JP4503541B2 - Silicon nitride powder and use thereof - Google Patents

Silicon nitride powder and use thereof Download PDF

Info

Publication number
JP4503541B2
JP4503541B2 JP2006039341A JP2006039341A JP4503541B2 JP 4503541 B2 JP4503541 B2 JP 4503541B2 JP 2006039341 A JP2006039341 A JP 2006039341A JP 2006039341 A JP2006039341 A JP 2006039341A JP 4503541 B2 JP4503541 B2 JP 4503541B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
powder
sintered body
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006039341A
Other languages
Japanese (ja)
Other versions
JP2007217226A (en
Inventor
研也 善場
幸一 松田
一也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006039341A priority Critical patent/JP4503541B2/en
Publication of JP2007217226A publication Critical patent/JP2007217226A/en
Application granted granted Critical
Publication of JP4503541B2 publication Critical patent/JP4503541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は窒化珪素粉末及びその用途に関する。 The present invention relates to silicon nitride powder and uses thereof.

窒化珪素粉末は、その耐摩耗、高強度、低熱膨張等の優れた性質を利用し、樹脂充填材やエンジニアリングセラミックス焼結体の製造原料等に使用されている。近年、非鉄金属の溶湯用部材、特にアルミニウム又はアルミニウム合金の溶湯用部材の需要が伸びており、具体的には熱電対の保護管、ラドル、湯面検知棒、ロール、タイル等の耐摩耗材料、軸受、バルブ等の産業機械部品である。 Silicon nitride powder is used as a raw material for producing resin fillers and engineering ceramics sintered bodies because of its excellent properties such as wear resistance, high strength, and low thermal expansion. In recent years, there has been an increasing demand for non-ferrous metal melt members, particularly aluminum or aluminum alloy melt members. Specifically, wear-resistant materials such as thermocouple protection tubes, ladles, hot water level detection rods, rolls and tiles. Industrial machinery parts such as bearings and valves.

非鉄金属溶湯用部材への要求特性は、高温強度と耐食性がいずれも高いことである。これを解決するため、従来、数多くの技術改良(特許文献1)がなされているが、まだまだ改善の余地があった。
特開平9−255313公報
The required characteristics for the non-ferrous metal melt member are high temperature strength and high corrosion resistance. Conventionally, many technical improvements (Patent Document 1) have been made to solve this problem, but there is still room for improvement.
JP-A-9-255313

本発明の目的は、高温強度と耐食性がいずれも高い窒化珪素焼結体、それを用いた非鉄金属溶湯用部材、及びそれを製造するための窒化珪素粉末を提供することである。本発明の目的は、窒化珪素粉末の粒度特性と、エタノール吸液量で示される窒化珪素粉末の充填性とを最適化した窒化珪素粉末を提供することによって達成することができる。なお、本明細書において、「高温強度」とは800℃における4点曲げ強さであり、「耐食性」とは750℃の溶融アルミニウムに試験片を24時間浸漬したときの侵食深さのことであり、「窒化珪素粉末の充填性」とは焼結前の窒化珪素粉末成形体の密度のことである。 An object of the present invention is to provide a silicon nitride sintered body having high high-temperature strength and high corrosion resistance, a nonferrous metal molten member using the same, and a silicon nitride powder for producing the same. The object of the present invention can be achieved by providing a silicon nitride powder in which the particle size characteristics of the silicon nitride powder and the filling property of the silicon nitride powder indicated by the ethanol absorption amount are optimized. In this specification, “high temperature strength” is the 4-point bending strength at 800 ° C., and “corrosion resistance” is the erosion depth when the test piece is immersed in molten aluminum at 750 ° C. for 24 hours. “Fillability of silicon nitride powder” means the density of the silicon nitride powder compact before sintering.

本発明は、d50が1.15〜1.27μm、d75/d25が4.5〜5.6であり、エタノール吸液量が粉末5g当たり2.12〜2.18mlである窒化珪素粉末。ここで、d50とはレーザー回折散乱法で測定された粒度分布における累積50体積%径、d75とは累積75体積%径、d25とは累積25体積%径のことである。また、本発明は、本発明の窒化珪素粉末の焼結体からなる窒化珪素焼結体である。さらに、本発明は、本発明の窒化珪素焼結体で構成された非鉄金属の溶湯用部材であり、好ましくはアルミニウム又はアルミニウム合金溶湯用部材である。 The present invention provides a silicon nitride powder having a d50 of 1.15 to 1.27 μm, a d75 / d25 of 4.5 to 5.6 , and an ethanol absorption of 2.12 to 2.18 ml per 5 g of powder. . Here, d50 is a cumulative 50 volume% diameter in the particle size distribution measured by the laser diffraction scattering method, d75 is a cumulative 75 volume% diameter, and d25 is a cumulative 25 volume% diameter. Moreover, this invention is a silicon nitride sintered compact which consists of a sintered compact of the silicon nitride powder of this invention. Furthermore, the present invention is a non-ferrous metal melt member composed of the silicon nitride sintered body of the present invention, preferably an aluminum or aluminum alloy melt member.

本発明によれば、例えばアルミニウム、マグネシウム、ニッケル等の非鉄金属の溶湯用部品を製造するのに好適な、高温強度と耐食性がいずれも高い窒化珪素焼結体が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the silicon nitride sintered compact with high high temperature intensity | strength and corrosion resistance both suitable for manufacturing the components for molten metal of nonferrous metals, such as aluminum, magnesium, nickel, is provided.

本発明の窒化珪素粉末のd50は0.9〜1.5μm、好ましくは、1.1〜1.3μmである。d50が0.9μm未満であると、d25も小さくなるのでd75/d25の条件を満たさせることが困難となる。その結果、窒化珪素粉末の充填性を十分に高めることができなくなり、高温強度と耐食性がいずれも顕著に向上しない。一方、d50が1.5μmをこえると、粗粉になりすぎてこれまた高温強度と耐食性が顕著に向上しない。 The d50 of the silicon nitride powder of the present invention is 0.9 to 1.5 μm, preferably 1.1 to 1.3 μm. If d50 is less than 0.9 μm, d25 also becomes small, so it is difficult to satisfy the condition of d75 / d25. As a result, the filling property of the silicon nitride powder cannot be sufficiently increased, and neither the high temperature strength nor the corrosion resistance is remarkably improved. On the other hand, if d50 exceeds 1.5 μm, it becomes too coarse and the high temperature strength and corrosion resistance are not significantly improved.

窒化珪素粉末のd75/d25は3〜8、好ましくは4〜6である。d75/d25が3未満であると、粒度分布がシャープになりすぎて窒化珪素粉末の充填性が高まらず、またこの比が8をこえると、逆に粒度分布がブロードになりすぎて粗粉が増え、これまた窒化珪素粉末の充填性が高まらない。これらの結果、窒化珪素焼結体の焼結密度が大きくならず、高温強度と耐食性が顕著に向上しない。普通に入手できる市販品等の窒化珪素粉末のd75/d25は、2未満又は13以上であるので、本発明に係る3〜8は特異的である。 D75 / d25 of the silicon nitride powder is 3 to 8, preferably 4 to 6. If d75 / d25 is less than 3, the particle size distribution becomes too sharp and the filling property of the silicon nitride powder does not increase. On the other hand, if this ratio exceeds 8, the particle size distribution becomes too broad and coarse powder is formed. This also increases the filling ability of the silicon nitride powder. As a result, the sintered density of the silicon nitride sintered body is not increased, and the high temperature strength and corrosion resistance are not significantly improved. Since d75 / d25 of commercially available silicon nitride powder such as commercially available products is less than 2 or 13 or more, 3 to 8 according to the present invention is specific.

窒化珪素粉末の粒度の調整は、例えば金属珪素の直接窒化法で製造した窒化インゴットを粗砕、中砕、粉砕した後、気流分級して窒化珪素粉末を製造する際、分級条件を制御することによって行うことができる。具体的には、一次エアー量やガイドベーン、ルーバー等の自由渦の制御、二次エアー風量等による半自由渦の制御、更にはローター等の回転数による強制渦の制御等によって行うことができる。これらの操作方法は当業者に熟知されている。 For adjusting the particle size of the silicon nitride powder, for example, after pulverizing, intermediately pulverizing, and pulverizing a nitride ingot produced by the direct nitridation method of metal silicon, the classification conditions are controlled when the silicon nitride powder is produced by air classification. Can be done by. Specifically, it can be performed by controlling the free vortex of the primary air amount, guide vanes, louvers, etc., controlling the semi-free vortex by the secondary air flow rate, etc., and controlling the forced vortex by the rotational speed of the rotor, etc. . These methods of operation are well known to those skilled in the art.

粒度の測定は、レーザー回折散乱法による粒度分布測定機(例えばLEEDS&NORTHRUP社製商品名「MICROTRAC−II SPA:MODEL7977−20」)によって行うことができる。測定は試料粉末60mgをヘキサメタリン酸ナトリウム0.2質量%水溶液200gに10分間超音波分散させてから行う。 The particle size can be measured by a particle size distribution measuring instrument (for example, trade name “MICROTRAC-II SPA: MODEL 7777-20” manufactured by LEEDS & NORTH SUP) by a laser diffraction scattering method. The measurement is performed after ultrasonically dispersing 60 mg of the sample powder in 200 g of a 0.2 mass% aqueous solution of sodium hexametaphosphate for 10 minutes.

本発明の窒化珪素粉末は、エタノール吸液量が粉末5g当たり2.0〜2.3ml、好ましくは2.1〜2.2mlである。普通に入手できる市販品等の窒化珪素粉末のエタノール吸液量が1.9ml未満又は4ml以上であることを踏まえると、数値範囲が厳選されていることが特徴である。エタノール吸液量は窒化珪素粉末の充填性の良否を示す指標であり、粒子同士の隙間が多くなるほど(すなわち最密充填に近くなるほど)小さくなるが、いくら小さくても良いということではなく、窒化珪素粉末の充填性を最大化させる下限値がある。一方、上記粒度範囲にあっては、平均粒子径が大きいほどエタノール吸液量は大きくなる。これらの事実を突き止め、更なる検討を加えて、エタノール吸液量が上記のように特定された。エタノール吸液量が粉末5g当たり2.0ml未満であると、窒化珪素粉末の充填性の著しい向上はなく、また2.3mlをこえると、粒子同士の隙間が大きすぎるため、これまた窒化珪素粉末の充填性の著しい向上はない。エタノール吸液量の増減は、上記粒度範囲において、d50を0.9〜1.5μmの範囲内で制御することによって行うことができる。 The silicon nitride powder of the present invention has an ethanol absorption of 2.0 to 2.3 ml, preferably 2.1 to 2.2 ml per 5 g of powder. In view of the fact that the amount of ethanol absorption of commercially available silicon nitride powder such as commercially available products is less than 1.9 ml or 4 ml or more, the numerical range is carefully selected. The amount of ethanol absorbed is an index indicating the quality of filling of silicon nitride powder, and the smaller the gap between particles (that is, the closer to the closest packing), the smaller the amount, but this does not mean that it can be as small as possible. There is a lower limit that maximizes the fillability of the silicon powder. On the other hand, in the above particle size range, the ethanol absorption becomes larger as the average particle size is larger. Ascertaining these facts and further studies, the ethanol absorption was determined as described above. If the amount of ethanol absorbed is less than 2.0 ml per 5 g of powder, there is no significant improvement in the filling properties of the silicon nitride powder, and if it exceeds 2.3 ml, the gap between particles is too large. There is no significant improvement in the filling property. The ethanol absorption can be increased or decreased by controlling d50 within the range of 0.9 to 1.5 μm in the above particle size range.

エタノール吸液量の測定は、試料5gを秤量して100mlビーカーに入れ、ビュレットから約0.02mlずつエタノールを滴下しガラス棒で混合する、この滴下・混合を繰り返して行い、試料の全量がガラス棒にまとわりついたエタノール量を測定することによって行った。 The ethanol absorption is measured by weighing 5 g of a sample into a 100 ml beaker, dropping 0.02 ml of ethanol from the burette and mixing with a glass rod. This dripping / mixing is repeated until the total amount of the sample is glass. This was done by measuring the amount of ethanol clinging to the rod.

本発明の窒化珪素焼結体は、本発明の窒化珪素粉末を含む原料を、常圧焼結又はホットプレス焼結することによって製造することができる。すなわち、本発明の窒化珪素粉末をそのまま、又は例えばY、Al、MgO等の希土類元素、3a族元素等の酸化物からなる焼結助剤を混合し、例えばプレス成形、射出成形、押出成形、鋳込み成形等によって成形した後、例えば窒素、アルゴン等の非酸化性雰囲気下、例えば温度1650〜1800℃、4〜12時間焼成することによって製造することができる。 The silicon nitride sintered body of the present invention can be produced by subjecting a raw material containing the silicon nitride powder of the present invention to atmospheric pressure sintering or hot press sintering. That is, the silicon nitride powder of the present invention is used as it is or mixed with a sintering aid made of oxides of rare earth elements such as Y 2 O 3 , Al 2 O 3 , MgO, and group 3a elements, for example, press molding, After molding by injection molding, extrusion molding, casting molding, or the like, it can be produced by firing at a temperature of 1650 to 1800 ° C. for 4 to 12 hours, for example, in a non-oxidizing atmosphere such as nitrogen or argon.

本発明の窒化珪素焼結体は、高温強度が800MPa以上で、耐食性はほとんど侵食せずであるので非金属溶湯部材に適しており、特にこれらの特性が高度に要求されるアルミニウム又はアルミニウム合金の溶湯部材に最適となる。 Since the silicon nitride sintered body of the present invention has a high-temperature strength of 800 MPa or more and hardly erodes corrosion resistance, it is suitable for a non-metallic molten metal member. Optimal for molten metal parts.

実施例2〜4 比較例1〜4 参考例1〜2
金属珪素粉末の直接窒化法(例えば特開平2−44017号公報の実施例1参照)にてα
率90%以上の窒化珪素インゴットを製造した後、それをジョークラッシャーにて粗砕、
更にチューブミルと振動ミルで中砕・微粉砕した後、気流式分級機で分級し、表1に示さ
れる窒化珪素粉末を製造した。窒化珪素粉末の粒度調整は、振動ミルのフィード量、分級
機の一次エアー量と二次エアー量の制御によって行った。得られた窒化珪素粉末につき、
上記方法に従い、d50、d75/d25及びエタノール吸液量を測定した。また、窒化
珪素粉末の充填性として、窒化珪素粉末を金型プレス成形後98MPaの圧力でCIP成
形し、アルキメデス法によりCIP成形体の相対密度を測定した。それらの結果を表1に
示す。
Examples 2-4 Comparative Examples 1-4 Reference Examples 1-2
Α can be obtained by direct nitridation of metal silicon powder (for example, see Example 1 of JP-A-2-44017).
After producing a silicon nitride ingot having a rate of 90% or more, it is roughly crushed with a jaw crusher.
Further, the mixture was crushed and finely pulverized with a tube mill and a vibration mill, and then classified with an airflow classifier to produce silicon nitride powder shown in Table 1. The particle size adjustment of the silicon nitride powder was performed by controlling the feed amount of the vibration mill and the primary air amount and secondary air amount of the classifier. About the obtained silicon nitride powder,
According to the above method, d50, d75 / d25, and ethanol absorption were measured. Further, as a filling property of the silicon nitride powder, the silicon nitride powder was subjected to CIP molding at a pressure of 98 MPa after die press molding, and the relative density of the CIP compact was measured by Archimedes method. The results are shown in Table 1.

窒化珪素粉末92質量部、アルミナ粉末3質量部、イットリア粉末5質量部及び水15質量部を加え、ボールミルで湿式混合した。これをスプレードライヤーで造粒・乾燥し、金型プレス成形後245MPaの圧力でCIP成形してから、窒素雰囲気中、温度1750℃で4時間焼結し、窒化珪素焼結体を製造した。 92 parts by mass of silicon nitride powder, 3 parts by mass of alumina powder, 5 parts by mass of yttria powder, and 15 parts by mass of water were added and wet mixed by a ball mill. This was granulated and dried with a spray dryer, CIP-molded at a pressure of 245 MPa after mold press molding, and then sintered at a temperature of 1750 ° C. for 4 hours in a nitrogen atmosphere to produce a silicon nitride sintered body.

得られた窒化珪素焼結体について、高温強度(JIS R1604による800℃の4点曲げ強さ)と耐食性を測定した。耐食性は、黒鉛ルツボ内に温度750℃の溶融アルミニウムを形成させ、高温強度測定と同じ試験片を24時間浸し、侵食深さをマイクロメータで計測した。それらの結果を表1に示す。 About the obtained silicon nitride sintered compact, high temperature strength (800 degreeC 4-point bending strength by JISR1604) and corrosion resistance were measured. Corrosion resistance was obtained by forming molten aluminum at a temperature of 750 ° C. in a graphite crucible, immersing the same specimen as the high-temperature strength measurement for 24 hours, and measuring the erosion depth with a micrometer. The results are shown in Table 1.

Figure 0004503541
Figure 0004503541

本発明の窒化珪素粉末は、非鉄金属の溶湯用部品の製造用原料や樹脂充填材等として使用することができる。 The silicon nitride powder of the present invention can be used as a raw material for manufacturing non-ferrous metal molten metal parts, a resin filler, and the like.

Claims (4)

d50が1.1〜1.3μm、d75/d25が4〜6であり、エタノール吸液量が粉末5g当たり2.1〜2.2mlである窒化珪素粉末。ここで、d50とはレーザー回折散乱法で測定された粒度分布における累積50体積%径、d75とは累積75体積%径、d25とは累積25体積%径のことである。 A silicon nitride powder having a d50 of 1.1 to 1.3 μm, a d75 / d25 of 4 to 6 , and an ethanol absorption of 2.1 to 2.2 ml per 5 g of the powder. Here, d50 is a cumulative 50 volume% diameter in the particle size distribution measured by the laser diffraction scattering method, d75 is a cumulative 75 volume% diameter, and d25 is a cumulative 25 volume% diameter. 請求項1に記載の窒化珪素粉末の焼結体からなる窒化珪素焼結体。 A silicon nitride sintered body comprising the silicon nitride powder sintered body according to claim 1. 請求項2に記載の窒化珪素焼結体で構成されてなる非鉄金属の溶湯用部材。 A non-ferrous metal melt member comprising the silicon nitride sintered body according to claim 2. 非鉄金属がアルミニウム又はアルミニウム合金である請求項3に記載の非鉄金属の溶湯用部材。 The member for molten nonferrous metal according to claim 3, wherein the nonferrous metal is aluminum or an aluminum alloy.
JP2006039341A 2006-02-16 2006-02-16 Silicon nitride powder and use thereof Active JP4503541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039341A JP4503541B2 (en) 2006-02-16 2006-02-16 Silicon nitride powder and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039341A JP4503541B2 (en) 2006-02-16 2006-02-16 Silicon nitride powder and use thereof

Publications (2)

Publication Number Publication Date
JP2007217226A JP2007217226A (en) 2007-08-30
JP4503541B2 true JP4503541B2 (en) 2010-07-14

Family

ID=38494910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039341A Active JP4503541B2 (en) 2006-02-16 2006-02-16 Silicon nitride powder and use thereof

Country Status (1)

Country Link
JP (1) JP4503541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611898B2 (en) 2015-07-31 2020-04-07 Nippon Sheet Glass Company, Limited Glass flakes and resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193470A (en) * 1987-09-30 1989-04-12 Toshiba Corp Ceramic sintered material
JPH03159907A (en) * 1989-11-16 1991-07-09 Denki Kagaku Kogyo Kk Silicon nitride powder
JPH06322457A (en) * 1993-05-13 1994-11-22 Hitachi Metals Ltd Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
JPH08119743A (en) * 1994-10-19 1996-05-14 Hitachi Metals Ltd Silicon nitride sintered compact excellent in strength at high temperature and its production and member for metal-melting bath
JPH11322311A (en) * 1998-05-18 1999-11-24 Shin Etsu Chem Co Ltd Silicon nitride powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193470A (en) * 1987-09-30 1989-04-12 Toshiba Corp Ceramic sintered material
JPH03159907A (en) * 1989-11-16 1991-07-09 Denki Kagaku Kogyo Kk Silicon nitride powder
JPH06322457A (en) * 1993-05-13 1994-11-22 Hitachi Metals Ltd Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
JPH08119743A (en) * 1994-10-19 1996-05-14 Hitachi Metals Ltd Silicon nitride sintered compact excellent in strength at high temperature and its production and member for metal-melting bath
JPH11322311A (en) * 1998-05-18 1999-11-24 Shin Etsu Chem Co Ltd Silicon nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611898B2 (en) 2015-07-31 2020-04-07 Nippon Sheet Glass Company, Limited Glass flakes and resin composition

Also Published As

Publication number Publication date
JP2007217226A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
Kim et al. The effect of yttrium oxide on the sintering behavior and hardness of tungsten
Tetsui et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
KR100386835B1 (en) Process for preparing sintered body of aluminum titanate
Chakravarty et al. Microstructure, mechanical properties and machining performance of spark plasma sintered Al2O3–ZrO2–TiCN nanocomposites
Basu et al. Development of WC–ZrO2 nanocomposites by spark plasma sintering
Taha et al. Mechanical alloying and sintering of a Ni/10wt.% Al 2 O 3 nanocomposite and its characterization
Yin et al. Improvement in microstructure and mechanical properties of Ti (C, N) cermet prepared by two-step spark plasma sintering
Narasimha Murthy et al. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al–Si alloy castings made in sand and Fe–Cr slag molds
CN105246860B (en) Ceramic sintered bodies, corrosion-resistant member, filter and the antihalation component constituted with it
Surya et al. To study the effect of varying sintering temperature and reinforcement on physical and mechanical characteristics of AA6061/SiC composites
JP4503541B2 (en) Silicon nitride powder and use thereof
Sharifi et al. The influence of volume fraction of SiC particles on the properties of Al/SiC p nanocomposites produced by powder metallurgy with high energy ball milling
CN102021473A (en) Method for preparing Fe3Al-Al2O3 composite material
Fan et al. Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W-1Ni-1Fe suspension
Sivkov et al. Dependence of physical, mechanical, and structural properties of TiN ceramics on temperature of spark plasma sintering
Khorrami et al. PREPARATION OF γ-Al 2 O 3 NANOCRYSTALLITES BY SOL-GEL AUTO COMBUSTION PROCESS AND PRODUCTION OF Al-Al 2 O 3 ALUMINUM MATRIX COMPOSITES.
Meng et al. Effect of mechanical alloying on the structure and property of Ni3Al fabricated by hot pressing
Gong et al. Fabrication and microstructure of in situ toughened Al2O3/Fe3Al
Zebarjad et al. Influence of nanosized silicon carbide on dimensional stability of Al/SiC nanocomposite
Liu et al. Influence of micron WC addition on the microstructure and mechanical properties of ultrafine WC–Co cemented carbides at the elevated temperature
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
Dobrzański et al. Structure and properties of ceramic preforms based on Al
Sampath et al. Fast consolidation of WC–Co
Latella et al. Processing high-purity and liquid-phase-sintered alumina ceramics using locally synthesized alumina powders

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250