JP4500581B2 - Fluid element - Google Patents

Fluid element Download PDF

Info

Publication number
JP4500581B2
JP4500581B2 JP2004132596A JP2004132596A JP4500581B2 JP 4500581 B2 JP4500581 B2 JP 4500581B2 JP 2004132596 A JP2004132596 A JP 2004132596A JP 2004132596 A JP2004132596 A JP 2004132596A JP 4500581 B2 JP4500581 B2 JP 4500581B2
Authority
JP
Japan
Prior art keywords
fluid
movable part
flow path
movable
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004132596A
Other languages
Japanese (ja)
Other versions
JP2005315676A (en
JP2005315676A5 (en
Inventor
秀行 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004132596A priority Critical patent/JP4500581B2/en
Publication of JP2005315676A publication Critical patent/JP2005315676A/en
Publication of JP2005315676A5 publication Critical patent/JP2005315676A5/ja
Application granted granted Critical
Publication of JP4500581B2 publication Critical patent/JP4500581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、液体素子に関し、具体的には化学分析装置や医療装置、バイオテクノロジー等の微量な液体の操作が必要な分野に用いる液体素子に関する。特に、チップ上で化学分析や化学合成を行う小型化分析システム(μTAS:Micro Total Analysis System)等に応用される小型流体素子に関し、血液からの血球成分の除去や、異種の流体の混合、及び固形成分の溶解、反応促進等に応用される流体素子に関する。また、血液から病気関連の物質を取り除く療法、アファレシス療法に際して行われる、血漿分離操作等に応用される。   The present invention relates to a liquid element, and more specifically, to a liquid element used in a field that requires manipulation of a small amount of liquid, such as a chemical analyzer, a medical device, or biotechnology. In particular, regarding a small fluid device applied to a miniaturized analysis system (μTAS: Micro Total Analysis System) that performs chemical analysis or chemical synthesis on a chip, removal of blood cell components from blood, mixing of different fluids, and The present invention relates to a fluid element applied to dissolution of solid components, reaction promotion, and the like. In addition, it is applied to a plasma separation operation or the like performed in a therapy for removing a disease-related substance from blood or an apheresis therapy.

近年、立体微細加工技術の発展に伴い、ガラスやシリコン等の基板上に、微小な流路とポンプ、バルブ等の液体素子およびセンサを集積化し、その基板上で化学分析を行うシステムが注目されている。これらのシステムは、小型化分析システム、μ−TAS(Micro Total Analysis System)あるいはLab on a Chipと呼ばれている。化学分析システムを小型化することにより、無効体積の減少や試料の分量の大幅な低減が可能となる。   In recent years, with the development of three-dimensional microfabrication technology, attention has been focused on a system that integrates minute flow paths, liquid elements such as pumps and valves, and sensors on a substrate such as glass or silicon, and performs chemical analysis on the substrate. ing. These systems are called miniaturized analysis systems, μ-TAS (Micro Total Analysis System) or Lab on a Chip. By reducing the size of the chemical analysis system, it is possible to reduce the ineffective volume and greatly reduce the amount of the sample.

また、分析時間の短縮やシステム全体の低消費電力化が可能となる。さらに、小型化によりシステムの低価格を期待することができる。μ−TASは、システムの小型化、低価格化および分析時間の大幅な短縮が可能なことから、在宅医療やベッドサイドモニタ等の医療分野、DNA解析やプロテオーム解析等のバイオ分野での応用が期待されている。   In addition, the analysis time can be shortened and the power consumption of the entire system can be reduced. Furthermore, the low price of the system can be expected by downsizing. Since μ-TAS can reduce the size and cost of the system and significantly reduce the analysis time, it can be applied in the medical field such as home medical care and bedside monitor, and in the bio field such as DNA analysis and proteome analysis. Expected.

溶液を混合して反応を行った後、定量及び分析をしてから分離するという一連の生化学実験操作をいくつかのセルの組み合わせによって実現可能なマイクロリアクタが開示されている(特許文献1参照)。マイクロリアクタは、シリコン基板上に平板で密閉された独立した反応チャンバを有している。このリアクタは、リザーバセル、混合セル、反応セル、検出セル、分離セルが組み合わされている。このリアクタを基板上に多数個形成することにより、多数の生化学反応を同時に並列的に行うことができる。さらに、単なる分析だけでなく、タンパク質合成などの物質合成反応もセル上で行うことができる。   There is disclosed a microreactor capable of realizing a series of biochemical experiment operations by mixing and reacting solutions, then performing quantification and analysis, and separating them by combining several cells (see Patent Document 1). . The microreactor has an independent reaction chamber sealed with a flat plate on a silicon substrate. In this reactor, a reservoir cell, a mixing cell, a reaction cell, a detection cell, and a separation cell are combined. By forming a large number of reactors on the substrate, a large number of biochemical reactions can be performed simultaneously in parallel. Furthermore, not only analysis but also substance synthesis reactions such as protein synthesis can be performed on the cell.

血液を分析する場合、血液から血球等の有形成分を分離する必要が生じる場合がある。白血球除去フィルタ付き血液バックユニットを装着して使う遠心分離装置が開示されている(特許文献2参照)。   When analyzing blood, it may be necessary to separate formed components such as blood cells from the blood. A centrifuge device is disclosed that is used with a blood bag unit with a leukocyte removal filter (see Patent Document 2).

また、ガラス繊維を用いて、血液から血球成分を除去する方法が開示されている(特許文献3参照)。   Moreover, the method of removing a blood cell component from blood using glass fiber is disclosed (refer patent document 3).

また、赤血球は透過し、白血球を補足するフィルタを用いた赤血球の除去方法が開示されている(特許文献4参照)。   Further, a method for removing red blood cells using a filter that permeates red blood cells and supplements white blood cells is disclosed (see Patent Document 4).

また、網目フィルタを用いた血球分離装置が開示されている(特許文献5参照)。   Further, a blood cell separation device using a mesh filter is disclosed (see Patent Document 5).

一方、磁性粒子を利用したカオス的マイクロ混合デバイスが提案されている(非特許文献1参照)。   On the other hand, a chaotic micro mixing device using magnetic particles has been proposed (see Non-Patent Document 1).

また、MEMS技術を用いて、流体の密度を共振周波数の変化から測定するデバイスが提案されている(非特許文献2参照)。
特開平10−337173号公報 特開平07−047303号公報 特開平05−099918号公報 特開平08−104643号公報 特開2003−207504号公報 日本機械学会2002年度年次大会公演資料集(VI)、2002年9月、p.25−27、東京 1997IEEE、p278
In addition, a device that measures the density of a fluid from a change in resonance frequency using MEMS technology has been proposed (see Non-Patent Document 2).
JP 10-337173 A Japanese Patent Application Laid-Open No. 07-0473303 Japanese Patent Laid-Open No. 05-099918 Japanese Patent Application Laid-Open No. 08-104643 JP 2003-207504 A Japan Society of Mechanical Engineers 2002 Annual Conference Performance Materials (VI), September 2002, p. 25-27, Tokyo 1997 IEEE, p278

血液を採取し分析するシステムを構成するためには、血球の分離が重要な課題となる。従来、血液から血球成分を分離する遠心分離機が利用されてきたが、従来の遠心分離装置は、大型でμTASのチップ上に集積化するのは困難であった。   Separation of blood cells is an important issue for constructing a system for collecting and analyzing blood. Conventionally, centrifuges for separating blood cell components from blood have been used, but conventional centrifuges have been difficult to integrate on a large and μTAS chip.

一方、分子生物学の分野では、生体分子混合溶液の中から特定の細胞やDNAを分離・抽出するために、磁性粒子が利用されている。磁性粒子を利用して生体分子を分離する手法をμTASのチップ上に集積化する場合、磁性粒子の混合(攪拌)が重要な問題となる。マイクロスケールの流れ場は超低レイノルズ数(Re<<1)であるため、マイクロスケールにおける混合促進機構である乱流や剥離が発生しない。特に、磁性粒子や生体分子などの巨大分子(直径1〜10μm程度)では、ブラウン運動による分子拡散の効果が極端に小さくなるため、混合が不効率となる課題があった。   On the other hand, in the field of molecular biology, magnetic particles are used to separate and extract specific cells and DNA from a biomolecule mixed solution. When a technique for separating biomolecules using magnetic particles is integrated on a μTAS chip, mixing (stirring) of magnetic particles becomes an important problem. Since the microscale flow field has an ultra-low Reynolds number (Re << 1), turbulence and separation, which are mixing promotion mechanisms in the microscale, do not occur. In particular, macromolecules such as magnetic particles and biomolecules (diameter of about 1 to 10 μm) have a problem in that mixing becomes inefficient because the effect of molecular diffusion due to Brownian motion becomes extremely small.

本発明は、この様な背景技術に鑑みてなされたものであり、μTASやLab−on−a−Chipのチップ上等で集積化可能な新規な小型流体素子を提供することにある。   The present invention has been made in view of such a background art, and an object thereof is to provide a novel small fluid element that can be integrated on a μTAS or Lab-on-a-Chip chip.

本発明は、梁で接続された可動部と非可動部とを同一基板に有し、前記可動部が流体を導入するための流路と、該流路より導入された流体が存在する流体室と、を備えた流体素子であって、前記梁がねじれ振動することで、前記可動部に加速度を与えて、前記流体の混合または分離を行うことを特徴とする流体素子を提供するものである。 The present invention has a movable part and a non-movable part connected by a beam on the same substrate, and a fluid chamber in which the movable part introduces a fluid, and a fluid chamber in which the fluid introduced from the flow path exists. And a fluid element characterized in that the beam is torsionally vibrated to give acceleration to the movable part to mix or separate the fluid. .

本発明により、マイクロスケールの流れの中で、流体中の成分の分離または混合を効率的に行える流体素子を提供する。   The present invention provides a fluidic device that can efficiently separate or mix components in a fluid in a microscale flow.

以下に本発明を具体的に説明する。   The present invention will be specifically described below.

(第1の実施の形態)
図1は本発明の特徴を示す図である。1は基板であり、2は可動部、3は可動部に位置する流体室、4a−4bは前記可動部に接続された梁すなわちねじりバネ、9は混合液体の入力部、10は流体の出力部である。5はねじりバネ4a上に配置された入力側流路であり、6はねじりバネ4b上に配置された出力側流路である。また、11はねじりバネによるねじれ振動を示し、可動部に周期的な角加速度が与えられることを示す。
(First embodiment)
FIG. 1 is a diagram showing features of the present invention. 1 is a substrate, 2 is a movable part, 3 is a fluid chamber located in the movable part, 4a-4b are beams or torsion springs connected to the movable part, 9 is an input part for mixed liquid, and 10 is an output of fluid. Part. Reference numeral 5 denotes an input-side flow path arranged on the torsion spring 4a, and 6 denotes an output-side flow path arranged on the torsion spring 4b. Reference numeral 11 denotes torsional vibration caused by a torsion spring, which indicates that periodic angular acceleration is given to the movable part.

また、図2の21−22は可動部の裏面に配置した棒磁石を示す。   Moreover, 21-22 of FIG. 2 shows the bar magnet arrange | positioned on the back surface of a movable part.

また、図3は第1の実施の形態の側面図であり、31はコイル、32は軟磁性体層、33はコイル作成基板、34はスペーサ、35はコイル駆動用電源である。コイル31はコイル作成基板面に略垂直な方向に磁界を発生させ、磁界中に置かれた磁石21−22にねじりバネの中心を回転軸とするトルクを発生する。   3 is a side view of the first embodiment, in which 31 is a coil, 32 is a soft magnetic layer, 33 is a coil production board, 34 is a spacer, and 35 is a power source for driving the coil. The coil 31 generates a magnetic field in a direction substantially perpendicular to the surface of the coil creation board, and generates torque about the center of the torsion spring as a rotation axis in the magnet 21-22 placed in the magnetic field.

すなわち、本発明は、同一基板1内に梁部分4a−4bで接続された可動部2と非可動部を有すること、前記可動部2が流体を導入する流路5と流体室3を備えていること、前記可動部2に加速度を与えることにより、混合流体9の成分分離を行うことを特徴とする流体素子である。   That is, the present invention includes a movable portion 2 and a non-movable portion connected to each other in the same substrate 1 by beam portions 4a-4b, and the movable portion 2 includes a flow path 5 and a fluid chamber 3 for introducing fluid. In other words, the fluid element is configured to separate components of the mixed fluid 9 by applying acceleration to the movable portion 2.

今、可動部2の慣性モーメントをI、ねじりバネのバネ定数をkとすると可動部2の共振角振動数ωはω=(k/I)0.5となり、共振周波数fはf=ω/(2π)となる。 Assuming that the moment of inertia of the movable part 2 is I and the spring constant of the torsion spring is k, the resonance angular frequency ω of the movable part 2 is ω = (k / I) 0.5 , and the resonance frequency f is f = ω / (2π).

コイル駆動用電源35により共振周波数に等しい周波数の交流電圧を印加すると、コイルに電流が流れ、基板に垂直な周期的な磁界が発生し、可動部は共振振動を始める。ここで、Q値は空気中では振れ角により異なるがおよそ1000から数千程度で、真空中では10000以上となる。   When an AC voltage having a frequency equal to the resonance frequency is applied by the coil driving power source 35, a current flows through the coil, a periodic magnetic field perpendicular to the substrate is generated, and the movable part starts resonance vibration. Here, although the Q value varies depending on the deflection angle in the air, it is about 1000 to several thousands, and is 10,000 or more in vacuum.

共振状態では、振れ角φは時間tに関してφ=φsinωtで記述される。ただし、φは最大振れ角である。また、回転の接線方向の角加速度はdφ/dt=−ωφとなる。また、回転軸から距離r離れた部位での接線方向の速度vは
v=rωφcosωtとなる。この時の半径方向の加速度aはa=v/r=rωφ cosωtとなる。すなわち、回転軸から距離r離れた部位で密度ρの流体は単位体積あたりρa=ρv/r=ρrωφ cosωtなる遠心力が働く。式からわかるようにこの力は時間に対して周期的に変動するが常に正符号となり、密度の大きい流体成分程、回転軸から遠いところに分布するようになる。
In the resonance state, the deflection angle φ is described as φ = φ 0 sin ωt with respect to time t. However, φ 0 is the maximum deflection angle. Also, the angular acceleration in the tangential direction of rotation is d 2 φ / dt 2 = −ω 2 φ. In addition, the tangential velocity v at a location r away from the rotation axis is v = rωφ 0 cosωt. The radial acceleration a at this time is a = v 2 / r = rω 2 φ 0 2 cos 2 ωt. That is, a centrifugal force of ρa = ρv 2 / r = ρrω 2 φ 0 2 cos 2 ωt per unit volume acts on a fluid having a density ρ at a position r away from the rotation axis. As can be seen from the equation, this force periodically varies with time, but always has a positive sign, and a fluid component having a higher density is distributed farther from the rotation axis.

すなわち、可動部に配置された流体室3の回転によって発生する遠心力により、流体成分の分離が可能となる。   That is, the fluid component can be separated by the centrifugal force generated by the rotation of the fluid chamber 3 arranged in the movable part.

人間の血液は血漿成分が約55%で、血球成分は約45%である。血漿成分の約91%は水分、約7%が血漿タンパク質、約0.9%が無機塩類となっている。また、血球成分の約96%が赤血球であり、約3%が白血球、約1%が血小板である。赤血球の比重は1.095、白血球の比重は1.063−1.085、血小板の比重は1.032であり、遠心分離操作により、軽い側を血漿成分として分離することができる。   Human blood has a plasma component of about 55% and a blood cell component of about 45%. About 91% of plasma components are water, about 7% are plasma proteins, and about 0.9% are inorganic salts. Also, about 96% of the blood cell components are red blood cells, about 3% are white blood cells, and about 1% are platelets. The specific gravity of red blood cells is 1.095, the specific gravity of white blood cells is 1.063-1.085, and the specific gravity of platelets is 1.032. The light side can be separated as a plasma component by centrifugation.

ここで、共振周波数fが約20kHz、最大振れ角約10度とすると、回転軸から0.1mm離れたところで、約5000Gをピークとする周期的な遠心力を得ることが可能となる。すなわち、本発明では、流路を有する微小なねじれバネに接続した小さな液室のねじれ振動を利用することにより、容易に高速の回転速度を得ることが可能となり、小さな構造で大型遠心分離器並みの遠心力を得ることができる効果がある。もちろん、電力等も少なくて済む効果もある。   Here, when the resonance frequency f is about 20 kHz and the maximum deflection angle is about 10 degrees, a periodic centrifugal force having a peak of about 5000 G can be obtained at a distance of 0.1 mm from the rotation axis. That is, in the present invention, by utilizing the torsional vibration of a small liquid chamber connected to a minute torsion spring having a flow path, it is possible to easily obtain a high rotational speed, which is similar to a large-sized centrifuge with a small structure. There is an effect that the centrifugal force of can be obtained. Of course, there is an effect that less power is required.

図2は可動部2の裏面に配置される磁石の配置を示す図であり、直径211μm、長さ0.98mmの丸棒磁石を2本配置する。   FIG. 2 is a diagram showing the arrangement of the magnets arranged on the back surface of the movable part 2, and two round bar magnets having a diameter of 211 μm and a length of 0.98 mm are arranged.

図3は、本実施の形態の側面図の模式図であり、31は薄膜状に形成したコイルであり、32は軟磁性体、33は32と31を形成する基板、34はスペーサ、35はコイルを駆動する電源である。   FIG. 3 is a schematic side view of the present embodiment, in which 31 is a coil formed in a thin film shape, 32 is a soft magnetic material, 33 is a substrate on which 32 and 31 are formed, 34 is a spacer, and 35 is A power source for driving the coil.

また、分離により慣性モーメントが変化し固有振動数が変化するが、駆動周波数を非分離時の固有周波数に合せておけば、振れ角の変化から分離の進行を検知できる効果がある。   In addition, the moment of inertia changes and the natural frequency changes due to the separation, but if the drive frequency is matched to the natural frequency at the time of non-separation, there is an effect that the progress of the separation can be detected from the change of the deflection angle.

また、固有振動の変化に応じて電源周波数を変化させれば、振動を維持することも可能であり、変化した周波数から分離の進行の度合いを検知できる効果がある。   Further, if the power supply frequency is changed according to the change of the natural vibration, it is possible to maintain the vibration, and there is an effect that the degree of separation progress can be detected from the changed frequency.

(第2の実施の形態)
図4は第2の実施の形態の特徴を表す図である。本実施形態は、液室出力側の流路に分岐流路を41−43有することを除いて第1の実施の形態とほぼ同様である。
(Second Embodiment)
FIG. 4 is a diagram illustrating characteristics of the second embodiment. The present embodiment is substantially the same as the first embodiment except that the flow path on the liquid chamber output side has branch channels 41-43.

図4で44−46は流体出力部であり、9から血液などの比重の異なる粒子を含む混合流体を流すと、ねじれ型の回転運動をする液室3で遠心分離され、流れによって分岐流路41−43に達して分岐され、44−45に血球などの比重の大きい成分を多く含む流体が流れ、46には血漿などの低比重の成分流体が流れる。   In FIG. 4, reference numerals 44 to 46 denote fluid output units. When a mixed fluid containing particles having different specific gravities such as blood is flowed from 9, the fluid is centrifuged in the liquid chamber 3 that rotates in a torsional shape, and is branched by the flow. The fluid reaches 41-43 and is branched. A fluid containing a lot of components having a large specific gravity such as blood cells flows through 44-45, and a component fluid having a low specific gravity such as plasma flows through 46.

すなわち、分岐流路41−43を有することにより、混合流体を流し続けながら、比重の大きい成分を連続的に分離し回収できる効果がある。   That is, by having the branch flow paths 41-43, there is an effect that components having a large specific gravity can be continuously separated and recovered while continuing to flow the mixed fluid.

(第3の実施の形態)
図5は第3の実施の形態の特徴を表す図である。
(Third embodiment)
FIG. 5 is a diagram illustrating characteristics of the third embodiment.

51は基板であり、52は屈曲型のバネ構造梁であるところの可動部、53は可動部に位置する流体室、54は第1の電極であるところのくし型電極、55は第2の電極であるところのくし型電極である。本実施形態は、特に、前記非可動部が第1の電極54を有し、前記可動部が前記第1の電極と対向する第2の電極55を有し、第1の電極54と第2の電極55間の静電力を利用し、前記可動部に加速度を与え、流体の成分混合を行うことを特徴とする。   51 is a substrate, 52 is a movable part which is a bent spring structure beam, 53 is a fluid chamber located in the movable part, 54 is a comb electrode which is a first electrode, and 55 is a second electrode. It is a comb-type electrode that is an electrode. In the present embodiment, in particular, the non-movable part has the first electrode 54, the movable part has the second electrode 55 facing the first electrode, and the first electrode 54 and the second electrode 54 The electrostatic force between the electrodes 55 is utilized to give acceleration to the movable part to mix the fluid components.

共振状態では、可動部の変位xは時間tに関してx=xsinωtで記述される。ただし、xは最大変位である。この時、加速度aはdx/dt=−ωxとなる。すなわち、密度ρの流体は単位体積あたりρa=ρv/r=−ρωsinωtなる力が働く。式からわかるようにこの力は時間に対して周期的に変動し、符号が入れ替わるため、密度の異なる流体成分があるとその拡散または混合が促進される。 In the resonance state, the displacement x of the movable part is described by x = x 0 sin ωt with respect to time t. However, x 0 is the maximum displacement. At this time, the acceleration a is d 2 x / dt 2 = −ω 2 x. In other words, a fluid having a density ρ has a force of ρa = ρv 2 / r = −ρω 2 x 0 sin ωt per unit volume. As can be seen from the equation, this force varies periodically with respect to time and the sign is switched, so that diffusion or mixing of fluid components of different densities is facilitated.

図5において、56、57は流路53とともにY字流路を形成する。56に
血漿などのバイオ流体を流し、57に抗原抗体反応により目的の分子のみを表面に付着できる磁性粒子などを含む流体を流す場合、もし、振動がなければ、マイクロスケールの流れ場は超低レイノルズ数(Re<<1)であること、及び、粒子の大きさに起因してブラウン運動による拡散が期待しにくいことにより、混合が期待できない。本件は、可動部に設けた流路を流路に垂直な方向に周期的に可動させ、流路に垂直方向の加速度が符号を含めて周期的に変化させることにより、マイクロスケールの流れ場の中でも、大きさに起因してブラウン運動による拡散が期待しにくい粒子でも、効果的に混合できる効果がある。
In FIG. 5, 56 and 57 form a Y-shaped channel together with the channel 53. When a fluid such as plasma is flowed through 56 and a fluid containing magnetic particles or the like that can attach only a target molecule to the surface by an antigen-antibody reaction is flowed through 57, if there is no vibration, the microscale flow field is extremely low. Mixing cannot be expected due to the Reynolds number (Re << 1) and the difficulty of diffusion due to Brownian motion due to the size of the particles. In this case, the flow path provided in the movable part is periodically moved in the direction perpendicular to the flow path, and the acceleration in the vertical direction of the flow path is periodically changed including the sign, thereby Among them, there is an effect that even particles that are hardly expected to diffuse due to Brownian motion due to the size can be mixed effectively.

(第4の実施の形態)
図6は第4の実施の形態の特徴を表す図である。
(Fourth embodiment)
FIG. 6 is a diagram illustrating characteristics of the fourth embodiment.

本実施形態は、特に特定方向に流れやすい流路61−62が前記流路5−6または液室3に接続されていることを除いて、第1の実施の形態とほぼ同様である。   This embodiment is substantially the same as the first embodiment except that the flow path 61-62 that is easy to flow in a specific direction is connected to the flow path 5-6 or the liquid chamber 3.

ねじれによって、前記流路5−6または前記液室3の体積は微小な変化があるため、特定方向に流れやすい流路61−62が接続されていると、ねじれ振動によって、特定方向への実質的な流れが発生し、ポンプ機能を発生させられる効果がある。ここで、特定方向に流れやすい流路は、ある方向には弁が開き、逆方向には弁が閉じる弁素子を含む流路でもよい。   Since the volume of the flow path 5-6 or the liquid chamber 3 is slightly changed by twisting, if the flow paths 61-62 that are easy to flow in a specific direction are connected, the substantial flow in the specific direction is caused by torsional vibration. This produces an effect of generating a pump function. Here, the flow path that easily flows in a specific direction may be a flow path including a valve element that opens a valve in a certain direction and closes the valve in a reverse direction.

(第5の実施の形態)
図7は第5の実施の形態の特徴を表す図である。
(Fifth embodiment)
FIG. 7 is a diagram illustrating characteristics of the fifth embodiment.

図7において71、72は2つの可動軸を与えるねじりばねであり、本実施形態は、特に、可動軸が二軸以上または、可動の方向が二方向以上あり、角速度を所望の方向に制御することを特徴とする。角速度を所望の方向に制御できるため、必要に合せて分離や混合を行う多目的な使用が可能となり、マイクロスケールにおけるフラスコとしての機能を持たせることが可能となる効果がある。   In FIG. 7, reference numerals 71 and 72 denote torsion springs that provide two movable axes. In the present embodiment, in particular, there are two or more movable axes or two or more movable directions, and the angular velocity is controlled in a desired direction. It is characterized by that. Since the angular velocity can be controlled in a desired direction, it can be used for various purposes such as separation and mixing as needed, and there is an effect that it can have a function as a flask in a microscale.

本発明の第1の実施形態を示す概略図である。It is the schematic which shows the 1st Embodiment of this invention. 第1の実施形態の磁石の配置を示す概略図である。It is the schematic which shows arrangement | positioning of the magnet of 1st Embodiment. 第1の実施形態の側面図を示す模式図である。It is a schematic diagram which shows the side view of 1st Embodiment. 本発明の第2の実施形態を示す概略図である。It is the schematic which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す概略図である。It is the schematic which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す概略図である。It is the schematic which shows the 4th Embodiment of this invention. 本発明の第5の実施形態を示す概略図である。It is the schematic which shows the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1 基板
2 可動部
3 液室
4a−4b ねじりバネ構造梁
5−6 流路
9 流体入力部
10 流体出力部
11 ねじれ回転
21−22 磁石
31 コイル
32 軟磁性体層
34 スペーサ
35 コイル駆動
41−43 分岐流路
44−45 流体出力部
51 基板
52 屈曲型のバネ構造梁可動部
53 屈曲型のバネ構造梁可動部に設けられた流路
54 可動部側くし型電極(第一の電極)
55 非可動部側くし型電極(第二の電極)
56−57 Y字型流路構成流路
61−62 特定方向に流れやすい流路
71−72 二軸型回転を与えるねじりバネ構造梁
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Movable part 3 Liquid chamber 4a-4b Torsion spring structure beam 5-6 Flow path 9 Fluid input part 10 Fluid output part 11 Torsion rotation 21-22 Magnet 31 Coil 32 Soft magnetic layer 34 Spacer 35 Coil drive 41-43 Branch channel 44-45 Fluid output unit 51 Substrate 52 Bent spring structure beam movable unit 53 Channel provided in bent type spring structure beam movable unit 54 Movable unit side comb electrode (first electrode)
55 Non-movable part side comb electrode (second electrode)
56-57 Y-shaped flow path constituting flow path 61-62 A flow path that easily flows in a specific direction 71-72 A torsion spring structure beam that provides biaxial rotation

Claims (6)

梁で接続された可動部と非可動部とを同一基板に有し、前記可動部が流体を導入するための流路と、該流路より導入された流体が存在する流体室と、を備えた流体素子であって、前記梁がねじれ振動することで、前記可動部に加速度を与えて、前記流体の混合または分離を行うことを特徴とする流体素子。 A movable part and a non-movable part connected by a beam are provided on the same substrate, and the flow path for introducing the fluid by the movable part and a fluid chamber in which the fluid introduced from the flow path exists are provided. A fluid element, wherein the beam is torsionally vibrated to give acceleration to the movable portion to mix or separate the fluid. 電磁力を用いて前記可動部に加速度を与えることを特徴とする請求項1に記載の流体素子。   The fluid element according to claim 1, wherein an acceleration is applied to the movable part using electromagnetic force. 静電力を用いて前記可動部に加速度を与えることを特徴とする請求項1に記載の流体素子。   The fluid element according to claim 1, wherein an acceleration is applied to the movable part using an electrostatic force. 前記流体室の出力側の流路が、分岐された流路であることを特徴とする請求項1に記載の流体素子。 The fluid element according to claim 1, wherein the flow path on the output side of the fluid chamber is a branched flow path. 前記流路は、特定の方向に前記流体を流すための手段を更に備えていることを特徴とする請求項1に記載の流体素子。   The fluid element according to claim 1, wherein the flow path further includes means for flowing the fluid in a specific direction. 前記可動部が複数あり、前記複数の可動部の角速度を制御することにより、前記流体混合または分離を行うことを特徴とする請求項1に記載の流体素子。 The fluid element according to claim 1, wherein there are a plurality of the movable parts, and the fluid is mixed or separated by controlling an angular velocity of the plurality of movable parts.
JP2004132596A 2004-04-28 2004-04-28 Fluid element Expired - Fee Related JP4500581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132596A JP4500581B2 (en) 2004-04-28 2004-04-28 Fluid element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132596A JP4500581B2 (en) 2004-04-28 2004-04-28 Fluid element

Publications (3)

Publication Number Publication Date
JP2005315676A JP2005315676A (en) 2005-11-10
JP2005315676A5 JP2005315676A5 (en) 2007-02-01
JP4500581B2 true JP4500581B2 (en) 2010-07-14

Family

ID=35443270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132596A Expired - Fee Related JP4500581B2 (en) 2004-04-28 2004-04-28 Fluid element

Country Status (1)

Country Link
JP (1) JP4500581B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535349A (en) * 2000-06-09 2003-11-25 アドヴァリティクス アーゲー Apparatus and method for manipulating small amounts of material
JP2004077258A (en) * 2002-08-15 2004-03-11 Kawamura Inst Of Chem Res Method and device for switching channel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427606B2 (en) * 1996-02-01 2003-07-22 株式会社日立製作所 Chemical analyzer
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535349A (en) * 2000-06-09 2003-11-25 アドヴァリティクス アーゲー Apparatus and method for manipulating small amounts of material
JP2004077258A (en) * 2002-08-15 2004-03-11 Kawamura Inst Of Chem Res Method and device for switching channel

Also Published As

Publication number Publication date
JP2005315676A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
Park et al. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels
Zhang et al. Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip
Mark et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications
Petersson et al. Carrier medium exchange through ultrasonic particle switching in microfluidic channels
Kwak et al. Continuous-flow biomolecule and cell concentrator by ion concentration polarization
Lim et al. Lab-on-a-chip: a component view
Xiang et al. Inertial microfluidic syringe cell concentrator
Reyes et al. Micro total analysis systems. 1. Introduction, theory, and technology
Arora et al. Latest developments in micro total analysis systems
Evander et al. Acoustophoresis in wet-etched glass chips
Norris et al. Acoustic differential extraction for forensic analysis of sexual assault evidence
Johansson et al. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer
Skowronek et al. Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence
Andersson et al. Parallel nanoliter microfluidic analysis system
Wu et al. A digital acoustofluidic pump powered by localized fluid-substrate interactions
Yuan et al. On-chip microparticle and cell washing using coflow of viscoelastic fluid and newtonian fluid
Wu et al. Modular microfluidics for life sciences
Liu et al. A microfluidic device for blood plasma separation and fluorescence detection of biomarkers using acoustic microstreaming
Kumar Microfluidic devices in nanotechnology: Fundamental concepts
Dudani et al. Mediating millisecond reaction time around particles and cells
Sun et al. Recent advances in microfluidic technologies for separation of biological cells
Peng et al. Rapid enrichment of submicron particles within a spinning droplet driven by a unidirectional acoustic transducer
Farahinia et al. Recent developments in inertial and centrifugal microfluidic systems along with the involved forces for cancer cell separation: a review
Mirakhorli et al. Microfluidic platforms for cell sorting
Zhang et al. Flexible particle focusing and switching in continuous flow via controllable thermal buoyancy convection

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees