JP4503021B2 - Process for producing N-vinylcarbazoles - Google Patents

Process for producing N-vinylcarbazoles Download PDF

Info

Publication number
JP4503021B2
JP4503021B2 JP2006543157A JP2006543157A JP4503021B2 JP 4503021 B2 JP4503021 B2 JP 4503021B2 JP 2006543157 A JP2006543157 A JP 2006543157A JP 2006543157 A JP2006543157 A JP 2006543157A JP 4503021 B2 JP4503021 B2 JP 4503021B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
raw material
solvent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006543157A
Other languages
Japanese (ja)
Other versions
JPWO2006046540A1 (en
Inventor
斉 矢野
修吉 宇賀村
稔 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPWO2006046540A1 publication Critical patent/JPWO2006046540A1/en
Application granted granted Critical
Publication of JP4503021B2 publication Critical patent/JP4503021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Description

本発明はN−ビニルカルバゾール類を製造する方法に関するものである。   The present invention relates to a method for producing N-vinylcarbazoles.

N−ビニルカルバゾール類は、染料の合成中間体や光伝導性材料の合成中間体、或いは熱可塑性樹脂を製造するためのモノマーなどとして非常に有用である。   N-vinyl carbazoles are very useful as a dye synthesis intermediate, a photoconductive material synthesis intermediate, a monomer for producing a thermoplastic resin, or the like.

N−ビニルカルバゾールを製造する方法としては、例えば特開昭48−68564号公報に示されている如く、カルバゾールとアセチレンを液相で反応させる方法が知られている。しかしこの方法は、高圧でアセチレンを取り扱うためアセチレンの分解・爆発の危険があり、設備面および操業面から十分な安全対策を必要とする。しかもこの反応は回分反応であるため、工業的な生産に適した方法とは言えない。   As a method for producing N-vinylcarbazole, a method in which carbazole and acetylene are reacted in a liquid phase is known as disclosed in, for example, JP-A-48-68564. However, since this method handles acetylene at high pressure, there is a risk of decomposition and explosion of acetylene, and sufficient safety measures are required from the viewpoint of facilities and operation. Moreover, since this reaction is a batch reaction, it cannot be said to be a method suitable for industrial production.

これに対し、アセチレンを使用しない方法として、例えば特開昭49−9468号公報にはN−(2−ヒドロキシエチル)カルバゾールを塩基の存在下で脱水反応し、N−ビニルカルバゾールを製造する方法が開示されている。しかし、この反応も回分反応であるため生産性が低く、実業化に適した方法とは言えない。しかも、反応によって生成する強塩基物質の処理に難渋する。   On the other hand, as a method not using acetylene, for example, JP-A-49-9468 discloses a method for producing N-vinylcarbazole by dehydrating N- (2-hydroxyethyl) carbazole in the presence of a base. It is disclosed. However, since this reaction is also a batch reaction, productivity is low and it cannot be said that it is a method suitable for business. In addition, it is difficult to process strong base substances produced by the reaction.

また特開2002−220371号公報には、N−(2−ヒドロキシエチル)カルバゾールの水酸基をスルホネートに誘導した後、塩基の存在下でスルホネートを脱離することによりN−ビニルカルバゾールを製造する方法が開示されている。しかしこの方法は、反応工程が多く操作が煩雑であることに加えて、反応によって生成するスルホン酸誘導体の処理に多大な手数を要する。   Japanese Patent Application Laid-Open No. 2002-220371 discloses a method for producing N-vinylcarbazole by deriving a hydroxyl group of N- (2-hydroxyethyl) carbazole to sulfonate and then removing the sulfonate in the presence of a base. It is disclosed. However, this method requires many steps for the treatment of the sulfonic acid derivative produced by the reaction in addition to many reaction steps and complicated operations.

更に特開平8−141402号公報には、3級N−(2−ヒドロキシアルキル)カルボン酸アミド類を原料として使用し、これを気相で分子内脱水することによって3級N−アルケニルカルボン酸アミドを製造する方法が開示されている。しかし、この方法で原料として用いられるN−(2−ヒドロキシアルキル)化合物はカルボン酸アミドであり、N−(2−ヒドロキシエチル)カルバゾール類とは異なる。またこの文献には、実施例として原料をガス状で反応器へ供給する例が示されているが、液状で反応器へ供給する例はない。   Further, JP-A-8-141402 uses tertiary N- (2-hydroxyalkyl) carboxylic acid amides as raw materials, and tertiary N-alkenylcarboxylic acid amides by intramolecular dehydration in the gas phase. A method of manufacturing is disclosed. However, the N- (2-hydroxyalkyl) compound used as a raw material in this method is a carboxylic acid amide and is different from N- (2-hydroxyethyl) carbazoles. In this document, an example of supplying the raw material in a gaseous state to the reactor is shown as an example, but there is no example of supplying the raw material to the reactor in a liquid state.

更にまた特開平9−291069号公報には、N−(1−アルコキシアルキル)化合物を原料として使用し、また、リンとアルカリ金属および/またはアルカリ土類金属とを含む固体酸化物を触媒として使用し、気相で脱アルコール反応させることによってN−ビニル化合物を製造する方法が開示されている。しかし、ここに示されたN−(アルコキシアルキル)化合物は離脱基がα位にあり、しかも離脱基はアルコキシ基であってN−(2−ヒドロキシエチル)カルバゾール類には該当しない。更には、反応によって副生するアルコール類の分離が必要となるため、工程が煩雑化する。   Furthermore, JP-A-9-291069 uses an N- (1-alkoxyalkyl) compound as a raw material, and uses a solid oxide containing phosphorus and an alkali metal and / or an alkaline earth metal as a catalyst. And a method for producing an N-vinyl compound by dealcoholization reaction in a gas phase is disclosed. However, the N- (alkoxyalkyl) compounds shown here have a leaving group at the α-position, and the leaving group is an alkoxy group and does not correspond to N- (2-hydroxyethyl) carbazoles. Furthermore, since it is necessary to separate alcohols by-produced by the reaction, the process becomes complicated.

本発明は上記の様な事情に着目してなされたものであって、その目的は、高圧条件や爆発性物質の使用による危険がなく、また副生物に由来する廃棄物処理などの後処理の問題が少なく、しかも工業化に適した連続法によってN−ビニルカルバゾール類を効率よく製造することのできる方法を確立することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is that there is no danger due to high-pressure conditions or the use of explosive substances, and the post-treatment such as waste treatment derived from by-products. The object is to establish a method that can produce N-vinylcarbazoles efficiently by a continuous method that is less problematic and suitable for industrialization.

上記課題を解決することのできた本発明の製法は、下記一般式(1)   The production method of the present invention that was able to solve the above-mentioned problems is represented by the following general formula (1)


[式中、R1〜R8はそれぞれ独立して水素または反応に不活性の置換基を表わす]
で示されるN−(2−ヒドロキシエチル)カルバゾール類を、触媒の存在下に気相で分子内脱水反応せしめ、下記一般式(2)

[Wherein R 1 to R 8 each independently represents hydrogen or a substituent inert to the reaction]
In the presence of a catalyst, N- (2-hydroxyethyl) carbazoles were subjected to intramolecular dehydration reaction in the gas phase, and the following general formula (2)


[式中、R〜Rは前記と同じ意味を表わす]
で示されるN−ビニルカルバゾール類に転化するところに要旨を有する。

[Wherein R 1 to R 8 represent the same meaning as described above]
The present invention is summarized in that it is converted to N-vinylcarbazoles represented by

本発明によれば、従来技術における高圧条件や爆発性物質の使用による危険がなく、また副生物に由来する廃棄物処理などの後処理の問題が少なく、しかも工業化に適した連続法によってN−ビニルカルバゾール類を効率よく製造することができる。   According to the present invention, there is no danger due to the use of high-pressure conditions and explosive substances in the prior art, and there are few problems in post-treatment such as waste treatment derived from by-products, and N-by a continuous process suitable for industrialization. Vinylcarbazoles can be produced efficiently.

本発明の一実施例を示す概念図である。It is a conceptual diagram which shows one Example of this invention.

本発明は上記の様にN−(2−ヒドロキシエチル)カルバゾール類を原料とし、これを気相で分子内脱水反応させることによってN−ビニルカルバゾール類を得る方法に関するものである。この合成反応は、下記式で示される。   The present invention relates to a method for obtaining N-vinylcarbazole by using N- (2-hydroxyethyl) carbazole as a raw material and subjecting it to intramolecular dehydration reaction in the gas phase as described above. This synthesis reaction is represented by the following formula.

[式中、R1〜R8はそれぞれ独立して水素または反応に不活性の置換基を表わす]
上記定義において「反応に不活性な置換基」とは、触媒の存在下、加熱によりN−(2−ヒドロキシエチル)カルバゾール類(1)を分子内脱水する反応に悪影響を与えない置換基をいう。その様な置換基として、例えば、ハロゲン原子、低級(C1-6)アルキル基、低級アルコキシ基、シアノ基、ニトロ基などを挙げることができる。
[Wherein R 1 to R 8 each independently represents hydrogen or a substituent inert to the reaction]
In the above definition, the “substituent inert to the reaction” refers to a substituent that does not adversely affect the reaction of intramolecular dehydration of N- (2-hydroxyethyl) carbazoles (1) by heating in the presence of a catalyst. . Examples of such a substituent include a halogen atom, a lower (C 1-6 ) alkyl group, a lower alkoxy group, a cyano group, and a nitro group.

一般に気相合成反応を実施する場合、蒸発器により原料を気化させてから反応器へ導入する方法が採用される。しかし、本発明で原料として使用するN−(2−ヒドロキシエチル)カルバゾール類は蒸気圧が非常に低いため、蒸発器による気化が難しい。しかし、これを後述する様な方法で気化させてから好適な触媒充填層に通すと速やかに脱水反応が進行し、N−ビニルカルバゾール類を簡単に高収率で得ることができる。  In general, when carrying out a gas phase synthesis reaction, a method is adopted in which a raw material is vaporized by an evaporator and then introduced into the reactor. However, since N- (2-hydroxyethyl) carbazoles used as a raw material in the present invention have a very low vapor pressure, it is difficult to vaporize with an evaporator. However, if this is vaporized by a method as described later and then passed through a suitable catalyst packed bed, the dehydration reaction proceeds rapidly, and N-vinylcarbazoles can be easily obtained in high yield.

即ち本発明では、蒸気圧の低いN−(2−ヒドロキシエチル)カルバゾール類を効率よく蒸発させて速やかに気相反応を進めるため、好ましくは当該原料を溶剤に希釈し原料化合物の濃度を低くすることで分圧を下げ、当該希釈溶液を直接液状で反応器へ供給することによって速やかに気化させ、気相状態で反応器内に充填した触媒と接触反応させる。   That is, in the present invention, in order to efficiently evaporate N- (2-hydroxyethyl) carbazoles having a low vapor pressure and rapidly proceed the gas phase reaction, the raw material is preferably diluted with a solvent to lower the concentration of the raw material compound. Thus, the partial pressure is lowered, and the diluted solution is directly vaporized by supplying it directly to the reactor, and is brought into contact with the catalyst charged in the reactor in a gas phase.

この際、溶剤に希釈した原料溶液を事前に加熱蒸発させてから反応器へ供給することもできる。しかしこの方法を採用した場合、蒸発器などで原料溶液を加熱蒸発させる際に、原料物質と溶剤の蒸気圧の差が大き過ぎるため、溶剤の全てが気化してしまっても原料の多くは気化しないで残存する。また原料を完全に気化させるには、結局のところ当該原料物質の沸点付近にまで高温に加熱しなければならず、実用にそぐわなくなる。   At this time, the raw material solution diluted in the solvent can be heated and evaporated in advance and then supplied to the reactor. However, when this method is adopted, when the raw material solution is heated and evaporated with an evaporator, etc., the difference in vapor pressure between the raw material and the solvent is too large, so even if all of the solvent is vaporized, most of the raw material is vaporized. Do not remain. In addition, in order to completely vaporize the raw material, after all, it must be heated to a high temperature up to the vicinity of the boiling point of the raw material, which is not practical.

しかし、上記の様に原料物質を溶剤に溶解した溶液を液状で反応器内へ供給すると、反応器内で揮発する溶剤は、原料物質の分圧を下げてその揮発を促すと共にキャリアガスの作用を発揮し、速やかな気相反応の進行を可能にする。   However, when a solution in which the raw material is dissolved in the solvent as described above is supplied into the reactor in a liquid state, the solvent that volatilizes in the reactor reduces the partial pressure of the raw material to promote its volatilization and the action of the carrier gas. To enable rapid gas phase reaction.

本発明で使用する溶剤としては、前述した脱水反応に不活性の溶剤であれば特に制限なく使用できるが、上記の様な溶剤の作用を考慮すると、原料であるN−(2−ヒドロキシエチル)カルバゾール類を溶解し得ると共に、蒸気圧は相対的に低めで、しかも脱水反応によって副生する水との分離が容易な溶剤が好ましい。具体的には、炭素数が6以上の鎖状もしくは環状炭化水素、より好ましくは芳香族系の炭化水素であり、コストや取扱い性なども考慮して最も好適なのはトルエン、キシレン、メシチレン等である。   The solvent used in the present invention can be used without particular limitation as long as it is inert to the above-described dehydration reaction. However, considering the action of the solvent as described above, N- (2-hydroxyethyl) as a raw material is used. A solvent that can dissolve carbazoles, has a relatively low vapor pressure, and can be easily separated from water by-produced by a dehydration reaction is preferable. Specifically, it is a chain or cyclic hydrocarbon having 6 or more carbon atoms, more preferably an aromatic hydrocarbon, and most preferred are toluene, xylene, mesitylene and the like in consideration of cost and handleability. .

なお上記溶剤と共に、反応に不活性のキャリアガス(例えば窒素ガスやアルゴンガス、ヘリウムガスなど)を併用することも可能であるが、その場合は、概して反応生成物の捕集効率が低下する傾向があるので、その使用量は極力少なく抑えるのがよく、格別の目的がない限り使用しない方が好ましい。   In addition, it is possible to use an inert carrier gas (for example, nitrogen gas, argon gas, helium gas, etc.) in combination with the above solvent, but in that case, the reaction product collection efficiency generally tends to decrease. Therefore, the amount used should be kept as small as possible, and it is preferable not to use unless there is a special purpose.

また、これらの溶剤には、上記の様に原料物質の分圧を下げてその蒸発を促す作用の他、反応生成物の冷却捕集を容易にする作用も有している。すなわち、気相反応に例えばキャリアガスを使用した場合、反応生成物がキャリアガスに同伴されて放出されるため目的物の冷却捕集率は少なからず低下するが、本発明であれば溶剤の揮発蒸気を脱水反応時のキャリアガスとして活用することで、反応生成物の捕集効率も高めることができる。特に、溶剤として芳香族系の炭化水素を使用すると、反応によって副生する水を油水分離により簡単に除去できるという利点も享受できる。   These solvents also have the effect of facilitating the cooling and collection of reaction products, in addition to the action of lowering the partial pressure of the raw material to promote its evaporation as described above. That is, for example, when a carrier gas is used for the gas phase reaction, the reaction product is released along with the carrier gas, and thus the cooling collection rate of the target product is reduced. By utilizing the vapor as a carrier gas during the dehydration reaction, the collection efficiency of the reaction product can be increased. In particular, when an aromatic hydrocarbon is used as a solvent, the advantage that water produced as a by-product by the reaction can be easily removed by oil-water separation can also be enjoyed.

なお上記溶剤による原料物質の希釈率は、N−(2−ヒドロキシエチル)カルバゾール類のモル分率で0.1〜10%の範囲が好ましい。ちなみに希釈率が高過ぎると、溶剤の消費量が増大するばかりでなく、低濃度になるが故に反応効率が低下し、満足のいく収率が得られ難くなる。反応効率や取扱い性、溶剤コストなどを総合的に考慮すると、0.5モル%以上、より好ましくは1モル%程度以上にすることが望ましい。一方、濃度の上限は特に存在しないが、原料物質に対する溶剤量が少な過ぎて原料物質の飽和溶解量を超えると、原料物質が固形物として残り均一な気相反応を阻害するので、少なくとも飽和溶解量を超えない濃度で、通常は10モル%以下、好ましくは8モル%以下、より好ましくは5モル%以下に抑えるのがよい。   The dilution rate of the raw material with the solvent is preferably in the range of 0.1 to 10% in terms of the molar fraction of N- (2-hydroxyethyl) carbazoles. Incidentally, when the dilution ratio is too high, not only the consumption of the solvent increases, but also the reaction efficiency decreases due to the low concentration, and it is difficult to obtain a satisfactory yield. In view of reaction efficiency, handling property, solvent cost, etc., it is desirable to make it 0.5 mol% or more, more preferably about 1 mol% or more. On the other hand, the upper limit of the concentration does not exist, but if the amount of the solvent for the raw material is too small and exceeds the saturated dissolution amount of the raw material, the raw material remains as a solid substance and inhibits a uniform gas phase reaction. In a concentration not exceeding the amount, it is usually 10 mol% or less, preferably 8 mol% or less, more preferably 5 mol% or less.

溶剤で希釈した化合物は、液状のまま反応器へ供給し、反応器内で気化させることが好ましい。より具体的には、反応器内にセラミックスボールやリング、鞍型充填剤などの不活性粒子を充填し、予熱拡散層を形成する。これにより、原料化合物が反応器へ導入されてから触媒層へ至るまでの時間が長くなり、熱が原料化合物へより均一に付与されることによって、十分な気化が行なわれる。また、加熱温度は、原料化合物が十分に気化される温度であれば特に制限されず、適宜調節すればよい。   The compound diluted with the solvent is preferably supplied to the reactor in a liquid state and vaporized in the reactor. More specifically, the preheat diffusion layer is formed by filling the reactor with inert particles such as ceramic balls, rings, and saddle type fillers. As a result, the time from introduction of the raw material compound into the reactor to the catalyst layer becomes longer, and heat is more uniformly applied to the raw material compound, whereby sufficient vaporization is performed. The heating temperature is not particularly limited as long as the raw material compound is sufficiently vaporized, and may be adjusted as appropriate.

気化させた原料化合物は、次いで反応器内で分子内脱水反応に付す。反応器内におけるN−(2−ヒドロキシエチル)カルバゾール類の気相での分子内脱水反応は、触媒の存在下で効率よく進行する。使用される触媒としては、シリカ、アルミナ、チタニア、ジルコニア等の酸化物の少なくとも1種、中でも特に好ましいのはシリカと、アルカリ金属元素および/またはアルカリ土類金属元素を含む触媒である。これらには、上記酸化物を担体としてアルカリ金属やアルカリ土類金属が担持されてもの、或いは上記酸化物がアルカリ金属やアルカリ土類金属と複合酸化物を形成したもの、更にそれらの単なる混合物などが含まれる。   The vaporized raw material compound is then subjected to an intramolecular dehydration reaction in the reactor. The intramolecular dehydration reaction in the gas phase of N- (2-hydroxyethyl) carbazoles in the reactor proceeds efficiently in the presence of a catalyst. The catalyst used is at least one oxide such as silica, alumina, titania, zirconia, and the like, and particularly preferred is a catalyst containing silica and an alkali metal element and / or an alkaline earth metal element. These include those in which an alkali metal or alkaline earth metal is supported using the oxide as a carrier, or the oxide formed a complex oxide with an alkali metal or alkaline earth metal, or a simple mixture thereof. Is included.

また上記触媒成分の中には、更に他の成分としてホウ素、アルミニウム、リンよりなる群から選択される少なくとも1種を含有させることができ、これらを含有させると触媒の寿命を延長できるので好ましい。これらは、触媒を製造する際にホウ酸、アルミン酸、リン酸などの形態で配合することができる。   Further, in the catalyst component, at least one selected from the group consisting of boron, aluminum, and phosphorus can be further contained as another component, and it is preferable because the life of the catalyst can be extended. These can be blended in the form of boric acid, aluminate, phosphoric acid or the like when the catalyst is produced.

上記触媒の中でも特に好ましいのは、混合物や複合体全体としての原子比で一般式[MSi]の関係を満たすSi含有触媒である。Among the above catalysts, a Si-containing catalyst satisfying the relationship of the general formula [M a Si b X c O d ] in terms of the atomic ratio of the mixture or the composite as a whole is particularly preferable.

なお上記一般式において、Mはアルカリ金属元素および/またはアルカリ土類金属元素、Siはケイ素、Xはホウ素、アルミニウム、リンから選ばれる少なくとも1種の元素、Oは酸素を表わす。a、b、cおよびdは各元素の原子数を表わし、dはa、b、cの値および各構成元素の結合状態によって決まる定数であり、a=1のとき、b=1〜500、c=0〜1を取り得る。   In the above general formula, M represents an alkali metal element and / or alkaline earth metal element, Si represents silicon, X represents at least one element selected from boron, aluminum, and phosphorus, and O represents oxygen. a, b, c and d represent the number of atoms of each element, d is a constant determined by the values of a, b and c and the bonding state of each constituent element, and when a = 1, b = 1 to 500, It can take c = 0-1.

即ち、アルカリ金属元素および/またはアルカリ土類金属元素に対するSiの割合は、その種類にもよるが原子比で1〜500の広い範囲を取ることができ、好ましくは5〜200の範囲である。また、必要に応じて配合されることのあるホウ素、アルミニウムまたはリンの含有率は、アルカリ金属元素やアルカリ土類金属元素の種類、Siの含有比率などにもよるが、原子比で1以下が好ましい。   That is, the ratio of Si to the alkali metal element and / or alkaline earth metal element can be in a wide range of 1 to 500, preferably in the range of 5 to 200, depending on the type. In addition, the content of boron, aluminum, or phosphorus that may be blended as necessary depends on the type of alkali metal element or alkaline earth metal element, the content ratio of Si, etc., but the atomic ratio is 1 or less. preferable.

上記触媒の調製法にも全く制限がなく、従来から知られた方法を適用できる。触媒の必須成分の1つであるアルカリ金属やアルカリ土類金属は、その原料として酸化物、水酸化物、ハロゲン化物、塩類(炭酸塩、硝酸塩、カルボン酸塩、リン酸塩、硫酸塩など)、あるいは金属そのものを使用できる。Si成分としては、酸化ケイ素、ケイ素、ケイ酸塩類(アルカリ金属ケイ酸塩、アルカリ土類金属ケイ酸塩など)、ケイ酸含有モレキュラーシーブズ(アルミノシリケート、シリコアルミノホスフェートなど)、有機ケイ酸エステルなどを使用できる。必要に応じて配合することのできる第三成分Xの原料としては、酸化物、水酸化物、ハロゲン化物、塩類(ホウ酸塩、アルミン酸塩、リン酸塩など)、あるいはB、Al、Pの元素そのものを使用できる。   The method for preparing the catalyst is not limited at all, and conventionally known methods can be applied. Alkali metals and alkaline earth metals, which are one of the essential components of the catalyst, are used as raw materials for oxides, hydroxides, halides and salts (carbonates, nitrates, carboxylates, phosphates, sulfates, etc.) Alternatively, the metal itself can be used. Si components include silicon oxide, silicon, silicates (alkali metal silicates, alkaline earth metal silicates, etc.), silicic acid-containing molecular sieves (aluminosilicates, silicoaluminophosphates, etc.), organosilicates, etc. Can be used. The raw materials for the third component X that can be blended as required include oxides, hydroxides, halides, salts (borate, aluminate, phosphate, etc.), or B, Al, P The element itself can be used.

当該触媒を製造する際の焼成温度は、用いる原料の種類に応じて300〜1000℃の広い範囲から適宜選択できるが、好ましいのは400〜800℃の範囲である。   Although the calcination temperature at the time of manufacturing the said catalyst can be suitably selected from the wide range of 300-1000 degreeC according to the kind of raw material to be used, the range of 400-800 degreeC is preferable.

本発明を実施するに当たり、気相での分子内脱水反応を行う反応器としては、固定床流通型あるいは流動床型のいずれも使用できる。この反応は、原料物質であるN−(2−ヒドロキシエチル)カルバゾール類が気相状態を維持し得る条件で行われる。圧力は常圧もしくは適度の減圧で行なうことができ、反応温度は圧力にもよるが、原料物質や目的物質の熱分解を起こすことなく且つ分子内脱水反応を効率よく進める上で好ましいのは300℃以上、500℃以下、より好ましくは350℃以上、450℃以下である。また、N−(2−ヒドロキシエチル)カルバゾール類の気化を促進するために、圧力を絶対圧で100〜700torr(約13〜93kPa)程度にしてもよい。   In carrying out the present invention, either a fixed bed flow type or a fluidized bed type can be used as a reactor for performing an intramolecular dehydration reaction in a gas phase. This reaction is carried out under conditions where the raw material N- (2-hydroxyethyl) carbazole can maintain a gas phase state. The pressure can be normal or moderately reduced, and the reaction temperature depends on the pressure, but 300 is preferable for causing the intramolecular dehydration reaction to proceed efficiently without causing thermal decomposition of the raw material or target substance. It is 350 degreeC or more and 450 degrees C or less more preferably. Further, in order to promote vaporization of N- (2-hydroxyethyl) carbazoles, the pressure may be about 100 to 700 torr (about 13 to 93 kPa) in absolute pressure.

反応器への原料の供給速度は、原料化合物の種類や触媒の種類、反応温度や圧力などによっても異なるが、反応器内に充填された単位触媒容積当たりのN−(2−ヒドロキシエチル)カルバゾール類の供給量を表わす空間速度(GHSV)にして、原料物質の標準状態(25℃、1気圧の気体としての容積)で1〜50hr-1、より好ましくは1〜10hr-1の範囲である。The feed rate of the raw material to the reactor varies depending on the kind of raw material compound, the kind of catalyst, the reaction temperature, the pressure, etc., but N- (2-hydroxyethyl) carbazole per unit catalyst volume charged in the reactor in the space velocity (GHSV) which represents the supply amount of the kind, the standard state of the raw material (25 ° C., the volume of a gas at 1 atm) at 1~50Hr -1, more preferably in the range of 1~10Hr -1 .

分子内脱水反応の後は、生成ガスを冷却することでN−ビニルカルバゾール類を容易に回収できる。即ち、前述した如く溶剤として例えばトルエン等の芳香族炭化水素系溶剤を使用した場合、反応生成ガスを冷却して凝縮させると、目的物は溶剤に溶解した溶液状態で得られる。また、脱水反応によって生成する水も同時に凝縮するが、芳香族炭化水素系溶剤に対する溶解度の低い水は相分離するので、これを油水分離することによって除去した後、油相から任意の方法で溶剤を除去すると、N−ビニルカルバゾール類を高収率で得ることができる。尚、反応条件によっては少量の未反応物が残存していたり、あるいは副反応物(分子間脱水生成物など)が生成していることもあるが、その場合は、例えば蒸留、晶析、抽出など任意の方法で精製して高純度の目的物を回収すればよい。   After the intramolecular dehydration reaction, N-vinylcarbazoles can be easily recovered by cooling the product gas. That is, as described above, when an aromatic hydrocarbon solvent such as toluene is used as the solvent, the target product can be obtained in a solution state dissolved in the solvent when the reaction product gas is cooled and condensed. In addition, water produced by the dehydration reaction condenses at the same time, but water having low solubility in the aromatic hydrocarbon solvent is phase-separated. After removing this by oil-water separation, the solvent is removed from the oil phase by any method. When N is removed, N-vinylcarbazoles can be obtained in high yield. Depending on the reaction conditions, a small amount of unreacted material may remain or by-products (such as intermolecular dehydration products) may be generated. In such cases, for example, distillation, crystallization, extraction, etc. For example, a high-purity target product may be recovered by purification using any method.

より具体的には、先ず、反応生成ガスを冷却することにより得られた溶液を水や食塩水などで洗浄し、反応により生成した水や着色の原因となる水溶性不純物を除去することが好ましい。また、目的化合物に高沸点不純物が混入する場合には減圧蒸留を用い、低沸点不純物が混入する場合には再結晶を行なうことが好ましい。再結晶に用いることができる溶媒としては、メタノールやエタノール等のアルコール;ジエチルエーテルやテトラヒドロフラン等のエーテル;これらの混合溶媒など、比較的極性の高い有機溶媒が好適である。   More specifically, it is preferable to first wash the solution obtained by cooling the reaction product gas with water or saline to remove water produced by the reaction or water-soluble impurities that cause coloring. . Further, when high boiling point impurities are mixed in the target compound, vacuum distillation is preferably used, and when low boiling point impurities are mixed, recrystallization is preferably performed. As a solvent that can be used for recrystallization, an organic solvent having a relatively high polarity such as an alcohol such as methanol or ethanol; an ether such as diethyl ether or tetrahydrofuran; or a mixed solvent thereof is preferable.

図1は、本発明を実施する際の概略工程説明図であり、1は原料溶解槽、2は送給ポンプ、3は反応塔、4は加熱槽、5は凝縮器、6は油水分離器、7は溶剤分離器をそれぞれ示している。   FIG. 1 is a schematic process explanatory diagram for carrying out the present invention, wherein 1 is a raw material dissolution tank, 2 is a feed pump, 3 is a reaction tower, 4 is a heating tank, 5 is a condenser, and 6 is an oil-water separator. 7 indicate solvent separators, respectively.

図示例において、原料物質Aと溶剤Bは所定の比率で原料溶解槽1内へ供給し撹拌して均一に溶解され、送給ポンプ2によって反応塔3へ送り込まれる。反応塔3には、原料溶液吹込み側に、反応に不活性のセラミックスボールやリング、鞍型充填材などが装填された予熱拡散層3aが設けられ、その下流側に前述した様な触媒の充填層3bが設けられ、任意の加熱手段により加熱できる様に構成されている。図示例では反応塔3の外面側に溶融塩を装入した加熱槽4が配置されており、溶融塩を加熱することで反応塔3を外面側から所定温度に加熱できる様に構成されている。加熱手段は勿論図示例に制限されるわけではなく、蛇腹管に熱媒体を通して加熱する方式や電熱加熱方式など、任意の加熱方式を採用できる。   In the illustrated example, the raw material A and the solvent B are supplied into the raw material dissolution tank 1 at a predetermined ratio, and are uniformly dissolved by stirring, and sent to the reaction tower 3 by the feed pump 2. The reaction tower 3 is provided with a preheating diffusion layer 3a loaded with ceramic balls, rings, saddle-type fillers and the like inert to the reaction on the raw material solution blowing side, and on the downstream side of the catalyst as described above. A packed bed 3b is provided and configured to be heated by any heating means. In the illustrated example, a heating tank 4 charged with a molten salt is disposed on the outer surface side of the reaction tower 3, and the reaction tower 3 can be heated to a predetermined temperature from the outer surface side by heating the molten salt. . Of course, the heating means is not limited to the illustrated example, and any heating method such as a method of heating the bellows tube through a heat medium or an electric heating method can be adopted.

反応塔3の下流側には凝縮器5が設けられており、分子内脱水反応によって生成した目的物は溶媒や副生する水と共に凝縮器5で凝縮され、油水分離器6で目的物を含む溶剤溶液と水に分離される。溶剤溶液は更に溶剤分離器7で目的物と溶剤に分離され、溶剤は必要により原料物質を溶解するための溶剤としてリサイクルされる。目的物は、その後、晶析、蒸留、抽出など任意の方法で精製すればよい。   A condenser 5 is provided on the downstream side of the reaction tower 3, and the target product generated by the intramolecular dehydration reaction is condensed in the condenser 5 together with the solvent and by-product water, and the target product is contained in the oil / water separator 6. Separated into solvent solution and water. The solvent solution is further separated into a target product and a solvent by a solvent separator 7, and the solvent is recycled as a solvent for dissolving the raw material if necessary. The target product may then be purified by any method such as crystallization, distillation or extraction.

なお図示例は本発明を実施する際の代表的な工程を示しただけで本発明を技術的に制限する性質のものではなく、原料物質と溶剤の混合供給機構、反応塔3や加熱槽4の具体的な形状・構造など、更には凝縮器5や油水分離器7の構成などは必要に応じて任意に変更することができる。   The illustrated example shows only typical steps in carrying out the present invention, and does not limit the present invention technically, but includes a mixing and supplying mechanism of a raw material and a solvent, a reaction tower 3 and a heating tank 4. The specific shape and structure, and the configuration of the condenser 5 and the oil / water separator 7 can be arbitrarily changed as necessary.

また、本発明によって得られるN−ビニルカルバゾール類は、当該分子中のビニル基を活用した重合性モノマーとして利用することにより、有機EL素子や有機トランジスタ、ポリマー半導体などの製造原料として有効に活用できる。   Further, the N-vinylcarbazoles obtained by the present invention can be effectively used as a raw material for producing organic EL elements, organic transistors, polymer semiconductors, etc. by using them as polymerizable monomers utilizing vinyl groups in the molecules. .

以下、実施例を挙げて本発明の構成及び作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out with modification, and any of them is included in the technical scope of the present invention.

なお、以下の実施例に示した収率および空間速度(GHSV)は下記の定義による。   In addition, the yield and space velocity (GHSV) shown in the following examples are based on the following definitions.

収率(%)=[(生成したN−ビニルカルバゾール類のモル数)/(原料として供給したN−(2−ヒドロキシエチル)カルバゾール類のモル数)]×100
空間速度(GHSV:hr-1)=[原料として供給したN−(2−ヒドロキシエチル)カルバゾール類の標準状態(25℃、1気圧の気体として)での体積]/触媒容量
実施例1
触媒の調製
硝酸リチウム(3.45g)を水(250g)に溶解し、90℃で加熱撹拌しながら酸化ケイ素(30g)を加えた後、加熱濃縮してから空気雰囲気中120℃で20時間乾燥した。得られた固体を9〜16メッシュに破砕し、更に空気中500℃で2時間焼成することにより、酸素を除く組成がLi1Si10からなる触媒を得た。
Yield (%) = [(number of moles of N-vinylcarbazole formed) / (number of moles of N- (2-hydroxyethyl) carbazole supplied as raw material)] × 100
Space velocity (GHSV: hr −1 ) = [volume of N- (2-hydroxyethyl) carbazole fed as a raw material in the standard state (as a gas at 25 ° C. and 1 atm)] / catalyst capacity Example 1
Preparation of catalyst Lithium nitrate (3.45 g) was dissolved in water (250 g), and silicon oxide (30 g) was added with heating and stirring at 90 ° C, followed by heating and concentration, followed by drying at 120 ° C in an air atmosphere for 20 hours. did. The obtained solid was crushed to 9 to 16 mesh and further calcined in air at 500 ° C. for 2 hours to obtain a catalyst whose composition excluding oxygen was Li 1 Si 10 .

合成反応
上記で得た触媒(30ml)を、内径15mmのステンレス製反応管内に充填した後、その上(原料装入側)に気化拡散のためのシリカゲルボールを充填した。この反応管を溶融塩(亜硝酸ナトリウムと硝酸カリウムの質量比1/1混合物)浴に浸漬して430℃に加熱し、当該反応管に、トルエンで3モル%に希釈したN−(2−ヒドロキシエチル)カルバゾール溶液を、空間速度(GHSV)4.5hr-1、圧力は絶対圧で200torr(約27kPa、以下の圧力は絶対圧とする)で供給した。反応管内に供給された原料は、入側のシリカゲルボール充填部で即座に気化して触媒充填層方向へ送られ、分子内脱水反応が進行する。
Synthesis reaction The catalyst obtained above (30 ml) was filled in a stainless steel reaction tube having an inner diameter of 15 mm, and then a silica gel ball for vaporization diffusion was filled thereon (raw material charging side). The reaction tube was immersed in a molten salt (mass ratio 1/1 mixture of sodium nitrite and potassium nitrate) bath, heated to 430 ° C., and N- (2-hydroxy) diluted to 3 mol% with toluene in the reaction tube. The ethyl) carbazole solution was supplied at a space velocity (GHSV) of 4.5 hr −1 and an absolute pressure of 200 torr (about 27 kPa, and the following pressure is an absolute pressure). The raw material supplied into the reaction tube is immediately vaporized in the silica gel ball filling part on the inlet side and sent toward the catalyst packed bed, and the intramolecular dehydration reaction proceeds.

反応開始から1時間後に、反応管からの出口ガスを抜き出して凝縮・捕集し、ガスクロマトグラフ分析によりN−ビニルカルバゾールの収率を求めたところ、92.3モル%であった。   One hour after the start of the reaction, the outlet gas from the reaction tube was extracted, condensed and collected, and the yield of N-vinylcarbazole was determined by gas chromatographic analysis. As a result, it was 92.3 mol%.

実施例2
触媒の調製
上記実施例1において、硝酸リチウム(3.45g)を硝酸ナトリウム(4.25g)に変更した以外は全く同様にして、酸素を除く組成がNa1Si10からなる触媒を得た。
Example 2
Preparation of catalyst In the above Example 1, except that lithium nitrate (3.45 g) was changed to sodium nitrate (4.25 g), a catalyst whose composition excluding oxygen was Na 1 Si 10 was obtained.

合成反応
上記で得た触媒を使用し、前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は79モル%であった。
Synthesis Reaction Using the catalyst obtained above, a gas phase reaction and product analysis were performed in the same manner as in Example 1. As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 79 mol%.

実施例3
触媒の調製
上記実施例1において、硝酸リチウム(3.45g)を硝酸カリウム(5.06g)に変更した以外は全く同様にして、酸素を除く組成がK1Si10からなる触媒を得た。
Example 3
Preparation of catalyst A catalyst having a composition excluding oxygen and having a composition of K 1 Si 10 was obtained in the same manner as in Example 1 except that lithium nitrate (3.45 g) was changed to potassium nitrate (5.06 g).

合成反応
上記で得た触媒を使用し、反応温度を450℃に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は87モル%であった。
Synthesis reaction The gas phase reaction and product analysis were performed in the same manner as in Example 1 except that the catalyst obtained above was used and the reaction temperature was changed to 450 ° C. As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 87 mol%.

実施例4
触媒の調製
炭酸セシウム(0.41g)を水(40g)に溶解した溶液に、粒径が5〜10メッシュの球状シリカゲル(30g)を2時間浸漬した後、湯浴上で加熱乾固した。次いで、空気中120℃で20時間仮焼した後、更に空気中800℃で2時間焼成し、酸素を除く組成がCs1Si200からなる触媒を得た。
Example 4
Preparation of Catalyst A spherical silica gel (30 g) having a particle size of 5 to 10 mesh was immersed in a solution of cesium carbonate (0.41 g) in water (40 g) for 2 hours, and then heated and dried on a hot water bath. Next, after calcining in air at 120 ° C. for 20 hours, further calcining in air at 800 ° C. for 2 hours to obtain a catalyst whose composition excluding oxygen is Cs 1 Si 200 .

合成反応
上記で得た触媒を使用し、反応温度を440℃に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は93モル%であった。
Synthesis reaction The gas phase reaction and product analysis were performed in the same manner as in Example 1 except that the catalyst obtained above was used and the reaction temperature was changed to 440 ° C. As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 93 mol%.

実施例5
触媒の調製
硫酸バリウム(4.36g)を水(100g)に溶解した溶液に、粒径が5〜10メッシュの球状シリカゲル(30g)を2時間浸漬した後、湯浴上で加熱乾固した。次いで、空気中120℃で20時間仮焼した後、更に空気中500℃で2時間焼成し、酸素を除く組成がBa1Si30からなる触媒を得た。
Example 5
Catalyst Preparation Spherical silica gel (30 g) having a particle size of 5 to 10 mesh was immersed in a solution of barium sulfate (4.36 g) in water (100 g) for 2 hours, and then heated and dried on a hot water bath. Next, after calcining in air at 120 ° C. for 20 hours, further calcining in air at 500 ° C. for 2 hours to obtain a catalyst whose composition excluding oxygen was Ba 1 Si 30 .

合成反応
上記で得た触媒を使用し、反応温度を450℃に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は80モル%であった。
Synthesis reaction The gas phase reaction and product analysis were performed in the same manner as in Example 1 except that the catalyst obtained above was used and the reaction temperature was changed to 450 ° C. As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 80 mol%.

実施例6
触媒の調製
酸化セシウム(19.5g)とリン酸第2アンモニウム(9.2g)を水(100g)に溶解した溶液に、リン酸アルミニウム(1.2g)と酸化ケイ素(30g)を加え、湯浴上で均一に加熱混合した後、加熱乾固した。次いで、空気中120℃で20時間仮焼してから9〜19メッシュに破砕し、更に空気中500℃で2時間焼成することにより、酸素を除く組成がCs1Si5Al0.10.8からなる触媒を得た。
Example 6
Preparation of catalyst To a solution of cesium oxide (19.5 g) and diammonium phosphate (9.2 g) dissolved in water (100 g), aluminum phosphate (1.2 g) and silicon oxide (30 g) were added. After heating and mixing uniformly on the bath, the mixture was heated to dryness. Next, after calcining in air at 120 ° C. for 20 hours, it is crushed to 9-19 mesh, and further calcined in air at 500 ° C. for 2 hours, so that the composition excluding oxygen consists of Cs 1 Si 5 Al 0.1 P 0.8. A catalyst was obtained.

合成反応
上記で得た触媒を使用し、空間速度(GHSV)を8.5hr-1に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は59モル%であった。
Synthesis reaction The gas phase reaction and products were analyzed in the same manner as in Example 1 except that the catalyst obtained above was used and the space velocity (GHSV) was changed to 8.5 hr -1 . As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 59 mol%.

実施例7
触媒の調製
硝酸セシウム(19.5g)とホウ酸(4.9g)を水(100g)に溶解した溶液に酸化ケイ素(30g)を加え、湯浴上で加熱混合しながら濃縮・乾固した。次いで、空気中120℃で20時間仮焼してから9〜16メッシュに破砕し、更に空気中500℃で2時間焼成することにより、酸素を除く組成がCs1Si50.8からなる触媒を得た。
Example 7
Catalyst Preparation Silicon oxide (30 g) was added to a solution of cesium nitrate (19.5 g) and boric acid (4.9 g) dissolved in water (100 g), and the mixture was concentrated and dried while heating and mixing on a hot water bath. Next, after calcining in air at 120 ° C. for 20 hours, crushing to 9-16 mesh, and further firing in air at 500 ° C. for 2 hours, a catalyst whose composition excluding oxygen is Cs 1 Si 5 B 0.8 is obtained. Obtained.

合成反応
上記で得た触媒を使用し、空間速度(GHSV)を6.8hr-1に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は83モル%であった。
Synthesis reaction The gas phase reaction and products were analyzed in the same manner as in Example 1 except that the catalyst obtained above was used and the space velocity (GHSV) was changed to 6.8 hr -1 . As a result, the yield of N-vinylcarbazole after 1 hour from the start of the raw material supply was 83 mol%.

実施例8
触媒の調製
硝酸セシウム(9.75g)とリン酸第2アンモニウム(2.64g)を水(100g)に溶解した溶液に酸化ケイ素(30g)を加え、湯浴上で均一に加熱混合した後、加熱乾固した。次いで、空気中120℃で20時間仮焼してから9〜19メッシュに破砕し、更に空気中600℃で2時間焼成することにより、酸素を除く組成がCsSi100.4からなる触媒を得た。
Example 8
Preparation of catalyst After adding silicon oxide (30 g) to a solution of cesium nitrate (9.75 g) and diammonium phosphate (2.64 g) dissolved in water (100 g), and uniformly heating and mixing on a hot water bath, Heat to dryness. Next, after calcining in air at 120 ° C. for 20 hours, crushing to 9-19 mesh, and further firing in air at 600 ° C. for 2 hours, the composition excluding oxygen consists of Cs 1 Si 10 P 0.4. A catalyst was obtained.

合成反応
上記で得た触媒を使用し、空間速度(GHSV)を6.8hr-1に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は77モル%であった。
Synthesis reaction The gas phase reaction and products were analyzed in the same manner as in Example 1 except that the catalyst obtained above was used and the space velocity (GHSV) was changed to 6.8 hr -1 . As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 77 mol%.

実施例9
触媒の調製
炭酸セシウム(8.15g)を水(100g)に溶解した溶液に酸化ケイ素(30g)を加え、湯浴上で加熱混合した後、加熱乾固した。次いで、空気中120℃で20時間仮焼してから9〜16メッシュに破砕し、更に空気中500℃で2時間焼成することにより、酸素を除く組成がCs1Si10からなる触媒を得た。
Example 9
Catalyst Preparation Silicon oxide (30 g) was added to a solution of cesium carbonate (8.15 g) in water (100 g), heated and mixed on a hot water bath, and then heated to dryness. Next, after calcining in air at 120 ° C. for 20 hours, it was crushed to 9-16 mesh and further calcined in air at 500 ° C. for 2 hours to obtain a catalyst whose composition excluding oxygen was Cs 1 Si 10 . .

合成反応
上記で得た触媒(30ml)を、内径15mmのステンレス製反応管内に充填した後、その上(原料装入側)に気化拡散のためのシリカゲルボールを充填した。この反応管を溶融塩浴に浸漬して460℃に加熱し、当該反応管に、トルエンで3モル%に希釈したN−(2−ヒドロキシエチル)カルバゾール溶液を、空間速度(GHSV)4.5hr-1、圧力500torr(約67kPa)で供給した。反応管内に供給された原料は、入側のシリカゲルボール充填部で即座に気化して触媒充填層方向へ送られ、反応が進行する。
Synthesis reaction The catalyst obtained above (30 ml) was filled in a stainless steel reaction tube having an inner diameter of 15 mm, and then a silica gel ball for vaporization diffusion was filled thereon (raw material charging side). This reaction tube was immersed in a molten salt bath and heated to 460 ° C., and an N- (2-hydroxyethyl) carbazole solution diluted to 3 mol% with toluene was added to the reaction tube with a space velocity (GHSV) of 4.5 hr. -1 and a pressure of 500 torr (about 67 kPa). The raw material supplied into the reaction tube is immediately vaporized in the silica gel ball filling part on the inlet side and sent toward the catalyst packed bed, and the reaction proceeds.

反応開始から1時間後に、反応管からの出口ガスを抜き出して凝縮・捕集し、ガスクロマトグラフ分析によりN−ビニルカルバゾールの収率を求めたところ、84モル%であった。   One hour after the start of the reaction, the outlet gas from the reaction tube was extracted, condensed and collected, and the yield of N-vinylcarbazole was determined by gas chromatographic analysis. As a result, it was 84 mol%.

実施例10
触媒の調製
上記実施例9と全く同様にして触媒の調製を行った。
Example 10
Catalyst preparation A catalyst was prepared in exactly the same manner as in Example 9.

合成反応
上記で得た触媒(30ml)を、内径15mmのステンレス製反応管内に充填した後、その上(原料装入側)に気化拡散のためのシリカゲルボールを充填した。この反応管を溶融塩浴に浸漬して480℃に加熱し、当該反応管に、キシレンで3モル%に希釈したN−(2−ヒドロキシエチル)カルバゾール溶液を、空間速度(GHSV)8.5hr-1、圧力200torr(約27kPa)で供給した。反応管内に供給された原料は、入側のシリカゲルボール充填部で即座に気化して触媒充填層方向へ送られ、反応が進行する。
Synthesis reaction The catalyst obtained above (30 ml) was filled in a stainless steel reaction tube having an inner diameter of 15 mm, and then a silica gel ball for vaporization diffusion was filled thereon (raw material charging side). The reaction tube was immersed in a molten salt bath and heated to 480 ° C., and an N- (2-hydroxyethyl) carbazole solution diluted to 3 mol% with xylene was added to the reaction tube with a space velocity (GHSV) of 8.5 hr. -1 and a pressure of 200 torr (about 27 kPa). The raw material supplied into the reaction tube is immediately vaporized in the silica gel ball filling part on the inlet side and sent toward the catalyst packed bed, and the reaction proceeds.

反応開始から1時間後に、反応管からの出口ガスを抜き出して凝縮・捕集し、ガスクロマトグラフ分析によりN−ビニルカルバゾールの収率を求めたところ、76モル%であった。   One hour after the start of the reaction, the outlet gas from the reaction tube was extracted, condensed and collected, and the yield of N-vinylcarbazole was determined by gas chromatographic analysis. As a result, it was 76 mol%.

実施例11
触媒の調製
硝酸ナトリウム(4.25g)とリン酸第2アンモニウム(2.64g)を100gの水に溶解した溶液に酸化ケイ素(30g)を加え、湯浴上で均一に加熱混合した後、加熱乾固した。次いで、空気中120℃で20時間仮焼してから9〜19メッシュに破砕し、更に空気中600℃で2時間焼成することにより、酸素を除く組成がNa1Si100.2からなる触媒を得た。
Example 11
Preparation of catalyst Silicon oxide (30 g) was added to a solution of sodium nitrate (4.25 g) and diammonium phosphate (2.64 g) dissolved in 100 g of water, and heated and mixed uniformly on a hot water bath. Dried to dryness. Next, after calcining in air at 120 ° C. for 20 hours, crushing to 9-19 mesh, and further firing in air at 600 ° C. for 2 hours, a catalyst whose composition excluding oxygen is Na 1 Si 10 P 0.2 is obtained. Obtained.

合成反応
上記で得た触媒を使用し、空間速度(GHSV)を6.8hr-1に変更した以外は前記実施例1と同様にして気相反応および生成物の分析を行った。その結果、原料の供給開始から1時間後のN−ビニルカルバゾールの収率は74モル%であった。
Synthesis reaction The gas phase reaction and products were analyzed in the same manner as in Example 1 except that the catalyst obtained above was used and the space velocity (GHSV) was changed to 6.8 hr -1 . As a result, the yield of N-vinylcarbazole after 1 hour from the start of raw material supply was 74 mol%.

本発明によれば、高圧条件や爆発性物質の使用による危険がなく、また副生物に由来する廃棄物処理などの後処理の問題が少なく、しかも工業化に適した連続法によってN−ビニルカルバゾール類を効率よく製造できることから、本発明は産業上極めて有用である。   According to the present invention, there is no danger due to high-pressure conditions or use of explosive substances, and there are few problems in post-treatment such as waste treatment derived from by-products, and N-vinylcarbazoles are produced by a continuous process suitable for industrialization. Therefore, the present invention is extremely useful industrially.

Claims (4)

下記一般式(1)
[式中、R1〜R8はそれぞれ独立して水素、または、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、シアノ基もしくはニトロ基を表わす]
で示されるN−(2−ヒドロキシエチル)カルバゾール類を、トルエン、キシレン、メシチレンよりなる群から選択される少なくとも1種の溶剤に希釈し、予熱拡散層と触媒充填層を連続的に有する反応器の予熱拡散層へ液状で供給し、触媒の存在下に気相で分子内脱水反応せしめ、下記一般式(2)
[式中、R1〜R8は前記と同じ意味を表わす]
で示されるN−ビニルカルバゾール類に転化することを特徴とするN−ビニルカルバゾール類の製法。
The following general formula (1)
[Wherein, R 1 to R 8 each independently represents hydrogen, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a cyano group or a nitro group]
A reactor having a preheating diffusion layer and a catalyst packed layer continuously obtained by diluting N- (2-hydroxyethyl) carbazoles represented by the formula (1) to at least one solvent selected from the group consisting of toluene, xylene and mesitylene . The liquid is supplied to the preheating diffusion layer of the catalyst and subjected to intramolecular dehydration reaction in the gas phase in the presence of a catalyst.
[Wherein R 1 to R 8 represent the same meaning as described above]
A process for producing N-vinylcarbazoles, which is converted to N-vinylcarbazoles represented by the formula:
前記N−(2−ヒドロキシエチル)カルバゾール類を溶剤で0.1〜10モル濃度に希釈してから反応器へ供給する請求項1に記載の製法。  The process according to claim 1, wherein the N- (2-hydroxyethyl) carbazoles are diluted with a solvent to a concentration of 0.1 to 10 molar and then supplied to the reactor. 前記触媒として、シリカ、アルミナ、チタニア、ジルコニアよりなる群から選択される少なくとも1種とアルカリ金属および/またはアルカリ土類金属を含む触媒を使用する請求項1または2に記載の製法。  The process according to claim 1 or 2, wherein a catalyst containing at least one selected from the group consisting of silica, alumina, titania and zirconia and an alkali metal and / or an alkaline earth metal is used as the catalyst. 前記触媒として、更にホウ素、アルミニウム、リンよりなる群から選択される少なくとも1種を含む触媒を使用する請求項3に記載の製法。  The process according to claim 3, wherein the catalyst further comprises a catalyst containing at least one selected from the group consisting of boron, aluminum, and phosphorus.
JP2006543157A 2004-10-25 2005-10-25 Process for producing N-vinylcarbazoles Expired - Fee Related JP4503021B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004309664 2004-10-25
JP2004309664 2004-10-25
PCT/JP2005/019561 WO2006046540A1 (en) 2004-10-25 2005-10-25 Process for producing n-vinylcarbazole compound

Publications (2)

Publication Number Publication Date
JPWO2006046540A1 JPWO2006046540A1 (en) 2008-05-22
JP4503021B2 true JP4503021B2 (en) 2010-07-14

Family

ID=36227780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543157A Expired - Fee Related JP4503021B2 (en) 2004-10-25 2005-10-25 Process for producing N-vinylcarbazoles

Country Status (4)

Country Link
JP (1) JP4503021B2 (en)
KR (1) KR20070068358A (en)
TW (1) TW200628449A (en)
WO (1) WO2006046540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119362A (en) * 2005-10-25 2007-05-17 Nippon Shokubai Co Ltd Method for producing n-vinylcarbazole compounds and n-vinylcarbazole compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049820B1 (en) 2012-03-16 2020-01-22 제온 코포레이션 Method for producing ring-opening metathesis polymer hydride, and resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499468B1 (en) * 1970-02-05 1974-03-05
JPH01207265A (en) * 1987-07-13 1989-08-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH09208559A (en) * 1996-02-07 1997-08-12 Nippon Shokubai Co Ltd Production of cyclic n-vinyl compound
JP2003113132A (en) * 2001-10-05 2003-04-18 Asahi Kasei Corp Method for producing methacrolein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499468B1 (en) * 1970-02-05 1974-03-05
JPH01207265A (en) * 1987-07-13 1989-08-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound
JPH09208559A (en) * 1996-02-07 1997-08-12 Nippon Shokubai Co Ltd Production of cyclic n-vinyl compound
JP2003113132A (en) * 2001-10-05 2003-04-18 Asahi Kasei Corp Method for producing methacrolein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119362A (en) * 2005-10-25 2007-05-17 Nippon Shokubai Co Ltd Method for producing n-vinylcarbazole compounds and n-vinylcarbazole compounds

Also Published As

Publication number Publication date
TW200628449A (en) 2006-08-16
WO2006046540A1 (en) 2006-05-04
JPWO2006046540A1 (en) 2008-05-22
KR20070068358A (en) 2007-06-29

Similar Documents

Publication Publication Date Title
TW201204699A (en) Removal of permanganate reducing compounds from methanol carbonylation process stream
JP2005529121A (en) Integrated continuous process for producing anhydrosugar alcohols
JP2020520361A (en) Separation of 1,4-bis(4-phenoxybenzoyl)benzene-Lewis acid complex in aqueous solution
JP2019503956A (en) Method for producing hydrogenbis (fluorosulfonyl) imide
JPH0269425A (en) Production of pure tetrafluoroethylene
JP4503021B2 (en) Process for producing N-vinylcarbazoles
JP2005525400A (en) High-yield by-product recycling process in anhydrosugar alcohols
KR100725683B1 (en) Method of purifying isophthalonitrile
US20090318713A1 (en) Process for manufacturing a cyclic diester of an a-hydroxy acid
Dannenberg et al. Synthesis, structure and thermolysis of oxazagermines and oxazasilines
US3952052A (en) Process for producing alkali metal salts of aromatic polycarboxylic acids
US3148208A (en) Process for recovery of dimethyl
WO2020022416A1 (en) Method for producing aromatic nitrile compound and method for producing carbonate ester
US2770641A (en) Preparation of benzonitrile
WO2021172499A1 (en) Method for producing purified phthalonitrile and method for purifying phthalonitrile
CN111909201A (en) Method for synthesizing methyl phosphine dichloride
CN114249627B (en) Method for preparing E-1-chloro-3, 3, 3-trifluoropropene
WO2012100555A1 (en) A method for the preparation of lower aluminum alkoxide by gas-solid phase reaction
TWI535704B (en) Ionic liquids having acidic catalytic activity, and a catalyst thereof
CN114262254A (en) Method for preparing E-1-chloro-3, 3, 3-trifluoropropene
CN113511983B (en) Method for purifying hydroxyethyl hydrazine nitrate crude product
JPH07233104A (en) Production of tetrafluoroethylene
US2806070A (en) Process of producing polychloro benzenes from hexachloro cyclohexanes
JPH10204080A (en) Production of 1,3-dioxolan
KR20060122448A (en) Reflux method of the organic materials in the manufacturing of terephtalic acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees