して焼成する方法等が挙げられる。
【0019】
本発明は光触媒シートは、前記チタニア質繊維と、植物繊維、合成樹脂繊維、無機繊維及び金属繊維からなる群より選ばれた少なくとも1種である繊維(以下、単に繊維と称する。)、好ましくはチタニア質繊維より剛性の低い前記繊維を用いてなることを特徴とする。
【0020】
植物繊維の具体例としては、木材繊維(針葉樹材及び広葉樹材から得られるクラフトパルプ、化学パルプ、機械パルプ等)、植物系非木材繊維、再生繊維(レーヨン等)、天然物加工繊維(セルロース誘導体繊維等)が挙げられる。
【0021】
合成樹脂繊維の具体例としては、熱可塑性樹脂繊維(オレフィン系樹脂繊維、ポリエステル樹脂繊維、酢酸ビニル共重合体樹脂繊維、ナイロン等のポリアミド系樹脂繊維、アクリル樹脂繊維、ポリビニルアルコール系樹脂繊維、ジエン系樹脂繊維及びポリウレタン系樹脂繊維等)、熱硬化性樹脂繊維(フェノール樹脂繊維、フラン樹脂繊維、尿素樹脂繊維、メラミン樹脂繊維、アニリン樹脂繊維、不飽和ポリエステル樹脂繊維、アルキド樹脂繊維、エポキシ樹脂繊維等)が挙げられる。
【0022】
無機繊維の具体例としては、シリコーン系繊維、フッ素系繊維等、各種ガラス繊維、アルミナ繊維等が挙げられ、金属繊維の具体例としては、ステンレスウール等が挙げられる。
【0023】
繊維の目付けは、必要な光触媒シートの柔軟性、光触媒性能を得るために適宜選択すればよく、通常、チタニア質繊維に対する体積比として約0.1〜約50、好ましくは約0.1〜約5である。前記繊維の目付けが約0.1より小さい場合、十分な柔軟性を有する光触媒シートを得ることが困難になる場合があり、約50より大きい場合、柔軟性を有する光触媒シートは得られるものの、前記繊維により励起光が遮断されるためか、十分な光触媒性能を有する光触媒シートを得ることが困難になる。
【0024】
本発明の光触媒シートの製造方法としては、例えば、チタニア質繊維と繊維とを水に分散させ抄紙する法、チタニア質繊維と繊維とを樹脂接着させるレジンボンド法、チタニア質繊維と繊維とを針により交錯させるニードルパンチ法、チタニア質繊維と繊維とを糸により編み上げるステッチボンド法、チタニア質繊維と繊維とを熱接着させるサーマルボンド法、チタニア質繊維と繊維とに高圧水を噴射して繊維同士を交絡させる水流交絡法等が挙げられる。光触媒シートを水中で用いる場合には、特に、チタニア質繊維と繊維とを樹脂接着させるレジンボンド法、チタニア質繊維と繊維とを熱接着させるサーマルボンド法等が推奨される。
【0025】
光触媒シートの製造方法の具体例としては、チタニア質繊維、ポリエステル等樹脂繊維及びポリエチレングリコール等結合剤を混合し、シートに成形した後、熱接着させる方法等が挙げられる。
【0026】
本発明の光触媒シートは、光触媒機能を有するチタニア質繊維と繊維とを用いているため、チタニア繊維単独で構成される光触媒シートに比べて柔軟性にすぐれたものである。勿論、本発明の光触媒シートは触媒粒子を用いていないので、空気中または水中での使用に際して、粒子の飛散や脱落がなく長期間安定的に光触媒性能を有するものである。
【0027】
本発明の光触媒シートの応用例としては、汚染河川や湖沼の清浄化、染色排水の脱色、上水及び排水の処理等に適用する場合の他、気体の処理として、例えば、空気清浄器のフィルター素材、障子紙、襖紙、壁紙、カーテン、換気扇カバー等が挙げられる。
【0028】
【実施例】
以下、本発明を実施例に基づき更に詳細に説明するが、本発明はかかる実施例により限定されるものではない。尚、チタニア質繊維の表面の平滑性の測定は以下の方法で行った。
チタニア質繊維の表面の平滑性:
チタニア質繊維を走査型電子顕微鏡により撮影し、無作為に選んだ繊維5本の表面を調べた。各チタニア質繊維について、繊維部位(繊維部位の長さが平均繊維径の10倍の長さである。)を無作為に選び、該繊維部位に存在する高さが平均繊維径の30%以上の高さである凸部の個数及び高さが平均繊維径の10%以上の高さである凸部の個数を測定し、各々の繊維5本の平均個数を求めた。
【0029】
実施例1
チタンテトライソプロポキシド1モルをテトラヒドロフランに溶解させ、1.5モルの水で部分加水分解して、ポリチタノキサンを得た。これにテトラエトキシシランの部分加水分解物であるエチルシリケートを加えた後、濃縮して紡糸液を調製した。得られた紡糸液を孔径50μmの紡糸口金より押し出し、70m/分の速度で巻き取り、前駆体連続繊維を得た。得られた前駆体連続繊維を温度85℃、相対湿度95%の雰囲気に15時間放置後、900℃で焼成してチタニア質連続繊維を得た。得られたチタニア質連続繊維を切断して、長さが5mmであり、平均繊維径が17μmであり、シリカ含有量が15重量%であり、結晶形がアナターゼであるチタニア質繊維(電子顕微鏡写真を図1に示す。)を得た。得られたチタニア質繊維の表面の平滑性を測定した結果、平均繊維径の30%以上の凸部の個数は0ヶであり、10%以上の凸部の個数は0ヶであった。
【0030】
上記チタニア質繊維とポリエステル繊維(商品名:テピルス TA07N、繊度1.1d、長さ5mm、帝人株式会社製)とを体積比1:1の割合で、分子量400万のポリエチレングリコール(和光純薬工業株式会社製)0.005%を含有する水に添加しミキサーにより分散させて繊維分散液を得た。得られた繊維分散液を水で希釈した後、円網抄紙機を用いてシートを作製した。このシートを脱水後、230℃で熱プレスして光触媒シート(チタニア質繊維の目付けは100g/m2である)を得た。
【0031】
光触媒シートの柔軟性:
得られた光触媒シートを70mm×175mmに切り出し、6メッシュのSUS製金網を丸めて得られる円筒(外径55mm、高さ90mm)の外側に巻付け、光触媒部材を得た。前記光触媒シートは円筒に密接させることができるものであり、巻付け時に破断することもなかった。
【0032】
光触媒シートの光触媒性能:
パイレックス製ガラスセパラブル反応容器(内径9cm×長さ13cm)内に、得られた光触媒部材を配置し、前記光触媒部材の円筒の内側に、励起光源として、パイレックス製冷却管を有する100W高圧水銀ランプ(ウシオ電機株式会社製)を配置した。実質的に300nm以上の励起光を光触媒部材に照射する。
【0033】
フェノール濃度20ppmを含む水600mLを上記反応容器に入れ、空気を200mL/minで吹き込みながら、室温におけるフェノールの分解を行った。所定時間励起光を照射し、分解反応した後、反応液中のフェノール濃度をガスクロマトグラフ分析により測定した。励起光照射3時間後のフェノール濃度は1ppm以下であった。また、励起光照射4時間後の反応液について、芳香族に由来する吸収スペクトル(210nmおよび270nm)を測定した結果、吸収スペクトルは検出されず、フェノールが完全に分解したことを確認した。
【0034】
実施例2
実施例1に用いたと同じチタニア質繊維5重量部、アクリル繊維パルプ(東洋紡績株式会社製のアクリル繊維R−56Fをシングルリファイナーを用いて叩解したもの:濾水度310)20重量部、ポリエステル繊維(商品名:テピルス TJ04CN、繊度1.5d、長さ5mm、帝人株式会社製)10重量部を水中に分散させ、角型抄紙機を用いてシートを作製した。このシートを脱水後、110℃で熱プレスして光触媒シート(チタニア質繊維の目付けは5g/m2である)を得た。
【0035】
光触媒シートの柔軟性:
得られた光触媒シートを30mm×100mmに切り出し、成形加工し、円筒状光触媒シートを得た。前記光触媒シートは円筒状に成形加工するに際し、破断することはなかった。
【0036】
光触媒シートの光触媒性能:
5Lのパイレックス製ガラスセパラブル反応容器(容量:6.3L)内に、励起光源として6Wのブラックライトを配置し、ブラックライトから1cmの距離に前記円筒状光触媒シートを配置させた。反応容器内のガスを攪拌するために反応容器内にファンを配置した。
【0037】
反応容器内のアセトアルデヒド初期濃度が30ppmとなるように、反応容器内にアセトアルデヒド含有ガスを導入した後、ブラックライトを点灯した。反応容器内のアセトアルデヒド濃度をガスクロマトグラフにより測定し、濃度の時間変化を求めて光触媒シートの光触媒性能を調べた。その結果を表1に示す。
【0038】
実施例3
実施例2において、チタニア質繊維5重量部に変えてチタニア質繊維10重量部を用いた以外は実施例2と同様にして行い、光触媒シート(チタニア質繊維の目付けは10g/m2である)を得た。実施例2と同様にして前記光触媒シートの柔軟性及び光触媒性能を調べた。前記光触媒シートは円筒状に成形加工するに際し、破断することはなかった。光触媒性能の評価結果を表1に示す。
【0039】
実施例4
実施例2において、チタニア質繊維5重量部に変えてチタニア質繊維20重量部を用いた以外は実施例2と同様にして行い、光触媒シート(チタニア質繊維の目付けは20g/m2である)を得た。実施例2と同様にして前記光触媒シートの柔軟性及び光触媒性能を調べた。前記光触媒シートは円筒状に成形加工するに際し、破断することはなかった。光触媒性能の評価結果を表1に示す。
【0040】
比較例1
従来公知のチタニア質繊維として、ガラス繊維にチタニア粒子を担持し得られた繊維(電子顕微鏡写真を図2に示す。)の表面の平滑性を実施例1と同様にして測定した結果、平均繊維径の30%以上の凸部の個数は3ヶであり、10%以上の凸部の個数は8ヶであった。ガラス繊維にチタニア粒子を担持し得られた繊維はその表面が平滑でなく、該繊維を用いる場合には柔軟性を有し、十分な光触媒性能を有する光触媒シートを得ることができなかった。
【0041】
【表1】

Figure 0004505906
【0042】
【発明の効果】
以上説明したように、本発明の光触媒シートは、光触媒粒子の脱落がないといったチタニアの固定化に伴う問題点を解決しつつ、各種形状の有害物質処理装置に対応し得る柔軟性を有し、かつ汚染河川や湖沼の清浄化、染色排水の脱色、上水及び排水の処理等、及び居住空間や作業空間等での悪臭物質、有害物質の分解除去に適用する場合には十分な光触媒性能を有する光触媒シートである。
【図面の簡単な説明】
【図1】 本発明の光触媒シートに用いるチタニア質繊維の走査型電子顕微鏡写真。
【図2】 従来公知のチタニア質繊維の走査型電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic sheet. In particular, the present invention relates to a photocatalyst sheet that is suitably used for purification of contaminated rivers and lakes, decolorization of dyed wastewater, treatment of water and wastewater.
[0002]
[Prior art]
It is known that when a semiconductor is irradiated with light of a specific wavelength, electrons with a strong reducing action and holes with a strong oxidizing action are generated, and the molecular species in contact with the semiconductor can be decomposed by a redox action (photocatalytic action). It is known. By utilizing such photocatalytic action, decomposition of NOx in the atmosphere, decomposition and removal of malodorous substances, harmful substances and molds in living spaces and working spaces, environmental pollution of organic solvents, agricultural chemicals, surfactants, etc. in water It is under consideration to treat harmful substances such as decomposition and removal of substances.
[0003]
As a substance having such a photocatalytic action, titania (titanium oxide) has attracted attention. However, since conventionally available titania is particles, when applied to the above-described decomposition and removal, there is a problem that the titania particles scatter and flow out.
[0004]
In order to prevent scattering and outflow of titania particles, a method of fixing titania particles on a sufficiently large substrate, for example, a method of laminating and pressing a mixture of titania particles and a fluorine-based polymer (Japanese Patent Laid-Open No. Hei 4-284851) ), A method of thermally fusing titania particles to a fluorine-based polymer (Japanese Patent Laid-Open No. 4-334552), a method of using a hardly decomposable binder as an adhesive on a substrate (Japanese Patent Laid-Open No. 7-171408) Etc. have been proposed.
[0005]
In addition, as a method of adhering titania on a substrate, not limited to titania particles, a method of forming a titania thin film on a substrate by coating titania sol on the substrate and then heat-treating (JP-A-7-100308) A method of coating a woven fabric made of glass fiber with titania (JP-A-6-320010) has been proposed.
[0006]
As described above, various methods for fixing titania such as titania particles on a substrate have been proposed. However, JP-A-4-284851, JP-A-4-334552, JP-A-7-171408 are described. These methods are special methods for bonding, and the methods described in JP-A-7-1000037 and JP-A-6-320010 are deteriorated when the adhesive and the base material are deteriorated when applied to decomposition and removal. However, there is a problem that titania falls off and scatters and flows out, which limits the application of titania photocatalysts to water treatment and the like.
[0007]
In order to solve the above-mentioned problems associated with the titania immobilization, the present inventors have previously found a titania fiber having a photocatalytic action that does not require any special immobilization operation. The photocatalyst which processed the fiber into the textile fabric etc. was proposed (Unexamined-Japanese-Patent No. 9-276705).
[0008]
However, the fabric obtained by processing the photocatalyst body has solved the problems associated with the fixation of titania, such as the outflow of titania during long-term use, but it is not flexible enough to decompose harmful substances. Since it is difficult to wind it around, the application has been limited.
[0009]
[Problems to be solved by the invention]
The subject of this invention is the photocatalyst sheet which can be used for purification | cleaning of air and water, such as NOx, a malodorous substance, decomposition | disassembly removal of a harmful substance, purification of a polluted river and a lake, decolorization of dyeing drainage, drainage treatment, and water treatment Is to provide a flexible photocatalyst sheet that is free from the problems associated with supporting and fixing the photocatalyst particles as described above.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor does not support and immobilize the photocatalyst particles on the base material, but uses a titania fiber having a photocatalytic function itself and a specific fiber. The present photocatalyst sheet was found to be an excellent photocatalyst sheet having no problem of dropping off photocatalyst particles and having practically sufficient strength and flexibility, and the present invention was completed.
[0011]
That is, the present invention is a group comprising a titania fiber having a smooth surface and a fiber length of 50 μm or more, and a plant fiber, a synthetic resin fiber, a silicone fiber, a fluorine fiber, a glass fiber, an alumina fiber, and a metal fiber. An object of the present invention is to provide a photocatalyst sheet using at least one kind of selected fiber.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The titania fiber used in the photocatalyst sheet of the present invention is characterized in that the surface is smooth and the fiber length is 50 μm or more.
[0013]
By using titania fiber having a smooth surface, a photocatalytic sheet having flexibility and sufficient photocatalytic performance can be obtained. The reason is not clear, but it is considered that the titania fiber having a smooth surface has good dispersibility in the production of the photocatalyst sheet, and a photocatalyst sheet in which the titania fiber is uniformly dispersed is obtained. In addition, when processing the photocatalyst sheet, it is considered that the photocatalyst sheet is given flexibility by sliding the highly rigid and low flexibility titania fiber in the network structure such as resin fibers. It is done. Of course, unlike the titania fiber having convex portions on the surface obtained by supporting the conventionally known particles, it is considered that there is no dropout of the particles and the photocatalytic performance does not deteriorate.
[0014]
In the present invention, the surface is smooth as long as the surface is smooth enough to obtain the above-mentioned effect. For example, the convex portion as seen in the fiber obtained by supporting titania particles on the glass fiber is substantially present. There is nothing. As a specific example, the number of protrusions (the height of the protrusions is the average fiber diameter) in the fiber portion of the titania fiber (the length of the fiber portion is about 10 times the average fiber diameter). Less than one), preferably the number of convex portions present in the fiber part (the height of the convex portions is a height of about 10% or more of the average fiber diameter). .) Is less than one. In addition, the number of convex parts was shown by the average number of convex parts of five fibers, and the average fiber diameter was determined by measuring the places where there were no convex parts. When the number of the convex portions existing in the fiber portion of the titania fiber exceeds one, a photocatalytic sheet having flexibility and sufficient photocatalytic performance may not be obtained.
[0015]
The fiber length of the titania fiber is 50 μm or more, preferably 100 μm or more. When the fiber length is smaller than 50 μm, the titania fiber falls off from the photocatalyst sheet, and it becomes difficult to obtain a photocatalyst sheet having sufficient photocatalytic performance.
[0016]
In the photocatalyst sheet of the present invention, the basis weight of the titania fiber varies depending on the production method of the photocatalyst sheet, the intensity of irradiated light, etc., but is not unambiguous, but is usually about 1 to about 500 g / m 2 , preferably about 10 to About 500 g / m 2 . When outside the above range, a photocatalytic sheet having sufficient photocatalytic performance may not be obtained. The reason is not clear, but when the basis weight is less than about 1 g / m 2, a part of the excitation light irradiated to the photocatalyst sheet does not hit the titania fiber, so that the excitation light cannot be used sufficiently. In the case of more than 500 g / m 2, the excitation light irradiated to the photocatalyst sheet tends to be blocked by other titania fibers, and the titania fibers that do not reach the excitation light tend to increase. It is considered that a photocatalytic sheet having performance cannot be obtained.
[0017]
The crystal form of the titania fiber is preferably anatase because high photocatalytic activity can be obtained. The BET specific surface area of the titania fiber is usually about 10 m 2 / g or more, preferably about 30 m 2 / g or more, and the average fiber diameter is usually about 3 μm to about 100 μm, preferably about 5 μm to The thickness is about 50 μm, more preferably about 8 μm to about 20 μm. When the BET specific surface area is lower than about 10 m 2 / g, sufficient photocatalytic activity may not be obtained. When the average fiber diameter is out of the above range, it may be difficult to produce the photocatalyst sheet of the present invention.
[0018]
As a method for producing the titania continuous fiber used in the present invention, for example, a method of spinning and baking a liquid containing polymethanoxane (polytitanoxane) (for example, JP-A-49-124336 and JP-A-60-215815). JP-A-9-276705) and sol-gel methods (for example, JP-A-62-223323), preferably spinning and baking a liquid containing polymethanoxane (polytitanoxane) and a silicon compound such as ethyl silicate. And the like.
[0019]
In the present invention, the photocatalyst sheet is at least one fiber selected from the group consisting of the titania fiber, plant fiber, synthetic resin fiber, inorganic fiber and metal fiber (hereinafter simply referred to as fiber), preferably. It is characterized by using the fiber having lower rigidity than the titania fiber.
[0020]
Specific examples of plant fibers include wood fibers (craft pulp, chemical pulp, mechanical pulp, etc. obtained from coniferous and hardwood materials), plant-based non-wood fibers, regenerated fibers (rayon, etc.), natural product processed fibers (cellulose derivatives). Fiber etc.).
[0021]
Specific examples of synthetic resin fibers include thermoplastic resin fibers (olefin resin fibers, polyester resin fibers, vinyl acetate copolymer resin fibers, polyamide resin fibers such as nylon, acrylic resin fibers, polyvinyl alcohol resin fibers, and dienes. Resin fibers and polyurethane resin fibers), thermosetting resin fibers (phenol resin fibers, furan resin fibers, urea resin fibers, melamine resin fibers, aniline resin fibers, unsaturated polyester resin fibers, alkyd resin fibers, epoxy resin fibers) Etc.).
[0022]
Specific examples of inorganic fibers include silicone-based fibers, fluorine-based fibers, various glass fibers, alumina fibers, and the like, and specific examples of metal fibers include stainless steel wool.
[0023]
The basis weight of the fiber may be selected as appropriate in order to obtain the required flexibility and photocatalytic performance of the photocatalyst sheet. Usually, the volume ratio to the titania fiber is about 0.1 to about 50, preferably about 0.1 to about 5. When the basis weight of the fibers is less than about 0.1, it may be difficult to obtain a photocatalyst sheet having sufficient flexibility. When the basis weight is greater than about 50, a flexible photocatalyst sheet can be obtained. It is difficult to obtain a photocatalyst sheet having sufficient photocatalytic performance because the excitation light is blocked by the fibers.
[0024]
Examples of the method for producing the photocatalyst sheet of the present invention include a method of making paper by dispersing titania fibers and fibers in water, a resin bond method in which titania fibers and fibers are resin-bonded, and titania fibers and fibers as needles. Needle punch method that crosses by, stitch bond method that knits titania fiber and fiber with yarn, thermal bond method that thermally bonds titania fiber and fiber, high pressure water is injected onto titania fiber and fiber, and the fibers The water entanglement method etc. which entangle it. When the photocatalytic sheet is used in water, a resin bond method in which titania fibers and fibers are bonded by resin, a thermal bond method in which titania fibers and fibers are thermally bonded, and the like are particularly recommended.
[0025]
Specific examples of the method for producing the photocatalyst sheet include a method in which titania fiber, resin fiber such as polyester, and binder such as polyethylene glycol are mixed, molded into a sheet, and then thermally bonded.
[0026]
Since the photocatalyst sheet of the present invention uses titania fibers and fibers having a photocatalyst function, the photocatalyst sheet is superior in flexibility as compared to a photocatalyst sheet composed of titania fibers alone. Of course, since the photocatalyst sheet of the present invention does not use catalyst particles, when used in air or water, the photocatalyst sheet does not scatter or drop out and has stable photocatalytic performance for a long period of time.
[0027]
As an application example of the photocatalyst sheet of the present invention, in addition to the case where it is applied to the purification of contaminated rivers and lakes, the decolorization of dyed wastewater, the treatment of clean water and wastewater, etc. Materials, shoji paper, paper, wallpaper, curtains, ventilation fan covers, etc.
[0028]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by this Example. The surface smoothness of the titania fiber was measured by the following method.
Surface smoothness of titania fiber:
Titania fibers were photographed with a scanning electron microscope and the surfaces of five randomly selected fibers were examined. For each titania fiber, a fiber part (the length of the fiber part is 10 times the average fiber diameter) is randomly selected, and the height existing in the fiber part is 30% or more of the average fiber diameter. The number of protrusions and the number of protrusions whose height is 10% or more of the average fiber diameter was measured, and the average number of five fibers was obtained.
[0029]
Example 1
1 mol of titanium tetraisopropoxide was dissolved in tetrahydrofuran and partially hydrolyzed with 1.5 mol of water to obtain polytitanoxane. To this was added ethyl silicate which is a partial hydrolyzate of tetraethoxysilane, and then concentrated to prepare a spinning solution. The obtained spinning solution was extruded from a spinneret having a pore diameter of 50 μm and wound up at a speed of 70 m / min to obtain a precursor continuous fiber. The obtained precursor continuous fiber was allowed to stand in an atmosphere having a temperature of 85 ° C. and a relative humidity of 95% for 15 hours and then fired at 900 ° C. to obtain a titania-based continuous fiber. The obtained titania continuous fiber was cut to have a length of 5 mm, an average fiber diameter of 17 μm, a silica content of 15% by weight, and a crystalline form of anatase (an electron micrograph) Is shown in FIG. As a result of measuring the smoothness of the surface of the obtained titania fiber, the number of protrusions of 30% or more of the average fiber diameter was 0, and the number of protrusions of 10% or more was 0.
[0030]
Polyethylene glycol (Wako Pure Chemical Industries, Ltd.) having a molecular weight of 4 million with the titania fiber and polyester fiber (trade name: Tepyrus TA07N, fineness 1.1d, length 5 mm, manufactured by Teijin Ltd.) in a volume ratio of 1: 1. (Made by Co., Ltd.) was added to water containing 0.005% and dispersed by a mixer to obtain a fiber dispersion. After the obtained fiber dispersion was diluted with water, a sheet was produced using a circular net paper machine. The sheet was dehydrated and hot-pressed at 230 ° C. to obtain a photocatalytic sheet (weight of titania fiber is 100 g / m 2 ).
[0031]
Photocatalytic sheet flexibility:
The obtained photocatalyst sheet was cut into a size of 70 mm × 175 mm, and wound around the outside of a cylinder (outer diameter 55 mm, height 90 mm) obtained by rounding a 6-mesh SUS metal mesh to obtain a photocatalyst member. The photocatalyst sheet can be brought into close contact with the cylinder and was not broken during winding.
[0032]
Photocatalytic performance of photocatalytic sheet:
A 100 W high pressure mercury lamp having a Pyrex glass separable reaction vessel (inner diameter 9 cm × length 13 cm) having a Pyrex cooling tube as an excitation light source inside the cylinder of the photocatalyst member. (USHIO INC.) Was placed. The photocatalyst member is irradiated with excitation light of substantially 300 nm or more.
[0033]
600 mL of water containing a phenol concentration of 20 ppm was put in the reaction vessel, and phenol was decomposed at room temperature while blowing air at 200 mL / min. After irradiating with excitation light for a predetermined time to cause decomposition reaction, the phenol concentration in the reaction solution was measured by gas chromatographic analysis. The phenol concentration after 3 hours of excitation light irradiation was 1 ppm or less. Moreover, about the reaction liquid 4 hours after excitation light irradiation, as a result of measuring the absorption spectrum (210 nm and 270 nm) derived from an aromatic, the absorption spectrum was not detected but it confirmed that phenol decomposed | disassembled completely.
[0034]
Example 2
5 parts by weight of the same titania fiber used in Example 1, 20 parts by weight of acrylic fiber pulp (Acrylic fiber R-56F manufactured by Toyobo Co., Ltd., beaten using a single refiner: freeness 310), polyester fiber (Product name: Tepyrus TJ04CN, fineness 1.5d, length 5 mm, manufactured by Teijin Ltd.) 10 parts by weight were dispersed in water, and a sheet was prepared using a square paper machine. The sheet was dehydrated and hot-pressed at 110 ° C. to obtain a photocatalyst sheet (titania fiber basis weight is 5 g / m 2 ).
[0035]
Photocatalytic sheet flexibility:
The obtained photocatalyst sheet was cut out into 30 mm × 100 mm and molded to obtain a cylindrical photocatalyst sheet. The photocatalyst sheet was not broken when it was formed into a cylindrical shape.
[0036]
Photocatalytic performance of photocatalytic sheet:
In a 5 L Pyrex glass separable reaction vessel (capacity: 6.3 L), a 6 W black light was disposed as an excitation light source, and the cylindrical photocatalytic sheet was disposed at a distance of 1 cm from the black light. A fan was placed in the reaction vessel to stir the gas in the reaction vessel.
[0037]
After introducing the acetaldehyde-containing gas into the reaction vessel so that the initial concentration of acetaldehyde in the reaction vessel was 30 ppm, the black light was turned on. The concentration of acetaldehyde in the reaction vessel was measured with a gas chromatograph, and the change in concentration with time was determined to examine the photocatalytic performance of the photocatalyst sheet. The results are shown in Table 1.
[0038]
Example 3
In Example 2, the same procedure as in Example 2 was performed except that 10 parts by weight of titania fiber was used instead of 5 parts by weight of titania fiber, and the photocatalytic sheet (weight of the titania fiber was 10 g / m 2 ). Got. The flexibility and photocatalytic performance of the photocatalyst sheet were examined in the same manner as in Example 2. The photocatalyst sheet was not broken when it was formed into a cylindrical shape. The evaluation results of the photocatalytic performance are shown in Table 1.
[0039]
Example 4
In Example 2, the same procedure as in Example 2 was carried out except that 20 parts by weight of titania fiber was used instead of 5 parts by weight of titania fiber, and the photocatalytic sheet (weight of the titania fiber was 20 g / m 2 ). Got. The flexibility and photocatalytic performance of the photocatalyst sheet were examined in the same manner as in Example 2. The photocatalyst sheet was not broken when it was formed into a cylindrical shape. The evaluation results of the photocatalytic performance are shown in Table 1.
[0040]
Comparative Example 1
As a conventionally known titania fiber, the surface smoothness of a fiber obtained by supporting titania particles on a glass fiber (an electron micrograph is shown in FIG. 2) was measured in the same manner as in Example 1. The number of protrusions having a diameter of 30% or more was 3, and the number of protrusions having a diameter of 10% or more was 8. Fibers obtained by supporting titania particles on glass fibers have a non-smooth surface, and when these fibers are used, a photocatalytic sheet having flexibility and sufficient photocatalytic performance could not be obtained.
[0041]
[Table 1]
Figure 0004505906
[0042]
【The invention's effect】
As described above, the photocatalyst sheet of the present invention has a flexibility that can be used for various types of harmful substance treatment apparatuses while solving the problems associated with the fixation of titania such that the photocatalyst particles do not fall off. And sufficient photocatalytic performance when applied to purification of contaminated rivers and lakes, decolorization of dyed wastewater, treatment of drinking water and wastewater, and decomposition and removal of odorous substances and harmful substances in living spaces and work spaces. It is the photocatalyst sheet which has.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph of titania fibers used in the photocatalyst sheet of the present invention.
FIG. 2 is a scanning electron micrograph of a conventionally known titania fiber.

Claims (3)

表面が平滑であり、繊維長が50μm以上であるチタニア質繊維と、植物繊維、合成樹脂繊維、シリコーン系繊維、フッ素系繊維、ガラス繊維、アルミナ繊維及び金属繊維からなる群より選ばれた少なくとも1種である繊維を用いてなる光触媒シート。  At least one selected from the group consisting of a titania fiber having a smooth surface and a fiber length of 50 μm or more, and a vegetable fiber, a synthetic resin fiber, a silicone fiber, a fluorine fiber, a glass fiber, an alumina fiber, and a metal fiber. A photocatalytic sheet using fibers as seeds. 前記チタニア質繊維の目付けが1〜500g/m2であることを特徴とする請求項1記載の光触媒シート。Photocatalyst sheet of claim 1, wherein the basis weight of the titania-fiber is characterized by a 1 to 500 g / m 2. 前記繊維の目付けがチタニア質繊維に対する体積比として0.1〜50であることを特徴とする請求項1または2記載の光触媒シート。  The photocatalytic sheet according to claim 1 or 2, wherein the basis weight of the fibers is 0.1 to 50 as a volume ratio with respect to titania fibers.
JP33591399A 1998-11-27 1999-11-26 Photocatalyst sheet Expired - Fee Related JP4505906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33591399A JP4505906B2 (en) 1998-11-27 1999-11-26 Photocatalyst sheet

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33729298 1998-11-27
JP32831999 1999-11-18
JP11-328319 1999-11-18
JP10-337292 1999-11-18
JP33591399A JP4505906B2 (en) 1998-11-27 1999-11-26 Photocatalyst sheet

Publications (2)

Publication Number Publication Date
JP2001205106A JP2001205106A (en) 2001-07-31
JP4505906B2 true JP4505906B2 (en) 2010-07-21

Family

ID=27340286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33591399A Expired - Fee Related JP4505906B2 (en) 1998-11-27 1999-11-26 Photocatalyst sheet

Country Status (1)

Country Link
JP (1) JP4505906B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324365A (en) * 1996-06-07 1997-12-16 Unitika Ltd Activated carbon-catalyst composite fiber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565847B2 (en) * 1973-04-05 1981-02-07
JPS5954644A (en) * 1982-09-17 1984-03-29 Norio Shimizu Composite fiber material and its manufacture
JPS60215815A (en) * 1984-04-10 1985-10-29 Sumitomo Chem Co Ltd Production of inorganic fiber
JPS62223323A (en) * 1986-03-20 1987-10-01 Central Glass Co Ltd Production of titanium oxide fiber
JPH02131908A (en) * 1988-11-12 1990-05-21 Kubota Ltd Reinforced reaction injection molding methods
JP3502413B2 (en) * 1993-05-15 2004-03-02 日本無機株式会社 Method for producing photocatalyst for treating organic harmful substances
JPH0753283A (en) * 1993-08-12 1995-02-28 Otsuka Chem Co Ltd Electrically conductive fiber and its production
JP3799653B2 (en) * 1996-04-11 2006-07-19 住友化学株式会社 Photocatalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324365A (en) * 1996-06-07 1997-12-16 Unitika Ltd Activated carbon-catalyst composite fiber

Also Published As

Publication number Publication date
JP2001205106A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP5102034B2 (en) Tungsten oxide photocatalyst, method for producing the same, and fiber fabric having deodorizing and antifouling functions
CN1345390A (en) Fiber structure having deodorizing or antibacterial property
CN109432825A (en) It is a kind of to pollute difunctional patterning porous nano-fibre material and its preparation method and application with water-oil separating and oil resistant
KR20070069165A (en) Fiber fabric having voc removing function
JP6857173B2 (en) Photocatalytic functional non-woven fabric and its manufacturing method
KR19990044159A (en) The photocatalyst sheet
CN108265345A (en) A kind of synthetic fibers with air-cleaning function and preparation method thereof
JPH11342310A (en) Functional electret filter and its production and air purifier
JP2007014851A (en) Porous product
JP4505906B2 (en) Photocatalyst sheet
JP2000073297A (en) Titanium oxide coating material composition and titanium oxide supporting sheet
JP2000129595A (en) Printing sheet supporting titanium oxide
KR102337038B1 (en) antimicrobial, deodorized titanium nonwoven manufacturing device, its manufacturing method and nonwoven
CN110449136A (en) The preparation method of atom level active site composite Nano catalysis fibre for indoor VOCs of degrading
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP2000225349A (en) Filter
JP4471409B2 (en) Titanium oxide coating composition, method for producing the same, and titanium oxide-carrying sheet
JP2002179970A (en) Photocatalyst-carrying printed matter
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter
JPH10234837A (en) Photoreactive harmful matter removing material
JP3440467B2 (en) Hazardous substance removal system
JP2000262903A (en) Photocatalyst carrier
JP3799653B2 (en) Photocatalyst
JP2002178459A (en) Photocatalyst bearing printed matter
JP2001170450A (en) Photocatalytic activated carbon sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees