JP4504989B2 - Variable optical attenuator - Google Patents

Variable optical attenuator Download PDF

Info

Publication number
JP4504989B2
JP4504989B2 JP2007071042A JP2007071042A JP4504989B2 JP 4504989 B2 JP4504989 B2 JP 4504989B2 JP 2007071042 A JP2007071042 A JP 2007071042A JP 2007071042 A JP2007071042 A JP 2007071042A JP 4504989 B2 JP4504989 B2 JP 4504989B2
Authority
JP
Japan
Prior art keywords
optical
refractive index
optical fiber
light
high power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007071042A
Other languages
Japanese (ja)
Other versions
JP2008233384A (en
Inventor
郁昭 田中
幾太郎 大串
裕司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007071042A priority Critical patent/JP4504989B2/en
Publication of JP2008233384A publication Critical patent/JP2008233384A/en
Application granted granted Critical
Publication of JP4504989B2 publication Critical patent/JP4504989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、1Wを超えるような高パワー光の光ファイバ伝送において、光レベルを適切に調整するための可変光減衰器に関するものである。   The present invention relates to a variable optical attenuator for appropriately adjusting an optical level in optical fiber transmission of high power light exceeding 1 W.

図5は従来の光減衰ファイバを用いた光減衰器を示す構成説明図である。図5において、1は光ファイバ、2は高パワー光、3は収納ケース、4は光減衰ファイバである。すなわち、1Wを超えるような高パワー光の光伝送システムにおいて、その高パワー光を光の状態で減衰させ、所要の光レベルに調節する方法として、光ファイバのコア内にリン(P)やコバルト(Co)等の不純物をドープした光減衰ファイバ4が用いられている(例えば、特許文献1参照。)。図5に示すように、光ファイバ1に接続された光減衰ファイバ4は収納ケース3内に収納され、前記光ファイバ1及び光減衰ファイバ4には高パワー光2が伝送される。前記光減衰ファイバ4は、通過する高パワー光2を光ファイバ長手方向に分布させた不純物によって散乱させ、その通過した長さや不純物の濃度に応じて所要の損失を作り出している。   FIG. 5 is an explanatory diagram showing a configuration of an optical attenuator using a conventional optical attenuating fiber. In FIG. 5, 1 is an optical fiber, 2 is high power light, 3 is a storage case, and 4 is an optical attenuating fiber. That is, in an optical transmission system of high power light exceeding 1 W, as a method for attenuating the high power light in the state of light and adjusting it to a required light level, phosphorus (P) or cobalt is contained in the core of the optical fiber. An optical attenuating fiber 4 doped with an impurity such as (Co) is used (for example, see Patent Document 1). As shown in FIG. 5, the optical attenuating fiber 4 connected to the optical fiber 1 is accommodated in the accommodating case 3, and the high power light 2 is transmitted to the optical fiber 1 and the optical attenuating fiber 4. The optical attenuating fiber 4 scatters the high-power light 2 passing therethrough by impurities distributed in the longitudinal direction of the optical fiber, and creates a required loss according to the length of the light passing through and the concentration of impurities.

図6は従来の光カプラを用いた光減衰器を示す構成説明図である。図6において、11は光ファイバ、12は高パワー光、13は収納ケース、14は1:10のような分岐比の大きい光カプラ、15はコアレスファイバである。図6に示すように、光ファイバ11には光カプラ14が複数個接続され、各光カプラ14にはコアレスファイバ15が接続される。前記各光カプラ14及びコアレスファイバ15は収納ケース内に収納され、光ファイバ11には高パワー光12が伝送される。すなわち、1:10のような分岐比の大きい光カプラを複数個接続して分配損を利用しながら光パワーを減衰させることも行われている。   FIG. 6 is an explanatory diagram showing a configuration of an optical attenuator using a conventional optical coupler. In FIG. 6, 11 is an optical fiber, 12 is high power light, 13 is a storage case, 14 is an optical coupler having a large branching ratio such as 1:10, and 15 is a coreless fiber. As shown in FIG. 6, a plurality of optical couplers 14 are connected to the optical fiber 11, and a coreless fiber 15 is connected to each optical coupler 14. Each of the optical couplers 14 and the coreless fiber 15 is housed in a housing case, and high power light 12 is transmitted to the optical fiber 11. That is, optical power is attenuated by connecting a plurality of optical couplers having a large branching ratio such as 1:10 and using distribution loss.

これら光減衰器の最大の欠点は、個々の光減衰器の損失値が固定化されているため、前記高パワー光を所要の光レベルに柔軟に調整できないということである。従って、所要の光レベルを得るためには、光伝送システムの受光特性や光線路の媒体損失に応じて前記固定光減衰器を選択する必要があった。   The greatest drawback of these optical attenuators is that the loss values of the individual optical attenuators are fixed, so that the high power light cannot be flexibly adjusted to the required optical level. Therefore, in order to obtain a required light level, it is necessary to select the fixed optical attenuator according to the light receiving characteristics of the optical transmission system and the medium loss of the optical line.

上記光減衰ファイバを用いた光減衰器の場合(図5参照)、長手方向を利用した減衰方法であることから、数m〜十数m長のファイバを収納ケース内に収容する必要があり、その構造もまた曲げ半径が小さ過ぎると大きな曲げ損失(漏洩光)が発生し光ケーブルや光コードの被覆を劣化させる恐れがあった。   In the case of the optical attenuator using the optical attenuating fiber (see FIG. 5), since it is an attenuation method using the longitudinal direction, it is necessary to accommodate a fiber having a length of several meters to several tens of meters in a storage case. If the bending radius of the structure is too small, a large bending loss (leakage light) is generated and there is a possibility that the coating of the optical cable or the optical cord is deteriorated.

また、上記光カプラを用いた光減衰器の場合(図6参照)は、分配損失を発生させるためのポートからの反射光を抑えると同時に、そのポート端から放射される光を減衰させるため、コアレスファイバ等によって光を分散させる構造が必要であった。なお、分散させた光によって生じた熱は収容ケース内の空気により吸収されるため、比熱の大きい空気においては温度低下に難点があることは言うまでもない。   Further, in the case of the optical attenuator using the optical coupler (see FIG. 6), the reflected light from the port for generating the distribution loss is suppressed, and at the same time, the light emitted from the port end is attenuated. A structure for dispersing light by using a coreless fiber or the like was necessary. In addition, since the heat generated by the dispersed light is absorbed by the air in the housing case, it goes without saying that there is a difficulty in lowering the temperature in air with a large specific heat.

特開平10-268153号公報JP 10-268153 A 首藤義人 他著 「電子情報通信学会論文誌」電子情報通信学会出版 2003年3月 Vol.J86−C No.3 p.252−261Yoshito Suto et al. “Journal of the Institute of Electronics, Information and Communication Engineers” published by IEICE, March 2003, Vol. J86-C No. 3 p. 252-261

上述したように、従来における高パワー光の光レベル調整では、光減衰ファイバや光カプラの損失値が固定されているため、それらの長さや数を選択もしくは組み合わせて、所要の光レベルに調整しているのが現状であった。   As described above, in the conventional optical power level adjustment of high-power light, the loss value of the optical attenuating fiber or optical coupler is fixed, so the length or number of those is selected or combined to adjust to the required optical level. It was the current situation.

本発明は上記の事情に鑑みてなされたもので、1Wを超えるような高パワー光を所要の光レベルに調整できることにより、1Wを超えるような高パワー光の光ファイバ伝送においても、光線路設備や光伝送受信器に対して適切な光レベルを簡単に供給できるため、光伝送システムの信頼性や安全性を向上できる可変光減衰器を提供することを目的とする。   The present invention has been made in view of the above circumstances. By adjusting high power light exceeding 1 W to a required optical level, optical line equipment can be used in optical fiber transmission of high power light exceeding 1 W. Another object of the present invention is to provide a variable optical attenuator that can improve the reliability and safety of an optical transmission system because an appropriate optical level can be easily supplied to an optical transmission receiver.

上記目的を達成するために本発明は、光ファイバで伝送される高パワー光を光の状態で減衰させる可変光減衰器であって、光軸上で端面が突合わされた2本の光ファイバと、前記端面を含む各光ファイバの一部に充填され、高パワー光の通光下で光ファイバのコアの屈折率と略同一の屈折率となる液体状の屈折率整合剤と、前記2本の光ファイバの端面間隔を変化させる光ファイバ移動手段とを具備することを特徴とするものである。   In order to achieve the above object, the present invention provides a variable optical attenuator for attenuating high-power light transmitted through an optical fiber in the state of light, and two optical fibers having end faces butted on the optical axis, and A liquid refractive index matching agent filled in a part of each optical fiber including the end face and having a refractive index substantially the same as the refractive index of the core of the optical fiber under the passage of high-power light; And an optical fiber moving means for changing the distance between the end faces of the optical fiber.

また本発明は、前記可変光減衰器において、光ファイバ移動手段として、2本の光ファイバの端面間隔を、当該光ファイバのコア径(スポットサイズW)に対して0〜10Wの範囲で可動する光ファイバ移動手段を用いることを特徴とするものである。 In the variable optical attenuator, the optical fiber moving means in the variable optical attenuator may have an interval between the end faces of the two optical fibers in a range of 0 to 10 W 0 with respect to the core diameter (spot size W 0 ) of the optical fiber. The movable optical fiber moving means is used.

また本発明は、前記可変光減衰器において、屈折率整合剤として、高パワー光の通光前に光ファイバのコアの屈折率よりやや高めの屈折率を有し、高パワー光の通光下で屈折率が小さくなる屈折率整合剤を用いることを特徴とするものである。   In the variable optical attenuator, the refractive index matching agent may have a refractive index slightly higher than the refractive index of the core of the optical fiber before passing high power light as the refractive index matching agent. A refractive index matching agent having a small refractive index is used.

本発明は、1Wを超えるような高パワー光を一つの可変光減衰器で所要の光レベルに簡単に調節できるため、高パワー光伝送システムの受光レベル調整稼動が大幅に削減できる。また、光軸上で突合された端面には、屈折率整合剤が、充填されているため、その突合せ部分が融着と同じような接続状態、即ち、光ファイバ長手方向に一様な屈折率分布をもつことから、長手方向の屈折率分布の不連続性が一要因となっているファイバフューズを防ぐことができるため、信頼性と安全性のある高パワー通信線路を構築することができる。   According to the present invention, high power light exceeding 1 W can be easily adjusted to a required light level with a single variable optical attenuator, so that the light reception level adjustment operation of the high power optical transmission system can be greatly reduced. In addition, since the end face butt on the optical axis is filled with a refractive index matching agent, the butt portion is in the same connection state as fusion, that is, a uniform refractive index in the longitudinal direction of the optical fiber. Since it has a distribution, it is possible to prevent a fiber fuse caused by a discontinuity in the refractive index distribution in the longitudinal direction, so that a high power communication line with reliability and safety can be constructed.

以下図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明の実施形態に係る可変光減衰器を示す構成説明図である。図1において、21は光ファイバ、22は1Wを超えるような高パワー光、23は収納ケース、24はオイル状(ゲル状にならない程度の液体状)の屈折率整合剤、25は移動方向、26はV溝台、27はV溝台ガイド、28は光ファイバ移動手段としての長手方向アクチュエータである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration explanatory view showing a variable optical attenuator according to an embodiment of the present invention. In FIG. 1, 21 is an optical fiber, 22 is a high power light exceeding 1 W, 23 is a storage case, 24 is an oil-like (a liquid that does not become a gel) refractive index matching agent, 25 is a moving direction, Reference numeral 26 denotes a V groove base, 27 denotes a V groove base guide, and 28 denotes a longitudinal actuator as an optical fiber moving means.

図1に示すように、2本の光ファイバ21のそれぞれ先端部にはV溝台26が一体化して設けられ、前記V溝台26はV溝台ガイド27上に移動自在に取付られる。前記2本の光ファイバ21のそれぞれ先端部及びV溝台ガイド27、V溝台26の一部は収納ケース23内に収容され、前記収納ケース23内には液体状の屈折率整合剤24が充填される。前記V溝台26には長手方向アクチュエータ28が設けられ、前記長手方向アクチュエータ28はV溝台26及び光ファイバ21を移動方向25に応じてV溝台ガイド27上を自在に移動し、光ファイバ21の光軸上で2本の光ファイバ21のそれぞれ先端面を突合せたり、あるいは2本の光ファイバ21のそれぞれ先端面間を0〜10Wの範囲で変化させることができる。 As shown in FIG. 1, a V-groove base 26 is integrally provided at the tip of each of the two optical fibers 21, and the V-groove base 26 is movably mounted on a V-groove guide 27. The tip ends of the two optical fibers 21 and a part of the V-groove guide 27 and a part of the V-groove base 26 are accommodated in a storage case 23, and a liquid refractive index matching agent 24 is stored in the storage case 23. Filled. The V-groove base 26 is provided with a longitudinal actuator 28, and the longitudinal actuator 28 freely moves the V-groove base 26 and the optical fiber 21 on the V-groove guide 27 according to the moving direction 25. The tip surfaces of the two optical fibers 21 can be abutted on the optical axis 21, or the distance between the tip surfaces of the two optical fibers 21 can be changed in the range of 0 to 10 W 0 .

前記屈折率整合剤24はシリカケトン等のシリコーン樹脂の側鎖の一部をフェニル基とメチル基で置き換えた化合物を用いることが有効であり、その中でもフェニル基とメチル基の配合比を48:52(側鎖基の%)とすることで特に好適な化合物が得られる。なお、前記屈折率整合剤24は高パワー光の通光下で光ファイバのコアの屈折率と略同一となる屈折率を有し、かつ低損失で光を透過する液体状の屈折率整合剤である。   As the refractive index matching agent 24, it is effective to use a compound in which a part of the side chain of a silicone resin such as silica ketone is replaced with a phenyl group and a methyl group. Among them, the compounding ratio of the phenyl group and the methyl group is 48:52. A particularly suitable compound can be obtained by setting (% of side chain group). The refractive index matching agent 24 has a refractive index that is substantially the same as the refractive index of the core of the optical fiber under the passage of high power light, and is a liquid refractive index matching agent that transmits light with low loss. It is.

なお、屈折率整合剤24は温度増加(加熱)に応じて屈折率が小さくなる(屈折率整合剤の種別によって異なるが、例えば、50℃の変化で約2%小さくなる)特性がある。従って、高パワー光の通光時(加熱時)に屈折率整合剤24の屈折率が光ファイバ21のコアの屈折率と同程度となるためには、高パワー光の通光前(常温時)に光ファイバ21のコアの屈折率よりやや高めの屈折率を有する屈折率整合剤24を用いることが望ましい。具体的には、屈折率整合剤24の通光前(常温時)の屈折率を1.48〜1.50程度とすればよい。   The refractive index matching agent 24 has a characteristic that the refractive index becomes smaller as the temperature increases (heats) (for example, the refractive index matching agent 24 becomes smaller by about 2% at 50 ° C., depending on the type of the refractive index matching agent). Therefore, in order for the refractive index of the refractive index matching agent 24 to be approximately the same as the refractive index of the core of the optical fiber 21 when high-power light is transmitted (during heating), before the high-power light is transmitted (at room temperature). It is desirable to use a refractive index matching agent 24 having a refractive index slightly higher than the refractive index of the core of the optical fiber 21. Specifically, the refractive index of the refractive index matching agent 24 before passing light (at room temperature) may be about 1.48 to 1.50.

図2は本発明の実施形態に係る可変光減衰器の高パワー光通過時の屈折率整合剤における屈折率プロファイルを示す説明図であり、図3は本発明の実施形態に係る可変光減衰器の高パワー光通過時の強度分布の変化を示す説明図である。図2及び図3において、24は屈折率整合剤、31はクラッド、32はコア、33は光ファイバの屈折率分布、34は屈折率整合剤の屈折率プロファイル、35は発熱部分、36は屈折率整合剤通過前の光パワー強度分布、37は屈折率整合剤通過後の光パワー強度分布である。   FIG. 2 is an explanatory view showing a refractive index profile in a refractive index matching agent when high-power light passes through the variable optical attenuator according to the embodiment of the present invention, and FIG. 3 is a variable optical attenuator according to the embodiment of the present invention. It is explanatory drawing which shows the change of the intensity distribution at the time of high power light passage. 2 and 3, 24 is a refractive index matching agent, 31 is a cladding, 32 is a core, 33 is a refractive index profile of the optical fiber, 34 is a refractive index profile of the refractive index matching agent, 35 is a heat generating portion, and 36 is refractive. An optical power intensity distribution before passing through the refractive index matching agent, and 37 is an optical power intensity distribution after passing through the refractive index matching agent.

図2及び図3を用いて本発明の実施形態に係る可変光減衰器を高パワー光が通過する際の振る舞いを説明する。すなわち、本発明の実施形態に係る可変光減衰器はV溝突合せの光減衰器であり、フィジカルコンタクトはさせず、光ファイバ端面間には屈折率整合剤24が充填されている。通過光は、一方のファイバコア32から出力され、屈折率整合剤24を通過した後、もう一方のファイバコア32へ入力される。このとき1Wクラスの高パワー光の通過光によって屈折率整合剤24が加熱され、結果としてコア32付近の屈折率整合剤24に不均一な屈折率プロファイル34が生じることになる(図2参照)。即ち、高パワー光通過時の温度に応じて光ファイバコア32付近の屈折率整合剤24の屈折率がやや小さくなり、クラッド31以遠との間に図2に示すような屈折率プロファイル34をもつようになる。図2に示すようなコア32中心から光ファイバ外径方向に屈折率が大きくなるような媒体をシングルモード(ガウスビームの基本モード)の光が伝播すると、一様な屈折率プロファイルの整合剤中を通過する光より、スポットサイズが広がる(図3参照)。この広がりによって入力される側の光ファイバコア32において、一様な屈折率プロファイルの場合よりも大きな損失が生じることになる。この損失発生メカニズムを利用しながら光ファイバ端面間隔を変化させて所要の光レベルに調節する。
次に、2本の光ファイバの端面間隔が、当該光ファイバのコア径(スポットサイズW)に対して0〜10Wの範囲で可動することの作用を説明する。上述のように、高パワー光通過時の温度上昇に応じて光ファイバのコア付近の屈折率整合剤の屈折率が小さくなり、光ファイバ端面間に図2に示すような屈折率プロファイルをもつようになる。図2に示すように、光ファイバのコア中心から光ファイバ外径方向に屈折率が大きくなるような媒体中をシングルモード(ガウスビームの基本モード)の光が伝播すると屈折率の大きい方に向かって進行していく光の性質のため、一様な屈折率分布をもつ整合剤中を通過する光より、スポットサイズが広がる。この広がりに対して、入力端側の光ファイバで受光ロスが生じる。ここで、スポットサイズの広がりが通光長(光ファイバの接続端面間隔)に依存することから光ファイバの接続端面間隔を変化させて所要の光レベルが得られることになる。
The behavior when high power light passes through the variable optical attenuator according to the embodiment of the present invention will be described with reference to FIGS. That is, the variable optical attenuator according to the embodiment of the present invention is a V-groove butt optical attenuator, which is not subjected to physical contact, and the refractive index matching agent 24 is filled between the optical fiber end faces. The passing light is output from one fiber core 32, passes through the refractive index matching agent 24, and then input to the other fiber core 32. At this time, the refractive index matching agent 24 is heated by the passing light of the 1 W class high power light, and as a result, a non-uniform refractive index profile 34 is generated in the refractive index matching agent 24 in the vicinity of the core 32 (see FIG. 2). . That is, the refractive index of the refractive index matching agent 24 in the vicinity of the optical fiber core 32 becomes slightly smaller depending on the temperature when passing high power light, and has a refractive index profile 34 as shown in FIG. It becomes like this. When light in a single mode (Gaussian beam fundamental mode) propagates through a medium whose refractive index increases from the center of the core 32 to the outer diameter of the optical fiber as shown in FIG. The spot size is wider than the light passing through (see FIG. 3). In the optical fiber core 32 on the input side due to this spread, a larger loss occurs than in the case of a uniform refractive index profile. Using this loss generation mechanism, the optical fiber end face spacing is changed to adjust to the required light level.
Then, the end face spacing of two optical fibers, the operation of the movable range of 0~10W 0 to the core diameter of the optical fiber (spot size W 0). As described above, the refractive index of the refractive index matching agent near the core of the optical fiber decreases as the temperature rises when high-power light passes, and the refractive index profile as shown in FIG. become. As shown in FIG. 2, when single mode (Gaussian beam fundamental mode) light propagates through a medium whose refractive index increases from the core center of the optical fiber in the direction of the outer diameter of the optical fiber, the light is directed toward the higher refractive index. Because of the nature of the light that travels, the spot size is wider than the light passing through the matching agent having a uniform refractive index distribution. For this spread, a light receiving loss occurs in the optical fiber on the input end side. Here, since the spread of the spot size depends on the light transmission length (the distance between the connecting end faces of the optical fiber), the required light level can be obtained by changing the distance between the connecting end faces of the optical fiber.

図4は本発明の実施形態に係る可変光減衰器の光ファイバ端面間隔と入力パワーとの関係(測定結果)を示す特性図である。すなわち、本発明の実施形態に係る可変光減衰器の有効性を検証するため、通過する光パワーと接続損失との関係を光ファイバ接続端面間隔について調べたものである。図4より、通過する光パワーと接続損失との関係には光ファイバ接続端面間隔と相関があり、例えば、光ファイバ接続端面間隔が50μm間隔の可変光減衰器を用いれば光パワーが25dBm(約300mW)を超えるあたりから接続損失が増加していることから、光パワーが25dBmを超える光伝送では、接続端面間隔を50μm以上に調節することで、所望の損失が得られることが分かる。また、光伝送パワーに応じて光ファイバ接続端面間隔を調節し可変光減衰器とできることは言うまでもない。   FIG. 4 is a characteristic diagram showing the relationship (measurement result) between the optical fiber end face spacing and the input power of the variable optical attenuator according to the embodiment of the present invention. That is, in order to verify the effectiveness of the variable optical attenuator according to the embodiment of the present invention, the relationship between the optical power passing through and the connection loss is examined with respect to the distance between the optical fiber connection end faces. From FIG. 4, the relationship between the optical power passing through and the connection loss correlates with the distance between the optical fiber connection end faces. For example, if a variable optical attenuator with an optical fiber connection end face distance of 50 μm is used, the optical power is 25 dBm (about Since the connection loss increases from around 300 mW), it can be seen that the desired loss can be obtained by adjusting the distance between the connection end faces to 50 μm or more in optical transmission with optical power exceeding 25 dBm. Needless to say, a variable optical attenuator can be obtained by adjusting the distance between the optical fiber connection end faces according to the optical transmission power.

以上のことから、高パワー光通過時の温度上昇に応じて光ファイバコア付近の屈折率整合剤の屈折率が連続分布をもつように小さくなり、かつ、接続端面間において、一様でない(勾配をもつ)屈折率プロファイルが生じるという特性を利用しながら通過光の強度プロファイルを広げ、この広がりが通光長に依存することから端面間隔を変化させて所要の光レベルを得る方法の有効性が確認できた。なお、接続損失は高パワー光の入力とほぼ同時(1秒以内)に発生し、通光している間はその接続損失を安定に保つこと、また、その接続損失の値には十分な再現性があること、さらには、接続損失発生に伴う屈折率整合剤24の物性的な変化等も生じないことを確認した。   From the above, the refractive index of the refractive index matching agent in the vicinity of the optical fiber core becomes small so as to have a continuous distribution according to the temperature rise at the time of passing high power light, and is not uniform between the connection end faces (gradient It is effective to obtain a desired light level by changing the end face spacing because the spread light intensity profile is widened while utilizing the characteristic that a refractive index profile is generated. It could be confirmed. Note that the connection loss occurs almost simultaneously with the input of high-power light (within 1 second), keep the connection loss stable while light is passing, and reproduce the connection loss sufficiently. Further, it was confirmed that there is no change in physical properties of the refractive index matching agent 24 due to the occurrence of connection loss.

以上のように本発明の実施形態に係る可変光減衰器は、2本の光ファイバの端面を光軸上で突合せ、かつ、当該端面を含む前記2本の光ファイバ全体が液体状の屈折率整合剤で充填された構造であって、前記屈折率整合剤は室温で前記2本の光ファイバのコアと同程度かやや高めの屈折率(具体的には1.48〜1.50程度)を有するものである。これによって、前記2本の光ファイバの突合せ部分では、高パワー光の通光下で温度上昇した屈折率整合剤の屈折率が、光ファイバコアの屈折率とほぼ同じ状態で、かつ、連続して分布することから、融着と同じような接続状態を作り上げることができ、屈折率分布の不連続性が一要因となっているファイバフューズを防ぐことができる(例えば、非特許文献1参照。)。加えて、接続端面の領域では、局所的に不均一な(勾配をもつ)屈折率プロファイルを形成することから、均一な屈折率プロファイルの場合以上にスポットサイズが広がり、接続端面間隔に応じて所望の光レベルに調整することができる。   As described above, in the variable optical attenuator according to the embodiment of the present invention, the end faces of the two optical fibers are abutted on the optical axis, and the entire two optical fibers including the end faces are in a liquid refractive index. A structure filled with a matching agent, wherein the refractive index matching agent has a refractive index that is the same as or slightly higher than the cores of the two optical fibers at room temperature (specifically, about 1.48 to 1.50). It is what has. As a result, at the butt portion of the two optical fibers, the refractive index of the refractive index matching agent whose temperature has increased under the passage of high-power light is substantially the same as the refractive index of the optical fiber core and is continuous. Therefore, it is possible to create a connection state similar to fusion, and to prevent a fiber fuse caused by discontinuity in the refractive index distribution (see, for example, Non-Patent Document 1). ). In addition, in the region of the connection end face, a locally non-uniform (gradient) refractive index profile is formed, so that the spot size is widened more than in the case of a uniform refractive index profile, and is desired according to the connection end face interval. The light level can be adjusted.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施形態に係る可変光減衰器を示す構成説明図である。It is a block diagram showing a variable optical attenuator according to an embodiment of the present invention. 本発明の実施形態に係る可変光減衰器の高パワー光通過時の屈折率整合剤における屈折率プロファイルを示す説明図である。It is explanatory drawing which shows the refractive index profile in the refractive index matching agent at the time of high power light passage of the variable optical attenuator which concerns on embodiment of this invention. 本発明の実施形態に係る可変光減衰器の高パワー光通過時の強度分布の変化を示す説明図である。It is explanatory drawing which shows the change of the intensity distribution at the time of high power light passage of the variable optical attenuator which concerns on embodiment of this invention. 本発明の実施形態に係る可変光減衰器の光ファイバ端面間隔と入力パワーとの関係(測定結果)を示す特性図である。It is a characteristic view which shows the relationship (measurement result) of the optical fiber end surface space | interval and input power of the variable optical attenuator which concerns on embodiment of this invention. 従来の光減衰ファイバを用いた光減衰器を示す構成説明図である。It is structure explanatory drawing which shows the optical attenuator using the conventional optical attenuation fiber. 従来の光カプラを用いた光減衰器を示す構成説明図である。It is structure explanatory drawing which shows the optical attenuator using the conventional optical coupler.

符号の説明Explanation of symbols

21…光ファイバ、22…1Wを超えるような高パワー光、23…収納ケース、24…オイル状(ゲル状にならない程度の液体状)の屈折率整合剤、25…移動方向、26…V溝台、27…V溝台ガイド、28…光ファイバ移動手段としての長手方向アクチュエータ。   DESCRIPTION OF SYMBOLS 21 ... Optical fiber, 22 ... High power light exceeding 1 W, 23 ... Storage case, 24 ... Refractive index matching agent of oil-like (a liquid form which does not become gel form), 25 ... Moving direction, 26 ... V groove 27: V groove base guide, 28: Longitudinal actuator as optical fiber moving means.

Claims (3)

光ファイバで伝送される高パワー光を光の状態で減衰させる可変光減衰器であって、
光軸上で端面が突合わされた2本の光ファイバと、
前記2本の光ファイバのそれぞれ先端部に一体化して設けられたV溝台と、
前記V溝台及び前記光ファイバが移動自在に取付られるV溝台ガイドと、
前記2本の光ファイバのそれぞれ先端部及び前記V溝台ガイド、前記V溝台の一部が収容される収容ケースと、
前記収容ケース内に充填されると共に前記光ファイバ端面間に充填され、高パワー光の通光下で前記光ファイバのコアの屈折率と略同一の屈折率となる液体状の屈折率整合剤と、
前記V溝台及び前記光ファイバを前記V溝台ガイド上に自在に移動させ、前記2本の光ファイバの端面間隔を光軸上で変化させる光ファイバ移動手段と
を具備することを特徴とする可変光減衰器。
A variable optical attenuator that attenuates high power light transmitted through an optical fiber in the state of light,
Two optical fibers whose end faces are abutted on the optical axis;
A V-groove base integrally provided at the tip of each of the two optical fibers;
A V-groove guide on which the V-groove and the optical fiber are movably mounted;
Each of the two optical fibers, a distal end portion, the V-groove guide, a housing case for housing a part of the V-groove,
Filled between the optical fiber end face while being filled in the accommodating case, and a high power optical refractive index of the core of the optical fiber under light passing substantially the same refractive index liquid index matching medium ,
And an optical fiber moving means for freely moving the V-groove base and the optical fiber onto the V-groove base guide and changing an end face interval between the two optical fibers on the optical axis. Variable optical attenuator.
前記光ファイバ移動手段として、前記2本の光ファイバの端面間隔を、当該光ファイバのコア径(スポットサイズW)に対して0〜10Wの範囲で可動する長手方向アクチュエータを用いる
ことを特徴とする請求項1に記載の可変光減衰器。
As the optical fiber moving means, characterized in that a longitudinal actuator for moving the end face spacing of the two optical fibers, the core diameter of the optical fiber (spot size W 0) in a range of 0~10W 0 The variable optical attenuator according to claim 1.
前記屈折率整合剤として、高パワー光の通光前に前記光ファイバのコアの屈折率よりやや高めの屈折率を有し、高パワー光の通光下で屈折率が小さくなる屈折率整合剤を用いる
ことを特徴とする請求項1又は2に記載の可変光減衰器。
As the refractive index matching agent, has a slightly refractive index higher than the refractive index of the core of the optical fiber to the light passing before the high power light, a refractive index matching agent whose refractive index decreases in passing light of a high power light The variable optical attenuator according to claim 1 or 2, wherein:
JP2007071042A 2007-03-19 2007-03-19 Variable optical attenuator Expired - Fee Related JP4504989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071042A JP4504989B2 (en) 2007-03-19 2007-03-19 Variable optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071042A JP4504989B2 (en) 2007-03-19 2007-03-19 Variable optical attenuator

Publications (2)

Publication Number Publication Date
JP2008233384A JP2008233384A (en) 2008-10-02
JP4504989B2 true JP4504989B2 (en) 2010-07-14

Family

ID=39906261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071042A Expired - Fee Related JP4504989B2 (en) 2007-03-19 2007-03-19 Variable optical attenuator

Country Status (1)

Country Link
JP (1) JP4504989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678503A (en) * 2015-03-11 2015-06-03 哈尔滨工程大学 Optical fiber optical switch based on photothermal effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599876B2 (en) * 2014-08-28 2019-10-30 興和株式会社 Tomography system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944418A (en) * 1972-07-25 1974-04-26
JPH11281803A (en) * 1998-03-26 1999-10-15 Sumitomo Osaka Cement Co Ltd Method for limiting optical intensity and limiter
JP2004101470A (en) * 2002-09-12 2004-04-02 Nippon Sheet Glass Co Ltd Microchemical system, light source unit for microchemical system and photothermal conversion spectrometric method
JP2004325839A (en) * 2003-04-25 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944418A (en) * 1972-07-25 1974-04-26
JPH11281803A (en) * 1998-03-26 1999-10-15 Sumitomo Osaka Cement Co Ltd Method for limiting optical intensity and limiter
JP2004101470A (en) * 2002-09-12 2004-04-02 Nippon Sheet Glass Co Ltd Microchemical system, light source unit for microchemical system and photothermal conversion spectrometric method
JP2004325839A (en) * 2003-04-25 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678503A (en) * 2015-03-11 2015-06-03 哈尔滨工程大学 Optical fiber optical switch based on photothermal effect

Also Published As

Publication number Publication date
JP2008233384A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5265211B2 (en) Optical fiber configuration for dissipating stray light
US9547121B2 (en) Cladding light stripper and method of manufacturing
US9537282B2 (en) System and method for a multi-mode pump in an optical amplifier
JP6748036B2 (en) Fiber optic device that dissipates heat with high power
US10082630B1 (en) Packaging of an optical fiber head in high-power laser applications
JP2016197248A (en) Technique and device for low loss connection to multi-core fiber
US7333702B2 (en) Fiber optics transmission line
US10209453B1 (en) Packaging of an optical fiber head with optical fiber not immersed in cooling water to enhance reliability and optical performance
Wetter et al. High power cladding light strippers
US9250385B1 (en) Optical transmission medium and optical amplifier
JP2010186180A (en) Optical fiber
US20110255153A1 (en) Cladding-Pumped Optical Amplifier Having Reduced Susceptibility to Spurious Lasing
KR20150122734A (en) Ultra high power single mode fiber laser system with non-uniformly configured fiber-to-fiber rod multimode amplifier
KR20140102706A (en) High power fiber laser system with distributive mode absorber
JP2007165906A (en) Rare-earth-doped, large mode area, multimode, hybrid optical fiver and device using the same
Neugroschl et al. High-efficiency (6+ 1) x1 combiner for high power fiber lasers and amplifiers
JP3521124B2 (en) Tapered fiber optic device with variable index coating to modify fundamental mode waveguide properties
KR101937404B1 (en) Hybrid optical fibers amplifier for high power narrow band optical fibers laser
JP5378861B2 (en) Optical fiber laser
JP4504989B2 (en) Variable optical attenuator
US10218142B1 (en) Packaging of an optical fiber combiner not immersed in cooling water in high-power laser applications
JP2022516521A (en) Fiber Pump Laser Systems and Methods for Submarine Optical Repeaters
JP7090056B2 (en) Optical fiber, laser generator, laser processing device, and method for manufacturing optical fiber
JP5298238B2 (en) Optical fiber grating manufacturing method, optical fiber grating, and fiber laser
JP2005101590A (en) Fiber for optical amplification, optical amplification module, optical communication system, and method for optical amplification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R151 Written notification of patent or utility model registration

Ref document number: 4504989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees