JP4499607B2 - Positive electrode for ultra-thin manganese battery and manufacturing method thereof - Google Patents

Positive electrode for ultra-thin manganese battery and manufacturing method thereof Download PDF

Info

Publication number
JP4499607B2
JP4499607B2 JP2005136216A JP2005136216A JP4499607B2 JP 4499607 B2 JP4499607 B2 JP 4499607B2 JP 2005136216 A JP2005136216 A JP 2005136216A JP 2005136216 A JP2005136216 A JP 2005136216A JP 4499607 B2 JP4499607 B2 JP 4499607B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
binder
ultra
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005136216A
Other languages
Japanese (ja)
Other versions
JP2006278308A (en
Inventor
ナム−イン・キム
ミョン−ウ・チョン
イク−スン・パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Electric Co Ltd
Original Assignee
Rocket Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Electric Co Ltd filed Critical Rocket Electric Co Ltd
Publication of JP2006278308A publication Critical patent/JP2006278308A/en
Application granted granted Critical
Publication of JP4499607B2 publication Critical patent/JP4499607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/26Floor-scrubbing machines, hand-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4075Handles; levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4086Arrangements for steam generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/10Hand irons internally heated by electricity with means for supplying steam to the article being ironed
    • D06F75/12Hand irons internally heated by electricity with means for supplying steam to the article being ironed the steam being produced from water supplied to the iron from an external source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

本発明は、超薄型マンガン電池に係り、優れた高率特性を有し、高エネルギー密度を実現した超薄型マンガン電池用正極及びその製造方法に関する。   The present invention relates to an ultra-thin manganese battery, and relates to a positive electrode for an ultra-thin manganese battery having excellent high rate characteristics and realizing a high energy density, and a method for manufacturing the same.

近年、電子、通信及びコンピューター産業などの急速な発展と伴い、高周波識別装置(Radio frequency identification device)を利用する電子タグなどのような、電波技術を用いる新しい技術が出現している。そのため、既存の規格の形状に加えて、様々な形状の電池が求められている。   In recent years, with the rapid development of electronic, communication, and computer industries, new technologies using radio wave technology such as electronic tags using radio frequency identification devices have appeared. Therefore, in addition to the existing standard shape, various shapes of batteries are required.

さらに、美容及び医薬などの分野では、対象物質を肌の中に効果的に浸透させるための、いわゆるイオン浸透療法(Iontophoresis)などの新技術が注目を集めており、これらの分野でも極めて柔軟で薄型化できる高性能薄型電池が切実に必要とされている。   Furthermore, in the fields of beauty and medicine, new technologies such as so-called iontophoresis (Iontophoresis) for effectively penetrating target substances into the skin are attracting attention. There is an urgent need for high-performance thin batteries that can be made thinner.

現在、このような要求を満たす電池の開発が行われており、このようなニーズに応える電池として、ペーパー電池又はシート状電池と言われる超薄型電池(Ultra thin battery)に多くの関心と注目が集まっている。   Currently, batteries that meet these requirements are being developed, and as a battery that meets these needs, much attention and attention have been paid to ultra thin batteries, which are called paper batteries or sheet batteries. Gathered.

超薄型電池は、シート状の薄い電池のことであり、通常の電池と同じく電解質、正極、負極及びセパレーターを必須基本要素として構成されている。そして、液相電解液の代わりにシート状の固相電解質を用い、柔軟な形態の集電体及び電極と、高分子包装材とを適用することにより、フレキシブルな超薄型電池を作製することができる。   An ultra-thin battery is a sheet-like thin battery, and is composed of an electrolyte, a positive electrode, a negative electrode, and a separator as essential basic elements as in a normal battery. Then, using a sheet-like solid electrolyte instead of the liquid electrolyte, and applying a flexible collector and electrode and a polymer packaging material, a flexible ultra-thin battery is produced. Can do.

さらに、上記のような超薄型電池を作製するには、ゲル状の電解液が必要とされる。
しかしながら、このゲル状の電解液は、漏液性及び電解液枯渇の側面で有利ではあるものの、伝導度が低いために高率放電時に容量及び出力の低下が発生し、しかも極めて制限的な環境でしか作動しないために特定用途に限定して使用されている。
Furthermore, in order to produce the ultrathin battery as described above, a gel electrolyte is required.
However, although this gel electrolyte is advantageous in terms of liquid leakage and electrolyte depletion, the low conductivity causes a decrease in capacity and output during high rate discharge, and an extremely restrictive environment. It is used only for specific applications because it only works.

また、超薄型化の特性の上、電池には、極めて薄く且つ柔らかいことに加えて、優秀な性能保存特性及び耐漏液性などが必要とされる。さらに、外装材として主に衝撃に弱い高分子シートが使われるので、電池内部と大気との間の密封性を確保し、内部ガス発生による極板の離隔を防止すべきであるなどの他の特性が求められている。   In addition to the ultra-thin characteristics, the battery is required to have excellent performance storage characteristics and leakage resistance in addition to being extremely thin and soft. In addition, a polymer sheet that is vulnerable to impacts is mainly used as an exterior material, so that the sealing between the inside of the battery and the atmosphere should be secured, and separation of the electrode plate due to the generation of internal gas should be avoided. Characteristics are required.

超薄型電池に関する具体的な技術は、特許又は実用新案の先行資料に多く開示されている。初期のものとして、2重の絶縁フィルムで外装された薄型電池に関する技術が開示されている(例えば、特許文献1を参照)。また、電解質に水溶性高分子増粘剤を添加して作製した薄型電池に関する技術が開示されている(例えば、特許文献2を参照)。   Many specific technologies related to ultra-thin batteries are disclosed in patents or prior documents of utility models. A technique relating to a thin battery covered with a double insulating film is disclosed as an initial one (see, for example, Patent Document 1). Moreover, the technique regarding the thin battery produced by adding a water-soluble polymer thickener to electrolyte is disclosed (for example, refer patent document 2).

しかしながら、これら先行技術上の電池のほとんどは、高率特性に依然として劣っている。また、充電又は放電中に発生した水素ガスなどを効果的に制御する技術が裏付けられていないことから、機械的な支持体のない超薄型電池の場合、蓄積された気体による圧力が原因で正極と負極とが離隔してしまい、その結果、急激な性能低下が発生する恐れがある。   However, most of these prior art batteries are still inferior in high rate performance. In addition, since the technology for effectively controlling hydrogen gas generated during charging or discharging is not supported, in the case of an ultra-thin battery without a mechanical support, the pressure due to the accumulated gas is the cause. The positive electrode and the negative electrode are separated from each other, and as a result, there is a risk that a rapid performance deterioration occurs.

このような問題点を解決するために、粘着性の高分子を添加して機械的な支持力を向上させる方法と、水銀を添加して水素過電圧を高め、気体発生を根本的に抑える方法とが提案されている。
しかしながら、高分子を添加する方法の場合、その効果面で極めて制限的であり、水銀を添加する方法の場合、環境保全の面で極めて有害であるという問題がある。
In order to solve such problems, a method of improving the mechanical support by adding an adhesive polymer, a method of adding hydrogen to increase hydrogen overvoltage, and fundamentally suppressing gas generation, Has been proposed.
However, the method of adding a polymer is extremely limited in terms of its effectiveness, and the method of adding mercury has a problem that it is extremely harmful in terms of environmental protection.

その他に、気体の蓄積を抑えるべく、調湿性物質を電解質として用いる開放型の電池に関する技術が開示されている(例えば、特許文献3及び4を参照)。
しかしながら、これら技術による電池は、作動期間が極めて短いために、応用器機に適用することが現実的に無理である。また、可能であるとしても、電解液が腐食性であるために、機器損傷のおそれがある。さらに、電解液内での電解質の濃度と一定の大気中の相対湿度とが熱力学的に平衡を保つことから、大気の湿度変化に応じて電解液の出入りが行われ、電池性能を維持し難くなるという短所がある。
In addition, in order to suppress gas accumulation, a technique related to an open battery using a humidity-controlling substance as an electrolyte is disclosed (see, for example, Patent Documents 3 and 4).
However, since the battery according to these technologies has an extremely short operation period, it is practically impossible to apply it to an application device. In addition, even if possible, there is a risk of equipment damage because the electrolyte is corrosive. Furthermore, because the electrolyte concentration in the electrolyte and the constant relative humidity in the atmosphere are kept thermodynamically balanced, the electrolyte enters and exits in response to changes in atmospheric humidity, maintaining battery performance. There is a disadvantage that it becomes difficult.

ゆえに、上述した特許又は実用新案による先行技術の超薄型電池分野への適用及び具現化は、実際には極めて困難である。したがって、様々な短所、すなわち高率特性が十分でなく、長期充電又は放電中の電解液の枯渇により性能が低下するといった超薄型電池固有の問題点を乗り越えて、実際に具現可能な新規超薄型電池の開発が強く望まれている。   Therefore, it is actually very difficult to apply and implement the prior art based on the above-mentioned patent or utility model in the field of ultra-thin battery. Therefore, it overcomes various disadvantages, that is, high-rate characteristics are not sufficient, and overcomes the problems inherent in ultra-thin batteries, such as performance degradation due to electrolyte depletion during long-term charging or discharging, and can be implemented in practice. Development of thin batteries is strongly desired.

米国特許第4623598号公報U.S. Pat. No. 4,623,598 特開昭61−55866号公報JP-A 61-55866 米国特許第5811204号公報US Pat. No. 5,811,204 大韓民国第10−0412626号公報(国際公開第97/22466号パンフレット)Republic of Korea No. 10-041626 (Pamphlet of International Publication No. 97/22466)

本発明は、上記事情に鑑みてなされたもので、その目的は、優れた高率特性を有し、長期充電又は放電中の電解液枯渇による性能低下を防ぐほか、固相電解液の使用時にも容量及び出力の低下を抑え、作動環境の範囲が広く、電池内部でのガス発生による正極と負極との離隔を防止することのできる超薄型マンガン電池に用いる正極及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to have excellent high-rate characteristics, prevent performance deterioration due to electrolyte depletion during long-term charging or discharging, and at the time of using a solid electrolyte. Provided is a positive electrode used for an ultra-thin manganese battery and a method of manufacturing the same, which suppresses a decrease in capacity and output, has a wide range of operating environment, and can prevent separation between the positive electrode and the negative electrode due to gas generation inside the battery. There is.

上記目的を達成するために、本発明は、第3の結着剤(binder)として水溶性結着剤の一種であるカルボキシメチルセルロースをさらに用い、有機溶媒溶解性結着剤であるポリビニルピロリドンの溶媒としてジメチルホルムアミド(Dimethylformamide;DMF)を用いることにより、激しい層分離現象のために困難であった有機溶媒溶解性結着剤と水溶性結着剤との組み合わせを可能にする。   In order to achieve the above object, the present invention further uses carboxymethylcellulose, which is a kind of water-soluble binder, as a third binder, and a solvent for polyvinylpyrrolidone, which is an organic solvent-soluble binder. By using dimethylformamide (DMF) as an organic solvent, it is possible to combine an organic solvent-soluble binder and a water-soluble binder, which have been difficult due to severe layer separation phenomenon.

本発明は、優れた高率特性を有し、高エネルギー密度を実現した超薄型マンガン電池の正極及びその製造方法に関する。詳しくは、超薄型マンガン電池の正極製造にあたり、種々の結着剤を混合して用いることにより、単一の結着剤の使用時に発生する問題点を解決し、電池の放電容量及び重負荷特性を著しく向上させることのできる超薄型マンガン電池に用いる正極及びその製造方法に関する。   The present invention relates to a positive electrode of an ultra-thin manganese battery having excellent high rate characteristics and realizing a high energy density, and a method for manufacturing the same. Specifically, in the production of ultra-thin manganese battery positive electrodes, various binders are mixed and used to solve the problems that occur when using a single binder, and the discharge capacity and heavy load of the battery are solved. The present invention relates to a positive electrode used for an ultra-thin manganese battery capable of remarkably improving characteristics and a method for producing the same.

さらに詳しくは、本発明は、従来には層分離現象のために困難であった有機溶媒溶解性結着剤と水溶性結着剤との組み合わせにあたり、第3の結着剤を添加し、これらの組み合わせに役に立つ適切な溶媒を用いることにより、層分離せずに混和できる超薄型マンガン電池用電極に用いる正極及びその製造方法に関する。   More specifically, the present invention relates to a combination of an organic solvent-soluble binder and a water-soluble binder, which has been difficult due to a layer separation phenomenon, and a third binder is added. The present invention relates to a positive electrode used for an electrode for an ultrathin manganese battery that can be mixed without separating layers by using an appropriate solvent useful for the combination of the above and a method for producing the same.

一般に、電池では、その構成物質及び組成などの電極の状態及び製造方法が電池の性能に大きな影響を及ぼすとされている。   In general, in a battery, the state of an electrode such as its constituent material and composition and the manufacturing method are considered to have a great influence on the performance of the battery.

電極成分中の一つである結着剤は、主に水溶性結着剤と有機溶媒溶解性結着剤とに大別されており、電池内の電解液の種類及び工程性などを考慮して採用される。   Binders, one of the electrode components, are mainly divided into water-soluble binders and organic solvent-soluble binders, taking into account the type and processability of the electrolyte in the battery. Adopted.

代表的な一次電池であるマンガン電池やマンガンアルカリ電池には、主に水溶性結着剤が用いられている。また、電解液として有機溶媒を用いるリチウムイオン電池などには、活物質との反応性、及び電極形状の安全性などの各種事項を考慮した上で、ポリフッ化ビニリデン(Polyvinylidenefluoride)のような有機溶媒溶解性結着剤が採用されている。   Water-soluble binders are mainly used for manganese batteries and manganese alkaline batteries, which are typical primary batteries. In addition, for lithium ion batteries using an organic solvent as an electrolyte, an organic solvent such as polyvinylidene fluoride is considered after considering various matters such as reactivity with the active material and safety of the electrode shape. A soluble binder is employed.

一方、機械的支持体のない超薄型電池は、既存の円筒状電池に比べて相対的に多くの結着剤を要し、その結果、製造工程性などは向上するものの、内部抵抗が上昇するために放電性能には劣る。よって、従来の超薄型マンガン電池の電極の製造方法では、かかる工程性と電池の性能とを考慮した上で、単一成分の結着剤に対する添加量を最適化した方式を採用している。   On the other hand, an ultra-thin battery without a mechanical support requires a relatively large amount of binder compared to an existing cylindrical battery. As a result, although the manufacturing process is improved, the internal resistance increases. Therefore, the discharge performance is inferior. Therefore, conventional electrode manufacturing methods for ultra-thin manganese batteries adopt a method in which the amount added to a single component binder is optimized in consideration of such processability and battery performance. .

このような超薄型電池の電極の製造方法において、水溶性結着剤を適用すると、ゲル状の電解液との接着力が向上し、電池の活性に必要な期間も短縮することができる。
しかしながら、この場合、疎水性の導電剤との均一な混合が困難であり、電池の長期放置時あるいは放電中に電極が集電体から脱離してしまう現象が発生する。このような脆弱な電極耐久性は、特に機械的支持体のない薄型マンガン電池の性能を劣化させる主な原因の一つとされている。
In such a method for producing an electrode of an ultra-thin battery, when a water-soluble binder is applied, the adhesive force with the gel electrolyte can be improved, and the period required for the activity of the battery can be shortened.
However, in this case, uniform mixing with the hydrophobic conductive agent is difficult, and a phenomenon occurs in which the electrode is detached from the current collector when the battery is left for a long time or during discharge. Such fragile electrode durability is considered to be one of the main causes for deteriorating the performance of a thin manganese battery having no mechanical support.

一方、かかる問題点を解決する努力の一環として、有機溶媒溶解性結着剤を適用したものもあるが、この場合は、電極塗布後の乾燥の際、激しい収縮現象が発生し、しかもカーボンからなる集電体と電極との間で剥離現象が起こるという不具合がある。   On the other hand, some organic solvent-soluble binders have been applied as part of efforts to solve such problems, but in this case, severe shrinkage occurs during drying after electrode application, and carbon There is a problem that a peeling phenomenon occurs between the current collector and the electrode.

よって、本発明者は、混合時に第3の結着剤をさらに混合し、適宜な溶媒を選用することにより、上記の如く補完的な長所及び短所を持ちながらも激しい層分離現象のために組み合わせられなかった有機溶媒溶解性結着剤と水溶性結着剤とを混和できる最善の組み合わせを発見し、本発明を完成するに至った。   Therefore, the present inventor further mixes the third binder at the time of mixing, and selects an appropriate solvent so that it can be combined for a severe layer separation phenomenon while having complementary advantages and disadvantages as described above. The best combination capable of mixing the organic solvent-soluble binder and the water-soluble binder that was not found was discovered, and the present invention was completed.

本発明者は、かかる組成及び結着剤の種類を実施例及び請求項に明示しており、電池の放電特性を分析した結果、優れた出力特性及び活物質利用率を達成できることがわかった。よって、最終的に、適用結着剤の長所のみを生かす成分及び組成が設定された。   The inventor has specified the composition and the kind of the binder in the examples and claims, and as a result of analyzing the discharge characteristics of the battery, it has been found that excellent output characteristics and active material utilization can be achieved. Therefore, finally, components and compositions that make use of only the advantages of the applied binder were set.

すなわち、本発明は、有機溶媒溶解性結着剤と水溶性結着剤との混合物を含有することを特徴とする超薄型マンガン電池用正極である。
有機溶媒溶解性結着剤は、ポリビニルピロリドン、ポリフッ化ビニリデン、ポリメタクリル酸メチル及びスチレンブチルゴムからなる群から選択される1種以上であることが好ましい。さらに、水溶性結着剤は、ポリビニルアルコール、ポリエチレンオキサイド、架橋結合されたポリエチレンオキサイド又は2−ヒドロキシエチルセルロースにカルボキシメチルセルロースを添加したものであることが好ましい。
また、本発明は、導電剤であるアセチレンブラックをボールミルに入れて1〜7日間粉砕し、それを105℃の乾燥炉で12時間以上1次乾燥させ、その後、真空乾燥機で1時間2次乾燥させ;
正極製造用正極合剤基準で、60〜98重量%の二酸化マンガンと、0.1〜20重量%の予め粉砕乾燥したアセチレンブラックとを混合した後、高速混合機で1〜24時間混合し;
合剤基準で0.01〜5重量%となるように水溶性結着剤を水溶媒に溶解させ、これに合剤基準で0.1〜5重量%となるように有機溶媒溶解性結着剤を混合して、結着剤溶液を調製し;
混合された二酸化マンガン及びアセチレンブラック粉末に、最終正極板基準で有機溶媒溶解性結着剤が0.1〜5重量%、水溶性結着剤が0.01〜5重量%となるように結着剤溶液を添加撹拌して、正極製造用正極合剤スラリーを調製し;
調製された正極合剤スラリーを、包装材用高分子フィルムの集電体上にドクターブレードで50〜300μmmの厚さに塗布し、それを60℃の乾燥炉で2時間以上乾燥させる;
ことを特徴とする超薄型マンガン電池用正極の製造方法である。
That is, the present invention is a positive electrode for an ultrathin manganese battery characterized by containing a mixture of an organic solvent-soluble binder and a water-soluble binder.
The organic solvent-soluble binder is preferably at least one selected from the group consisting of polyvinylpyrrolidone, polyvinylidene fluoride, polymethyl methacrylate, and styrene butyl rubber. Further, the water-soluble binder is preferably polyvinyl alcohol, polyethylene oxide, cross-linked polyethylene oxide, or 2-hydroxyethyl cellulose to which carboxymethyl cellulose is added.
Further, in the present invention, acetylene black as a conductive agent is put in a ball mill and pulverized for 1 to 7 days, and then primary-dried in a drying furnace at 105 ° C. for 12 hours or more, and then secondary in an vacuum dryer for 1 hour. Dry;
60 to 98% by weight of manganese dioxide and 0.1 to 20% by weight of acetylene black previously pulverized and dried are mixed with a high-speed mixer for 1 to 24 hours, based on the positive electrode mixture for positive electrode production;
A water-soluble binder is dissolved in an aqueous solvent so as to be 0.01 to 5% by weight on the basis of the mixture, and an organic solvent-soluble binder is dissolved therein so that it becomes 0.1 to 5% by weight on the basis of the mixture Mixing the agent to prepare a binder solution;
The mixed manganese dioxide and acetylene black powder were bound so that the organic solvent-soluble binder was 0.1 to 5% by weight and the water-soluble binder was 0.01 to 5% by weight based on the final positive electrode plate. Adding and stirring the adsorbent solution to prepare a positive electrode mixture slurry for positive electrode production;
The prepared positive electrode mixture slurry is applied to a current collector of a polymer film for packaging material to a thickness of 50 to 300 μm with a doctor blade, and dried in a drying oven at 60 ° C. for 2 hours or more;
This is a method for producing a positive electrode for an ultrathin manganese battery.

本発明によれば、第3の結着剤として水溶性結着剤の一種であるカルボキシメチルセルロースをさらに用い、有機溶媒溶解性結着剤であるポリビニルピロリドンの溶媒としてはジメチルホルムアミドを用いることにより、激しい層分離現象のために困難であった有機溶媒溶解性結着剤と水溶性結着剤との組み合わせが可能となる。   According to the present invention, carboxymethylcellulose, which is a kind of water-soluble binder, is further used as the third binder, and dimethylformamide is used as a solvent for polyvinylpyrrolidone, which is an organic solvent-soluble binder, A combination of an organic solvent-soluble binder and a water-soluble binder, which has been difficult due to severe layer separation, is possible.

また、本発明によれば、優れた高率特性を有し、長期充電又は放電中の電解液枯渇による性能低下を防ぐほか、固相電解液の使用時にも容量及び出力の低下を抑え、作動環境の範囲が広く、電池内部でのガス発生による正極と負極との離隔を防止することのできる超薄型マンガン電池に用いる正極及びその製造方法を提供することができる。   In addition, according to the present invention, it has excellent high rate characteristics, prevents performance degradation due to electrolyte depletion during long-term charging or discharging, and suppresses capacity and output reduction when using solid electrolyte, and operates It is possible to provide a positive electrode used in an ultra-thin manganese battery and a method for manufacturing the same, which has a wide environment range and can prevent separation between the positive electrode and the negative electrode due to gas generation inside the battery.

以下、添付した図面を参照して本発明を詳細に説明する。図1は、本発明に係る超薄型マンガン電池の基本構造を示す斜視図であり、図2は、本発明に係る超薄型マンガン電池の基本構造を示す断面図であり、図3は、本発明の実施例と比較例により製造された薄型マンガン電池の13kΩの放電容量を示すグラフである。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing the basic structure of an ultra-thin manganese battery according to the present invention, FIG. 2 is a cross-sectional view showing the basic structure of the ultra-thin manganese battery according to the present invention, and FIG. It is a graph which shows the discharge capacity of 13 kohm of the thin manganese battery manufactured by the Example and comparative example of this invention.

超薄型電池の電極を製造するにあたり、従来の結着剤として多用された物質のうちポリビニルピロリドン(poly vinyl pyrrolidone)のような有機溶媒溶解性結着剤のみを用いると、電極密度は高められるが、乾燥後の電極自体の酷い変形による工程性の低下、集電体と電極との間の剥離現象の発生などの不具合があった。   When manufacturing electrodes for ultra-thin batteries, the electrode density can be increased by using only organic solvent-soluble binders such as polyvinyl pyrrolidone among the materials that are frequently used as conventional binders. However, there are problems such as deterioration in processability due to severe deformation of the electrode itself after drying, and occurrence of a peeling phenomenon between the current collector and the electrode.

また、代表的な水溶性結着剤のポリエチレンオキサイド(poly ethylene oxide)やポリビニルアルコール(poly vinyl alcohol)のみを用いると、水溶性電解液に結着剤が溶解してしまうことから、長期充電時に電極形状の変形などの耐久性問題が発生した。   In addition, if only typical water-soluble binders such as polyethylene oxide and polyvinyl alcohol are used, the binder will be dissolved in the water-soluble electrolyte, so it will be charged during long-term charging. Durability problems such as electrode shape deformation occurred.

特に、ポリビニルアルコールの場合には、電極の耐久性が極めて劣り、さらに電極組成も一様でないため、電池容量に大きなバラツキが生じた。   In particular, in the case of polyvinyl alcohol, the durability of the electrode is extremely inferior and the electrode composition is not uniform, resulting in large variations in battery capacity.

これを改善しようと、代表的な水溶性結着剤のポリエチレンオキサイドに有機溶媒溶解性結着剤を混合する試みがなされたが、層分離現象が原因で電極の製造ができなかった。また、ポリビニルピロリドンとポリビニルアルコールとを混合した場合、層分離現象はなくなったが、所望の容量増及び出力改善の効果が得られなかった。   In order to improve this, an attempt was made to mix an organic solvent-soluble binder with polyethylene oxide, which is a typical water-soluble binder, but the electrode could not be produced due to a layer separation phenomenon. Further, when polyvinylpyrrolidone and polyvinyl alcohol were mixed, the layer separation phenomenon disappeared, but the desired capacity increase and output improvement effects could not be obtained.

本発明の超薄型電池では、正極活物質として二酸化マンガンを、負極活物質として亜鉛を、有機溶媒溶解性結着剤としてポリビニルピロリドンを、水溶性結着剤としてポリビニルアルコールをそれぞれ用い、第3の結着剤として水溶性結着剤の一種であるカルボキシメチルセルロースをさらに用い、前記有機溶媒溶解性結着剤のポリビニルピロリドンの溶媒としてジメチルホルムアミドを用いることにより、激しい層分離現象で困難であった有機溶媒溶解性結着剤と水溶性結着剤との組み合わせができるようになった。   In the ultrathin battery of the present invention, manganese dioxide is used as the positive electrode active material, zinc is used as the negative electrode active material, polyvinylpyrrolidone is used as the organic solvent-soluble binder, and polyvinyl alcohol is used as the water-soluble binder. By using carboxymethyl cellulose, which is a kind of water-soluble binder, as the binder of dimethylformamide as the solvent of polyvinylpyrrolidone as the organic solvent-soluble binder, it was difficult due to severe layer separation phenomenon. Combinations of organic solvent soluble binders and water soluble binders are now possible.

このうち、有機溶媒溶解性結着剤のポリビニルピロリドンの溶媒としてのジメチルホルムアミドは、極性非プロトン性溶媒の一種で、(CH)NCHOの分子式を有する無色の水溶性液体であって、元々はウレタン繊維やアクリル繊維の紡糸、人工皮革製造、繊維コーティング加工業などに多用されているだけでなく、繊維染色用染料や顔料、ペイント除去用溶剤、コーティング液、印刷液、及び接着剤などにも含有されている物質である。   Among these, dimethylformamide as a solvent for organic solvent-soluble binder polyvinylpyrrolidone is a kind of polar aprotic solvent, which is a colorless water-soluble liquid having a molecular formula of (CH) NCHO, originally a urethane. Not only used in fiber and acrylic fiber spinning, artificial leather manufacturing, and fiber coating processing industries, but also in dyes and pigments for fiber dyeing, paint removal solvents, coating solutions, printing solutions, and adhesives It is a substance that has been.

このようなジメチルホルムアミドは、高分子の優れた溶媒でありながら、ある程度の極性を有しているため有機イオン反応に有用な溶媒である。これより、ジメチルホルムアミドは、本発明の結着剤の組み合わせにあたり、有機溶媒溶解性結着剤と水溶性結着剤との混和に重要な役目を果すということがわかる。   Such dimethylformamide is a solvent that is useful for organic ion reaction because it has a certain degree of polarity while being an excellent polymer solvent. This shows that dimethylformamide plays an important role in the mixing of the organic solvent-soluble binder and the water-soluble binder in the combination of the binder of the present invention.

次に、上述した結着剤の組み合わせを用いる本発明の超薄型マンガン電池の正極の製造方法を説明する。   Next, the manufacturing method of the positive electrode of the ultra-thin manganese battery of this invention using the combination of the binder mentioned above is demonstrated.


先ず、導電剤のアセチレンブラックをボールミルに入れて1〜7日間粉砕し、それを105℃の乾燥炉で12時間以上1次乾燥させ、その後、真空乾燥機で1時間2次乾燥させる。
.
First, acetylene black as a conductive agent is put in a ball mill and pulverized for 1 to 7 days, and then primary dried in a drying furnace at 105 ° C. for 12 hours or more, and then secondarily dried in a vacuum dryer for 1 hour.

正極合剤基準で60〜98重量%の二酸化マンガンと、0.1〜20重量%の予め粉砕乾燥したアセチレンブラックとを混合した後、高速混合機(high speed blender mixer)で1〜24時間混合する。   60 to 98% by weight of manganese dioxide and 0.1 to 20% by weight of acetylene black preliminarily pulverized and dried are mixed with a high speed blender mixer for 1 to 24 hours. To do.

合剤基準で0.2〜10重量%となるようにポリビニルピロリドンをジメチルホルムアミド溶媒に溶解させ、合剤基準で0.05〜10重量%となるようにポリビニルアルコールを蒸留水に溶解させ、合剤基準で0.01〜5重量%となるようにカルボキシメチルセルロースを蒸留水に溶解させる。   Polyvinyl pyrrolidone is dissolved in a dimethylformamide solvent so that it becomes 0.2 to 10% by weight on the basis of the mixture, and polyvinyl alcohol is dissolved in distilled water so that it becomes 0.05 to 10% by weight on the basis of the mixture. Carboxymethylcellulose is dissolved in distilled water so as to be 0.01 to 5% by weight on the basis of the agent.

次に、混合された二酸化マンガン及びアセチレンブラック粉末に、合剤基準で0.1〜20重量%の結着剤を含有するように結着剤溶液を添加撹拌することで、正極製造用正極合剤スラリー(slurry)を調製する。この際、好ましくは、最終的に正極合剤基準で有機溶媒溶解性結着剤が0.1〜5重量%、水溶性結着剤が0.01〜5重量%となるようにする。   Next, the mixed manganese dioxide and acetylene black powder is mixed with a binder solution so as to contain 0.1 to 20% by weight of the binder on the basis of the mixture, and stirred, so that the positive electrode composite for positive electrode production is mixed. An agent slurry is prepared. In this case, preferably, the organic solvent-soluble binder is finally 0.1 to 5% by weight and the water-soluble binder is 0.01 to 5% by weight based on the positive electrode mixture.

次に、混合された正極合剤のスラリーを、包装材用高分子フィルムの集電体上にドクターブレード(doctor blade)で約50〜300μmmの厚さに塗布し、それを60℃以上の乾燥炉で2時間以上乾燥させて正極を作製する。   Next, the mixed slurry of the positive electrode mixture is applied on a current collector of a polymer film for packaging material to a thickness of about 50 to 300 μm with a doctor blade, and dried at 60 ° C. or higher. Dry in an oven for 2 hours or more to produce a positive electrode.

続いて、負極の製造方法を説明する。先ず、亜鉛粉末及び導電剤のアセチレンブラックを20:1の重量比で混合する。これに、0.01〜20重量%の結着剤を含有するように、予め用意した結着剤溶液を混合することで、負極製造用スラリーを調製する。   Then, the manufacturing method of a negative electrode is demonstrated. First, zinc powder and conductive agent acetylene black are mixed in a weight ratio of 20: 1. A negative electrode manufacturing slurry is prepared by mixing a binder solution prepared in advance so as to contain 0.01 to 20% by weight of the binder.

次に、調製された負極合剤スラリーを、包装材用高分子フィルムの集電体上にドクターブレードで約10〜200μmの厚さに塗布し、それを60℃以上の乾燥炉で2時間以上乾燥させて負極を作製する。   Next, the prepared negative electrode mixture slurry was applied to a current collector of a polymer film for packaging material to a thickness of about 10 to 200 μm with a doctor blade, and this was applied in a drying oven at 60 ° C. or higher for 2 hours or longer. A negative electrode is produced by drying.

製造された正極と負極との間に、ゲル状の電解液に含浸されたセパレーターを配置したのち、相互に封止して電池を作製する。   A separator impregnated with a gel electrolyte is placed between the manufactured positive electrode and negative electrode, and then sealed together to produce a battery.

このとき、正極と負極を強く密着させるために、1〜3分間真空状態を保持した後、封止して電池内の負圧力を維持させる。   At this time, in order to strongly adhere the positive electrode and the negative electrode, after maintaining a vacuum state for 1 to 3 minutes, sealing is performed to maintain a negative pressure in the battery.

電解液は、10重量%の塩化亜鉛(ZnCl)及び1重量%の塩化アンモニウム(NHCl)を水に混合して液相電解液を調製し、これにポリエチレンオキサイドを電解液に対して5重量%となるように溶解させてゲル電解液を調製した。 The electrolyte was prepared by mixing 10% by weight of zinc chloride (ZnCl 2 ) and 1% by weight of ammonium chloride (NH 4 Cl) with water to prepare a liquid phase electrolyte, and adding polyethylene oxide to the electrolyte. A gel electrolyte was prepared by dissolving to 5 wt%.

以上のように説明した本発明において、有機溶媒溶解性結着剤としては、ポリビニルピロリドン、ポリフッ化ビニリデン(polyvinylidenefluoride)、ポリメタクリル酸メチル(polymethylmethacrylate)及びスチレンブチルゴム(stylene butyl rubber)からなる群から選択される1種以上用いることができる。   In the present invention described above, the organic solvent-soluble binder is selected from the group consisting of polyvinylpyrrolidone, polyvinylidene fluoride, polymethylmethacrylate, and styrene butyl rubber. One or more of them can be used.

また、水溶性結着剤としては、ポリビニルアルコール、ポリエチレンオキサイド(polyethyleneoxide)、架橋結合されたポリエチレンオキサイド(cross linked polyethylene oxide)又は2−ヒドロキシエチルセルロース(2−hydroxy ethyl cellulose)にカルボキシメチルセルロース(Carbonyl methyl cellulose)を添加したものを用いることができる。   Examples of the water-soluble binder include polyvinyl alcohol, polyethylene oxide, cross-linked polyethylene oxide or 2-hydroxy ethyl cellulose and carboxymethyl cellulose (Carbonyl methyl cellulose). ) Can be used.

以下、実施例及び比較例、並びにこれらを用いた試験例を挙げて本発明をさらに具体的に説明する。しかしながら、これは本発明を限定するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, and test examples using these. However, this does not limit the invention.

[実施例1]
下記のような組成及び方法に基づいて電極を作製し、これを用いて超薄型マンガン電池を組み立てた。
[Example 1]
An electrode was prepared based on the following composition and method, and an ultrathin manganese battery was assembled using the electrode.

塩化亜鉛及び塩化アンモニウムが混合された電解液98.5gにポリエチレンオキサイド5.26gを添加し、撹拌機で20時間溶解させてゲル状の電解液を作製した。   Polyethylene oxide (5.26 g) was added to 98.5 g of an electrolytic solution in which zinc chloride and ammonium chloride were mixed, and the mixture was dissolved with a stirrer for 20 hours to prepare a gel electrolyte.

カーボン粉末及び結着剤が混合されたスラリーを、包装材の高分子フィルム8上に20μmの厚さで塗布し、60℃条件下にて2時間乾燥させて正極集電体4及び負極集電体5を得た。   The slurry in which the carbon powder and the binder are mixed is applied on the polymer film 8 of the packaging material to a thickness of 20 μm, and dried at 60 ° C. for 2 hours to obtain the positive electrode current collector 4 and the negative electrode current collector. Body 5 was obtained.

正極製造用アセチレンブラック10gをボールミルに入れて3日間破砕工程を行った後、105℃の乾燥機で12時間以上1次乾燥させ、80℃の真空乾燥機で1時間2次乾燥させて電極導電剤を得た。   After 10 g of acetylene black for positive electrode production was put into a ball mill and subjected to a crushing process for 3 days, it was primarily dried for 12 hours or more with a 105 ° C. dryer, and then secondary dried for 1 hour with a vacuum dryer at 80 ° C. An agent was obtained.

正極合剤基準で1.5重量%となるようにポリビニルピロリドンをジメチルホルムアミドに溶解させ、正極合剤基準で2重量%となるようにポリビニルアルコールを蒸留水に溶解させ、正極合剤基準で1.5重量%となるようにカルボキシメチルセルロースを蒸留水に溶解させ、これら溶液を混合した。この結着剤溶液200mlをビーカーに注ぎ、30分間撹拌して3成分結着剤溶液を調製した。   Polyvinylpyrrolidone is dissolved in dimethylformamide so as to be 1.5% by weight based on the positive electrode mixture, and polyvinyl alcohol is dissolved in distilled water so as to be 2% by weight based on the positive electrode mixture. Carboxymethylcellulose was dissolved in distilled water so as to be 0.5% by weight, and these solutions were mixed. 200 ml of this binder solution was poured into a beaker and stirred for 30 minutes to prepare a three-component binder solution.

破砕されたアセチレンブラック0.5g、及び二酸化マンガン9.5gを高速混合機で2時間混合した後、これに、正極合剤基準で5重量%となるように予め調製した結着剤溶液を混合して、正極製造用正極合剤スラリーを調製した。   After crushing 0.5 g of crushed acetylene black and 9.5 g of manganese dioxide with a high-speed mixer for 2 hours, this was mixed with a binder solution prepared in advance so as to be 5% by weight based on the positive electrode mixture. Thus, a positive electrode mixture slurry for positive electrode production was prepared.

次に、高分子フィルム8の正極集電体4上に直径10mmの円孔付きの成形フィルムを載置し、これに前記正極スラリーを注いだ後、ドクターブレードで塗布し、60℃の乾燥機で2時間以上乾燥させて正極板1を作製した。   Next, a 10 mm diameter molded film with a circular hole is placed on the positive electrode current collector 4 of the polymer film 8, and after pouring the positive electrode slurry onto this, it is applied with a doctor blade, and is dried at 60 ° C. And dried for 2 hours or more to prepare a positive electrode plate 1.

破砕されたアセチレンブラック0.5g、及び亜鉛粉末10gを混合し、これに負極合剤基準で5重量%となるように予め調製した結着剤溶液を添加して、負極製造用スラリーを調製した。   0.5 g of crushed acetylene black and 10 g of zinc powder were mixed, and a binder solution prepared in advance so as to be 5% by weight based on the negative electrode mixture was added to prepare a slurry for negative electrode production. .

その次に、負極製造用スラリーを用い、正極製造工程と同様にして高分子フィルム8の負極集電体5上に負極板2を作製した。負極板2の縁部に幅3.6mmの両面接着剤9を貼り付け、ゲル状の電解液10に含浸したセパレーター3を正極板1上に配置した後、10-5〜10-1torr真空条件下で封止して超薄型マンガン電池を組み立てた。 Next, the negative electrode plate 2 was prepared on the negative electrode current collector 5 of the polymer film 8 in the same manner as the positive electrode manufacturing step using the negative electrode manufacturing slurry. A double-sided adhesive 9 having a width of 3.6 mm is attached to the edge of the negative electrode plate 2, and the separator 3 impregnated with the gel electrolyte 10 is disposed on the positive electrode plate 1, and then 10 −5 to 10 −1 torr vacuum. An ultra-thin manganese battery was assembled by sealing under conditions.

[比較例1]
正極製造にあたり、多成分結着剤溶液の代わりに単一結着剤として、正極合剤基準で5重量%となるようにポリビニルアルコールを混合した以外は、実施例1と同様にして正極及び電池を作製した。
[Comparative Example 1]
In producing the positive electrode, the positive electrode and the battery were prepared in the same manner as in Example 1 except that polyvinyl alcohol was mixed as a single binder instead of the multicomponent binder solution so that the amount was 5% by weight based on the positive electrode mixture. Was made.

[比較例2]
正極製造にあたり、多成分結着剤溶液の代わりに単一結着剤として、正極合剤基準で5重量%となるようにポリビニルピロリドンを混合した以外は、実施例1と同様にして正極及び電池を作製した。
[Comparative Example 2]
In producing the positive electrode, the positive electrode and the battery were treated in the same manner as in Example 1 except that polyvinylpyrrolidone was mixed as a single binder instead of the multicomponent binder solution so as to be 5% by weight based on the positive electrode mixture. Was made.

[比較例3]
正極製造にあたり、多成分結着剤溶液の代わりに単一結着剤として、正極合剤基準で5重量%となるようにポリエチレンオキサイドを混合した以外は、実施例1と同様にして正極及び電池を作製した。
[Comparative Example 3]
In producing the positive electrode, the positive electrode and the battery were treated in the same manner as in Example 1 except that polyethylene oxide was mixed as a single binder instead of the multi-component binder solution so as to be 5% by weight based on the positive electrode mixture. Was made.

[試験例]
実施例及び比較例から得られた電池を用いて、終止電圧までの電池容量を試験し、正極及び負極の製造時の合剤混合量に基づいて正極活物質の利用率を測定した。
[Test example]
Using the batteries obtained from the examples and comparative examples, the battery capacity up to the end voltage was tested, and the utilization rate of the positive electrode active material was measured based on the mixture amount at the time of manufacturing the positive electrode and the negative electrode.

試験において、前記実施例及び比較例による電池を常温下で1日間放置した後、放電機を用いて13μΩ定抵抗条件下で放電させた。この際、流れる電流は約0.1mAであり、終止電圧は0.9Vであった。   In the test, the batteries according to Examples and Comparative Examples were left at room temperature for 1 day, and then discharged under a 13 μΩ constant resistance condition using a discharger. At this time, the flowing current was about 0.1 mA, and the end voltage was 0.9V.

前記実施例1、比較例1、比較例2及び比較例3に対して試験を行い、その結果を図3に示した。また、正極活物質利用率を表1に示した。   Tests were conducted on Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, and the results are shown in FIG. Table 1 shows the utilization ratio of the positive electrode active material.

Figure 0004499607
Figure 0004499607

試験の結果、図3に示すように、本発明の実施例1による正極を用いた電池は、電気容量3.46mAhを示し、終止電圧まで約1.3Vの作動電圧が維持される高出力特性を示した。これに対し、単一成分の結着剤を用いた比較例1、比較例2及び比較例3による電池は、放電容量が著しく低下することがわかった。   As a result of the test, as shown in FIG. 3, the battery using the positive electrode according to Example 1 of the present invention has an electric capacity of 3.46 mAh and a high output characteristic in which an operating voltage of about 1.3 V is maintained until the end voltage. showed that. On the other hand, it was found that the discharge capacities of the batteries according to Comparative Example 1, Comparative Example 2 and Comparative Example 3 using a single component binder were significantly reduced.

これを正極活物質利用率の側面からみると、本発明の実施例1では二酸化マンガン利用率が81.5%であるのに対し、比較例では75%以下であった。電池の厚さが極めて薄い薄型電池であることを勘案してこのような結果をみると、同一の空間に設けるとき、実施例の方法が比較例の方法よりもエネルギー充電に優れていることがわかる。   From the aspect of utilization rate of the positive electrode active material, manganese dioxide utilization rate was 81.5% in Example 1 of the present invention, whereas it was 75% or less in the comparative example. Considering such a result considering that the battery is a very thin thin battery, the method of the example is superior to the method of the comparative example in terms of energy charging when provided in the same space. Recognize.

本発明に係る超薄型マンガン電池の基本構造を示す斜視図である。It is a perspective view which shows the basic structure of the ultra-thin manganese battery which concerns on this invention. 本発明に係る超薄型マンガン電池の基本構造を示す断面図である。It is sectional drawing which shows the basic structure of the ultra-thin manganese battery which concerns on this invention. 本発明の実施例と比較例によって製造された薄型マンガン電池の13kΩ放電容量を示すグラフである。5 is a graph showing 13 kΩ discharge capacity of thin manganese batteries manufactured according to examples and comparative examples of the present invention.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレーター
4 正極集電体
5 負極集電体
6 正極タップ
7 負極タップ
8 高分子フィルム
9 両面接着剤
10 ゲル電解液
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode collector 5 Negative electrode collector 6 Positive electrode tap 7 Negative electrode tap
8 Polymer film 9 Double-sided adhesive 10 Gel electrolyte

Claims (1)

ジメチルホルムアミド溶媒に溶解した有機溶媒解性結着剤としてのポリビニルピロリドンと、蒸留水に溶解した水溶性結着剤としてのポリエチレンオキシドとが混合され、蒸留水に溶解した水溶性結着剤としてのポリビニルアルコール、カルボキシメチルセルロース、及びこれらの組み合わせからなる混合物が結着剤に含有されることを特徴とする、超薄型マンガン電池用正極。   Polyvinylpyrrolidone as an organic solvent degradable binder dissolved in dimethylformamide solvent and polyethylene oxide as a water-soluble binder dissolved in distilled water are mixed and used as a water-soluble binder dissolved in distilled water. A positive electrode for an ultra-thin manganese battery, characterized in that a mixture of polyvinyl alcohol, carboxymethyl cellulose, and a combination thereof is contained in a binder.
JP2005136216A 2005-03-28 2005-05-09 Positive electrode for ultra-thin manganese battery and manufacturing method thereof Expired - Fee Related JP4499607B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050025608A KR100684508B1 (en) 2005-03-28 2005-03-28 The electrode of ultra thin manganese battery and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2006278308A JP2006278308A (en) 2006-10-12
JP4499607B2 true JP4499607B2 (en) 2010-07-07

Family

ID=37212831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136216A Expired - Fee Related JP4499607B2 (en) 2005-03-28 2005-05-09 Positive electrode for ultra-thin manganese battery and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4499607B2 (en)
KR (1) KR100684508B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669446B1 (en) 2005-07-07 2007-01-16 주식회사로케트전기 Method for manufacturing serial connected ultra thin manganese battery
US20080118848A1 (en) * 2006-11-16 2008-05-22 Electronics & Telecommunications Research Institute Aqeuous electrolyte composition and sealed-type primary film battery including electrolyte layer formed of the aqueous electrolyte composition
KR101111210B1 (en) 2009-08-21 2012-02-16 주식회사로케트전기 Thin film manganese dioxide battery
KR101093697B1 (en) 2009-11-20 2011-12-15 삼성에스디아이 주식회사 Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same
JP2023127005A (en) * 2020-08-07 2023-09-13 パナソニックIpマネジメント株式会社 Alkaline dry cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164077A (en) * 1984-09-03 1986-04-02 Toppan Printing Co Ltd Thin battery
JPS62128447A (en) * 1985-11-28 1987-06-10 Toppan Printing Co Ltd Flat battery
JPH06283158A (en) * 1993-03-29 1994-10-07 Fujikura Rubber Ltd Flexible positive electrode mix film for dry battery and its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR790000875B1 (en) * 1974-05-11 1979-07-29 고바야시 세이힌 Anode combination method of alkaline battery
JP3350359B2 (en) 1996-06-24 2002-11-25 松下電器産業株式会社 Manufacturing method of positive electrode plate for alkaline storage battery
US6759164B2 (en) 2000-11-29 2004-07-06 Wilson Greatbatch Ltd. Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164077A (en) * 1984-09-03 1986-04-02 Toppan Printing Co Ltd Thin battery
JPS62128447A (en) * 1985-11-28 1987-06-10 Toppan Printing Co Ltd Flat battery
JPH06283158A (en) * 1993-03-29 1994-10-07 Fujikura Rubber Ltd Flexible positive electrode mix film for dry battery and its manufacture

Also Published As

Publication number Publication date
JP2006278308A (en) 2006-10-12
KR20050042102A (en) 2005-05-04
KR100684508B1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
US7776471B2 (en) Electrode of ultra thin manganese battery and manufacturing method therefor
Bigoni et al. Sodium alginate: a water-processable binder in high-voltage cathode formulations
CN110137485B (en) Preparation method of silicon negative electrode material containing surface modification film
US6399246B1 (en) Latex binder for non-aqueous battery electrodes
EP3401981B1 (en) Electrode for energy storage devices
JP4778526B2 (en) Method for producing positive electrode sheet for lithium ion battery, and positive electrode sheet and lithium ion battery produced by the method
EP3401982B1 (en) Electrode for energy storage devices
Jantke et al. Silicon-dominant anodes based on microscale silicon particles under partial lithiation with high capacity and cycle stability
EP0986118A4 (en) Method of producing electrode for non-aqueous electrolytic cells
JP4499607B2 (en) Positive electrode for ultra-thin manganese battery and manufacturing method thereof
US20120064407A1 (en) Polymer acids as ph-reducing binder or agent for aqueous lithium-ion batteries
Huang et al. Dispersion homogeneity and electrochemical performance of Si anodes with the addition of various water-based binders
EP2282367A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
KR20170122378A (en) A silicon electrode comprising guar gum and a method of manufacturing the same
JP4830207B2 (en) battery
CN112201788B (en) Lithium ion battery negative plate with high-capacity negative electrode bonding system and battery
JP2000294247A (en) Negative electrode paint film of lithium ion secondary battery and lithium ion secondary battery using it
CN109804490A (en) Battery electrode binder
KR20220059927A (en) Slurry composition for positive electrode of lithium secondary battery
JP2003157836A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
KR100588089B1 (en) Cathode for Ultra Thin Manganese Battery and Manufacturing Method Therefor
CN114583094A (en) Lithium ion battery capable of improving low-temperature performance and preparation method thereof
CN112201787A (en) High-capacity negative electrode bonding system, negative electrode and lithium ion battery
KR20090099980A (en) Manufacturing method of nano active material electrode for energy storage devices
US6547838B1 (en) Sulfuric positive electrode for use in lithium secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080910

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081009

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees