JP4504823B2 - GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM - Google Patents

GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM Download PDF

Info

Publication number
JP4504823B2
JP4504823B2 JP2005004165A JP2005004165A JP4504823B2 JP 4504823 B2 JP4504823 B2 JP 4504823B2 JP 2005004165 A JP2005004165 A JP 2005004165A JP 2005004165 A JP2005004165 A JP 2005004165A JP 4504823 B2 JP4504823 B2 JP 4504823B2
Authority
JP
Japan
Prior art keywords
glass
melting
protective member
container
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004165A
Other languages
Japanese (ja)
Other versions
JP2006193349A (en
Inventor
恒司 鈴木
匠 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005004165A priority Critical patent/JP4504823B2/en
Priority to CNB2006100011035A priority patent/CN100441529C/en
Publication of JP2006193349A publication Critical patent/JP2006193349A/en
Application granted granted Critical
Publication of JP4504823B2 publication Critical patent/JP4504823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

本発明は、ガラスの材料を連続的又は間歇的に溶融容器に供給し、この溶融容器内で前記材料を溶融させた後、連続的に次工程に供給するガラスの製造方法、及びこのような方法に用いるガラスの製造装置、保護部材に関し、特に、白金などの貴金属又は貴金属合金からなる溶融容器を用いて前記材料を溶融させる光学ガラスの製造に好適な装置と方法に関する。   The present invention provides a glass manufacturing method in which a glass material is continuously or intermittently supplied to a melting container, the material is melted in the melting container, and then continuously supplied to the next step, and such a method. More particularly, the present invention relates to an apparatus and method suitable for manufacturing optical glass in which the material is melted using a melting container made of a noble metal such as platinum or a noble metal alloy.

ガラスは、主として粉体のガラス成分酸化物(ガラス原料バッチ)を材料とし、これを高温で溶融することによって製造される。特に、光学ガラスは、正確で均質な光学的特性を必須とするため、製造に際しては、材料の配合を厳密に行った上で、これを適量ずつ溶融容器に投入することが要求される。   Glass is produced mainly by using powdered glass component oxide (glass raw material batch) as a material and melting it at a high temperature. In particular, optical glass requires accurate and homogeneous optical characteristics, so that it is required to put the materials into a melting container in an appropriate amount after strictly mixing the materials.

光学ガラスの材料を溶融容器に供給し、加熱によって溶融ガラスとする工程では、白金や白金合金からなる溶融容器を用いることが知られている。これら白金などの貴金属溶融容器は、加工が容易なだけでなく、溶融した光学ガラスを収容しても比較的侵食が少ないため、光学ガラスの溶融に適している。   It is known to use a melting container made of platinum or a platinum alloy in the step of supplying the optical glass material to the melting container and heating it into the molten glass. These precious metal melting containers such as platinum are not only easy to process, but also contain relatively little erosion when containing molten optical glass, and are therefore suitable for melting optical glass.

しかしながら、このような溶融容器は、光学ガラスの溶融温度である1000〜1400℃程度の過酷な条件で使用され、熱による変形や亀裂が発生する可能性があるため、予め補強などの対策を講じる必要がある(例えば、特許文献1参照。)。   However, such a melting container is used under severe conditions of about 1000 to 1400 ° C., which is the melting temperature of the optical glass, and may be deformed or cracked by heat, so measures such as reinforcement are taken in advance. There is a need (see, for example, Patent Document 1).

特許文献1では、白金容器又は白金管における溶接部分の変形を防止するために、白金テープによる鍛接補強を行っている。また、白金テープは、端部が波型としてあり、鍛接位置の境界に亀裂が生じることを防止している。   In patent document 1, in order to prevent the deformation | transformation of the welding part in a platinum container or a platinum pipe, the forge welding reinforcement by a platinum tape is performed. Further, the platinum tape has a corrugated end, and prevents cracks from occurring at the boundary of the forging position.

特公昭64−6854号公報Japanese Patent Publication No. 64-6854

上記した特許文献1の溶融容器では、溶接部分の補強を行っているが、光学ガラスの溶融工程では、溶融容器の内側で、かつ、溶融ガラスの液面と接触する部分にも亀裂などが発生するという問題がある。その第一の原因としては、溶融ガラスの液面と溶融容器の接触点が、気相、液相、固相の共存点になることが挙られる。これは、気相、液相、固相の共存点が、化学的に活性なため、溶融容器が侵食されやすいからである。   In the melting container of Patent Document 1 described above, the welded portion is reinforced, but in the melting process of the optical glass, cracks and the like are also generated inside the melting container and in contact with the liquid surface of the molten glass. There is a problem of doing. As the first cause, the contact point between the liquid surface of the molten glass and the melting vessel is a coexistence point of the gas phase, the liquid phase, and the solid phase. This is because the melting vessel is easily eroded because the coexisting point of the gas phase, liquid phase, and solid phase is chemically active.

また、光学ガラスの製造においては、生産効率を高めるために、いわゆる連続溶融を行うことができる。この場合、溶融するガラス材料は、連続的又は間歇的に溶融容器に供給される。   In the production of optical glass, so-called continuous melting can be performed in order to increase production efficiency. In this case, the glass material to be melted is supplied to the melting container continuously or intermittently.

ガラス材料を連続的又は間歇的に溶融容器に供給すると、溶融容器内で既に溶融された溶融ガラスの液面付近は、それよりも低温のガラス材料が供給されることによって瞬間的に降温する。通常、供給するガラス材料と溶融容器内の溶融ガラスには、1000℃を超える温度差があるため、溶融容器の内側で、かつ、溶融ガラスの液面に接触する部分が、大きな熱衝撃を受けることになる。これが、上記問題の第二の原因である。   When the glass material is continuously or intermittently supplied to the melting container, the temperature near the liquid surface of the molten glass already melted in the melting container is instantaneously lowered by supplying the glass material having a temperature lower than that. Usually, since there is a temperature difference exceeding 1000 ° C. between the glass material to be supplied and the molten glass in the melting container, the portion inside the melting container and in contact with the liquid surface of the molten glass is subjected to a large thermal shock. It will be. This is the second cause of the above problem.

なお、上記の熱衝撃を緩和するために、ガラス材料を予め加温しておくことも考えられるが、その場合でも、ガラス材料と溶融ガラスの温度差は1000℃前後であり、熱衝撃の影響は大きい。   In order to alleviate the above thermal shock, it may be possible to preheat the glass material, but even in that case, the temperature difference between the glass material and the molten glass is around 1000 ° C. Is big.

したがって、ガラス材料が連続的に供給される溶融容器では、その液面付近に、降温による局所的な体積収縮に起因する大きな応力がかかることになる。更に、ガラス材料が間歇的に投入される溶融容器では、ガラス材料の供給周期で熱衝撃が繰り返され、そのたびに溶融容器の液面付近に大きな応力がかかる。これにより、溶融容器の液面付近は、次第に疲労して強度が損なわれるだけでなく、亀裂などが発生して破損する可能性がある。   Therefore, in the melting container to which the glass material is continuously supplied, a large stress is caused near the liquid surface due to local volume shrinkage due to temperature drop. Furthermore, in the melting container in which the glass material is intermittently charged, the thermal shock is repeated in the glass material supply cycle, and a large stress is applied near the liquid surface of the melting container each time. As a result, the vicinity of the liquid surface of the melting vessel is not only gradually fatigued and the strength is impaired, but also a crack or the like may occur and be damaged.

溶融容器が一部でも破損した場合は、溶融ガラスが漏れ出し、製造を続けることが困難になるため、溶融容器の補修や交換が必要になる。溶融容器の補修や交換を行うには、多額のコストに加え、相当期間の製造中止を強いられることになる。   When even a part of the melting container is broken, the molten glass leaks out and it is difficult to continue the production, so that the melting container needs to be repaired or replaced. In order to repair or replace the melting container, in addition to a large amount of cost, it is forced to suspend production for a considerable period of time.

更に、光学ガラスの製造においては、ガラス材料として、主としてガラス原料バッチ(ガラス化前の粉体原料をいう)を用い、これを間歇的、又は連続的に溶融容器に供給してガラス化(直接溶融)させるとともに、得られた溶融ガラスを連続的に次工程(例えば、清澄工程、均一化工程、粘度調整工程など)に供給する(連続溶融)方法(以下、直接連続溶融法という)がある。
直接溶融は、いったん溶融し、ガラス化したものを粉砕したガラス材料(いわゆるカレット)を再度溶融容器中で溶融して所望の光学ガラスとする方法(以下、間接溶融法という)とは異なり、溶融容器に供給された瞬間に、容器中の溶融ガラスの液面付近で化学反応が開始する。したがって、単に、温度の低い材料が供給される場合に生じる液面の温度降下に比べると、反応熱(例えば、反応に伴う水の気化熱)を伴う大きな降温、それに次いで生じる温度回復(昇温)が発生する。
Furthermore, in the production of optical glass, a glass raw material batch (referred to as powder raw material before vitrification) is mainly used as a glass material, and this is intermittently or continuously supplied to a melting vessel to vitrify (directly). There is a (continuous melting) method (hereinafter referred to as a direct continuous melting method) in which the obtained molten glass is continuously supplied to the next step (for example, a clarification step, a homogenization step, a viscosity adjustment step, etc.). .
Direct melting is different from the method of melting a glass material (so-called cullet) once melted and vitrified into a desired optical glass by melting it again in a melting container (hereinafter referred to as indirect melting method). The chemical reaction starts near the liquid surface of the molten glass in the container at the moment when it is supplied to the container. Therefore, compared to the temperature drop of the liquid level that occurs when a low-temperature material is supplied, the temperature drop accompanying the heat of reaction (for example, the heat of vaporization of water accompanying the reaction) and the subsequent temperature recovery (temperature rise). ) Occurs.

さらに、連続溶融を行うと、ガラス化したものを順次連続的に次工程に送り込み、清澄、均一化、粘度調整などの一連の処理を順次行う。すなわち、時系列的に施すべき処理を、二次元的に異なる位置で行うことで、実質的な生産所要時間を著しく短縮することができる。しかしながら、この場合、溶融容器におけるガラス材料の供給と、次工程への送り出しはバランスして行う必要があり、このとき、溶融容器における溶融ガラスの液位(溶融ガラスの液面の高さ)は常に略一定、つまり所定範囲内にあることになる。従って、溶融容器の一定部位は、常に液面付近に相当し、上記降温、昇温による熱衝撃が集中する。   Further, when continuous melting is performed, the vitrified material is sequentially sent to the next process in order, and a series of processes such as clarification, homogenization, and viscosity adjustment are sequentially performed. That is, the time required for production in a time series is performed at two-dimensionally different positions, so that a substantial production time can be significantly shortened. However, in this case, it is necessary to balance the supply of the glass material in the melting container and the delivery to the next process. At this time, the liquid level of the molten glass in the melting container (the height of the liquid surface of the molten glass) is It is always substantially constant, that is, within a predetermined range. Therefore, the fixed part of the melting container always corresponds to the vicinity of the liquid surface, and the thermal shock due to the temperature drop and temperature rise is concentrated.

上記のような、過酷な負担を溶融容器に与えたとしても、直接連続溶融法は、量産方法としては極めて有利である。すなわち、間接溶融法における、ガラスの固化、粉砕の一連の工程を完全に省略することができるからである。
本発明者らは、先に、ガラス溶融容器を保護するため、昇温降温の熱衝撃を緩和する着脱可能な保護部材の提案を行った(特願2003−284303号)。しかしながら、溶融容器の保護の点では一定の効果が得られたが、保護部材の寿命が必ずしも十分ではなかった。すなわち、光学ガラスの侵食によって保護部材が損傷を受け、その一部が溶融容器内に脱落する等危険が生じた。
The direct continuous melting method is extremely advantageous as a mass production method even if a severe burden as described above is given to the melting vessel. That is, a series of steps of glass solidification and pulverization in the indirect melting method can be omitted completely.
In order to protect the glass melting container, the present inventors previously proposed a detachable protective member that alleviates the thermal shock during temperature rise and fall (Japanese Patent Application No. 2003-284303). However, although a certain effect was obtained in terms of protecting the melting container, the life of the protective member was not always sufficient. That is, the protective member is damaged by the erosion of the optical glass, and a part of the protective member is dropped into the melting container.

例えば、最近の撮像機器等に求められる光学ガラスとして、高屈折率(例えば、ndが1.7〜2.0)のもの、及び低屈折率低分散(例えば、ndが1.6以下、νd(アッベ数)が60以上)のものがある。これらのうち、高い屈折率を得るために、高屈折率成分(Tiなど)を多く含有する光学ガラスは、白金に対する侵食性が極めて高い。また、低屈折率低分散の光学ガラスも、成分として含有されるフッ素などの影響により、侵食性が高くなる。
また、主たる骨格成分としてホウ酸を含有するもの(ホウ酸塩ガラス)においては、上記の直接連続溶融を行うと、ガラス化反応時の気化熱が大きく、反応部位における温度回復が鈍いため、溶融容器に与える影響が大きい。
本発明者らは、上記のように過酷な条件下でも溶融容器を保護する機能が十分得られ、かつ、保護部材自体の寿命も延長できることを目的として、本発明を完成した。
For example, optical glasses required for recent imaging devices and the like have a high refractive index (for example, nd is 1.7 to 2.0) and low refractive index and low dispersion (for example, nd is 1.6 or less, νd (Abbe number) is 60 or more). Among these, in order to obtain a high refractive index, an optical glass containing a large amount of a high refractive index component (such as Ti) has an extremely high erodibility to platinum. Further, the low refractive index and low dispersion optical glass also has high erosion due to the influence of fluorine or the like contained as a component.
In addition, in the case of containing boric acid as a main skeleton component (borate glass), if the direct continuous melting described above is performed, the heat of vaporization during the vitrification reaction is large, and the temperature recovery at the reaction site is slow. The effect on the container is large.
The present inventors have completed the present invention for the purpose of sufficiently obtaining the function of protecting the melting vessel even under the severe conditions as described above and extending the life of the protective member itself.

本発明は、上記の事情にかんがみなされたものであり、ガラスの材料を溶融容器に供給する際、溶融容器の内側で、かつ、溶融ガラスの液面と接触する部分に生じる熱衝撃を緩和し、熱衝撃による溶融容器の疲労や破損を防止することができるガラスの製造装置及び製造方法、並びにこれらに用いる保護部材の提供を目的とする。特に、溶融温度が高く、溶融温度における粘性が低い上に、求められる光学性能に対応するために溶融容器を浸食しやすい種類の光学ガラスの製造に適した方法の提供を目的とするとともに、装置と保護部材の損傷を軽減し、その寿命を長くすることを目的とする。また、直接連続法によって極めて生産性高くガラスを製造することを目的とする。   The present invention has been considered in view of the above circumstances, and when supplying the glass material to the melting vessel, the thermal shock generated in the inner portion of the melting vessel and in the portion in contact with the liquid surface of the molten glass is mitigated. An object of the present invention is to provide a glass manufacturing apparatus and manufacturing method capable of preventing fatigue and breakage of a melting container due to thermal shock, and a protective member used for these. In particular, the object is to provide a method suitable for the production of optical glass of a type in which the melting temperature is high, the viscosity at the melting temperature is low, and the melting vessel is easily eroded in order to meet the required optical performance, and the apparatus. The purpose is to reduce the damage to the protective member and extend its life. Another object is to produce glass with extremely high productivity by a direct continuous method.

上記目的を達成するため、本発明におけるガラスの製造方法は、ガラスの材料を連続的又は間歇的に溶融容器に供給し、前記溶融容器内で溶融したガラスを連続的に次工程に供給する工程を含むガラスの製造方法であって、前記溶融容器が貴金属又は貴金属合金からなるとともに、前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に、前記溶融ガラス液面に接する部分が複数の分割体からなるように形成された保護部材を介在させる方法としてある。 In order to achieve the above object, the method for producing glass in the present invention comprises a step of supplying a glass material continuously or intermittently to a melting container and continuously supplying the glass melted in the melting container to the next step. The melting container is made of a noble metal or a noble metal alloy, and the portion in contact with the molten glass liquid surface on the inner surface of the melting container and the material on the molten glass liquid surface are supplied. This is a method in which a protective member formed such that a portion in contact with the molten glass liquid surface is composed of a plurality of divided bodies is interposed between the two portions.

このような方法とすれば、ガラスの連続的な生産過程において、ガラスの材料を貴金属又は貴金属合金からなる溶融容器に供給する際、溶融容器の内面で、かつ、溶融ガラスの液面と接触する部分に生じる熱衝撃を緩和し、熱衝撃による溶融容器の疲労や破損を防止することができる。これにより、溶融容器の寿命を延長することができるだけでなく、溶融容器の破損による生産性の低下や溶融容器の補修コストを抑制することができる。
しかも、保護部材は、溶融ガラス液面に接する部分を複数の分割体からなるように形成することにより、熱衝撃を緩和するに際し、瞬時に膨張、収縮することが許容され、さらに、個々の分割体の膨張量及び収縮量を小さくすることができるため、内部応力がより軽減され、損傷し難くなっている。これにより、保護部材自体の長寿命化も可能である。
According to such a method, in the continuous production process of glass, when the glass material is supplied to a melting container made of a noble metal or a noble metal alloy , it contacts the inner surface of the melting container and the liquid surface of the molten glass. The thermal shock generated in the part can be alleviated, and fatigue and breakage of the melting container due to the thermal shock can be prevented. Thereby, not only can the lifetime of the melting container be extended, but also a decrease in productivity due to breakage of the melting container and repair costs of the melting container can be suppressed.
Moreover, the protective member is formed to have a plurality of divided parts in contact with the molten glass liquid surface, and when the thermal shock is alleviated, it is allowed to expand and contract instantaneously. Since the amount of expansion and contraction of the body can be reduced, the internal stress is further reduced and it is difficult to damage. Thereby, the lifetime of the protective member itself can be extended.

また、本発明におけるガラスの製造方法は、前記材料が、ガラス原料バッチであるのが好ましい。
このように、材料供給時に生じる溶融ガラス液面の温度変動が大きいガラス原料バッチを用いた場合でも、溶融ガラス液面に生じる大きな熱衝撃を速やかに緩和し、溶融容器及び保護部材の損傷を抑止できる。このため、ガラス原料バッチを用いて、量産に有利な方法とすることができる。
In the glass production method of the present invention, the material is preferably a glass raw material batch.
In this way, even when a glass raw material batch with a large temperature fluctuation of the molten glass liquid surface generated during material supply is used, the large thermal shock generated on the molten glass liquid surface is quickly alleviated and damage to the melting container and the protective member is suppressed. it can. For this reason, it can be set as the method advantageous for mass production using a glass raw material batch.

また、本発明におけるガラスの製造方法は、前記ガラスが、ホウ酸塩光学ガラス、屈折率ndが1.7以上の光学ガラス、又は屈折率ndが1.6以下で分散νdが65以上の光学ガラスのいずれかであるのが好ましい。
このように、溶融容器を浸食しやすい種類の光学ガラスを用いた場合でも、溶融ガラス液面に生じる大きな熱衝撃を速やかに緩和し、溶融容器及び保護部材の損傷を抑止することができるため、溶融容器を侵食しやすいこの種の光学ガラスを用いる場合に、本発明の効果が顕著となる。
In the glass production method of the present invention, the glass is a borate optical glass, an optical glass having a refractive index nd of 1.7 or more, or an optical having a refractive index nd of 1.6 or less and a dispersion νd of 65 or more. It is preferably any of glass.
Thus, even when using an optical glass of a type that easily erodes the melting container, it is possible to quickly relieve the large thermal shock that occurs on the surface of the molten glass and to prevent damage to the melting container and the protective member, The effect of the present invention becomes remarkable when this type of optical glass that easily erodes the melting vessel is used.

また、本発明におけるガラスの製造方法は、前記溶融容器の上端周縁部に、前記保護部材を着脱可能に支持させるとともに、前記保護部材の下端を自由端とした方法とすることができる。
このような方法とすれば、保護部材が、その長寿命にもかかわらず損傷、劣化した場合であっても適宜交換することが可能となり、溶融容器へのダメージを長期間軽減することができる。また、保護部材の下端を自由端とすれば、保護部材が熱衝撃を受けても、下端側での収縮及び膨張が許容されるので、それに伴う内部応力を軽減し、保護部材の変形や破損を防止することができる。
Moreover, the glass manufacturing method in the present invention can be a method in which the protective member is detachably supported on the upper peripheral edge of the melting container, and the lower end of the protective member is a free end.
With such a method, even when the protective member is damaged or deteriorated despite its long life, it can be replaced as appropriate, and damage to the melting container can be reduced for a long period of time. In addition, if the lower end of the protective member is a free end, even if the protective member receives a thermal shock, shrinkage and expansion on the lower end side are allowed, so that the internal stress accompanying it is reduced, and the protective member is deformed or damaged. Can be prevented.

また、本発明におけるガラスの製造方法は、前記溶融容器の底部に、前記保護部材を支持させるとともに、前記保護部材の上端を自由端とした方法とすることができる。
このような方法とすれば、保護部材が熱衝撃を受けても、上端側での収縮及び膨張が許容されるので、それに伴う内部応力を軽減し、保護部材の変形や破損を防止することができる。
Moreover, the glass manufacturing method in the present invention can be a method in which the protection member is supported on the bottom of the melting container and the upper end of the protection member is a free end.
With such a method, even if the protective member is subjected to a thermal shock, shrinkage and expansion on the upper end side are allowed, so that the internal stress associated therewith can be reduced, and deformation and breakage of the protective member can be prevented. it can.

また、本発明におけるガラス製造装置は、ガラスの材料を溶融させる貴金属又は貴金属合金からなる溶融容器を備えたガラス製造装置であって、前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に介在するように保護部材が配置され、前記保護部材が、前記溶融ガラス液面に接する部分が複数の分割体からなるように形成された構成としてある。
このような構成とすることにより、溶融容器の寿命を延長することができるだけでなく、溶融容器の破損による生産性の低下や溶融容器の補修コストを抑制することができ、保護部材自体の長寿命化も可能である。
Further, the glass manufacturing apparatus in the present invention is a glass manufacturing apparatus including a melting container made of a noble metal or a noble metal alloy for melting a glass material, and a part in contact with a molten glass liquid surface on the inner surface of the melting container; A protective member is disposed so as to be interposed between the molten glass liquid surface and the portion to which the material is supplied, and the protective member is formed so that a portion in contact with the molten glass liquid surface is composed of a plurality of divided bodies. The configuration is as follows.
By adopting such a configuration, not only can the life of the melting container be extended, but also a reduction in productivity due to breakage of the melting container and the repair cost of the melting container can be suppressed, and the long life of the protective member itself It is also possible.

また、本発明におけるガラス製造装置は、前記溶融容器の水平断面形状が円形であり、前記保護部材の中心軸が、前記溶融容器の中心軸とほぼ一致するように、前記保護部材が前記溶融容器内に配置される構成とすることができる。
このように構成すれば、溶融容器の強度を高くし、また、保護部材による熱衝撃の緩衝効果をより効果的に発揮させることができる。
Further, in the glass manufacturing apparatus of the present invention, the horizontal cross-sectional shape of the melting container is a circle, and the protective member is the melting container so that the central axis of the protective member substantially coincides with the central axis of the melting container. It can be set as the structure arrange | positioned in.
If comprised in this way, the intensity | strength of a melting container can be made high and the buffering effect of the thermal shock by a protection member can be exhibited more effectively.

また、本発明におけるガラス製造装置は、前記溶融容器の内面との間に隙間が生じるように、前記保護部材を前記溶融容器内に配置した構成とすることができる。
このように構成すれば、保護部材による熱衝撃の緩衝効果をより効果的に発揮させることができる。
Moreover, the glass manufacturing apparatus in this invention can be set as the structure which has arrange | positioned the said protection member in the said melting container so that a clearance gap may arise between the inner surfaces of the said melting container.
If comprised in this way, the buffer effect of the thermal shock by a protection member can be exhibited more effectively.

また、本発明における保護部材は、ガラスの材料を溶融させる貴金属又は貴金属合金からなる溶融容器内に配置される保護部材であって、前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に介在するように配置され、前記溶融ガラス液面に接する部分を有し、かつ、当該部分が複数の分割体からなるように形成された構成としてある。
このように構成すれば、ガラスの材料を貴金属又は貴金属合金からなる溶融容器中の溶融ガラスに供給する際に、溶融ガラス液面に材料供給を行うことにより発生する熱衝撃を緩和して、熱衝撃による溶融容器の疲労や破損を防止することができるだけでなく、保護部材自体の寿命も長くすることができる。
The protective member in the present invention, a portion a protective member disposed melt vessel made of a noble metal or noble metal alloy to melt the material of glass, in contact with molten glass liquid surface in the inner surface of the melting vessel, It is arranged so as to be interposed between the molten glass liquid surface and the portion to which the material is supplied, and has a portion in contact with the molten glass liquid surface, and the portion is formed of a plurality of divided bodies. The configuration is as follows.
According to this structure, when the glass material is supplied to the molten glass in the melting container made of the noble metal or the noble metal alloy, the thermal shock generated by supplying the material to the molten glass liquid surface is reduced, In addition to preventing fatigue and breakage of the melting container due to impact, the life of the protective member itself can be extended.

また、本発明における保護部材は、前記溶融容器内に配置したときに、前記溶融容器の内面との間に隙間が生じるように、前記溶融容器の上端周縁部に着脱可能に支持させる支持部を備えた構成とすることができる。
このように構成すれば、保護部材による熱衝撃の緩衝効果をより効果的に発揮させることができるとともに、保護部材が、その長寿命にもかかわらず損傷、劣化した場合であっても適宜交換することが可能となり、溶融容器へのダメージを長期間軽減することができる。
Further, the protective member according to the present invention includes a support portion that is detachably supported on the upper peripheral edge of the melting container so that a gap is formed between the inner surface of the melting container when the protective member is disposed in the melting container. It can be set as the structure provided.
If comprised in this way, while the buffering effect of the thermal shock by a protective member can be exhibited more effectively, it will replace | exchange suitably, even when the protective member is damaged and deteriorated despite its long life. And damage to the melting container can be reduced for a long time.

以上のように、本発明によれば、溶融容器の内面における溶融ガラス液面と接触する部分に沿って、溶融容器内に配置された保護部材を用いることにより、ガラスの材料を貴金属又は貴金属合金からなる溶融容器に供給する際、溶融容器の内面における溶融ガラスの液面と接触する部分に生じる熱衝撃を緩和し、熱衝撃による溶融容器の疲労や破損を防止することができる。しかも、熱衝撃を緩和するために溶融容器内に配置される保護部材は、溶融ガラス液面に接する部分を複数の分割体からなるように形成することにより、それ自体が損傷し難くなっている。
これにより、溶融容器の寿命を延長することができるだけでなく、保護部材自体の寿命も長くすることができ、溶融容器の破損による生産性の低下、さらには、溶融容器や保護部材の補修コストを抑制することができる。
As described above, according to the present invention, along a portion in contact with molten glass liquid surface in the inner surface of the melting vessel, by using a protective member disposed melt vessel, the materials of glass noble metal or noble metal alloy When the molten container is supplied, the thermal shock generated at the portion of the inner surface of the molten container that contacts the liquid surface of the molten glass can be alleviated, and fatigue or breakage of the molten container due to the thermal shock can be prevented. In addition, the protective member disposed in the melting container in order to mitigate thermal shock is less likely to be damaged by forming a part in contact with the molten glass liquid surface so as to be composed of a plurality of divided bodies. .
As a result, not only can the life of the melting container be extended, but the life of the protective member itself can be extended, resulting in a decrease in productivity due to breakage of the melting container, and further the repair cost of the melting container and the protective member. Can be suppressed.

以下、本発明の実施形態について、図面を参照して説明する。
なお、以下の実施形態では、光学ガラスを製造する装置と方法について説明するが、本発明は、光学ガラス以外のガラスを製造する場合の装置と方法にも適用することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, although the following embodiment demonstrates the apparatus and method which manufacture optical glass, this invention is applicable also to the apparatus and method in the case of manufacturing glass other than optical glass.

[光学ガラスの製造装置]
まず、本発明に係る光学ガラスの製造装置について説明する。図1は、光学ガラスの製造装置の概略を示す正面図、図2は、保護部材の概略斜視図である。
[Optical glass manufacturing equipment]
First, the optical glass manufacturing apparatus according to the present invention will be described. FIG. 1 is a front view showing an outline of an optical glass manufacturing apparatus, and FIG. 2 is a schematic perspective view of a protective member.

これらの図に示すように、光学ガラスの製造装置は、光学ガラスの材料を連続的又は間歇的に供給する材料供給部(材料供給手段)10と、材料供給部10から供給される材料を収容し、これを溶融する溶融槽(溶融容器)20と、連結パイプ30を介して溶融槽20に接続され、溶融槽20から供給される溶融ガラスの脱泡処理などを行う清澄槽40と、連結パイプ50を介して清澄槽40に接続され、清澄槽40から供給される溶融ガラスの粘度調整などを行う作業槽60とを備えている。   As shown in these drawings, the optical glass manufacturing apparatus accommodates a material supply unit (material supply means) 10 for continuously or intermittently supplying optical glass material, and a material supplied from the material supply unit 10. And a melting tank (melting vessel) 20 for melting this, a clarification tank 40 connected to the melting tank 20 via a connecting pipe 30 and performing a defoaming treatment of the molten glass supplied from the melting tank 20, and the like. A work tank 60 connected to the clarification tank 40 through the pipe 50 and adjusting the viscosity of the molten glass supplied from the clarification tank 40 is provided.

溶融槽20は、上方が開口した容器であり、例えば、白金・ロジウム、白金・金などの白金含有合金や、白金、ロジウム、金、イリジウム、パラジウムなどの貴金属からなっている。
また、溶融槽20は、高周波誘導などの加熱手段を備え、その加熱により光学ガラスの材料が溶融される。加熱手段は、溶融ガラスの温度をほぼ一定に保つように加熱を行うが、低温の材料を溶融槽20に供給すると、溶融ガラスの液面付近において温度が急激に低下し、溶融槽20の液面接触部分が大きな熱衝撃を受けることになる。また、ガラス原料バッチの供給によって、ガラス化反応による熱衝撃も生じる。本発明では、この問題を解決するために保護部材70を用いる。
The melting tank 20 is a container having an upper opening, and is made of, for example, a platinum-containing alloy such as platinum / rhodium or platinum / gold, or a noble metal such as platinum, rhodium, gold, iridium, or palladium.
Moreover, the melting tank 20 is provided with heating means such as high-frequency induction, and the optical glass material is melted by the heating. The heating means performs heating so as to keep the temperature of the molten glass substantially constant. However, when a low-temperature material is supplied to the melting tank 20, the temperature rapidly decreases near the liquid surface of the molten glass, and the liquid in the melting tank 20 is heated. The surface contact portion receives a large thermal shock. Moreover, the thermal shock by vitrification reaction also arises by supply of a glass raw material batch. In the present invention, the protective member 70 is used to solve this problem.

保護部材70は、溶融槽20の内面における溶融ガラス液面と接触する部分に沿って溶融槽20内に配置されるように、溶融槽20に取り付けられる。
保護部材70を溶融槽20内に配置するにあたり、保護部材70は、例えば、溶融槽20の内側において、溶融槽20の内面における溶融ガラス液面と接触する部分と、溶融ガラス液面におけるガラス材料が供給される部位との間に介在するように配置する。すなわち、ガラス材料の供給を受けて生じる溶融ガラス液面の降温・昇温が、溶融槽20に対して熱衝撃を与える以前に、保護部材70に対して与えるように配置され、溶融槽20に取り付けられる。
本実施形態では、溶融ガラスの液面に接する筒部71と、筒部71の上端から外側方へ延出するフランジ部72とを備えるものとできる。この場合、保護部材70は、保護部材70が損傷、劣化したときの交換が容易となるように、フランジ部72を支持部として、溶融槽20の上端周縁部に着脱可能に支持された状態で、溶融槽20に取り付けることができる。
The protection member 70 is attached to the melting tank 20 so as to be disposed in the melting tank 20 along a portion of the inner surface of the melting tank 20 that contacts the molten glass liquid surface.
In disposing the protective member 70 in the melting tank 20, the protective member 70 includes, for example, a portion in contact with the molten glass liquid surface on the inner surface of the melting tank 20 and a glass material on the molten glass liquid surface inside the melting tank 20. It arrange | positions so that it may interpose between the site | parts supplied. That is, it is arranged so that the temperature drop / temperature increase of the molten glass liquid surface generated by the supply of the glass material is applied to the protective member 70 before the thermal shock is applied to the melting tank 20. It is attached.
In this embodiment, it can be provided with the cylinder part 71 which contact | connects the liquid level of molten glass, and the flange part 72 extended outward from the upper end of the cylinder part 71. FIG. In this case, the protective member 70 is detachably supported on the upper peripheral edge portion of the melting tank 20 with the flange portion 72 as a support portion so that replacement when the protective member 70 is damaged or deteriorated is facilitated. It can be attached to the melting tank 20.

上記のように溶融槽20に取り付けられた保護部材70は、溶融槽20に光学ガラスの材料が投入されたときに発生する溶融ガラスの急激な降温に伴う熱衝撃を吸収し、溶融槽20への熱衝撃を和らげる働きをする。また、降温による熱衝撃を抑制することによって、ガラス材料の投入後における溶融ガラスの昇温に伴う熱衝撃(膨張)も抑制する働きをする。   The protective member 70 attached to the melting tank 20 as described above absorbs the thermal shock caused by the rapid temperature drop of the molten glass generated when the optical glass material is put into the melting tank 20, and enters the melting tank 20. It works to alleviate the thermal shock. Further, by suppressing the thermal shock due to the temperature drop, the thermal shock (expansion) accompanying the temperature rise of the molten glass after the glass material is charged is also suppressed.

例えば、光学ガラスの材料を溶融槽20に間歇投入する場合、保護部材70が無ければ、その周期毎に溶融槽20の内部における液面付近が数100℃〜1000℃超の温度振動による熱衝撃を受けることになる。このとき、本実施形態のように、ガラス化したガラス溶融液が、溶融槽20から、次の工程が行われる清澄槽40や作業槽60などに連続的に供給される場合、ガラス溶融、及びそれに次ぐ工程(清澄、均一化、粘度調整など)が異なる位置で常に平行して進行するため、溶融槽20内の溶融ガラスの液位は、ほぼ一定である。したがって、上記の熱衝撃は、溶融槽20の実質的に同一レベルの部位において恒常的に生じることとなる。
この温度振動は、投入量が多いほど大きく、ガラス材料としてガラス原料バッチを用いた場合に顕著となる。また、溶融槽20の径が小さいほど大きい。保護部材70を取り付けた場合は、温度振動による熱衝撃を数分の一以下に抑えることができる。
For example, when an optical glass material is intermittently charged into the melting tank 20, if there is no protective member 70, the thermal shock caused by temperature vibrations in the vicinity of the liquid level in the melting tank 20 every several hundred degrees C. to over 1000.degree. Will receive. At this time, as in this embodiment, when the vitrified glass melt is continuously supplied from the melting tank 20 to the clarification tank 40 or the work tank 60 where the next step is performed, glass melting, and Since subsequent processes (clarification, homogenization, viscosity adjustment, etc.) always proceed in parallel at different positions, the liquid level of the molten glass in the melting tank 20 is substantially constant. Therefore, the thermal shock described above is constantly generated at the substantially same level of the melting tank 20.
This temperature vibration becomes larger as the input amount is larger, and becomes prominent when a glass raw material batch is used as the glass material. Moreover, it is so large that the diameter of the melting tank 20 is small. When the protective member 70 is attached, the thermal shock due to temperature vibration can be suppressed to a fraction of a fraction.

より具体的な例を挙げると、図6に示すように、溶融槽20に保護部材70を取り付けないと、溶融ガラスの液面付近の溶融槽20の外側の温度が、材料投入により直ちに低下し、次いで回復するという温度振動が周期的に繰り返される。保護部材70を取り付けると、図5に示すように、その温度変動幅は、数分の一以下に抑えられる。
なお、図5及び図6は、光学ガラスの材料を溶融槽20に間歇投入したときの溶融槽20の外側での温度変化を示しているが、詳細については後述する。
As a more specific example, as shown in FIG. 6, if the protective member 70 is not attached to the melting tank 20, the temperature outside the melting tank 20 near the liquid surface of the molten glass immediately decreases due to the charging of the material. Then, the temperature oscillation of recovery is repeated periodically. When the protection member 70 is attached, as shown in FIG. 5, the temperature fluctuation range is suppressed to a fraction of a fraction.
5 and 6 show the temperature change on the outside of the melting tank 20 when the optical glass material is intermittently charged into the melting tank 20, the details will be described later.

このような溶融槽20への熱衝撃を和らげる緩衝効果が、より効果的に発揮されるようにするためには、保護部材70は、筒部71と溶融槽20の内面との間に隙間が生じるように、溶融槽20の内面に所定の間隔をおいて対向するように取り付けるのが好ましい。   In order for the buffering effect to reduce the thermal shock to the melting tank 20 to be exhibited more effectively, the protective member 70 has a gap between the cylindrical portion 71 and the inner surface of the melting tank 20. In order to generate, it is preferable to attach so that it may oppose the inner surface of the melting tank 20 at predetermined intervals.

このためには、例えば、図3に示すように、フランジ部72の外周端縁に沿って垂下片75を設け、この垂下片75を溶融槽20の外面などに当接させることによって、保護部材70が位置決めされるようにすればよい。溶融槽20は、その外側を耐熱保護材80で覆うことができ、例えば、図示するように、垂下片75は、耐熱保護材80の外面に当接させることができる。また、垂下片75は、フランジ部72の全周にわたって設けてもよいが、例えば、フランジ部72の外周端縁に沿って等間隔に2以上の垂下片を設けるというように、保護部材70の位置決めに必要な数だけ、適当な位置に部分的に設けることもできる。
これらの構成は、溶融ガラス液面においては、保護部材70の受ける熱衝撃を、上記隙間の溶融ガラスが緩衝し、溶融槽20に対する熱衝撃を、よりいっそう低下させる効果がある。更に、溶融槽20と保護部材70との接触面積を少なくすることができ、保護部材70から溶融槽20への熱衝撃の伝達を抑止するとともに、両者の収縮量及び膨張量の差や、体積変化の方向性の違いにより、応力を互いに及ぼし合うのを避ける上でも有効である。
なお、図3では、作図上、各部材を離間させているが、溶融槽20、フランジ部72及び垂下片75は、耐熱保護材80に密着又は当接しており、フランジ部72は、溶融槽の20の上端周縁部に当接している。
For this purpose, for example, as shown in FIG. 3, a protection piece is provided by providing a hanging piece 75 along the outer peripheral edge of the flange portion 72 and bringing the hanging piece 75 into contact with the outer surface of the melting tank 20. 70 may be positioned. The outer side of the melting tank 20 can be covered with the heat-resistant protective material 80. For example, the drooping piece 75 can be brought into contact with the outer surface of the heat-resistant protective material 80 as shown in the figure. The hanging piece 75 may be provided over the entire circumference of the flange portion 72. For example, two or more hanging pieces are provided at equal intervals along the outer peripheral edge of the flange portion 72. As many parts as necessary for positioning may be partially provided at appropriate positions.
These configurations have an effect of further reducing the thermal shock applied to the melting tank 20 by buffering the thermal shock received by the protective member 70 on the molten glass liquid surface by the molten glass in the gap. Furthermore, the contact area between the melting tank 20 and the protective member 70 can be reduced, the transmission of the thermal shock from the protective member 70 to the melting tank 20 is suppressed, the difference between the contraction amount and the expansion amount, the volume It is also effective to avoid applying stresses to each other due to the difference in direction of change.
In FIG. 3, each member is separated for drawing, but the melting tank 20, the flange portion 72, and the hanging piece 75 are in close contact with or in contact with the heat-resistant protective material 80. 20 is in contact with the peripheral edge of the upper end.

溶融槽20への熱衝撃を和らげる緩衝効果を発揮するに際して、保護部材70自体も、材料供給による溶融ガラスの降温及びその後の昇温による温度振動により、溶融ガラスの液面付近で局所的な収縮及び膨張を繰り返すことになる。このため、長期使用による保護部材70の侵食は避けられないが、保護部材70の侵食が進んだとしても、溶融ガラスを外部に流出させることがないので、生産への影響は軽微である。また、侵食により保護部材70が劣化した場合は、保護部材70を補修あるいは交換することにより、溶融槽20を長期にわたって継続的に熱衝撃から保護することができるが、保護部材70の寿命は可能な限り長くすることが望ましい。   When exhibiting a buffering effect to alleviate the thermal shock to the melting tank 20, the protective member 70 itself is also locally contracted near the liquid surface of the molten glass due to the temperature drop due to the temperature drop of the molten glass due to the material supply and the subsequent temperature rise. And the expansion will be repeated. For this reason, erosion of the protective member 70 due to long-term use is inevitable, but even if the erosion of the protective member 70 progresses, the molten glass will not flow out to the outside, so the influence on production is negligible. In addition, when the protective member 70 deteriorates due to erosion, the melting member 20 can be continuously protected from thermal shock over a long period of time by repairing or replacing the protective member 70, but the life of the protective member 70 is possible. It is desirable to make it as long as possible.

図示する例では、局所的な収縮及び膨張により保護部材70に作用する応力を極力小さくして、保護部材70の長寿命化を図るために、保護部材70の溶融ガラス液面に接する部分を、複数の分割体73からなるように形成している。
より具体的には、溶融槽20内に保護部材70を配置したときに、保護部材70の筒部71は下端側が溶融ガラス中に浸漬されるが、溶融槽20内に配置した状態において、筒部71の下端から溶融ガラスの液面上に露出する部分にわたる範囲に、筒部71の下端側に開口する複数のスリット74を設けることにより、溶融ガラス液面に接する部分が複数に分割されている。
In the illustrated example, in order to minimize the stress acting on the protective member 70 due to local contraction and expansion, and to extend the life of the protective member 70, the portion in contact with the molten glass liquid surface of the protective member 70 is A plurality of divided bodies 73 are formed.
More specifically, when the protective member 70 is disposed in the melting tank 20, the cylindrical portion 71 of the protective member 70 is immersed in the molten glass at the lower end side. By providing a plurality of slits 74 that open to the lower end side of the cylindrical portion 71 in a range extending from the lower end of the portion 71 to the portion exposed on the liquid surface of the molten glass, the portion in contact with the molten glass liquid surface is divided into a plurality of portions. Yes.

このとき、各分割体73は、上端側で筒部71の残部に一体に連設されているが、下端及びスリットにより分割された両側端は自由端となっており、温度振動による上下方向及び水平方向の収縮及び膨張が許容される形状となっている。これにより、保護部材70の各分割体73は、瞬時に膨張、収縮することが許容され、さらに、分割して体積を減ずることで、個々の分割体73の膨張量及び収縮量を小さくすることができるため、保護部材70に作用する内部応力がより軽減され、保護部材70の変形や破損が防止される。
さらに、分割体73を、複数のスリット74により分割して形成すれば、多数の分割体を組み合わせて一体とする必要がなく、保護部材70の成形が簡易であるとともに、使用期間を通じて保護部材70としての一体性が維持された状態で、上記した熱衝撃の緩衝効果を十分に発揮することが可能であり、保護部材70が損傷、劣化した場合の補修や交換などの作業も行い易い。
At this time, each divided body 73 is integrally connected to the remaining portion of the cylindrical portion 71 on the upper end side, but both ends divided by the lower end and the slit are free ends, The shape allows horizontal contraction and expansion. Thereby, each divided body 73 of the protection member 70 is allowed to expand and contract instantaneously, and further, by dividing and reducing the volume, the amount of expansion and contraction of each individual divided body 73 can be reduced. Therefore, the internal stress acting on the protection member 70 is further reduced, and deformation and breakage of the protection member 70 are prevented.
Further, if the divided body 73 is formed by being divided by the plurality of slits 74, it is not necessary to combine a large number of divided bodies into a single body, the protection member 70 can be easily formed, and the protection member 70 can be used throughout the period of use. It is possible to sufficiently exhibit the above-described thermal shock buffering effect in a state where the integrity is maintained, and it is easy to perform work such as repair or replacement when the protective member 70 is damaged or deteriorated.

保護部材70の溶融ガラス液面に接する部分を分割するスリット74は、保護部材70の全周にわたって、ほぼ等間隔に形成されることが好ましい。
このとき、スリット74の数は、溶融するガラスの組成に起因する溶融温度、溶融槽20の大きさ、溶融槽20の肉厚、及び材料供給の頻度などを考慮し、保護部材70が受ける熱衝撃の度合に応じて適宜決定される。
The slits 74 that divide the portion of the protective member 70 that contacts the molten glass liquid surface are preferably formed at substantially equal intervals over the entire circumference of the protective member 70.
At this time, the number of slits 74 is determined by the heat received by the protective member 70 in consideration of the melting temperature due to the composition of the glass to be melted, the size of the melting tank 20, the thickness of the melting tank 20, the frequency of material supply, and the like. It is determined appropriately according to the degree of impact.

スリット74の数が多ければ、形成される分割体73の数も増え、熱衝撃に対する収縮・膨張の応答性を高めるとともに、収縮量及び膨張量の分散が可能であり、応力緩和効果が高くなる。しかし、スリット74の数が多すぎると、保護部材70による熱衝撃遮蔽効果(溶融槽20に与える熱衝撃を遮蔽する効果)が低下し、また、個々の分割体73の寸法が小さくなるために物理的強度が低下する傾向がある。
このため、スリット74の数は4〜50個の範囲内とすることが好ましく、スリット幅sは1〜10mmの範囲内とするのが好ましい。また、各分割体73の水平方向の幅は20〜1000mmの範囲で選択することが好ましく、分割体73の寸法が大きすぎると上記応力緩和効果が低下し、小さすぎると物理的強度が低下する。
When the number of the slits 74 is large, the number of the divided bodies 73 to be formed is also increased, and the responsiveness of contraction / expansion to the thermal shock is enhanced, and the contraction amount and the expansion amount can be dispersed, and the stress relaxation effect is enhanced. . However, when the number of the slits 74 is too large, the thermal shock shielding effect (the effect of shielding the thermal shock applied to the melting tank 20) by the protective member 70 is lowered, and the size of each divided body 73 is reduced. There is a tendency for physical strength to decrease.
For this reason, the number of slits 74 is preferably in the range of 4 to 50, and the slit width s is preferably in the range of 1 to 10 mm. The horizontal width of each divided body 73 is preferably selected in the range of 20 to 1000 mm. If the size of the divided body 73 is too large, the stress relaxation effect is lowered, and if it is too small, the physical strength is lowered. .

図示する例において、スリット74は、筒部71の下端側を始点とし、終点が筒部71の溶融ガラスの液面上に露出する部分に位置するように形成されているが、スリット74の始点から終点までの長さは、溶融ガラスの液位の変動を考慮して適宜設定することができる。後述するように、連続溶融炉では、溶融ガラスの液位に大きな変動が生じないようにすることができるが、それでも若干の変動が生じ得る。このため、スリット74により形成される分割体73が、常に溶融ガラス液面に接している状態となるように、スリット74の浸漬深さを設定するのが好ましい。   In the illustrated example, the slit 74 is formed so that the lower end side of the cylindrical portion 71 is a starting point and the end point is located at a portion exposed on the liquid surface of the molten glass of the cylindrical portion 71. The length from the end point to the end point can be appropriately set in consideration of the fluctuation of the liquid level of the molten glass. As will be described later, in the continuous melting furnace, it is possible to prevent the liquid level of the molten glass from greatly fluctuating, but there may still be some fluctuation. For this reason, it is preferable to set the immersion depth of the slit 74 so that the divided body 73 formed by the slit 74 is always in contact with the molten glass liquid surface.

さらに、スリット74は、その鉛直方向の長さを所定長Lとするとき、常に溶融ガラス液面より上にL/2以上の部分が露出し、液面下にはL/2未満の部分が浸漬しているようにすることが好ましい。
これは、以下の点で非常に効果がある。すなわち、保護部材70は、溶融ガラス液面付近に熱衝撃を受けるが、この影響は、液面上と液面下に同等に生じるのではなく、液面より上側の部分が受ける影響が大きい。保護部材70の溶融ガラス液面付近において生じた局所的な温度振動は、液面下の部分では、熱容量が大きい(したがって、常に所定温度範囲内にある)ガラス溶融液との接触によって、所定温度範囲からの変動は軽微だが、液面より上の部分では、上記のガラス溶融液による緩衝作用が無いため、液面より上の所定距離の部位に昇温に起因する熱膨張に伴う歪が達する。このように、本発明が解決しようとする保護部材の破損(又は、溶融容器自体の破損)は、溶融ガラス液面より上の所定範囲部分に生じやすい。
したがって、溶融ガラス液面より上であって、歪の到達する部位にわたって、スリット74が設けられているのが好ましい。換言すれば、所定の寸法のスリット付保護部材としたとき、スリット74の大半を溶融ガラス液面より上に位置させることが最も効率的であり、より好ましくは、スリット74の溶融ガラスの液位上の部分(a)と液位下の部分(b)の寸法比(a/b)は、7/3以上である。このようにすると、さらに効率的にスリット74が作用する。
Furthermore, when the vertical length of the slit 74 is a predetermined length L, a portion of L / 2 or higher is always exposed above the molten glass liquid surface, and a portion of less than L / 2 is below the liquid surface. It is preferable to be immersed.
This is very effective in the following points. That is, the protective member 70 receives a thermal shock in the vicinity of the molten glass liquid surface, but this influence does not occur equally on the liquid surface and below the liquid surface, but is greatly affected by the portion above the liquid surface. The local temperature oscillation generated in the vicinity of the molten glass liquid surface of the protective member 70 has a predetermined temperature due to contact with the glass melt having a large heat capacity (and therefore always within the predetermined temperature range) in the portion below the liquid surface. Although the fluctuation from the range is slight, there is no buffer action by the glass melt above the liquid level, so the strain due to thermal expansion due to the temperature rise reaches the part at a predetermined distance above the liquid level. . Thus, the breakage of the protective member to be solved by the present invention (or the breakage of the melting container itself) tends to occur in a predetermined range portion above the molten glass liquid surface.
Therefore, it is preferable that the slit 74 is provided over the portion where the strain reaches above the molten glass liquid surface. In other words, when a protective member with slits of a predetermined size is used, it is most efficient to position most of the slits 74 above the molten glass liquid surface, and more preferably, the liquid level of the molten glass in the slits 74. The dimensional ratio (a / b) between the upper part (a) and the lower part (b) is 7/3 or more. In this way, the slit 74 acts more efficiently.

以上のことを考慮して、例えば、ガラス材料の供給量と次工程への溶融ガラスの供給量、及びこれらのタイミングなどを適宜調整して液位を一定に保つ目標となる液面を基準面としたときに、スリット74の終点が、基準面から30〜100mmの範囲に位置するようにするのが好ましく、スリット74の始点が、基準面から5〜40mmの範囲に位置するようにするのが好ましい。   In consideration of the above, for example, the reference liquid level that is the target to keep the liquid level constant by appropriately adjusting the supply amount of the glass material, the supply amount of the molten glass to the next process, and the timing thereof, etc. In this case, the end point of the slit 74 is preferably located in the range of 30 to 100 mm from the reference surface, and the start point of the slit 74 is located in the range of 5 to 40 mm from the reference surface. Is preferred.

上記の例では、フランジ部72により溶融槽20の上端周縁部に保護部材70を取り付けるようにしたが、保護部材70を溶融槽20に取り付ける具体的態様は特に限定されない。例えば、図に示すように、溶融槽20の底部に支持させることもできる。 In the above example, the protective member 70 is attached to the peripheral edge of the upper end of the melting tank 20 by the flange portion 72, but the specific mode of attaching the protective member 70 to the melting tank 20 is not particularly limited. For example, as shown in FIG. 4 , it can be supported at the bottom of the melting tank 20.

より具体的には、保護部材70は、溶融槽20の内側において、上部側が溶融槽20の内面における溶融ガラス液面と接触する部分に沿って溶融ガラスの液面に接する本体部76と、本体部76の下部側に形成された複数の足部77とを備えるものとできる。この場合、保護部材70は、複数の足部77により溶融槽20の底面に載置された状態で、溶融槽20に取り付けることができる。
なお、図(a)は溶融槽20に保護部材70を取り付けた状態を概念的に示す説明図であり、図(b)は保護部材70の概略斜視図である。また、図中、符号78で示す穿孔は、溶融ガラスを保護部材70外に流出させるためのものであり、その形成位置や数は、保護部材70の形状、大きさなどに応じて適宜設定される。
More specifically, the protective member 70 includes a main body 76 that contacts the liquid surface of the molten glass along the portion of the inner surface of the melting tank 20 where the upper side contacts the liquid surface of the molten glass on the inner surface of the melting tank 20, and the main body A plurality of foot portions 77 formed on the lower side of the portion 76 can be provided. In this case, the protective member 70 can be attached to the melting tank 20 while being placed on the bottom surface of the melting tank 20 by the plurality of legs 77.
4 (a) is an explanatory view conceptually showing a state of attaching the protective member 70 to the molten bath 20, Fig. 4 (b) is a schematic perspective view of a protective member 70. Further, the perforation indicated by reference numeral 78 in the figure is for allowing the molten glass to flow out of the protective member 70, and the formation position and number thereof are appropriately set according to the shape, size, etc. of the protective member 70. The

このような態様で保護部材70を溶融容器20に取り付ける場合、保護部材70は、その本体部76の少なくとも底部が、ほぼ球面状に形成されているのが好ましい。これにより、物理的な強度を得ることができ、特に、ガラス材料をカレットの形態で投入すると、溶融ガラス中に沈んだカレットが溶融しきらないまま保護部材70の底面に接触することがあるが、このときの接触による保護部材の破損が生じ難くなる。
また、溶融槽20への熱衝撃を和らげる緩衝効果が、より効果的に発揮されるようにするために、上記の例と同様に、保護部材70は、本体部76と溶融槽20の内面との間に隙間が生じるように、その形状や大きさを適宜設定し、溶融槽20の内面に所定の間隔をおいて対向するように取り付けるのが好ましい。
When the protective member 70 is attached to the melting container 20 in such a manner, it is preferable that at least the bottom of the main body 76 of the protective member 70 is formed in a substantially spherical shape. As a result, physical strength can be obtained. In particular, when a glass material is charged in the form of cullet, the cullet that sinks in the molten glass may contact the bottom surface of the protective member 70 without being completely melted. The damage of the protective member due to the contact at this time hardly occurs.
Further, in order to more effectively exert a buffering effect to alleviate the thermal shock to the melting tank 20, the protective member 70 includes the main body 76 and the inner surface of the melting tank 20, as in the above example. It is preferable that the shape and size are appropriately set so that a gap is formed between them, and they are attached so as to face the inner surface of the melting tank 20 at a predetermined interval.

に示す保護部材70は、本体部76の上部側の一部を除いて、溶融ガラスの液面下に浸漬されるが、溶融槽20内に配置した状態において、本体部76の上端から溶融ガラスの液面下に浸漬された部分にわたる範囲に、上記の例と同様にして、本体部76の上端側に開口する複数のスリット74を設けることにより、保護部材70の溶融ガラス液面に接する部分を、複数の分割体73からなるように形成することができる。このとき、各分割体73は、下端側で本体部76の残部に一体に連接されているが、上端及びスリット74により分割された両側端は自由端となっており、上記の例と同様に、温度振動による上下方向の収縮及び膨張が許容される。 The protective member 70 shown in FIG. 4 is immersed under the liquid surface of the molten glass except for a part on the upper side of the main body portion 76, but from the upper end of the main body portion 76 in a state of being disposed in the melting tank 20. By providing a plurality of slits 74 opened on the upper end side of the main body portion 76 in the range over the portion immersed under the liquid surface of the molten glass, the molten glass liquid surface of the protective member 70 is provided. The contacting portion can be formed to be composed of a plurality of divided bodies 73. At this time, each divided body 73 is integrally connected to the remaining portion of the main body portion 76 on the lower end side, but the upper end and both side ends divided by the slit 74 are free ends, as in the above example. In addition, vertical contraction and expansion due to temperature vibration are allowed.

このような態様で保護部材70を構成した場合、スリット74の終点は、本体部76の溶融ガラスの液面下に浸漬された部分に位置することとなるが、このときも、上記の例と同様に、スリット74の鉛直方向の長さ差を所定長Lとするとき、常に溶融ガラスの液面より上にL/2以上が露出するようにすることが好ましく、より好ましくは、スリット74の液位上の部分(a)と液位下の部分(b)の寸法比(a/b)は、7/3以上である。このようにすると、液面上に露出した保護部材70が、より有効に溶融ガラス液面の熱変動を緩衝することがで、その際に最も効率的にスリット74が作用する。   When the protection member 70 is configured in such a manner, the end point of the slit 74 is located in a portion immersed under the liquid surface of the molten glass of the main body portion 76. Similarly, when the length difference in the vertical direction of the slit 74 is set to a predetermined length L, it is preferable that L / 2 or more is always exposed above the liquid surface of the molten glass. The dimension ratio (a / b) between the part (a) above the liquid level and the part (b) below the liquid level is 7/3 or more. If it does in this way, the protection member 70 exposed on the liquid level can buffer the thermal fluctuation of a molten glass liquid surface more effectively, and the slit 74 acts most efficiently in that case.

上記いずれの態様の場合にも、溶融槽20の水平断面形状を円形状とするとともに、保護部材70の水平断面形状を、例えば、円形状又は多角形形状など、回転対称の中心軸を備えた形状とし、溶融槽20の中心軸と保護部材70の中心軸とがほぼ一致するように、保護部材70が溶融容器内に配置されることが好ましい。これにより、溶融槽20の強度を高くし、また、保護部材による熱衝撃の緩衝効果をより効果的に発揮させることができる。   In any case, the horizontal cross-sectional shape of the melting tank 20 is circular, and the horizontal cross-sectional shape of the protection member 70 is provided with a rotationally symmetrical central axis such as a circular shape or a polygonal shape. It is preferable that the protective member 70 is disposed in the melting container so as to have a shape such that the central axis of the melting tank 20 and the central axis of the protective member 70 substantially coincide with each other. Thereby, the intensity | strength of the melting tank 20 can be made high and the buffering effect of the thermal shock by a protection member can be exhibited more effectively.

また、保護部材70は、1つの部材を所定形状に成形することによって形成してもよいが、複数の部材を周方向に組み合わせて形成してもよい。いずれの場合にも、その周方向にも自由端79を設けることが好ましい。前者の場合には、例えば、図2に示すように、帯状の部材を両端がオーバーラップするように筒状に成形し、その端部が自由端79となるように形成することができる。後者の場合には、複数の部材の端縁を同様にオーバーラップさせて周方向に組み合わせることで、その端縁が自由端79となるように形成することができる。
このように保護部材70を構成すると、保護部材70における周方向の収縮及び膨張が許容され、これによっても熱衝撃に伴う内部応力を更に軽減することができる。
The protective member 70 may be formed by molding one member into a predetermined shape, but may be formed by combining a plurality of members in the circumferential direction. In any case, it is preferable to provide the free end 79 in the circumferential direction. In the former case, for example, as shown in FIG. 2, the band-shaped member can be formed into a cylindrical shape so that both ends overlap, and the end portion can be formed as a free end 79. In the latter case, the edges of the plurality of members can be overlapped in the same manner and combined in the circumferential direction so that the edges become free ends 79.
If the protective member 70 is configured in this way, the circumferential contraction and expansion of the protective member 70 are allowed, and the internal stress associated with the thermal shock can be further reduced.

保護部材70の素材としては、白金のほか、白金・ロジウム、白金・金などの白金含有合金や、ロジウム、金、イリジウム、パラジウムなどの貴金属を用いることができる。溶融工程では、侵食された溶融槽成分や保護部材成分が溶融ガラスへ混入すると、溶融ガラスが着色される可能性があるため、白金又は白金合金などの侵食の小さい素材を選択することが好ましい。ただし、白金を用いると着色が大きくなるガラス成分の場合は、他の素材を適宜選択する。また、保護部材70の素材は、溶融槽20の素材と、共通の成分を含有するものとすることが好ましい。このようにすれば、侵食によって保護部材70の成分が溶融ガラスに混入しても、その成分が溶融槽20の成分と同一であるため、製造される光学ガラスへの影響を小さくすることができる。   In addition to platinum, platinum-containing alloys such as platinum / rhodium and platinum / gold, and noble metals such as rhodium, gold, iridium, and palladium can be used as the material of the protective member 70. In the melting step, when the eroded melting tank component or the protective member component is mixed into the molten glass, the molten glass may be colored. Therefore, it is preferable to select a material with low erosion such as platinum or a platinum alloy. However, in the case of a glass component that increases in color when platinum is used, other materials are appropriately selected. Moreover, it is preferable that the raw material of the protection member 70 contains a common component with the raw material of the melting tank 20. In this way, even if the component of the protective member 70 is mixed into the molten glass due to erosion, since the component is the same as the component of the melting tank 20, the influence on the optical glass to be manufactured can be reduced. .

本発明を適用した溶融槽20は、連続溶融を行う連続溶融炉に用いることが好ましい。この場合、溶融槽20で溶融したガラスは、連続的に次の工程に移動する。次の工程は、例えば、清澄槽40とすることができる。清澄槽40では、溶融ガラスの脱泡や均質化が行われる。更に、清澄槽40の後工程は、作業槽60とすることができる。作業槽60では、溶融ガラスが成形に適した粘度に調整される。言うまでもなく、溶融槽20、清澄槽40、作業槽60の他に、それらの中間工程又は後工程として、他の工程を加えても良い。例えば、中間工程として攪拌槽を設け、ガラスの均質性を更に高める場合がある。   The melting tank 20 to which the present invention is applied is preferably used in a continuous melting furnace that performs continuous melting. In this case, the glass melted in the melting tank 20 continuously moves to the next step. The next step can be a clarification tank 40, for example. In the clarification tank 40, defoaming and homogenization of the molten glass are performed. Furthermore, the post-process of the clarification tank 40 can be a work tank 60. In the work tank 60, the molten glass is adjusted to a viscosity suitable for molding. Needless to say, in addition to the melting tank 20, the clarification tank 40, and the work tank 60, other processes may be added as an intermediate process or a post-process. For example, an agitation tank may be provided as an intermediate step to further increase the homogeneity of the glass.

このような連続溶融炉では、ポット溶融の場合と異なり、溶融ガラスの液位に大きな変動が生じない。すなわち、溶融ガラスの流出と同時にガラス材料の供給が行われ、ガラス液面がほぼ一定の位置に保たれる。したがって、溶融槽20の液面付近が集中的に熱衝撃を受けるため、本発明を適用すると効果が顕著である。   In such a continuous melting furnace, unlike the case of pot melting, the liquid level of the molten glass does not vary greatly. That is, the glass material is supplied simultaneously with the outflow of the molten glass, and the glass liquid level is maintained at a substantially constant position. Therefore, since the vicinity of the liquid surface of the melting tank 20 is intensively subjected to thermal shock, the effect is remarkable when the present invention is applied.

本発明に適用される光学ガラスの組成には特に制約は無い。例えば、リン酸塩ガラス、ホウ酸塩ガラス、ケイ酸塩ガラス、ホウケイ酸塩ガラス、フツリン酸塩ガラスなどに好適に用いられる。特に、アルカリ成分を含有する、侵食作用の強いガラスにおいても適用でき、また、溶融時の粘度が30ポアズ以下の低粘性のガラスにおいて効果が顕著である。   There is no restriction | limiting in particular in the composition of the optical glass applied to this invention. For example, it is suitably used for phosphate glass, borate glass, silicate glass, borosilicate glass, fluorophosphate glass, and the like. In particular, it can be applied to a glass containing an alkali component and having a strong erosion action, and the effect is remarkable in a low-viscosity glass having a viscosity at the time of melting of 30 poise or less.

また、本発明の装置、及び方法は、ガラス原料を混合、反応させてガラス化する工程に用いると特に効果が顕著であるが、一度ガラス化した材料を粉砕したいわゆるカレットを再溶融し、所望の精緻な物性を有する光学ガラスを製造することに用いることもできる。特に、前者に用いるときには、溶融容器として白金、又は白金合金を用い、かつ、ガラス種としてホウ酸塩ガラスを用いると、本発明の効果が顕著である。ホウ酸塩ガラスは、ガラス化過程での気化熱の発生が大きく、溶融ガラス液面の温度振動が激しいために、本発明の効果が大きい上、本発明の装置によって、透過率の高い光学ガラスが得られる。また、白金又は白金合金からなる本発明の装置に、鉛を含有しない光学ガラスを適用することでも、良好な効果が得られる。さらに、精緻な光学物性の制御が困難であるフツリン酸塩ガラスについても、本発明の装置を用いると高品質の光学ガラスが得られる。特に、高屈折率成分を多量に含有した屈折率ndが1.7以上の光学ガラス、屈折率ndが1.6以下で分散νdが65以上のフツリン酸ガラスに好適に適用できる。 The apparatus and method of the present invention are particularly effective when used in the step of mixing and reacting glass raw materials to vitrify, but remelting a so-called cullet obtained by pulverizing the material once vitrified, It can also be used to produce an optical glass having the following detailed physical properties. In particular, when the former is used, the effect of the present invention is remarkable when platinum or a platinum alloy is used as the melting container and borate glass is used as the glass seed. Borate glass has a large generation of heat of vaporization during the vitrification process, and the temperature fluctuation of the molten glass liquid surface is severe. Therefore, the effect of the present invention is great, and the apparatus of the present invention provides a high transmittance optical glass. Is obtained. Moreover, a favorable effect is acquired also by applying the optical glass which does not contain lead to the apparatus of this invention which consists of platinum or a platinum alloy. Furthermore, high-quality optical glass can be obtained by using the apparatus of the present invention for fluorophosphate glass, which is difficult to control precise optical properties. In particular, it can be suitably applied to optical glass containing a large amount of a high refractive index component and having a refractive index nd of 1.7 or more, and a fluorophosphate glass having a refractive index nd of 1.6 or less and a dispersion νd of 65 or more.

[光学ガラスの製造方法]
つぎに、本発明に係る光学ガラスの製造方法について説明する。
本発明に係る光学ガラスの製造方法は、光学ガラスの材料を連続的又は間歇的に溶融容器に供給し、この溶融容器内で前記材料を溶融させる工程に適用することができる。具体的には、溶融槽20の内面における溶融ガラス液面と接触する部分に沿って、溶融ガラス液面に接する部分が複数の分割体73からなるように形成された保護部材70を溶融槽20内に配置し、保護部材70で囲まれた溶融ガラス液面に、前記材料を供給し、溶融させる。
[Optical glass manufacturing method]
Below, the manufacturing method of the optical glass which concerns on this invention is demonstrated.
The optical glass manufacturing method according to the present invention can be applied to a step of supplying a material of optical glass continuously or intermittently to a melting container and melting the material in the melting container. Specifically, the protective member 70 formed so that the portion in contact with the molten glass liquid surface is composed of a plurality of divided bodies 73 along the portion in contact with the molten glass liquid surface on the inner surface of the melting tank 20 is provided. The material is supplied to the molten glass liquid surface disposed inside and surrounded by the protective member 70 and melted.

このような光学ガラスの製造方法を用いれば、光学ガラスの材料を溶融槽20に供給する際、溶融槽20の内面における溶融ガラスの液面と接触する部分に生じる熱衝撃を緩和し、熱衝撃による溶融槽20の疲労や破損を防止することができるとともに、保護部材70自体も損傷し難くすることができる。これにより、溶融槽20の寿命を延長することができるだけでなく、保護部材70自体の寿命も長くすることができ、溶融槽20の破損による生産性の低下、さらには、溶融槽20や保護部材70の補修コストを抑制することができる。   If such an optical glass manufacturing method is used, when the material of the optical glass is supplied to the melting bath 20, the thermal shock generated at the portion of the inner surface of the melting bath 20 that comes into contact with the liquid surface of the molten glass is alleviated. It is possible to prevent fatigue and breakage of the melting tank 20 due to the above, and it is also possible to make the protection member 70 itself difficult to be damaged. Thereby, not only can the life of the melting tank 20 be extended, but the life of the protective member 70 itself can be lengthened, the productivity is lowered due to breakage of the melting tank 20, and further, the melting tank 20 and the protective member The repair cost of 70 can be suppressed.

また、本発明における光学ガラスの製造方法では、その劣化に応じて保護部材70を交換可能に構成することで、保護部材70による溶融槽20の保護効果を長期にわたって維持し、溶融槽20の寿命を更に延長することが可能になる。   Moreover, in the manufacturing method of the optical glass in this invention, the protection member 70 is comprised so that replacement | exchange is possible according to the deterioration, The protection effect of the melting tank 20 by the protection member 70 is maintained over a long period of time, and the lifetime of the melting tank 20 Can be further extended.

図1に示す光学ガラスの製造装置において、溶融槽20に保護部材70を取り付けて光学ガラスの材料を溶融した場合と、溶融槽20に保護部材70を取り付けずに光学ガラスの材料を溶融した場合とを比較した。材料供給部10から溶融槽20に間歇的に材料を投入し、溶融槽20の溶融ガラスの液面と接触する部分と対向する外側部分の温度変化を観察した。   In the optical glass manufacturing apparatus shown in FIG. 1, when the protective member 70 is attached to the melting tank 20 and the optical glass material is melted, and when the optical glass material is melted without attaching the protective member 70 to the melting tank 20 And compared. A material was intermittently charged from the material supply unit 10 into the melting tank 20, and the temperature change in the outer part facing the liquid glass surface of the melting tank 20 was observed.

保護部材70を取り付けていない溶融槽20では、図6に示すように、溶融槽20中に材料を投入すると、直ちに溶融槽20の側面部位の温度が低下し、次いで温度回復した。溶融槽20の内側では、さらに大きな温度変動が起きていることになる。
なお、ここでは、ガラス材料としてカレット(ガラス化後に固化、粉砕したガラス材料)を用いたが、ガラス原料バッチを用いた場合には、同様の寸法の溶融槽、同量のガラス材料を供給すれば、温度変動が更に大きくなり、溶融槽の損傷が大きくなる。この温度変動の増大を抑制するためには溶融層の寸法を大きくするか、供給量を減少させるなど、生産効率上不利な方策を施さなければならない。
In the melting tank 20 to which the protective member 70 is not attached, as shown in FIG. 6, when the material was put into the melting tank 20, the temperature of the side surface portion of the melting tank 20 immediately decreased, and then the temperature recovered. Inside the melting tank 20, a larger temperature fluctuation occurs.
Here, cullet (glass material solidified and crushed after vitrification) was used as the glass material. However, when a glass raw material batch is used, a melting tank of the same size and the same amount of glass material should be supplied. In this case, the temperature fluctuation is further increased and the damage to the melting tank is increased. In order to suppress this increase in temperature fluctuation, it is necessary to take a disadvantageous measure in terms of production efficiency, such as increasing the size of the molten layer or decreasing the supply amount.

一方、保護部材70を取り付けた溶融槽20では、図5に示すように、材料を投入すると、溶融槽20における液面付近の温度は低下したが、その温度差は、図の場合と比較すると、六分の一以下に抑えられている。これは、溶融槽20の液面付近を覆う保護部材70が熱衝撃を吸収したためである。 On the other hand, the attached protective member 70 melting tank 20, as shown in FIG. 5, when turning on the material, but the temperature in the vicinity of the liquid surface in the melting bath 20 was lowered, the temperature difference is, the case of FIG. 6 Comparison Then, it is suppressed to less than one-sixth. This is because the protective member 70 covering the vicinity of the liquid surface of the melting tank 20 has absorbed the thermal shock.

本発明は、ガラスの材料を連続的又は間歇的に溶融容器に供給し、この溶融容器内で前記材料を溶融させるガラスの製造装置及び製造方法に適用することができる。特に、白金などの貴金属又は貴金属合金からなる溶融容器を用いて前記材料を溶融させる光学ガラスの製造装置や製造方法として有用である。   The present invention can be applied to a glass manufacturing apparatus and a manufacturing method in which a glass material is continuously or intermittently supplied to a melting container and the material is melted in the melting container. In particular, it is useful as an optical glass manufacturing apparatus or manufacturing method for melting the material using a melting container made of a noble metal such as platinum or a noble metal alloy.

光学ガラスの製造装置を示す概略正面図である。It is a schematic front view which shows the manufacturing apparatus of optical glass. 保護部材の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a protection member. 保護部材の一例を溶融容器に取り付けた状態を概念的に示す説明図である。It is explanatory drawing which shows notionally the state which attached an example of the protection member to the melting container. 保護部材の他の例を示す図である。It is a figure which shows the other example of a protection member. 実施例における溶融槽(液面付近)の温度変化を示す説明図である。It is explanatory drawing which shows the temperature change of the melting tank (liquid level vicinity) in an Example. 比較例における溶融槽(液面付近)の温度変化を示す説明図である。It is explanatory drawing which shows the temperature change of the melting tank (liquid level vicinity) in a comparative example.

符号の説明Explanation of symbols

10 材料供給部
20 溶融槽(溶融容器)
70 保護部材
71 筒部
72 フランジ部
73 分割体
74 スリット
75 垂下片
76 本体部
77 足部
10 Material supply unit 20 Melting tank (melting vessel)
70 Protective member 71 Tube portion 72 Flange portion 73 Divided body 74 Slit 75 Drooping piece 76 Body portion 77 Foot portion

Claims (9)

ガラスの材料を連続的又は間歇的に溶融容器に供給し、前記溶融容器内で溶融したガラスを連続的に次工程に供給する工程を含むガラスの製造方法であって、
前記溶融容器が貴金属又は貴金属合金からなるとともに、前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に、前記溶融ガラス液面に接する部分が複数の分割体からなるように形成された保護部材を介在させることを特徴とするガラスの製造方法。
A method for producing glass comprising a step of supplying a glass material continuously or intermittently to a melting container, and continuously supplying glass melted in the melting container to the next step,
The molten container is made of a noble metal or a noble metal alloy, and the molten glass liquid is disposed between a portion in contact with the molten glass liquid surface on the inner surface of the molten container and a portion to which the material is supplied on the molten glass liquid surface. A method for producing glass, comprising a protective member formed such that a portion in contact with a surface is composed of a plurality of divided bodies.
前記材料が、ガラス原料バッチであることを特徴とする請求項1に記載のガラスの製造方法。   The said material is a glass raw material batch, The manufacturing method of the glass of Claim 1 characterized by the above-mentioned. 前記ガラスが、ホウ酸塩光学ガラス、屈折率ndが1.7以上の光学ガラス、又は屈折率ndが1.6以下で分散νdが65以上の光学ガラスのいずれかであることを特徴とする請求項1〜2のいずれか1項に記載のガラスの製造方法。   The glass is any one of borate optical glass, optical glass having a refractive index nd of 1.7 or more, or optical glass having a refractive index nd of 1.6 or less and a dispersion νd of 65 or more. The manufacturing method of the glass of any one of Claims 1-2. 前記溶融容器の上端周縁部に、前記保護部材を着脱可能に支持させるとともに、前記保護部材の下端を自由端としたことを特徴とする請求項1〜3のいずれか1項に記載のガラスの製造方法。   4. The glass according to claim 1, wherein the protective member is detachably supported on the upper peripheral edge of the melting container, and the lower end of the protective member is a free end. Production method. 前記溶融容器の底部に、前記保護部材を支持させるとともに、前記保護部材の上端を自由端としたことを特徴とする請求項1〜3いずれか1項に記載のガラスの製造方法。   The method for producing glass according to any one of claims 1 to 3, wherein the protective member is supported on the bottom of the melting container, and the upper end of the protective member is a free end. ガラスの材料を溶融させる貴金属又は貴金属合金からなる溶融容器を備えたガラス製造装置であって、
前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に介在するように保護部材が配置され、
前記保護部材が、前記溶融ガラス液面に接する部分が複数の分割体からなるように形成されたものであることを特徴とするガラス製造装置。
A glass manufacturing apparatus including a melting container made of a noble metal or a noble metal alloy for melting a glass material,
A protective member is disposed so as to be interposed between a portion in contact with the molten glass liquid surface on the inner surface of the melting container and a portion to which the material is supplied on the molten glass liquid surface,
The glass manufacturing apparatus, wherein the protective member is formed so that a portion in contact with the molten glass liquid surface is composed of a plurality of divided bodies.
前記溶融容器の水平断面形状が円形であり、前記保護部材の中心軸が、前記溶融容器の中心軸とほぼ一致するように、前記保護部材が前記溶融容器内に配置されることを特徴とする請求項6に記載のガラス製造装置。   The horizontal cross-sectional shape of the melting container is circular, and the protective member is disposed in the melting container so that the central axis of the protective member substantially coincides with the central axis of the melting container. The glass manufacturing apparatus according to claim 6. 前記溶融容器の内面との間に隙間が生じるように、前記保護部材を前記溶融容器内に配置したことを特徴とする請求項6〜7のいずれか1項に記載のガラス製造装置。   The glass manufacturing apparatus according to claim 6, wherein the protective member is disposed in the melting container so that a gap is formed between the inner surface of the melting container. ガラスの材料を溶融させる貴金属又は貴金属合金からなる溶融容器内に配置される保護部材であって、
前記溶融容器の内面における溶融ガラス液面と接触する部分と、前記溶融ガラス液面における前記材料が供給される部位との間に介在するように配置され、
前記溶融ガラス液面に接する部分を有し、かつ、当該部分が複数の分割体からなるように形成されたものであることを特徴とする保護部材。
A protective member disposed in a melting vessel made of a noble metal or a noble metal alloy for melting a glass material,
It is arranged so as to be interposed between a portion of the inner surface of the molten container that is in contact with the molten glass liquid surface and a portion of the molten glass liquid surface to which the material is supplied,
A protective member having a portion in contact with the molten glass liquid surface, wherein the portion is formed of a plurality of divided bodies.
JP2005004165A 2005-01-11 2005-01-11 GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM Expired - Fee Related JP4504823B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005004165A JP4504823B2 (en) 2005-01-11 2005-01-11 GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM
CNB2006100011035A CN100441529C (en) 2005-01-11 2006-01-11 Method for preparation of glass, manufacturing installation of glass, and protection component used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004165A JP4504823B2 (en) 2005-01-11 2005-01-11 GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM

Publications (2)

Publication Number Publication Date
JP2006193349A JP2006193349A (en) 2006-07-27
JP4504823B2 true JP4504823B2 (en) 2010-07-14

Family

ID=36799723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004165A Expired - Fee Related JP4504823B2 (en) 2005-01-11 2005-01-11 GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM

Country Status (2)

Country Link
JP (1) JP4504823B2 (en)
CN (1) CN100441529C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926083B (en) * 2015-06-24 2018-02-13 湖北新华光信息材料有限公司 A kind of protective lining and its Use and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160920A (en) * 1981-03-16 1982-10-04 Corning Glass Works Method of melting thermoplastic material and electric furnace structure
JPS5992922A (en) * 1982-11-15 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Crucible for smelting fluoride glass
JPH06321544A (en) * 1993-03-23 1994-11-22 Saint Gobain Vitrage Internatl Device and method for melting glass
JP2002338255A (en) * 2002-01-23 2002-11-27 Hoya Corp Method for manufacturing highly homogeneous glass product
JP2005047784A (en) * 2003-07-31 2005-02-24 Hoya Corp Apparatus and method of manufacturing glass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU48073A1 (en) * 1965-02-24 1966-08-24
US4676819A (en) * 1986-02-07 1987-06-30 Ppg Industries, Inc. Ablation melting with composite lining
IT1270259B (en) * 1994-06-20 1997-04-29 Tecme Srl COMPOSITE STRUCTURE CONSISTING OF AN ELECTROFUSED REFRACTORY BUILDING INCORPORATING ELEMENTS HIGHLY RESISTANT TO CORROSION / EROSION BY THE BATHS MELTED AND USED IN PARTICULAR FOR THE CONSTRUCTION OF GLASS AND SIMILAR OVENS
JPH08301620A (en) * 1995-05-08 1996-11-19 Canon Inc Protective member and protective device for vessel for melting glass
FR2778910A1 (en) * 1998-05-19 1999-11-26 Saint Gobain Isover Melting furnace especially for melting recycled glass containing metallic residues to recover glass and optionally metal
US6632086B1 (en) * 2000-05-22 2003-10-14 Stanley M. Antczak Quartz fusion crucible

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160920A (en) * 1981-03-16 1982-10-04 Corning Glass Works Method of melting thermoplastic material and electric furnace structure
JPS5992922A (en) * 1982-11-15 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Crucible for smelting fluoride glass
JPH06321544A (en) * 1993-03-23 1994-11-22 Saint Gobain Vitrage Internatl Device and method for melting glass
JP2002338255A (en) * 2002-01-23 2002-11-27 Hoya Corp Method for manufacturing highly homogeneous glass product
JP2005047784A (en) * 2003-07-31 2005-02-24 Hoya Corp Apparatus and method of manufacturing glass

Also Published As

Publication number Publication date
CN1810686A (en) 2006-08-02
CN100441529C (en) 2008-12-10
JP2006193349A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
CA1190952A (en) Electric furnace construction
CN105283264A (en) Material processing through optically transmissive slag
JP4995068B2 (en) Silica glass crucible for pulling silicon single crystals
KR101627484B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP2005119959A5 (en)
WO2017176700A1 (en) Molten material thermocouple methods and apparatus
CN105436478A (en) Method for controlling formation of foreign crystals at variable cross section
CN104372216B (en) A kind of heat top casting technique of 7A04 aluminium alloys and its aluminium alloy
WO2013151106A1 (en) High zirconia fused cast refractory
JP4504823B2 (en) GLASS MANUFACTURING METHOD, GLASS MANUFACTURING DEVICE, AND PROTECTIVE MEMBER USED FOR THEM
JP6140687B2 (en) High zirconia electroformed refractory
CN106191561A (en) A kind of aluminium alloy and preparation method thereof
CN104148620B (en) The crystal fining method of a kind of brass alloys and device thereof
CN104084550B (en) The continuous casting steel billet production control method of rolling slab
CN109136584A (en) A kind of method of stripping formula electroslag furnace and its application and control ledeburite carbide
JP4455844B2 (en) Glass manufacturing apparatus, glass melting container protective member, and glass manufacturing method
JP2011046996A (en) MEMBER MADE OF Co-BASED ALLOY FOR ELECTRIC MELTING FURNACE FOR SUBJECTING HIGH LEVEL RADIOACTIVE WASTE GLASS TO SOLIDIFICATION TREATMENT, AND ELECTRIC MELTING FURNACE THEREFOR
CN104926083B (en) A kind of protective lining and its Use and preparation method
JP2005047784A5 (en)
JP4976802B2 (en) Glass manufacturing method and glass forming apparatus
CN104404325B (en) A kind of heat top casting technique of 7085 aluminium alloy and its aluminium alloy
US8627685B2 (en) Method for melting at least one powdered mineral material
CN102407319A (en) Method for casting hollow turbine working blade by using K465 alloy
US20120272685A1 (en) Melting method and apparatus
JP2017178727A (en) Manufacturing method for glass substrate and agitation tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees