JP4501776B2 - Control device for fuel supply system - Google Patents

Control device for fuel supply system Download PDF

Info

Publication number
JP4501776B2
JP4501776B2 JP2005147466A JP2005147466A JP4501776B2 JP 4501776 B2 JP4501776 B2 JP 4501776B2 JP 2005147466 A JP2005147466 A JP 2005147466A JP 2005147466 A JP2005147466 A JP 2005147466A JP 4501776 B2 JP4501776 B2 JP 4501776B2
Authority
JP
Japan
Prior art keywords
amount
fuel supply
fuel
pump
characteristic deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005147466A
Other languages
Japanese (ja)
Other versions
JP2006322412A (en
Inventor
涼 桂
享史 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005147466A priority Critical patent/JP4501776B2/en
Priority to DE102006000238.5A priority patent/DE102006000238B4/en
Publication of JP2006322412A publication Critical patent/JP2006322412A/en
Application granted granted Critical
Publication of JP4501776B2 publication Critical patent/JP4501776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Controls For Constant Speed Travelling (AREA)

Description

本発明は、燃料供給システムの制御装置に関するものである。   The present invention relates to a control device for a fuel supply system.

ディーゼルエンジンの燃料噴射システムとして、燃料の噴射圧に相当する高圧の燃料をコモンレール内に蓄圧するとともに、該コモンレール内に蓄圧した高圧燃料を燃料噴射弁を介してエンジンに噴射供給するコモンレール式燃料噴射システムが実用化されている。このコモンレール式燃料噴射システムでは、燃料噴射弁による燃料噴射が行われるとコモンレール内の燃料圧が低下するが、その際燃料供給ポンプからコモンレールに対して高圧燃料が吐出供給されることによりコモンレール内が所定の高圧状態で保持される。   As a fuel injection system for diesel engines, a common rail fuel injection system that accumulates high-pressure fuel corresponding to the fuel injection pressure in the common rail and supplies the high-pressure fuel accumulated in the common rail to the engine via a fuel injection valve The system has been put into practical use. In this common rail fuel injection system, the fuel pressure in the common rail decreases when fuel injection is performed by the fuel injection valve. At this time, the high pressure fuel is discharged and supplied from the fuel supply pump to the common rail. It is held at a predetermined high pressure state.

例えば、燃料供給ポンプの燃料吸入部には電磁駆動式の吸入調量弁が設けられており、その吸入調量弁の開度が電流制御されることにより燃料供給ポンプによる燃料吐出量が制御され、コモンレール圧が所望の圧力に制御されるようになっていた。かかる場合、吸入調量弁の通電電流に対する燃料供給ポンプの燃料吐出量はポンプ特性としてあらかじめ規定されており、そのポンプ特性に基づいて吸入調量弁の通電電流が制御される。   For example, an electromagnetically driven intake metering valve is provided in the fuel intake portion of the fuel supply pump, and the amount of fuel discharged by the fuel supply pump is controlled by controlling the current of the opening of the intake metering valve. The common rail pressure was controlled to a desired pressure. In this case, the fuel discharge amount of the fuel supply pump with respect to the energization current of the intake metering valve is defined in advance as a pump characteristic, and the energization current of the intake metering valve is controlled based on the pump characteristic.

ところで、燃料供給ポンプは個体差や経時変化等による機差を有しており、この機差によってポンプ特性が基本特性から相違する。この機差ばらつきにより、燃料吐出量の制御精度が低下する。そこで、燃料供給ポンプの機差ばらつきを補正する技術が提案されている(例えば特許文献1参照)。具体的には、エンジンのアイドル運転状態において実際のポンプ特性とあらかじめ設定された中央特性との電流方向のずれ量を算出し、そのずれ量に基づいてポンプ特性を補正するようにしていた。   By the way, the fuel supply pump has machine differences due to individual differences and changes with time, and the pump characteristics differ from the basic characteristics due to the machine differences. Due to this machine difference variation, the control accuracy of the fuel discharge amount decreases. Therefore, a technique for correcting the machine difference variation of the fuel supply pump has been proposed (see, for example, Patent Document 1). Specifically, the amount of deviation in the current direction between the actual pump characteristic and the preset center characteristic is calculated in the idling state of the engine, and the pump characteristic is corrected based on the amount of deviation.

しかしながら、上記の如くアイドル運転状態での特性ずれ量に基づいてポンプ特性の補正を行う場合、アイドル運転状態やその付近の低負荷域では精度の良い補正が可能となるものの、高負荷域などでは補正の精度が低下するおそれがあった。例えば、劣化に伴う経時変化時にはリーク等によるポンプ吐出性能の低下が生じるが、これは高負荷域でより顕著に現れるため、アイドル運転状態での特性ずれ量の補正だけでは特性ずれが確実に補正できないという問題が生じる。燃料供給ポンプの特性ずれが確実に補正できないと、排気エミッションやドライバビリティが悪化するといった不都合が生じる。
特開2004−293540号公報
However, when the pump characteristic is corrected based on the characteristic deviation amount in the idle operation state as described above, the correction can be performed with high accuracy in the idle operation state or in the low load region in the vicinity thereof, but in the high load region or the like. There was a risk that the accuracy of correction would decrease. For example, pump discharge performance declines due to leaks etc. when it changes over time due to deterioration, but this appears more prominently in the high load range, so the characteristic deviation can be reliably corrected only by correcting the characteristic deviation amount in the idle operation state. The problem that it is not possible arises. If the characteristic deviation of the fuel supply pump cannot be reliably corrected, there arises a disadvantage that exhaust emission and drivability deteriorate.
JP 2004-293540 A

本発明は、燃料供給ポンプの特性ずれを好適に反映して当該ポンプの燃料吐出量を精度良く制御し、ひいては排気エミッションやドライバビリティの改善を図ることができる燃料供給システムの制御装置を提供することを主たる目的とするものである。   The present invention provides a control device for a fuel supply system that can accurately control the fuel discharge amount of the pump by suitably reflecting the characteristic deviation of the fuel supply pump, and thus can improve exhaust emission and drivability. This is the main purpose.

本発明の燃料供給システムでは、高圧燃料を蓄圧するコモンレールと、エンジンの動力により駆動されてコモンレールに燃料を圧送する燃料供給ポンプとを備えており、燃料供給ポンプの駆動制御量と当該ポンプの燃料吐出量との関係を表したポンプ特性に基づいて燃料供給ポンプによる燃料吐出量が制御される。また特に、第1の算出手段は、エンジンがアイドル運転状態である場合に燃料供給ポンプの特性ずれ量を算出し、第2の算出手段は、任意に設定された目標速度に追従するように車両の走行速度がフィードバック制御されている定速走行状態である場合に燃料供給ポンプの特性ずれ量を算出する。そして、制御量算出手段は、前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量を反映して前記駆動制御量を算出する。   The fuel supply system of the present invention includes a common rail for accumulating high-pressure fuel, and a fuel supply pump that is driven by engine power and pumps the fuel to the common rail. The drive control amount of the fuel supply pump and the fuel of the pump The fuel discharge amount by the fuel supply pump is controlled based on the pump characteristics representing the relationship with the discharge amount. In particular, the first calculation means calculates the characteristic deviation amount of the fuel supply pump when the engine is in an idle operation state, and the second calculation means follows the vehicle so as to follow the arbitrarily set target speed. The characteristic deviation amount of the fuel supply pump is calculated in the constant speed traveling state in which the traveling speed is feedback controlled. Then, the control amount calculation unit calculates the drive control amount by reflecting the characteristic deviation amounts calculated by the first calculation unit and the second calculation unit.

定速走行制御は一般にクルーズ制御とも称され、かかるクルーズ制御によれば、ドライバの指示に応じ高速道路等の高負荷走行時において車両速度が一定速度に保持される。この場合、定速走行時(クルーズ走行時)にはドライバによるアクセル操作が無く、しかもエンジン回転速度がほぼ一定に保たれる。そのため、燃料供給ポンプの特性ずれが存在する場合に、その特性ずれを正しく検知することが可能となる。   The constant speed traveling control is generally referred to as cruise control, and according to such cruise control, the vehicle speed is maintained at a constant speed during high load traveling on an expressway or the like in accordance with an instruction from the driver. In this case, there is no accelerator operation by the driver during constant speed travel (during cruise travel), and the engine speed is kept substantially constant. Therefore, when there is a characteristic deviation of the fuel supply pump, it is possible to correctly detect the characteristic deviation.

本発明によれば、アイドル運転状態だけでなく、車両の定速走行状態でポンプ特性の特性ずれ量が算出されるため、低負荷域から高負荷域までの広域で燃料供給ポンプの特性ずれを解消し、燃料吐出量を最適に制御することができる。これにより、排気エミッションやドライバビリティの改善を図ることができる。   According to the present invention, since the characteristic deviation amount of the pump characteristic is calculated not only in the idling operation state but also in the constant speed running state of the vehicle, the characteristic deviation of the fuel supply pump is widened from the low load range to the high load range. The fuel discharge amount can be optimally controlled. As a result, exhaust emission and drivability can be improved.

ちなみに、劣化に伴う経時変化時にはリーク等によるポンプ吐出性能の低下が生じるが、これは高負荷域でより顕著に現れる。この点、上記の如くアイドル運転状態に加え、定速走行状態での特性ずれ量も吐出量制御に反映する構成としたため、劣化に伴う経時変化にも好適に対処できる。   Incidentally, although the pump discharge performance is reduced due to leakage or the like at the time of change due to deterioration, this appears more prominently in the high load region. In this respect, since the characteristic deviation amount in the constant speed traveling state is reflected in the discharge amount control in addition to the idle operation state as described above, it is possible to appropriately cope with a change with time due to deterioration.

ここで、前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量に対してその都度の負荷状態に応じた補間演算又は補外演算を行い、その結果を用いて前記駆動制御量を算出すると良い。これにより、負荷状態が変化しても2点の特性ずれ量を用いて前記駆動制御量を適正に算出することができる。例えば、前記2点の特性ずれ量を用いて特性ずれ量と負荷状態との関係を線形化するとともに、該線形化した関係を用いて都度の負荷状態に対応する特性ずれ量を算出する。そして、その算出結果を用いて前記駆動制御量を算出すると良い。   Here, an interpolation operation or extrapolation operation is performed on each characteristic deviation amount calculated by the first calculation unit and the second calculation unit in accordance with a load state in each case, and the driving is performed using the result. It is good to calculate the control amount. Thereby, even if the load state changes, the drive control amount can be appropriately calculated using the characteristic deviation amounts at two points. For example, the relationship between the characteristic deviation amount and the load state is linearized using the two characteristic deviation amounts, and the characteristic deviation amount corresponding to each load state is calculated using the linearized relationship. The drive control amount may be calculated using the calculation result.

燃料供給ポンプの機差ばらつきは主に個体差や経時変化等によるものであり、その機差ばらつきによる制御誤差は定常的に現れる。故に、前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量を学習値としてバックアップ用のメモリに記憶し、前記学習値を用いて駆動制御量の算出を実施すると良い。これにより、例えばコンピュータへの電源投入後(車両ではイグニッションスイッチのオン後)に特性ずれ量の算出が完了するのを待つことなく、学習値としての特性ずれ量を用いて駆動制御量を好適に算出することができる。   The machine difference variation of the fuel supply pump is mainly due to individual differences, changes with time, etc., and the control error due to the machine difference variation constantly appears. Therefore, it is preferable to store each characteristic shift amount calculated by the first calculation unit and the second calculation unit in a backup memory as a learning value, and to calculate the drive control amount using the learning value. Accordingly, for example, the drive control amount is preferably set using the characteristic deviation amount as the learning value without waiting for the calculation of the characteristic deviation amount after the computer is turned on (after the ignition switch is turned on in a vehicle). Can be calculated.

前記第1の算出手段により特性ずれ量が算出されるとともに該特性ずれ量を反映して駆動制御量の算出が行われていることを条件に、前記第2の算出手段による特性ずれ量の算出が実施されると良い。つまり、本構成とは逆に定速走行状態で算出された特性ずれ量が先に反映されると、アイドル運転状態において駆動制御量が誤って算出されてしまいエンジンストール等の不具合が生じるおそれがある。この点、アイドル運転状態で算出された特性ずれ量が先に反映されることにより、上記不具合が解消される。   The characteristic deviation amount is calculated by the second calculation means on the condition that the characteristic deviation amount is calculated by the first calculation means and the drive control amount is calculated by reflecting the characteristic deviation amount. Should be implemented. In other words, contrary to this configuration, if the characteristic deviation calculated in the constant speed running state is reflected first, the drive control amount may be erroneously calculated in the idle driving state, which may cause problems such as engine stall. is there. In this respect, the above-mentioned problem is solved by reflecting the characteristic deviation amount calculated in the idle operation state first.

前記第1の算出手段及び前記第2の算出手段による特性ずれ量の算出後、これら各特性ずれ量を段階的に反映させて前記駆動制御量を算出すると良い。これにより、燃料供給ポンプによる燃料吐出量の急変が抑制され、ドライバに与える違和感を解消することができる。   After the characteristic deviation amounts are calculated by the first calculation means and the second calculation means, the drive control amount may be calculated by reflecting each characteristic deviation amount in a stepwise manner. Thereby, the sudden change of the fuel discharge amount by the fuel supply pump is suppressed, and the uncomfortable feeling given to the driver can be eliminated.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、車両ディーゼルエンジンのコモンレール式燃料噴射システムとして本発明を具体化しており、その詳細な構成を以下に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment embodies the present invention as a common rail fuel injection system for a vehicle diesel engine, and a detailed configuration thereof will be described below.

図1は、コモンレール式燃料噴射システムの概要を示す構成図である。図1において、多気筒ディーゼルエンジン(以下、エンジンという)10には気筒毎に電磁式インジェクタ11が配設され、これらインジェクタ11は各気筒共通のコモンレール(蓄圧配管)12に接続されている。コモンレール12には燃料供給ポンプとしての高圧ポンプ13が接続され、高圧ポンプ13の駆動に伴い噴射圧相当の高圧燃料がコモンレール12に連続的に蓄圧される。高圧ポンプ13は、エンジン10の回転に伴い駆動され、エンジン回転に同期して燃料の吸入及び吐出が繰り返し行われる。高圧ポンプ13には、その燃料吸入部に電磁駆動式の吸入調量弁(SCV)13aが設けられており、フィードポンプ14によって燃料タンク15から汲み上げられた低圧燃料は吸入調量弁13aを介して当該ポンプ13の燃料室に吸入される。   FIG. 1 is a configuration diagram showing an outline of a common rail fuel injection system. In FIG. 1, a multi-cylinder diesel engine (hereinafter referred to as an engine) 10 is provided with an electromagnetic injector 11 for each cylinder, and these injectors 11 are connected to a common rail (pressure accumulation pipe) 12 common to each cylinder. A high pressure pump 13 as a fuel supply pump is connected to the common rail 12, and high pressure fuel corresponding to the injection pressure is continuously accumulated in the common rail 12 as the high pressure pump 13 is driven. The high-pressure pump 13 is driven as the engine 10 rotates, and fuel is repeatedly sucked and discharged in synchronization with the engine rotation. The high-pressure pump 13 is provided with an electromagnetically driven suction metering valve (SCV) 13a at its fuel suction portion, and the low-pressure fuel pumped from the fuel tank 15 by the feed pump 14 passes through the suction metering valve 13a. And sucked into the fuel chamber of the pump 13.

コモンレール12にはコモンレール圧センサ16が設けられており、このコモンレール圧センサ16によりコモンレール12内の燃料圧(コモンレール圧)が検出される。図示は省略するが、コモンレール12には電磁駆動式(又は機械式)の減圧弁が設けられており、コモンレール圧が過剰に上昇した場合にはこの減圧弁が開放されて減圧が行われるようになっている。   The common rail 12 is provided with a common rail pressure sensor 16, and the fuel pressure (common rail pressure) in the common rail 12 is detected by the common rail pressure sensor 16. Although not shown, the common rail 12 is provided with an electromagnetically driven (or mechanical) pressure reducing valve. When the common rail pressure rises excessively, the pressure reducing valve is opened to perform pressure reduction. It has become.

ECU20は、CPU、ROM、RAM、EEPROM等からなる周知のマイクロコンピュータを備えた電子制御ユニットであり、ECU20には、コモンレール圧センサ16の検出信号の他、回転速度センサやアクセル開度センサなどの各種センサから検出信号が逐次入力される。そして、ECU20は、エンジン回転速度やアクセル開度等のエンジン運転情報に基づいて最適な燃料噴射量及び噴射時期を決定し、それに応じた噴射制御信号をインジェクタ11に出力する。これにより、各気筒においてインジェクタ11から燃焼室への燃料噴射が制御される。   The ECU 20 is an electronic control unit including a known microcomputer composed of a CPU, ROM, RAM, EEPROM, and the like. In addition to the detection signal of the common rail pressure sensor 16, the ECU 20 includes a rotation speed sensor, an accelerator opening sensor, and the like. Detection signals are sequentially input from various sensors. Then, the ECU 20 determines an optimal fuel injection amount and injection timing based on engine operation information such as the engine rotation speed and the accelerator opening, and outputs an injection control signal corresponding to the fuel injection amount to the injector 11. Thus, fuel injection from the injector 11 to the combustion chamber is controlled in each cylinder.

また、ECU20は、その時々のエンジン回転速度及び燃料噴射量に基づきコモンレール圧(噴射圧)の目標値を算出するとともに、実際のコモンレール圧が目標コモンレール圧となるように高圧ポンプ13の燃料吐出量をフィードバック制御する。実際には、コモンレール圧の目標値と実際値との偏差に基づいて高圧ポンプ13の目標吐出量を決定し、それに応じて高圧ポンプ13の吸入調量弁13aの開度を制御する。このとき、吸入調量弁13aの電磁ソレノイドに対する通電量(通電電流I)が制御されることにより、吸入調量弁13a開度が増減され、それに伴い高圧ポンプ13による燃料吐出量が調整される。   Further, the ECU 20 calculates a target value of the common rail pressure (injection pressure) based on the engine speed and the fuel injection amount at that time, and the fuel discharge amount of the high-pressure pump 13 so that the actual common rail pressure becomes the target common rail pressure. Feedback control. Actually, the target discharge amount of the high-pressure pump 13 is determined based on the deviation between the target value and the actual value of the common rail pressure, and the opening degree of the suction metering valve 13a of the high-pressure pump 13 is controlled accordingly. At this time, by controlling the energization amount (energization current I) to the electromagnetic solenoid of the intake metering valve 13a, the opening of the intake metering valve 13a is increased and decreased, and the fuel discharge amount by the high-pressure pump 13 is adjusted accordingly. .

なお、吸入調量弁13aは、電磁ソレノイドの非通電時に開放状態(全開状態)で保持されるノーマリクローズ弁として構成されており、同電磁ソレノイドへの通電量を増加させることにより燃料吸入通路の開口面積が減じられる。これにより、高圧ポンプ13の燃料吸入量が減り、結果として高圧ポンプ13による燃料吐出量が少なくなるようになっている。   The intake metering valve 13a is configured as a normally closed valve that is held in an open state (fully open state) when the electromagnetic solenoid is not energized, and the fuel intake passage is increased by increasing the energization amount of the electromagnetic solenoid. The opening area is reduced. As a result, the fuel intake amount of the high-pressure pump 13 is reduced, and as a result, the fuel discharge amount by the high-pressure pump 13 is reduced.

また、本システムは、任意に設定された目標車速に追従するように車速をフィードバック制御するためのクルーズ制御機能を有しており、ECU20には、クルーズ設定装置30と車速センサ35とが接続されている。クルーズ設定装置30には、クルーズメインスイッチ(電源スイッチ)の他に、目標車速をセットする車速セットスイッチ、クルーズ制御中に目標車速を所定車速ずつステップ的に低下/上昇させるタップダウン/タップアップ機能、目標車速を前回の目標車速(記憶車速)に再セットするリジューム機能等が設けられている。その他、先行車との車間距離を一定に保つ車間距離制御機能が装備されていても良い。   In addition, this system has a cruise control function for feedback control of the vehicle speed so as to follow an arbitrarily set target vehicle speed. A cruise setting device 30 and a vehicle speed sensor 35 are connected to the ECU 20. ing. In addition to the cruise main switch (power switch), the cruise setting device 30 includes a vehicle speed set switch that sets the target vehicle speed, and a tap-down / tap-up function that reduces or increases the target vehicle speed step by step during the cruise control. A resume function is provided for resetting the target vehicle speed to the previous target vehicle speed (memory vehicle speed). In addition, an inter-vehicle distance control function that keeps the inter-vehicle distance from the preceding vehicle constant may be provided.

ECU20には、クルーズ設定装置30から各種信号(クルーズメイン信号、目標車速セット信号、タップダウン/タップアップ信号など)が入力されるとともに、車速センサ35により検出された車速信号が入力される。ECU20は、クルーズ設定装置30によって目標車速がセットされると、車速を目標車速に一致させるようにエンジン10の運転状態を制御する。また、ECU20は、タップダウンスイッチがオンされた旨判定すると、目標車速を所定車速だけステップ的に低下させ、タップアップスイッチがオンされた旨判定すると、目標車速を所定車速だけステップ的に上昇させる。その他、ECU20は、リジュームスイッチがオンされた旨判定すると、目標車速として前回の目標車速(記憶車速)を再セットする。   Various signals (cruise main signal, target vehicle speed set signal, tap down / tap up signal, etc.) are input from the cruise setting device 30 to the ECU 20 and a vehicle speed signal detected by the vehicle speed sensor 35 is input. When the target vehicle speed is set by the cruise setting device 30, the ECU 20 controls the operating state of the engine 10 so that the vehicle speed matches the target vehicle speed. When the ECU 20 determines that the tap-down switch is turned on, the ECU 20 decreases the target vehicle speed by a predetermined vehicle speed stepwise. When the ECU 20 determines that the tap-up switch is turned on, the ECU 20 increases the target vehicle speed by a predetermined vehicle speed stepwise. . In addition, when the ECU 20 determines that the resume switch is turned on, the ECU 20 resets the previous target vehicle speed (stored vehicle speed) as the target vehicle speed.

ところで、高圧ポンプ13による燃料吐出量のフィードバック制御時には、燃料吐出量Qと吸入調量弁13aの通電電流Iとの関係を表したポンプ吐出特性(いわゆるI−Q特性)に基づいて、都度の燃料吐出量(要求値)から吸入調量弁13aの通電電流指令値が算出される。そして、その通電電流指令値により高圧ポンプ13(吸入調量弁13a)の駆動が制御される。そのポンプ吐出特性を図2に示す。図2では基本特性L1を実線で示しており、例えば通電電流をIxとすることにより、燃料吐出量がQxに制御される。ところが、高圧ポンプ13は、個体差や経時変化等による機差を有しており、この機差によってポンプ吐出特性が基本特性から相違することが考えられる。故に、上記基本特性L1に基づく制御では、燃料吐出量Qにばらつきが生じる。   By the way, at the time of feedback control of the fuel discharge amount by the high-pressure pump 13, based on the pump discharge characteristic (so-called IQ characteristic) representing the relationship between the fuel discharge amount Q and the energization current I of the intake metering valve 13a, An energization current command value for the intake metering valve 13a is calculated from the fuel discharge amount (required value). The drive of the high-pressure pump 13 (suction metering valve 13a) is controlled by the energization current command value. The pump discharge characteristics are shown in FIG. In FIG. 2, the basic characteristic L1 is shown by a solid line. For example, the fuel discharge amount is controlled to Qx by setting the energization current to Ix. However, the high-pressure pump 13 has machine differences due to individual differences, changes with time, etc., and it is considered that the pump discharge characteristics differ from the basic characteristics due to the machine differences. Therefore, in the control based on the basic characteristic L1, the fuel discharge amount Q varies.

例えば、図2において、ポンプ吐出特性が基本特性L1に対して特性L2となる、又は特性L3になることが考えられる。特性L2は、基本特性L1に対して電流の増減方向に平行移動したような特性であり、特性L3は燃料吐出量Qが大となる高負荷域で通電電流Iのずれ量が大きくなるような特性である。   For example, in FIG. 2, it can be considered that the pump discharge characteristic becomes the characteristic L2 with respect to the basic characteristic L1, or the characteristic L3. The characteristic L2 is a characteristic such that the basic characteristic L1 is moved in parallel with the current increasing / decreasing direction, and the characteristic L3 is such that the deviation amount of the energization current I increases in a high load region where the fuel discharge amount Q is large. It is a characteristic.

特性L2の場合には、燃料吐出量Qの大小にかかわらず通電電流Iの誤差がほぼ一定(ΔI1)であるため、燃料吐出量Qが小となるアイドル運転時(Q=Qaの時)に機差学習を行い、誤差分のΔI1を電流学習値とする。そして、この電流学習値により吸入調量弁13aに対する電流制御値を補正する。これにより、所望とする燃料吐出量が実現できる。なお、アイドル運転状態では、アクセルオフでかつエンジン回転速度が安定する状態が継続することが多いため、かかる状態は学習ポイントとして適していると考えられる。   In the case of the characteristic L2, the error of the energization current I is almost constant (ΔI1) regardless of the magnitude of the fuel discharge amount Q. Therefore, during the idling operation when the fuel discharge amount Q is small (when Q = Qa). Machine difference learning is performed, and ΔI1 corresponding to the error is set as a current learning value. And the electric current control value with respect to the intake metering valve 13a is correct | amended with this electric current learning value. Thereby, a desired fuel discharge amount can be realized. It should be noted that in the idle operation state, the state where the accelerator is off and the engine rotational speed is stable often continues, so this state is considered suitable as a learning point.

これに対し、特性L3の場合には、燃料吐出量Qの大小に応じて通電電流Iの誤差が異なり、燃料吐出量Qが小となるアイドル運転状態(Q=Qa)では通電電流Iの誤差がほとんどないが、燃料吐出量Qが大となる高負荷運転状態(Q=Qb)では通電電流Iの誤差が大きくなる。この場合、アイドル運転時に機差学習を行っても、高負荷運転時の特性誤差が解消されない。そこで、アイドル運転時の機差学習に加え、高負荷運転時の機差学習を実施する。特に本実施の形態では、クルーズ走行時には比較的長い期間においてドライバによるアクセル操作がなく、また車速が一定となることに着目し、クルーズ走行時において高負荷運転時の機差学習を実施する。   On the other hand, in the case of the characteristic L3, the error of the energization current I varies depending on the magnitude of the fuel discharge amount Q, and the error of the energization current I in the idle operation state (Q = Qa) where the fuel discharge amount Q is small. However, in the high load operation state (Q = Qb) where the fuel discharge amount Q is large, the error of the energization current I becomes large. In this case, even if machine difference learning is performed during idle operation, the characteristic error during high load operation is not eliminated. Therefore, in addition to machine difference learning during idle operation, machine difference learning during high-load operation is implemented. In particular, in the present embodiment, attention is paid to the fact that the driver does not operate the accelerator during a relatively long period and the vehicle speed is constant during cruise traveling, and machine difference learning during high-load driving is performed during cruise traveling.

アイドル運転時及びクルーズ走行時に機差学習を行い、その学習結果を吐出量制御に反映させる場合、まずアイドル運転時に機差学習を行うとともに、その学習結果を用いて吸入調量弁13aの通電電流を補正する。そして、アイドル運転時に算出した学習値を反映させた状態で、クルーズ走行時の機差学習を実施する。アイドル運転時及びクルーズ走行時の学習値が共に算出された後は、この2点の学習値を用いて吸入調量弁13aの通電電流を補正する。このとき、その都度の負荷状態(燃料吐出量)に応じて2点の電流学習値の重み付け演算(又は補間演算)がなされて学習値の反映が行われる。なお、クルーズ走行時の負荷状態よりも高負荷域(高吐出量域)で高圧ポンプ13が運転される場合には、上記2点の電流学習値の補外演算(外挿演算)がなされて学習値の反映が行われる。   When machine difference learning is performed during idle operation and cruise driving and the learning result is reflected in the discharge amount control, first, the machine difference learning is performed during idle operation, and the energization current of the intake metering valve 13a is used using the learning result. Correct. Then, machine difference learning at the time of cruise traveling is performed in a state where the learning value calculated at the time of idling is reflected. After the learning values at the time of idle driving and cruise driving are both calculated, the energization current of the intake metering valve 13a is corrected using the learning values of these two points. At this time, weighting calculation (or interpolation calculation) of the current learning values at two points is performed according to the load state (fuel discharge amount) in each case, and the learning values are reflected. When the high-pressure pump 13 is operated in a higher load range (high discharge amount range) than the load state during cruise traveling, extrapolation calculation (extrapolation calculation) of the current learning values at the two points is performed. The learning value is reflected.

例えば、前記2点の電流学習値を用いて電流学習値と負荷状態との関係を線形化するとともに、該線形化した関係を用いて都度の負荷状態に対応する電流学習値を算出する。そして、該算出した電流学習値を用いて吸入調量弁13aの通電電流を補正する。   For example, the relationship between the current learning value and the load state is linearized using the two current learning values, and the current learning value corresponding to each load state is calculated using the linearized relationship. Then, the energization current of the suction metering valve 13a is corrected using the calculated current learning value.

次に、ECU20により実行される高圧ポンプ13の吐出量制御及び機差学習の手順について説明する。図3は、ポンプ吐出量制御処理を示すフローチャートであり、本処理はECU20により所定のクランク角周期(又は所定の時間周期)で実行される。   Next, the discharge amount control and machine difference learning procedure of the high-pressure pump 13 executed by the ECU 20 will be described. FIG. 3 is a flowchart showing the pump discharge amount control process, and this process is executed by the ECU 20 at a predetermined crank angle period (or a predetermined time period).

図3において、ステップS101では、コモンレール圧センサ16の検出信号から求められる実コモンレール圧を読み込み、続くステップS102では、その都度のエンジン回転速度や燃料噴射量をパラメータとして目標コモンレール圧を算出する。ステップS103では、目標コモンレール圧と実コモンレール圧との偏差を算出するとともに、その偏差に基づいて高圧ポンプ13の目標吐出量を算出する。   In FIG. 3, in step S101, the actual common rail pressure obtained from the detection signal of the common rail pressure sensor 16 is read, and in the subsequent step S102, the target common rail pressure is calculated using the engine speed and fuel injection amount as parameters. In step S103, the deviation between the target common rail pressure and the actual common rail pressure is calculated, and the target discharge amount of the high-pressure pump 13 is calculated based on the deviation.

ステップS104では、ポンプ吐出特性(I−Q特性)に基づいて目標吐出量を通電電流指令値に変換する。また、ステップS105では、通電電流指令値に対して電流学習値を反映させて最終の通電電流指令値を算出する。最後に、ステップS106では、高圧ポンプ13に対して通電電流指令値を出力する。これにより、高圧ポンプ13の吸入調量弁13aの開度が制御され、所望とする燃料吐出量が実現される。   In step S104, the target discharge amount is converted into an energization current command value based on the pump discharge characteristic (IQ characteristic). In step S105, the final learning current command value is calculated by reflecting the current learning value to the conduction current command value. Finally, in step S106, an energization current command value is output to the high pressure pump 13. Thereby, the opening degree of the intake metering valve 13a of the high-pressure pump 13 is controlled, and a desired fuel discharge amount is realized.

図4は、クルーズ走行時の機差学習処理を示すフローチャートである。本処理は、ECU20により所定のクランク角周期(又は所定の時間周期)で実行される。ただし前記図3の一部として実行されても良い。   FIG. 4 is a flowchart showing the machine difference learning process during cruise driving. This process is executed by the ECU 20 at a predetermined crank angle cycle (or a predetermined time cycle). However, it may be executed as a part of FIG.

図4において、ステップS201では、アイドル運転状態での機差学習が完了しているか否かを判定し、ステップS202では、今現在クルーズ走行中であるか否かを判定し、ステップS203では、学習実行条件が成立しているか否かを判定する。そして、ステップS201〜S203が全てYESの場合に後続のステップS204に進み、いずれかがNOの場合、そのまま本処理を終了する。なお、ステップS203の学習実行条件には、例えば、エンジン暖機完了であること(水温や燃料温度等から判定)、目標コモンレール圧と実コモンレール圧の偏差が所定値以内であること、吸入調量弁13aが正常動作可能であること(バッテリ電圧等から判定)などが含まれる。   In FIG. 4, in step S201, it is determined whether or not the machine difference learning in the idling state is completed. In step S202, it is determined whether or not the vehicle is currently cruising. In step S203, the learning is performed. It is determined whether or not an execution condition is satisfied. If all of steps S201 to S203 are YES, the process proceeds to subsequent step S204. If any of the steps S201 to S203 is NO, the process is terminated. The learning execution conditions in step S203 include, for example, that the engine has been warmed up (determined from the water temperature, fuel temperature, etc.), that the deviation between the target common rail pressure and the actual common rail pressure is within a predetermined value, and suction metering. This includes that the valve 13a can operate normally (determined from the battery voltage or the like).

ステップS204では、高圧ポンプ13の吸入調量弁13aについて基準通電電流を算出する。この基準通電電流は、前記図2の基本特性L1に則した通電電流であり、実際には、機差ばらつきの中央値となる通電電流に対して温度、バッテリ電圧等の環境条件や種々の運転条件を考慮して算出される。   In step S204, a reference energization current is calculated for the suction metering valve 13a of the high-pressure pump 13. This reference energizing current is an energizing current conforming to the basic characteristic L1 of FIG. 2, and actually, the energizing current which becomes the median value of the machine difference variation, the environmental conditions such as temperature and battery voltage, and various operations. Calculated considering the conditions.

ステップS205では、学習実行条件の成立後、所定時間(例えば5秒程度)経過した時の実通電電流を算出する。このとき、実通電電流は、学習実行条件の成立後における算出値の平均値又はなまし値により算出される。   In step S205, an actual energization current when a predetermined time (for example, about 5 seconds) has elapsed after the learning execution condition is satisfied is calculated. At this time, the actual energization current is calculated by the average value or the smoothed value of the calculated values after the learning execution condition is satisfied.

ステップS206では、基準通電電流と実通電電流との差分を算出し、その差分値を学習値とする。基準通電電流と実通電電流との差分が特性ずれ量に相当する。ステップS207では、今回の機差学習が開始されてからの経過時間が所定の学習時間(例えば10秒程度)となったか否かを判定し、続くステップS208では、今回算出した学習値が所定の範囲内に入っているか否かを判定する。そして、ステップS207,S208が共にYESの場合、ステップS209に進み、今回算出した学習値(実際には該学習値のなまし値)をECU20内のEEPROMに記憶する。このとき、EEPROMに既に電流学習値が記憶されていれば、電流学習値の前回値が今回値により書き換えられる。   In step S206, a difference between the reference energization current and the actual energization current is calculated, and the difference value is set as a learning value. The difference between the reference energization current and the actual energization current corresponds to the characteristic deviation amount. In step S207, it is determined whether or not the elapsed time from the start of the current machine difference learning has reached a predetermined learning time (for example, about 10 seconds), and in the subsequent step S208, the learning value calculated this time is a predetermined learning time. Determine if it is within range. If both steps S207 and S208 are YES, the process proceeds to step S209, and the learning value calculated this time (actually, the smoothed value of the learning value) is stored in the EEPROM in the ECU 20. At this time, if the current learning value is already stored in the EEPROM, the previous value of the current learning value is rewritten with the current value.

なお、アイドル運転状態での機差学習については詳細な説明を省略するが、基本的にはクルーズ走行時の学習手法に準じており、それを簡単に説明する。つまり、アイドル運転状態であること、学習実行条件が成立していることを条件に、吸入調量弁13aの基準通電電流(ばらつき中央値)と実通電電流とを算出し、その差分値(特性ずれ量に相当)を学習値とする。そして、今回算出した学習値が所定の範囲内に入っていることを条件に、今回の学習値(実際には該学習値のなまし値)をECU20内のEEPROMに記憶する。   Although detailed description of the machine difference learning in the idling state is omitted, it basically conforms to the learning method at the time of cruise traveling and will be briefly described. That is, the reference energizing current (variation median value) and the actual energizing current of the intake metering valve 13a are calculated on the condition that the engine is in the idle operation state and the learning execution condition is satisfied, and the difference value (characteristic) Equivalent to the deviation amount) is taken as a learning value. Then, on the condition that the learning value calculated this time is within a predetermined range, the current learning value (actually the smoothed value of the learning value) is stored in the EEPROM in the ECU 20.

アイドル運転状態で算出した電流学習値は、一旦非アイドルとなり、再びアイドル運転状態に戻った時から吐出量制御に反映される。また、クルーズ走行状態で算出した電流学習値は、一旦非クルーズとなり、再びクルーズ走行状態に戻った時から吐出量制御に反映される。電流学習値の反映は、それがドライバに感じられないよう段階的に徐々に行われる。電流学習値の前回値から今回値への移行も同様である。   The current learning value calculated in the idling operation state is reflected in the discharge amount control from the time when the idling operation state is once again returned to the idling operation state. Moreover, the current learning value calculated in the cruise travel state is reflected in the discharge amount control from the time when it becomes non-cruise and returns to the cruise travel state again. The reflection of the current learning value is gradually performed so that it is not felt by the driver. The same applies to the transition of the current learning value from the previous value to the current value.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

エンジンのアイドル運転時に算出した電流学習値と、クルーズ走行時に算出した電流学習値とを反映して吸入調量弁13aの通電電流を制御する構成としたため、低負荷域から高負荷域までの広域で高圧ポンプ13の特性ずれを解消し、燃料吐出量を最適に制御することができる。これにより、排気エミッションやドライバビリティの改善を図ることができる。   Since the current learning value calculated during idling of the engine and the current learning value calculated during cruise traveling are reflected to control the energization current of the intake metering valve 13a, a wide range from a low load range to a high load range is provided. Thus, the characteristic deviation of the high-pressure pump 13 can be eliminated and the fuel discharge amount can be optimally controlled. As a result, exhaust emission and drivability can be improved.

アイドル運転状態での電流学習値のみを用いて吸入調量弁13aの通電電流を制御する構成に比べて、加速時や高速運転時においてスモーク量が削減できる、エンジン回転速度のばらつきが低減されるなどの効果が得られる。NVH性能(騒音、振動、乗り心地)の向上を図ることもできる。   Compared to a configuration in which the energization current of the intake metering valve 13a is controlled using only the current learning value in the idle operation state, the smoke amount can be reduced during acceleration and high speed operation, and variations in engine rotation speed are reduced. Effects such as can be obtained. NVH performance (noise, vibration, ride comfort) can also be improved.

ちなみに、劣化に伴う高圧ポンプ13の経時変化時にはリーク等によるポンプ吐出性能の低下が生じるが、これは高負荷域でより顕著に現れる。この点、上記の如くアイドル運転状態に加え、クルーズ走行状態での特性ずれ量も算出する構成としたため、劣化に伴う経時変化にも好適に対処できる。   Incidentally, when the high-pressure pump 13 changes with time due to deterioration, the pump discharge performance is reduced due to leakage or the like, but this appears more prominently in the high load region. In this respect, since the characteristic deviation amount in the cruise traveling state is calculated in addition to the idle driving state as described above, it is possible to suitably cope with a change with time due to deterioration.

特性ずれ量を電流学習値としてEEPROMに記憶保持する構成としたため、例えばECU20への電源投入後に特性ずれ量の算出が完了するのを待つことなく、いち早く適正な吐出量制御を開始することができる。   Since the characteristic deviation amount is stored and held in the EEPROM as a current learning value, for example, it is possible to quickly start appropriate discharge amount control without waiting for the calculation of the characteristic deviation amount to be completed after the power supply to the ECU 20 is turned on. .

アイドル運転時の電流学習値を反映して吐出量制御が実施されていることを条件に、クルーズ走行時の電流学習値の算出が実施されるため、先にクルーズ走行時の電流学習値が反映されることでエンジンストール等の不具合が生じるといった不具合を回避することができる。   Since the current learning value during cruise travel is calculated on the condition that the discharge amount control is performed reflecting the current learned value during idle operation, the current learned value during cruise traveling is reflected first. By doing so, it is possible to avoid problems such as engine stalls.

前記2点の電流学習値を段階的に反映させて吐出量制御を実施するため、高圧ポンプ13による燃料吐出量の急変が抑制され、ドライバに与える違和感を解消することができる。   Since the discharge amount control is performed by reflecting the current learning values of the two points step by step, a sudden change in the fuel discharge amount by the high-pressure pump 13 is suppressed, and the uncomfortable feeling given to the driver can be eliminated.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

学習値を算出した後、吐出量制御に反映するタイミングを以下のようにしても良い。   After calculating the learning value, the timing reflected in the discharge amount control may be as follows.

(1)アイドル運転状態又はクルーズ走行状態で電流学習値を算出した後、次にアイドル運転状態やクルーズ走行状態に再突入するのを待たず、当該状態の途中で又は当該状態を抜けた直後に前記電流学習値を吐出量制御に反映する。この場合、前記同様、電流学習値の反映が段階的に徐々に行われると良い。   (1) After calculating the current learning value in the idling operation state or the cruise traveling state, without waiting for the next re-entry into the idling operation state or the cruise traveling state, or immediately after exiting the state. The current learning value is reflected in the discharge amount control. In this case, it is preferable that the current learning value is gradually reflected in a stepwise manner as described above.

(2)エンジン停止後において、次の始動までの間にEEPROMに電流学習値を記憶する(前回値から今回値への書き換えを含む)。そして、次回のエンジン始動後に新たな電流学習値を吐出量制御に反映する。   (2) After the engine is stopped, the current learning value is stored in the EEPROM until the next start (including rewriting from the previous value to the current value). Then, after the next engine start, the new current learning value is reflected in the discharge amount control.

(3)アイドル運転状態での学習値の算出とクルーズ走行状態での学習値の算出とが完了した後、次にアイドル運転状態になった時に学習値を吐出量制御に反映する。そして、アイドル運転状態から負荷が増加した瞬間から、クルーズ時の学習値を有効とし2点の学習値の補間等を行って学習値を吐出量制御に反映する。つまり、アイドル運転状態で反映される学習値は、それ以前のアイドル運転状態で学習された値であり、吐出量制御へ反映させる際補間等を行わずにそのまま使える。この場合、自ずとクルーズ時の学習値が徐々に反映されることとなり、コモンレール圧力に生じる段差等を抑制することができる。   (3) After completing the calculation of the learning value in the idle driving state and the calculation of the learning value in the cruise driving state, the learning value is reflected in the discharge amount control when the idle driving state is entered next. Then, from the moment when the load increases from the idling state, the learning value at the time of cruise is made effective, and the learning value is reflected in the discharge amount control by performing interpolation of two learning values. In other words, the learned value reflected in the idle operation state is a value learned in the previous idle operation state, and can be used as it is without performing interpolation or the like when reflected in the discharge amount control. In this case, the learned value at the time of cruising is gradually reflected naturally, and a step or the like generated in the common rail pressure can be suppressed.

クルーズ走行状態で機差学習を実施する場合の車両の速度条件として、その都度学習したい負荷領域を含む所定の速度範囲内であることを判定しても良い。つまり、機差学習時には、環境条件等を考慮しつつ機差ばらつきの中央値となる通電電流が基準通電電流として算出されるため、ある程度車両速度に差があったとしても学習の精度に影響がないと考えられる。   As a vehicle speed condition when performing machine difference learning in a cruise traveling state, it may be determined that the vehicle speed condition is within a predetermined speed range including a load region to be learned each time. In other words, during machine difference learning, the energizing current that is the median value of machine difference variation is calculated as the reference energizing current while taking into account environmental conditions, etc., so even if there is a difference in vehicle speed to some extent, the learning accuracy is affected. It is not considered.

上記実施の形態では、高圧ポンプ13の機差学習として、吸入調量弁13aの通電電流に関する学習値(電流学習値)を算出したが、これに代えて、高圧ポンプ13の燃料吐出量に関する学習値(吐出量学習値)を算出するようにしても良い。この場合、エンジンのアイドル運転時又はクルーズ走行時において、基本特性に相応する基準吐出量と実際の吐出量とを算出し、その差分値(特性ずれ量に相当)を学習値とする。そして、その学習値をECU20内のEEPROMに記憶するとともに、該学習値を適宜用いて吐出量制御を実施する。   In the above embodiment, the learning value (current learning value) related to the energization current of the suction metering valve 13a is calculated as the machine difference learning of the high-pressure pump 13, but instead, learning related to the fuel discharge amount of the high-pressure pump 13 is calculated. A value (discharge amount learning value) may be calculated. In this case, the reference discharge amount corresponding to the basic characteristics and the actual discharge amount are calculated during idling of the engine or during cruise driving, and the difference value (corresponding to the characteristic deviation amount) is used as a learning value. Then, the learning value is stored in the EEPROM in the ECU 20, and the discharge amount control is performed using the learning value as appropriate.

燃料供給ポンプ(高圧ポンプ13)において燃料吐出量を調量するための構成としては、燃料吸入側に設けた吸入調量弁以外に燃料吐出側に吐出調量弁を設け、この吐出調量弁を制御対象として吐出量制御を実施することも可能である。   As a configuration for metering the fuel discharge amount in the fuel supply pump (high pressure pump 13), a discharge metering valve is provided on the fuel discharge side in addition to the suction metering valve provided on the fuel suction side. It is also possible to carry out the discharge amount control with this as the control target.

発明の実施の形態におけるコモンレール式燃料噴射システムの概略を示す構成図である。It is a lineblock diagram showing an outline of a common rail type fuel injection system in an embodiment of the invention. ポンプ吐出特性を示す図である。It is a figure which shows a pump discharge characteristic. ポンプ吐出量制御処理を示すフローチャートである。It is a flowchart which shows a pump discharge amount control process. クルーズ走行時の機差学習処理を示すフローチャートである。It is a flowchart which shows the machine difference learning process at the time of cruise driving.

符号の説明Explanation of symbols

10…エンジン、11…インジェクタ、12…コモンレール、13…燃料供給ポンプとしての高圧ポンプ、20…第1の算出手段、第2の算出手段、定速走行制御手段、制御量算出手段及び学習手段としてのECU、30…クルーズ設定装置。   DESCRIPTION OF SYMBOLS 10 ... Engine, 11 ... Injector, 12 ... Common rail, 13 ... High-pressure pump as a fuel supply pump, 20 ... First calculation means, second calculation means, constant speed travel control means, control amount calculation means, and learning means ECU, 30 ... cruise setting device.

Claims (5)

エンジンに噴射供給するための高圧燃料を蓄圧するコモンレールと、前記エンジンの動力により駆動されて前記コモンレールに燃料を圧送する燃料供給ポンプとを備えた燃料供給システムに適用され、前記燃料供給ポンプの駆動制御量と当該ポンプの燃料吐出量との関係を表したポンプ特性に基づいて前記燃料供給ポンプによる燃料吐出量を制御する燃料供給システムの制御装置において、
前記エンジンがアイドル運転状態である場合に前記燃料供給ポンプの特性ずれ量を算出する第1の算出手段と、
任意に設定された目標速度に追従するように車両の走行速度をフィードバック制御する定速走行制御手段と、
前記定速走行制御手段によって車両が定速走行されている状態である場合に前記燃料供給ポンプの特性ずれ量を算出する第2の算出手段と、
前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量を反映して前記駆動制御量を算出する制御量算出手段と、
を備え、
前記第2の算出手段は、前記第1の算出手段により特性ずれ量が算出されるとともに該特性ずれ量を反映して駆動制御量の算出が行われていることを条件に、前記定速走行状態での特性ずれ量を算出することを特徴とする燃料供給システムの制御装置。
Applied to a fuel supply system comprising a common rail for accumulating high-pressure fuel for injection and supply to an engine, and a fuel supply pump driven by the engine power to pump fuel to the common rail, and driving the fuel supply pump In a control device of a fuel supply system that controls a fuel discharge amount by the fuel supply pump based on a pump characteristic that represents a relationship between a control amount and a fuel discharge amount of the pump,
First calculating means for calculating a characteristic deviation amount of the fuel supply pump when the engine is in an idle operation state;
Constant speed traveling control means for feedback controlling the traveling speed of the vehicle so as to follow the arbitrarily set target speed;
Second calculating means for calculating a characteristic deviation amount of the fuel supply pump when the vehicle is running at a constant speed by the constant speed running control means;
Control amount calculating means for calculating the drive control amount reflecting each characteristic deviation amount calculated by the first calculating means and the second calculating means;
With
The second calculation unit is configured to perform the constant speed traveling on condition that the characteristic deviation amount is calculated by the first calculation unit and the drive control amount is calculated by reflecting the characteristic deviation amount. A control device for a fuel supply system , wherein a characteristic deviation amount in a state is calculated .
前記制御量算出手段は、前記第1の算出手段及び前記第2の算出手段による特性ずれ量の算出後、これら各特性ずれ量を段階的に反映させて前記駆動制御量を算出することを特徴とする請求項1に記載の燃料供給システムの制御装置。 The control amount calculation unit calculates the drive control amount by reflecting the characteristic deviation amounts in a stepwise manner after calculating the characteristic deviation amounts by the first calculation unit and the second calculation unit. The control device for a fuel supply system according to claim 1 . エンジンに噴射供給するための高圧燃料を蓄圧するコモンレールと、前記エンジンの動力により駆動されて前記コモンレールに燃料を圧送する燃料供給ポンプとを備えた燃料供給システムに適用され、前記燃料供給ポンプの駆動制御量と当該ポンプの燃料吐出量との関係を表したポンプ特性に基づいて前記燃料供給ポンプによる燃料吐出量を制御する燃料供給システムの制御装置において、
前記エンジンがアイドル運転状態である場合に前記燃料供給ポンプの特性ずれ量を算出する第1の算出手段と、
任意に設定された目標速度に追従するように車両の走行速度をフィードバック制御する定速走行制御手段と、
前記定速走行制御手段によって車両が定速走行されている状態である場合に前記燃料供給ポンプの特性ずれ量を算出する第2の算出手段と、
前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量を反映して前記駆動制御量を算出する制御量算出手段と、
を備え、
前記制御量算出手段は、前記第1の算出手段及び前記第2の算出手段による特性ずれ量の算出後、これら各特性ずれ量を段階的に反映させて前記駆動制御量を算出することを特徴とする燃料供給システムの制御装置。
Applied to a fuel supply system comprising a common rail for accumulating high-pressure fuel for injection and supply to an engine, and a fuel supply pump driven by the engine power to pump fuel to the common rail, and driving the fuel supply pump In a control device of a fuel supply system that controls a fuel discharge amount by the fuel supply pump based on a pump characteristic that represents a relationship between a control amount and a fuel discharge amount of the pump,
First calculating means for calculating a characteristic deviation amount of the fuel supply pump when the engine is in an idle operation state;
Constant speed traveling control means for feedback controlling the traveling speed of the vehicle so as to follow the arbitrarily set target speed;
Second calculating means for calculating a characteristic deviation amount of the fuel supply pump when the vehicle is running at a constant speed by the constant speed running control means;
Control amount calculating means for calculating the drive control amount reflecting each characteristic deviation amount calculated by the first calculating means and the second calculating means;
With
The control amount calculation unit calculates the drive control amount by reflecting the characteristic deviation amounts in a stepwise manner after calculating the characteristic deviation amounts by the first calculation unit and the second calculation unit. control apparatus for a fuel supply system for the.
前記制御量算出手段は、前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量に対してその都度の負荷状態に応じた補間演算又は補外演算を行い、その結果を用いて前記駆動制御量を算出することを特徴とする請求項1乃至3のいずれかに記載の燃料供給システムの制御装置。 The control amount calculation means performs an interpolation operation or an extrapolation operation according to the load state for each characteristic deviation amount calculated by the first calculation means and the second calculation means, and the result is obtained. The fuel supply system control device according to claim 1, wherein the drive control amount is calculated by using the control device. 前記第1の算出手段及び前記第2の算出手段により算出した各特性ずれ量を学習値としてバックアップ用のメモリに記憶する学習手段を備え、
前記制御量算出手段は、前記学習値を用いて前記駆動制御量を算出することを特徴とする請求項1乃至4のいずれかに記載の燃料供給システムの制御装置。
Learning means for storing each characteristic deviation amount calculated by the first calculation means and the second calculation means in a backup memory as a learning value;
5. The fuel supply system control device according to claim 1, wherein the control amount calculation unit calculates the drive control amount using the learning value . 6.
JP2005147466A 2005-05-20 2005-05-20 Control device for fuel supply system Expired - Fee Related JP4501776B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005147466A JP4501776B2 (en) 2005-05-20 2005-05-20 Control device for fuel supply system
DE102006000238.5A DE102006000238B4 (en) 2005-05-20 2006-05-19 Control device for fuel supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147466A JP4501776B2 (en) 2005-05-20 2005-05-20 Control device for fuel supply system

Publications (2)

Publication Number Publication Date
JP2006322412A JP2006322412A (en) 2006-11-30
JP4501776B2 true JP4501776B2 (en) 2010-07-14

Family

ID=37311240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147466A Expired - Fee Related JP4501776B2 (en) 2005-05-20 2005-05-20 Control device for fuel supply system

Country Status (2)

Country Link
JP (1) JP4501776B2 (en)
DE (1) DE102006000238B4 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4349451B2 (en) * 2007-08-23 2009-10-21 株式会社デンソー Fuel injection control device and fuel injection system using the same
JP5027062B2 (en) * 2008-06-18 2012-09-19 トヨタ自動車株式会社 Vehicle and control method thereof
JP5234431B2 (en) * 2009-04-23 2013-07-10 株式会社デンソー Fuel pressure control device for in-cylinder internal combustion engine
JP5218260B2 (en) * 2009-05-07 2013-06-26 株式会社デンソー Fuel injection control device
JP5511406B2 (en) * 2010-01-27 2014-06-04 ボッシュ株式会社 Metering valve drive control method and common rail fuel injection control device in common rail fuel injection control device
DE102010030872A1 (en) 2010-07-02 2012-01-05 Robert Bosch Gmbh Method for determining a correction characteristic
JP5664454B2 (en) * 2011-05-20 2015-02-04 株式会社デンソー Electronic control device for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018076A (en) * 1998-04-30 2000-01-18 Zexel Corp Control method of fuel injection pump
JP2003200750A (en) * 2001-12-28 2003-07-15 Isuzu Motors Ltd Automatic transmission of vehicle
JP2003343323A (en) * 2002-05-22 2003-12-03 Toyota Motor Corp Controller for internal combustion engine
JP2004225555A (en) * 2003-01-20 2004-08-12 Denso Corp Operation condition learning control device for internal combustion engine
JP2004293540A (en) * 2003-03-10 2004-10-21 Denso Corp Fuel injection control device of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239840A1 (en) * 1992-11-27 1994-06-01 Bosch Gmbh Robert Balancing of fuel metering device for e.g. diesel engine - involves comparison of measured and expected flows at two or more operating points including one in region of full load curve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018076A (en) * 1998-04-30 2000-01-18 Zexel Corp Control method of fuel injection pump
JP2003200750A (en) * 2001-12-28 2003-07-15 Isuzu Motors Ltd Automatic transmission of vehicle
JP2003343323A (en) * 2002-05-22 2003-12-03 Toyota Motor Corp Controller for internal combustion engine
JP2004225555A (en) * 2003-01-20 2004-08-12 Denso Corp Operation condition learning control device for internal combustion engine
JP2004293540A (en) * 2003-03-10 2004-10-21 Denso Corp Fuel injection control device of internal combustion engine

Also Published As

Publication number Publication date
DE102006000238A1 (en) 2006-11-23
JP2006322412A (en) 2006-11-30
DE102006000238B4 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4501776B2 (en) Control device for fuel supply system
US7284539B1 (en) Fuel pressure controller for direct injection internal combustion engine
JP4333619B2 (en) In-cylinder injection type internal combustion engine start control device
JP4289280B2 (en) Injection amount learning control device
JP4349451B2 (en) Fuel injection control device and fuel injection system using the same
JP4023020B2 (en) Fuel pressure control device for high pressure fuel injection system
JP5113611B2 (en) Control device after starting diesel engine
JP2008309036A (en) Fuel estimation device
JP2006144639A (en) Engine control system
JP3818011B2 (en) Fuel pressure control device for internal combustion engine
JP2003176746A (en) Fuel injector for diesel engine
JP2010196472A (en) Fuel supply control device for internal combustion engine
JP2003097319A (en) Control device of cylinder injection type internal combustion engine
JP4529892B2 (en) Fuel injection control device for multi-cylinder engine
JP4269975B2 (en) Injection amount learning control device
JP4066954B2 (en) Fuel injection device for internal combustion engine
JP3695411B2 (en) Fuel injection control device for internal combustion engine
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP4238043B2 (en) Fuel injection control device for internal combustion engine
JP4670594B2 (en) Vehicle constant speed travel control device
JP4466510B2 (en) Torque control device for vehicle
JP6252327B2 (en) Fuel supply control device
JP5821666B2 (en) Fuel pump control device
JP2006063824A (en) Fuel injection control device for internal combustion engine
JP3058227B2 (en) Accumulation type fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees