JP4501600B2 - Solid polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP4501600B2 JP4501600B2 JP2004256991A JP2004256991A JP4501600B2 JP 4501600 B2 JP4501600 B2 JP 4501600B2 JP 2004256991 A JP2004256991 A JP 2004256991A JP 2004256991 A JP2004256991 A JP 2004256991A JP 4501600 B2 JP4501600 B2 JP 4501600B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow path
- gas flow
- manifold
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は、電圧供給を安定して得ることのできる単セル構造の固体高分子電解質型燃料電池に関する。 The present invention relates to a solid polymer electrolyte fuel cell having a single cell structure capable of stably obtaining a voltage supply.
固体高分子電解質型燃料電池(Polymer Electrolyte Fuel Cell)は電解質に高分子膜を用いる燃料電池で、出力密度が高い、電池寿命が長い、比較的低温で運転できる、コンパクト化に適しているなどの特徴を有している。 Polymer Electrolyte Fuel Cell is a fuel cell that uses a polymer membrane as its electrolyte. Its power density is high, battery life is long, it can be operated at a relatively low temperature, and it is suitable for downsizing. It has characteristics.
図6は、従来の固体高分子電解質型燃料電池のセルの概略構造の一例を示す断面図である。固体高分子電解質1の両側に燃料電極2aと、空気電極2bとが密着して配置され、その外側に、集電体3a、3bが配置され、電解質と燃料電極と空気電極が一体化したMEA(Membrane and Electrode Assembly)が形成されている。そして、MEA6の外側を、ガス流路20と、冷却水路30を備えたセパレータ10a、10bで挟持し、電池単セルが構成されている。 FIG. 6 is a cross-sectional view showing an example of a schematic structure of a cell of a conventional solid polymer electrolyte fuel cell. A fuel electrode 2a and an air electrode 2b are disposed in close contact with both sides of the solid polymer electrolyte 1, and current collectors 3a and 3b are disposed on the outside thereof, and the MEA in which the electrolyte, the fuel electrode, and the air electrode are integrated. (Membrane and Electrode Assembly) is formed. And the outer side of MEA6 is pinched | interposed with the separator 10a, 10b provided with the gas flow path 20 and the cooling water path 30, and the battery single cell is comprised.
図7は、上記従来の固体高分子電解質型燃料電池のセパレータのガス流路の構成例で、図6の固体高分子電解質型燃料電池のセパレータ10a側からみた模式図である。燃料ガスは、ガス導入マニホールド4aからガス流路20へ流入し、電極部で電極反応に消費された後、一部の未反応ガスはガス排出マニホールド4bへ流出する。同様に、酸化剤ガスは、ガス導入マニホールド5aからガス流路20へ流入し、電極部で電極反応に消費された後、一部の未反応ガスはガス排出マニホールド5bへ流出する。そして、電極反応での、発電による発熱を冷却するため、冷却水路導入口31aから冷却水路排出口31bへ冷却水を流通する。 FIG. 7 is a structural example of the gas flow path of the separator of the conventional solid polymer electrolyte fuel cell, and is a schematic view seen from the separator 10a side of the solid polymer electrolyte fuel cell of FIG. The fuel gas flows from the gas introduction manifold 4a into the gas flow path 20 and is consumed for the electrode reaction at the electrode portion, and then a part of the unreacted gas flows out to the gas discharge manifold 4b. Similarly, the oxidant gas flows from the gas introduction manifold 5a into the gas flow path 20 and is consumed for the electrode reaction at the electrode portion, and then a part of the unreacted gas flows out to the gas discharge manifold 5b. And in order to cool the heat_generation | fever by electric power generation by an electrode reaction, a cooling water is distribute | circulated from the cooling water channel inlet 31a to the cooling water channel outlet 31b.
一般的には、固体高分子電解質形燃料電池に用いられている固体高分子電解質膜は、水を含んだ湿潤状態にて高いイオン伝導性を示すため、燃料ガス、及び酸化剤ガスを水で加湿することにより高い電池特性が得られることが知られている。 In general, a solid polymer electrolyte membrane used in a solid polymer electrolyte fuel cell exhibits high ionic conductivity in a wet state containing water. Therefore, a fuel gas and an oxidant gas are water. It is known that high battery characteristics can be obtained by humidification.
しかしながら、加湿された燃料ガスや酸化剤ガスは水のミストや飛沫を含みやすく、これらが、燃料ガスを導入するガス導入マニホールド4a、及び酸化剤ガスを導入するガス導入マニホールド5aからガス流路20に入り込み、液滴となってガス流路を閉塞してしまうという問題があった。ガス流路が閉塞されると、燃料ガスが十分に電極に到達しなくなるので、電池電圧が低下してしまう。 However, the humidified fuel gas and oxidant gas are likely to contain water mists and droplets, and these gas flow from the gas introduction manifold 4a for introducing the fuel gas and the gas introduction manifold 5a for introducing the oxidant gas to the gas flow path 20 There was a problem that the gas flow path entered and closed the gas flow path. When the gas flow path is blocked, the fuel gas does not sufficiently reach the electrode, and the battery voltage decreases.
この問題を解決するにあたって、例えば下記特許文献1では、燃料電池の燃料ガスあるいは酸化剤ガスの圧損、または単セル電圧などをモニタしておき、燃料ガスあるいは酸化剤ガスの加湿過多を検出して、ガス加湿量を下げてガス流路への液滴の流入を防ぐ、または電池温度を上げて液滴を蒸発させ滞留をなくす方法が提案されている。 In order to solve this problem, for example, in Patent Document 1 below, the pressure loss of the fuel gas or oxidant gas of the fuel cell or the single cell voltage is monitored to detect excessive humidification of the fuel gas or oxidant gas. A method has been proposed in which the gas humidification amount is lowered to prevent the inflow of liquid droplets into the gas flow path, or the battery temperature is increased to evaporate the liquid droplets to eliminate stagnation.
また、下記特許文献2には、ガス流路の結露水を効果的に排出するため、ガス出口マニホールドを、ガス流路に対して重力方向下側に配置し、ガス流路とガス出口マニホールドとの間の連結溝を重力方向下向きに形成している。 Further, in Patent Document 2 below, in order to effectively discharge dew condensation water in the gas flow path, a gas outlet manifold is disposed on the lower side in the gravity direction with respect to the gas flow path, and the gas flow path and the gas outlet manifold are The connecting groove is formed downward in the direction of gravity.
更に、下記特許文献3では、ガス流路でのガスの流通及び、凝縮した水分の排出を円滑におこなうため、ガス導入マニホールドとガス導入口の接続部及び/又はガス排出マニホールドとガス排出口の接続部の断面積を、ガス流路の断面積よりも大きくしている。
しかしながら、上記特許文献1の方法では、液滴がガス流路に流入したのをモニタで検知してから、加湿量を変化させたりするので、対処に時間がかかり、その間に、ガス流路の閉塞等が発生し、電池電圧が低下してしまうという問題があった。また、上記特許文献2、3の方法では、ガス流路内に流入した液滴をすみやかに排出することはできるが、ミストや飛沫の流入を未然に防ぐものではない。よって、液滴が排出しきれずガス流路内に残留し、セル電圧が不安定になるという可能性があった。 However, in the method of the above-mentioned Patent Document 1, since the humidification amount is changed after detecting that the liquid droplet has flowed into the gas flow path, it takes time to cope with it. There existed a problem that blockage etc. generate | occur | produced and a battery voltage will fall. Further, in the methods of Patent Documents 2 and 3, the droplets that have flowed into the gas flow path can be discharged quickly, but this does not prevent the inflow of mist or droplets. Therefore, there is a possibility that the droplets cannot be discharged and remain in the gas flow path, and the cell voltage becomes unstable.
よって本発明の目的は、ガス流路内へのミストや飛沫の流入を未然に防ぎ、安定した電圧を供給できる固体高分子電解質型燃料電池を提供することにある。 Accordingly, an object of the present invention is to provide a solid polymer electrolyte fuel cell that can prevent inflow of mist and droplets into a gas flow path and can supply a stable voltage.
上記課題を解決するため、本発明においては、固体高分子膜からなる電解質層の両面に電極層を配置し、更にその両外面に、ガス導入マニホールド、ガス排出マニホールド、及びガス流路を有するセパレータを配置して構成される燃料電池単セルを、その面に垂直な方向が水平方向になるように配置して複数層積層してなる固体高分子電解質型燃料電池であって、前記ガス導入マニホールド及びガス排出マニホールドは、積層された複数の燃料電池単セルの各セパレータを貫通して、前記ガス導入マニホールドが、前記ガス排出マニホールドよりも、重力方向上部に配置されるように形成されており、前記ガス流路は、前記各セパレータの前記電極層側の面に溝状に形成された流路からなり、その一端が前記ガス導入マニホールドに接続され、その他端が前記ガス排出マニホールドに接続されており、前記ガス流路が前記ガス導入マニホールドに接続された部分の該ガス流路のガス流通方向と、重力方向とのなす角度αが、90°<α≦180°であり、前記ガス導入マニホールドと前記ガス流路との接続部の流路の中心線に対して垂直な断面積が、前記ガス流路の平均断面積よりも大きいことを特徴とする。 In order to solve the above problems, in the present invention, an electrode layer is disposed on both surfaces of an electrolyte layer made of a solid polymer film, and a gas introduction manifold, a gas discharge manifold, and a gas flow path are disposed on both outer surfaces thereof. A solid polymer electrolyte fuel cell in which a fuel cell unit cell is arranged such that a direction perpendicular to the surface thereof is a horizontal direction and a plurality of layers are laminated , the gas introduction manifold And the gas discharge manifold penetrates each separator of the plurality of stacked fuel cell single cells, and the gas introduction manifold is formed so as to be arranged at the upper part in the gravity direction than the gas discharge manifold , The gas flow path is formed of a flow path formed in a groove shape on the surface of the separator on the electrode layer side, and one end thereof is connected to the gas introduction manifold. The other end is connected to the gas discharge manifold, the gas flow direction of the gas flow of a portion where the gas flow path is connected to the gas inlet manifold, the angle α between the direction of gravity, 90 ° < α ≦ 180 °, and the cross-sectional area perpendicular to the center line of the flow path of the connecting portion between the gas introduction manifold and the gas flow path is larger than the average cross-sectional area of the gas flow path. To do.
これによれば、マニホールド内のミストや飛沫は、重力に逆らってガス流路内に流入しなくてはならないため、ガス流路内へは流入しにくく、ガス流路内へのミストや飛沫の流入を未然に防止することができる。また、ガス導入口でのガス流速が、ガス流路内よりも遅くなるので、ミストや飛沫は、ガス流体から受ける運動エネルギーが減少し、ガス流路内へミストや飛沫が流入しにくくなる。 According to this, since the mist and splashes in the manifold must flow into the gas flow path against gravity, it is difficult to flow into the gas flow path, and mist and splashes into the gas flow path Inflow can be prevented beforehand. In addition, since the gas flow velocity at the gas introduction port is slower than that in the gas flow path, the kinetic energy received from the gas fluid is reduced in the mist and droplets, and the mist and splash are less likely to flow into the gas flow path.
また、本発明において、前記ガス導入マニホールドと前記ガス流路との接続部の断面積が、前記ガス流路の平均断面積の1.5〜3倍であることが好ましい。 Moreover, in this invention, it is preferable that the cross-sectional area of the connection part of the said gas introduction manifold and the said gas flow path is 1.5 to 3 times the average cross-sectional area of the said gas flow path.
ガス導入マニホールドを、ガス排出マニホールドよりも重力方向上部に形成し、かつ、ガス導入マニホールドとガス流路との接続角度αを、重力方向に対し、90°<α≦180°とすることで、反応ガスに含まれるミストや飛沫のガス流路内への混入を未然に防ぎ、ガス流路の液滴による閉塞が極めて生じにくくなり、安定した電池特性が得られる。 By forming the gas introduction manifold above the gas discharge manifold in the gravity direction and setting the connection angle α between the gas introduction manifold and the gas flow path to 90 ° <α ≦ 180 ° with respect to the gravity direction, Mist and droplets contained in the reaction gas are prevented from being mixed into the gas flow path, and the clogging of the gas flow path with liquid droplets is extremely difficult to occur, so that stable battery characteristics can be obtained.
また、ガス導入マニホールドとガス流路との接続部の断面積を、ガス流路の平均断面積よりも大きくすることで、ガス流路内へのミストや飛沫の流入をより効果的に防止できる。 In addition, by making the cross-sectional area of the connection portion between the gas introduction manifold and the gas flow path larger than the average cross-sectional area of the gas flow path, it is possible to more effectively prevent the inflow of mist and droplets into the gas flow path. .
以下、図面を用いて本発明について更に詳細に説明するが本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.
図1は、本発明の固体高分子電解質型燃料電池のセパレータのガス流路を示す模式図であって、同図(a)はセパレータ10aの模式図であり、同図(b)は、セパレータ10bの模式図である。なお、図中の矢印Gは、セパレータ10a及び10bが使用される状態での重力方向を示している。 FIG. 1 is a schematic diagram showing a gas flow path of a separator of a solid polymer electrolyte fuel cell according to the present invention. FIG. 1 (a) is a schematic diagram of a separator 10a, and FIG. It is a schematic diagram of 10b. The arrow G in the figure indicates the direction of gravity in the state where the separators 10a and 10b are used.
本発明では、ガス導入マニホールド4a及び5aが、ガス排出マニホールド4b及び5bよりも、重力方向の上部に形成されている。 In the present invention, the gas introduction manifolds 4a and 5a are formed in the upper part in the gravity direction than the gas discharge manifolds 4b and 5b.
ガス導入マニホールド4aから燃料ガスを、ガス導入マニホールド5aから酸化剤ガスを導入することで、電解質膜と燃料電極と空気電極とが一体化したMEA(Membrane and Electrode Assembly)と接触して、電極反応が行われる。未反応のガスは、ガス流路20を流通してガス排出マニホールド4b及びガス排出マニホールド5bから排出される。また、冷却水路導入口31aから冷却水路排出口31bへ、図示しない冷却水路を経由して冷却水が流通され、燃料電池全体の冷却が行われる。 By introducing the fuel gas from the gas introduction manifold 4a and the oxidant gas from the gas introduction manifold 5a, the electrode reaction is brought into contact with the MEA (Membrane and Electrode Assembly) in which the electrolyte membrane, the fuel electrode, and the air electrode are integrated. Is done. Unreacted gas flows through the gas flow path 20 and is discharged from the gas discharge manifold 4b and the gas discharge manifold 5b. Further, the cooling water is circulated from the cooling water channel introduction port 31a to the cooling water channel discharge port 31b via a cooling water channel (not shown), and the entire fuel cell is cooled.
さらに、本発明では、ガス導入マニホールド4aとガス流路20が、重力方向に対し、90°<α≦180°の接続角度αで接続されており、ガス導入マニホールド5aとガス流路20も同様に、重力方向に対し、90°<α≦180°の接続角度αで接続されている。なお、接続角度αは、150°≦α≦180°とすることが更に好ましい。 Furthermore, in the present invention, the gas introduction manifold 4a and the gas flow path 20 are connected at a connection angle α of 90 ° <α ≦ 180 ° with respect to the direction of gravity, and the gas introduction manifold 5a and the gas flow path 20 are the same. Further, they are connected at a connection angle α of 90 ° <α ≦ 180 ° with respect to the direction of gravity. The connection angle α is more preferably 150 ° ≦ α ≦ 180 °.
図2は、図1(a)に示した本発明のセパレータ10aのガス導入マニホールド4aとガス流路20との接続部の第1の態様を示す拡大模式図である。 FIG. 2 is an enlarged schematic view showing a first mode of a connection portion between the gas introduction manifold 4a and the gas flow path 20 of the separator 10a of the present invention shown in FIG.
この態様では、ガス導入口の接続角度αが、重力方向Gに沿った垂線G’に対し、90°<α<180°となっている。 In this embodiment, the connection angle α of the gas inlet is 90 ° <α <180 ° with respect to the perpendicular G ′ along the gravity direction G.
なお本発明において、重力方向に対する接続角度αとは、交点Oから重力方向に向かう垂線G’と、ガスの流通方向Aとのなす角度を意味する。すなわち、ガスの流通方向Aは上向きとなる。 In the present invention, the connection angle α with respect to the gravitational direction means an angle formed by a perpendicular line G ′ from the intersection O toward the gravitational direction and the gas flow direction A. That is, the gas flow direction A is upward.
固体高分子電解質形燃料電池に用いられている固体高分子電解質膜は、水を含んだ湿潤状態にて高いイオン伝導性を示すため、通常、燃料ガスは水で加湿して用いられる。 Since the solid polymer electrolyte membrane used in the solid polymer electrolyte fuel cell exhibits high ion conductivity in a wet state containing water, the fuel gas is usually used after being humidified with water.
この態様によれば、燃料ガスに含まれるミストや飛沫が、ガス導入マニホールド4aから、ガス流路20に流入する際、重力に逆らわなくてはならないので、重力による引力を受け、ミストや飛沫のガス流路内への流入を未然に防止できる。 According to this aspect, since mist and droplets contained in the fuel gas must counter gravity when flowing into the gas flow path 20 from the gas introduction manifold 4a, the mist and droplets are subjected to gravitational force due to gravity. Inflow into the gas flow path can be prevented beforehand.
なお、図示しないが、図1(b)のガス導入マニホールド5aとガス流路20との接続部も、図2と同様にすることで、酸化剤ガス中に含まれるミストや飛沫のガス流路20内への流入を未然に防止できる。 Although not shown, the connection between the gas introduction manifold 5a and the gas flow path 20 in FIG. 1B is the same as that in FIG. 2, so that the gas flow path of mist and droplets contained in the oxidant gas is provided. Inflow into 20 can be prevented beforehand.
そのため、本発明によれば、ガス流路20の液滴による閉塞が極めて生じにくく、安定した電池特性を得ることができる。 Therefore, according to the present invention, clogging of the gas flow path 20 with droplets is extremely unlikely, and stable battery characteristics can be obtained.
図3は、図1(a)に示した本発明のセパレータ10aの燃料ガス導入マニホールド4aとガス流路20との接続部の第2の態様を示す拡大模式図である。 FIG. 3 is an enlarged schematic view showing a second mode of the connection portion between the fuel gas introduction manifold 4a and the gas flow path 20 of the separator 10a of the present invention shown in FIG. 1 (a).
これによれば、ガス導入マニホールド4aの上部にガス流路20が接続されており、接続角度αが180°となっている。この態様によれば、ミストや飛沫に対する重力の効果が最大となり、ガス流路20に極めて流入しにくくなる。 According to this, the gas flow path 20 is connected to the upper part of the gas introduction manifold 4a, and the connection angle α is 180 °. According to this aspect, the effect of gravity on the mist and splashes is maximized, and it is very difficult to flow into the gas flow path 20.
なお、図示しないが、図1(b)のガス導入マニホールド5aとガス流路20との接続部も、図3と同様にすることで、ガス流路20内に、ミストや飛沫の流入を未然に防止できる。 Although not shown in the drawing, the connection between the gas introduction manifold 5a and the gas flow path 20 in FIG. 1 (b) is also the same as that in FIG. 3, so that mist and droplets can flow into the gas flow path 20 in advance. Can be prevented.
図4は、図1(a)に示した本発明のセパレータ10aのガス導入マニホールド4aとガス流路20との接続部の第3の態様を示す拡大模式図である。 FIG. 4 is an enlarged schematic view showing a third mode of the connection portion between the gas introduction manifold 4a and the gas flow path 20 of the separator 10a of the present invention shown in FIG.
この態様では、接続角度αが180°とされると共に、ガス導入口の断面積S1が、ガス流路20の入口から出口までの平均断面積S2に対して、S1>S2となっている。 In this embodiment, the connection angle α is 180 °, and the cross-sectional area S1 of the gas inlet is S1> S2 with respect to the average cross-sectional area S2 from the inlet to the outlet of the gas flow path 20.
なお、断面積S1は、断面積S2の1.5〜3倍であることが好ましい。 The cross-sectional area S1 is preferably 1.5 to 3 times the cross-sectional area S2.
例えば、ガス流路の断面積をS1=2mm2、S2=1mm2となるような構成にした場合、ガス導入マニホールド4a付近における流速は、その後に接続されているガス流路20の流速の1/2となるので、ガス導入口では、ミストや飛沫が受ける運動エネルギーが減少し、さらには、重力による引力も受けるため、ガス流路内へ液滴が極めて流入しにくくなる。 For example, if you configured as the cross-sectional area of the gas passage becomes S1 = 2mm 2, S2 = 1mm 2, the flow rate of the gas inlet velocity near the manifold 4a, the gas flow path 20 which is then connected 1 Therefore, at the gas introduction port, the kinetic energy received by the mist and droplets is reduced, and furthermore, gravitational attraction is also received, so that it is very difficult for the droplets to flow into the gas flow path.
またガスの流通速度が減少するのは、断面積の広い接続部だけであるので、ガス流路内に液滴が生成してしまった場合でも、すみやかに液滴が排出される。 Further, since the gas flow rate is reduced only at the connection portion having a large cross-sectional area, even when the droplet is generated in the gas flow path, the droplet is immediately discharged.
なお、図示しないが、図1(b)のガス導入マニホールド5aとガス流路20との接続部も、図4と同様にすることで、ガス流路20内に、ミストや飛沫の流入を未然に防止できる。 Although not shown in the figure, the connection between the gas introduction manifold 5a and the gas flow path 20 in FIG. 1 (b) is the same as in FIG. Can be prevented.
以下より実施例を挙げて本発明の効果を説明する。 The effects of the present invention will be described below with reference to examples.
[実施例]
本発明の図3のセパレータを用いて、電池スタックを作製した。
[Example]
A battery stack was produced using the separator of FIG. 3 of the present invention.
なお、電池スタックとは、燃料電池セルを複数積層して構成されたものであり、MEAと、その両面に配された空気極セパレータと燃料極セパレータ、ならびに電池冷却水を通流させる電池冷却板からなる。 The battery stack is formed by stacking a plurality of fuel battery cells, and includes a MEA, an air electrode separator and a fuel electrode separator arranged on both sides thereof, and a battery cooling plate through which battery cooling water flows. Consists of.
セパレータ材料として,カーボンを圧縮してフェノール樹脂等を含浸した樹脂含浸緻密カーボン素材を用いた。 As the separator material, a resin-impregnated dense carbon material in which carbon was compressed and impregnated with a phenol resin or the like was used.
電解質膜として(商品名;「ナフィオンN−112」 デュポン製)を使用し、燃料極触媒として白金・ルテニウム担持カーボン触媒を使用し、空気極触媒として白金担持カーボン触媒を使用し、集電体として(商品名;「TGPH−60」 東レ製)を使用してMEAを製作した。なお、電極の有効面積は100cm2とした。 As an electrolyte membrane (trade name; “Nafion N-112” manufactured by DuPont), a platinum / ruthenium-supported carbon catalyst is used as a fuel electrode catalyst, a platinum-supported carbon catalyst is used as an air electrode catalyst, and a current collector (Trade name; “TGPH-60” manufactured by Toray) was used to manufacture MEA. The effective area of the electrode was 100 cm 2 .
このMEAを、ガス導入マニホールドとガス流路との接続部が図3である、本発明の燃料極セパレータ及び空気極セパレータで挟み込み燃料電池単セルを構成した。そして、この燃料電池単セルを30セル積層して一体化し、燃料電池スタックを作製した。 This MEA was sandwiched between the fuel electrode separator and the air electrode separator of the present invention in which the connection part between the gas introduction manifold and the gas flow path is shown in FIG. Then, 30 fuel cell single cells were stacked and integrated to produce a fuel cell stack.
[比較例]
図7の従来のセパレータを使用した以外は、実施例と同様にして燃料電池スタックを作製した。
[Comparative example]
A fuel cell stack was produced in the same manner as in Example except that the conventional separator of FIG. 7 was used.
[試験例]
上記実施例及び比較例の試験体を用い、以下の条件で発電試験を行い、図5にその結果を示す。
[Test example]
Using the test bodies of the above-mentioned Examples and Comparative Examples, a power generation test was performed under the following conditions, and the results are shown in FIG.
発電試験条件は、燃料ガスとして(H280%+CO220%)の混合ガスを、酸化剤ガスとして空気を使用し、常圧下で、セル温度70℃、燃料露点70℃、空気露点70℃、電流密度0.2A/cm2で行った。 The power generation test conditions were as follows: a mixed gas of (H 2 80% + CO 2 20%) was used as the fuel gas, air was used as the oxidant gas, and the cell temperature was 70 ° C., the fuel dew point was 70 ° C., and the air dew point was 70 ° C. under normal pressure. The current density was 0.2 A / cm 2 .
従来型の燃料電池である比較例では、運転中に一部のセルの電圧が一時的に低下することがあった。これは、ガス流路内にミストや飛沫が流入し、一時的に反応ガスが欠乏したため電圧が低下したものと考えられ、液滴の排出によりセル電圧が回復したものであると考えられる。 In the comparative example, which is a conventional fuel cell, the voltage of some cells may temporarily decrease during operation. This is thought to be because the mist or droplets flowed into the gas flow channel and the reaction gas was temporarily deficient, so that the voltage was lowered, and the cell voltage was recovered by discharging the droplets.
一方、本発明の燃料電池では,ガス流路内にミストや飛沫が流入することがないので、セル電圧が安定していた。 On the other hand, in the fuel cell of the present invention, mist and droplets do not flow into the gas flow path, so that the cell voltage is stable.
本発明によれば、ミストや飛沫の流入を未然に防止でき、かつ、滞留してしまった液滴を速やかに排出できるので、安定した電池特性を備えることができる。 According to the present invention, inflow of mist and droplets can be prevented in advance, and the accumulated droplets can be quickly discharged, so that stable battery characteristics can be provided.
1:固体高分子電解質
2a:燃料電極
2b:空気電極
3a、3b:集電体
4a、5a:ガス導入マニホールド
4b、5b:ガス排出マニホールド
6:MEA
10a、10b:セパレータ
20:ガス流路
30:冷却水路
31a:冷却水路導入口
31b:冷却水路排出口
1: solid polymer electrolyte 2a: fuel electrode 2b: air electrode 3a, 3b: current collector 4a, 5a: gas introduction manifold 4b, 5b: gas discharge manifold 6: MEA
10a, 10b: Separator 20: Gas channel 30: Cooling channel 31a: Cooling channel inlet 31b: Cooling channel outlet
Claims (2)
前記ガス導入マニホールド及びガス排出マニホールドは、積層された複数の燃料電池単セルの各セパレータを貫通して、前記ガス導入マニホールドが、前記ガス排出マニホールドよりも、重力方向上部に配置されるように形成されており、
前記ガス流路は、前記各セパレータの前記電極層側の面に溝状に形成された流路からなり、その一端が前記ガス導入マニホールドに接続され、その他端が前記ガス排出マニホールドに接続されており、
前記ガス流路が前記ガス導入マニホールドに接続された部分の該ガス流路のガス流通方向と、重力方向とのなす角度αが、90°<α≦180°であり、
前記ガス導入マニホールドと前記ガス流路との接続部の流路の中心線に対して垂直な断面積が、前記ガス流路の平均断面積よりも大きい、
ことを特徴とする固体高分子電解質型燃料電池。 A fuel cell single cell configured by disposing electrode layers on both surfaces of an electrolyte layer made of a solid polymer membrane and further disposing a gas introduction manifold, a gas discharge manifold, and a separator having a gas flow path on both outer surfaces thereof. , A solid polymer electrolyte fuel cell in which a plurality of layers are laminated so that a direction perpendicular to the surface is a horizontal direction ,
The gas inlet manifold and the gas exhaust manifold, through each separator of the stacked unit cell, formed so that the gas inlet manifold, than the gas exhaust manifold are disposed in the direction of gravity upper Has been
The gas flow path includes a flow path formed in a groove shape on the surface of the separator on the electrode layer side, one end of which is connected to the gas introduction manifold, and the other end is connected to the gas discharge manifold. And
The angle α formed by the gas flow direction of the gas flow path in the portion where the gas flow path is connected to the gas introduction manifold and the direction of gravity is 90 ° <α ≦ 180 °,
The cross-sectional area perpendicular to the center line of the flow path of the connection portion between the gas introduction manifold and the gas flow path is larger than the average cross-sectional area of the gas flow path,
A solid polymer electrolyte fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004256991A JP4501600B2 (en) | 2004-09-03 | 2004-09-03 | Solid polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004256991A JP4501600B2 (en) | 2004-09-03 | 2004-09-03 | Solid polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006073407A JP2006073407A (en) | 2006-03-16 |
JP4501600B2 true JP4501600B2 (en) | 2010-07-14 |
Family
ID=36153791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004256991A Expired - Fee Related JP4501600B2 (en) | 2004-09-03 | 2004-09-03 | Solid polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501600B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164227A (en) * | 1998-11-24 | 2000-06-16 | Aisin Seiki Co Ltd | Gas manifold integrated separator and fuel cell |
JP2000231929A (en) * | 1999-02-09 | 2000-08-22 | Honda Motor Co Ltd | Fuel cell |
JP2004185934A (en) * | 2002-12-02 | 2004-07-02 | Sanyo Electric Co Ltd | Fuel cell |
-
2004
- 2004-09-03 JP JP2004256991A patent/JP4501600B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164227A (en) * | 1998-11-24 | 2000-06-16 | Aisin Seiki Co Ltd | Gas manifold integrated separator and fuel cell |
JP2000231929A (en) * | 1999-02-09 | 2000-08-22 | Honda Motor Co Ltd | Fuel cell |
JP2004185934A (en) * | 2002-12-02 | 2004-07-02 | Sanyo Electric Co Ltd | Fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2006073407A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4741643B2 (en) | Fuel cell stack | |
US7531266B2 (en) | Fuel cell | |
US9564647B2 (en) | Fuel cell system | |
CN100463276C (en) | High molecular electrolyte type fuel cell | |
WO2006121157A1 (en) | Fuel cell | |
US7745032B2 (en) | Fuel cell with humidifier | |
JP2010192291A (en) | Fuel cell stack | |
JP4935176B2 (en) | Separator unit and fuel cell stack | |
JP5155549B2 (en) | Fuel cell | |
JP3477926B2 (en) | Solid polymer electrolyte fuel cell | |
JP2009099380A (en) | Fuel cell system | |
JP3673252B2 (en) | Fuel cell stack | |
JP4739880B2 (en) | Polymer electrolyte fuel cell | |
JP4726186B2 (en) | Fuel cell stack | |
JP4501600B2 (en) | Solid polymer electrolyte fuel cell | |
JP2008059874A (en) | Fuel cell stack | |
JP5474318B2 (en) | Fuel cell stack | |
JP2009164051A (en) | Fuel battery | |
JP2007323993A (en) | Fuel cell system | |
JP4970007B2 (en) | Water management of PEM fuel cell stacks using surfactants | |
JP2008146897A (en) | Fuel cell separator, and fuel cell | |
JP2008146859A (en) | Membrane-electrode assembly and fuel cell having it | |
JP2007194041A (en) | Fuel cell | |
JP2006066131A (en) | Fuel cell | |
JP5450312B2 (en) | Fuel cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |