JP4498962B2 - Method for measuring internal strain of concrete structure and concrete structure - Google Patents

Method for measuring internal strain of concrete structure and concrete structure Download PDF

Info

Publication number
JP4498962B2
JP4498962B2 JP2005093927A JP2005093927A JP4498962B2 JP 4498962 B2 JP4498962 B2 JP 4498962B2 JP 2005093927 A JP2005093927 A JP 2005093927A JP 2005093927 A JP2005093927 A JP 2005093927A JP 4498962 B2 JP4498962 B2 JP 4498962B2
Authority
JP
Japan
Prior art keywords
axis
concrete structure
concrete
strain
triaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005093927A
Other languages
Japanese (ja)
Other versions
JP2006275698A (en
Inventor
敏弥 田所
幸裕 谷村
尚道 服部
宏和 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Tokyu Construction Co Ltd
Original Assignee
Railway Technical Research Institute
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Tokyu Construction Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2005093927A priority Critical patent/JP4498962B2/en
Publication of JP2006275698A publication Critical patent/JP2006275698A/en
Application granted granted Critical
Publication of JP4498962B2 publication Critical patent/JP4498962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンクリート構造物の内部応力状態を算定し、コンクリート構造物の安全性を評価するコンクリート構造物内部ひずみの測定方法及びコンクリート構造物に関するものである。   The present invention relates to a method for measuring internal strain of a concrete structure that calculates the internal stress state of the concrete structure and evaluates the safety of the concrete structure, and the concrete structure.

従来、コンクリート構造物(下記非特許文献1参照)の内部ひずみの測定においては、鉄筋に1軸ひずみゲージを設けて、1軸ひずみ場を対象として測定している。
土木学会:コンクリート標準示方書[構造性能照査編],2002.3
Conventionally, in measuring the internal strain of a concrete structure (see Non-Patent Document 1 below), a uniaxial strain gauge is provided on the reinforcing bar, and measurement is performed on a uniaxial strain field.
Japan Society of Civil Engineers: Standard Specification for Concrete [Structural Performance Review], 2002.2.3

しかしながら、上記した従来の1軸のひずみ場を対象としたゲージでは、コンクリート構造物に生成される複雑な内部応力を正確に測定することが困難であった。
本発明は、上記状況に鑑みて、コンクリート構造物の内部2軸場のひずみ状態を測定し、前記コンクリート構造物内部の応力状態を測定するコンクリート構造物内部ひずみの測定方法及びコンクリート構造物を提供することを目的とする。
However, it has been difficult to accurately measure the complex internal stress generated in a concrete structure with the above-described conventional gauge for a uniaxial strain field.
The present invention provides in view of the above situation, and measuring the strain state of the internal 2 Jikujo of the concrete structure, measuring methods and concrete structure of the internal strain concrete structure for measuring the stress state of the interior of the concrete structure The purpose is to do.

本発明は、上記目的を達成するために、
〔1〕コンクリート構造物内部ひずみの測定方法において、コンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有する部材を、x軸,y軸及びxy軸の2軸場のひずみを測定できるよう3軸ひずみゲージのx軸及びy軸と対応させたx軸及びy軸を有する十字形状に形成し、この十字形状の部材のx軸部及びy軸部に前記コンクリート構造物との付着・定着性能を確保する手段を施し、前記十字形状の部材の中央部にx軸,y軸及びxy軸からなる前記3軸ひずみゲージを貼付け、この3軸ひずみゲージが貼り付けられた前記十字形状の部材をy軸方向に一列に並ぶように複数個連設し、この連設した部材をx軸方向に所定間隔をとって複数個並べて前記コンクリート構造物に埋め込み、前記3軸ひずみゲージからの測定値を用いて前記コンクリート構造物内部の応力状態を測定することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method of the concrete structure inside strain, without affecting the performance of concrete structures, and a member having rigidity to withstand pouring pressure of the concrete after casting, x-axis, y-axis and A cross-shaped member having an x-axis and a y-axis corresponding to the x-axis and the y-axis of the three-axis strain gauge so that the strain in the two-axis field of the xy axis can be measured. the shaft portion subjected to means to secure the adhesion and fixing performance of the concrete structure, x-axis in the center of the cross-shaped member, Paste the triaxial strain gauge consisting of y-axis and the xy axes, the three axes A plurality of the cross-shaped members to which strain gauges are affixed are arranged in a row in the y-axis direction, and the plurality of the arranged members are arranged at a predetermined interval in the x-axis direction . in embedded, said Using measurements from axial strain gauges and measuring the stress state of the interior of the concrete structure.

〕上記〔載のコンクリート構造物内部ひずみの測定方法において、前記部材のコンクリートとの付着・定着性能を確保する手段が形成される間隔は、前記3軸ひずみゲージを挟んでx軸方向、y軸方向とも等間隔、かつ、想定されるひび割れの間隔よりも小さく設定することを特徴とする。
〕上記〔1〕記載のコンクリート構造物内部ひずみの測定方法において、目視調査が不可能なコンクリート杭などの地中コンクリート構造物のヘルスモニタリングに用いることを特徴とする。
[2] In the method of internal strain concrete structure of [1] Symbol placement, spacing means for ensuring the adhesion and fixing performance of the concrete of the member is formed by sandwiching the triaxial strain gauge x It is characterized in that both the axial direction and the y-axis direction are set at equal intervals and smaller than an assumed crack interval.
[ 3 ] The method for measuring internal strain of a concrete structure according to [1] above, wherein the method is used for health monitoring of underground concrete structures such as concrete piles that cannot be visually inspected.

〕上記〔1〕記載のコンクリート構造物内部ひずみの測定方法において、前記3軸ひずみゲージからの出力を遠隔地から収集して遠隔地からのヘルスモニタリングを行うことを特徴とする。
5〕コンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有し、x軸,y軸及びxy軸の2軸場のひずみを測定できるよう3軸ひずみゲージのx軸及びy軸と対応させたx軸及びy軸を有する十字形状に形成した部材と、この部材の前記十字形状の部材の中央部に貼付けられるx軸,y軸及びxy軸からなる3軸ひずみゲージとを備え、前記部材にはx軸部及びy軸部に前記コンクリートとの付着・定着性能を確保できる手段を設け、前記3軸ひずみゲージが貼り付けられた前記十字形状の部材をy軸方向に一列に並ぶように複数個連設し、この連設した部材をx軸方向に所定間隔をとって複数個並べて前記コンクリート構造物に埋め込んだ前記コンクリート構造物内部の応力状態を測定しうる測定装置を具備することを特徴とする。
[4] In the method of internal strain concrete structure according to [1] and performs Health monitoring from a remote location an output from the triaxial strain gauge was collected from a remote location.
[5] without adversely affecting the performance of the concrete structure, and have a rigidity to withstand pouring pressure of the concrete after casting, can measure the strain of 2 Jikujo the x-axis, y-axis and xy axes Yo triaxial strain the x-axis and y-axis of the gauge and the member which is formed in a cross shape having an x-axis and y-axis is made to correspond, x-axis is pasted at the center portion of the cross-shaped member of the member, y-axis and a triaxial strain gauge composed of an xy axis, the member is provided with means for ensuring adhesion and fixing performance with the concrete on the x axis portion and the y axis portion, and the triaxial strain gauge is attached to the member. the members of the cross-shaped plurality continuously arranged so as to line up in a row in the y-axis direction, I embed the concrete structure by arranging a plurality taking a predetermined interval the continuously provided with members in the x axis direction the concrete structure Measure the stress state inside an object A measuring device.

〕上記〔〕記載のコンクリート構造物において、前記部材がプラスチック板であることを特徴とする。
〕上記〔〕記載のコンクリート構造物において、前記部材がアクリル板であることを特徴とする。
〕上記〔〕記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材に形成された切り欠きであることを特徴とする。
[ 6 ] The concrete structure according to [ 5 ], wherein the member is a plastic plate.
[ 7 ] The concrete structure according to [ 5 ], wherein the member is an acrylic plate.
[8] In the above-mentioned [5] Concrete structure wherein the means to ensure the adhesion and fixing performance of the concrete, characterized in that the cut edge formed in the member.

〕上記〔〕記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材内に形成された切り抜きであることを特徴とする。
10〕上記〔〕記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材の表面に施された目粗し処理であることを特徴とする。
In [9] above [5] Concrete structure wherein the means to ensure the adhesion and fixing performance of the concrete and wherein the at-out cut unplug formed in said member.
In [10] above [5] Concrete structure wherein the means to ensure the adhesion and fixing performance of the concrete is characterized by a decorated with roughening treatment on the surface of the member.

本発明によれば、2軸場のひずみを測定可能であるため、応力状態が複雑なコンクリート構造に対しての内部の応力状態を確実に測定することができる。
また、目視調査が不可能なコンクリート杭などの地中コンクリート構造物のヘルスモニタリングや、3軸ひずみゲージからの出力を遠隔地から収集して遠隔地からのコンクリート構造物のヘルスモニタリングへの利用が可能である。
According to the present invention, since the strain in the biaxial field can be measured , the internal stress state with respect to the concrete structure having a complicated stress state can be reliably measured .
In addition, health monitoring of underground concrete structures such as concrete piles that cannot be visually inspected, and output from triaxial strain gauges from remote locations can be used for health monitoring of concrete structures from remote locations. Is possible.

本発明のコンクリート構造物内部ひずみの測定方法は、コンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有する部材を、x軸,y軸及びxy軸の2軸場のひずみを測定できるよう3軸ひずみゲージのx軸及びy軸と対応させたx軸及びy軸を有する十字形状に形成し、この十字形状の部材のx軸部及びy軸部に前記コンクリート構造物との付着・定着性能を確保する手段を施し、前記十字形状の部材の中央部にx軸,y軸及びxy軸からなる前記3軸ひずみゲージを貼付け、この3軸ひずみゲージが貼り付けられた前記十字形状の部材をy軸方向に一列に並ぶように複数個連設し、この連設した部材をx軸方向に所定間隔をとって複数個並べて前記コンクリート構造物に埋め込み、前記3軸ひずみゲージからの測定値を用いて前記コンクリート構造物内部の応力状態を測定する。 Method of measuring strain inside the concrete structure of the present invention does not affect the performance of the concrete structure, and a member having rigidity to withstand pouring pressure of the concrete after casting, x-axis, y-axis and A cross-shaped member having an x-axis and a y-axis corresponding to the x-axis and the y-axis of the three-axis strain gauge so that the strain in the two-axis field of the xy axis can be measured. the shaft portion subjected to means to secure the adhesion and fixing performance of the concrete structure, x-axis in the center of the cross-shaped member, Paste the triaxial strain gauge consisting of y-axis and the xy axes, the three axes A plurality of the cross-shaped members to which strain gauges are affixed are arranged in a row in the y-axis direction, and the plurality of the arranged members are arranged at a predetermined interval in the x-axis direction . the embedding, the triaxial Measuring the stress state of the interior of the concrete structure by using the measurements from Zumi gauge.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す3軸ひずみゲージを有するアクリル板の要素形状を示す図、図2はそのコンクリート構造物へのアクリル板の配置を示す図である。
図1に示すように、十字形状に加工したアクリル板1′の中央部に3軸ひずみゲージ2を貼付し、これを要素として、図2に示すように、十字形状が連続的に形成された長尺状のアクリル板1をコンクリート構造物11内に埋込むことによって、コンクリート構造物11内部の2軸場のひずみ状態を測定する。2軸場のひずみに対応するため、十字形状に加工したアクリル板1′にはx軸方向およびy方向に切欠き1Aを設けて定着性能を確保した。また、3軸ひずみゲージ2を挟んだこの切欠き1Aの間隔は、x方向及び方向とも等間隔、かつ、想定されるひび割れ間隔よりも小さく設定する必要がある。本発明では、剛性の小さいアクリル板等を材料として、コンクリート構造物11の性能に及ぼす影響をなくすようにしている。なお、3は軸方向鉄筋を示している。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a diagram showing an element shape of an acrylic plate having a triaxial strain gauge showing an embodiment of the present invention, and FIG. 2 is a diagram showing an arrangement of the acrylic plate in the concrete structure.
As shown in FIG. 1, a triaxial strain gauge 2 is attached to the center of an acrylic plate 1 'processed into a cross shape, and this is used as an element to form a cross shape continuously as shown in FIG. By embedding the long acrylic plate 1 in the concrete structure 11, the strain state of the biaxial field inside the concrete structure 11 is measured. In order to cope with the distortion of the biaxial field, the acrylic plate 1 ′ processed into a cross shape was provided with notches 1A in the x-axis direction and the y- axis direction to ensure the fixing performance. Further, the interval between the cutouts 1A with the triaxial strain gauge 2 interposed therebetween must be set to be equal in both the x- axis direction and the y- axis direction and smaller than the assumed crack interval. In the present invention, an acrylic plate or the like having a low rigidity is used as a material to eliminate the influence on the performance of the concrete structure 11. Reference numeral 3 denotes an axial reinforcing bar.

また、上記実施例に代えて以下のように構成することができる。
(1)ひずみゲージ貼り付け部材は、上記したアクリル板に限定されるものではなく、コンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有する部材であればよい。例えば、プラスチック板などでもよい。
(2)上記したひずみゲージ貼り付け部材には切欠きを設けるようにしたが、これに限定されるものではなく、x方向及び方向にコンクリートとの付着・定着性能を確保できるものであればよい。例えば、部材内に円形などの切り抜きを設けたり、部材表面に施した目粗し処理であってもよい。
Moreover, it can replace with the said Example and can comprise as follows.
(1) strain gauge attaching member is not limited to the acrylic plate described above, without adversely affecting the performance of the concrete structure, and a member having a rigidity to withstand pouring pressure of the concrete after casting If it is. For example, a plastic plate may be used.
(2) The strain gauge attaching member described above has been to provide a notch, but the invention is not limited thereto, and Ru can be ensured adhesion and fixing performance of the concrete in the x-axis and y-axis directions If it is. For example, provided a cut-out, such as circular member, it may be a roughening treatment was applied to the surface of the member.

以下、具体的な例について説明する。
せん断力を受ける杭や柱等の鉄筋コンクリート(以下、RC) 円形断面部材の設計は、断面を等積正方形に換算し、はり部材の実験より導かれた耐力式を適用することにより行われる(上記非特許文献1参照)。しかし、一般に杭や柱等の境界条件は、両端固定に近いため、部材のせん断耐力を過小評価する可能性がある。そこで、本発明では、せん断スパン比に着目し、逆対称曲げ荷重を受ける円形断面部材の耐力、および破壊のメカニズムについて、コンクリート内部のひずみを測定することによって考察した。
Specific examples will be described below.
Reinforced concrete (hereinafter referred to as RC) such as piles and columns that receive shearing force The design of a circular cross-section member is performed by converting the cross-section into an equal square and applying the strength formula derived from the beam member experiment (above Non-patent document 1). However, since the boundary conditions such as piles and pillars are generally close to fixing both ends, the shear strength of the member may be underestimated. Therefore, in the present invention, paying attention to the shear span ratio, the proof stress of the circular cross-section member subjected to the antisymmetric bending load and the mechanism of fracture were considered by measuring the strain inside the concrete.

そこで、以下のようにして実験を行なった。
また、実験供試体(コンクリート構造物)により測定結果の妥当性を検証した。
図3は供試体であるコンクリート構造物を示す図、図4および図5に本発明の3軸ゲージより得られたひずみ値から算定した最大主ひずみの角度を示す。本実験において、主ひずみの大きさ、方向が妥当であることが確認された。
Therefore, the experiment was performed as follows.
In addition, the validity of the measurement results was verified using an experimental specimen (concrete structure).
FIG. 3 is a view showing a concrete structure as a specimen, and FIGS. 4 and 5 show the angle of the maximum principal strain calculated from strain values obtained from the triaxial gauge of the present invention. In this experiment, it was confirmed that the magnitude and direction of the main strain were appropriate.

供試体の形状および諸元は、ここでは、せん断補強鉄筋のないせん断スパン比の異なる3供試体を用いた。供試体形状は図3に示した通りであり、その諸元を表1に示す。   Here, three specimens having different shear span ratios without shear reinforcing bars were used for the shape and specifications of the specimens. The specimen shape is as shown in FIG. 3, and the specifications are shown in Table 1.

Figure 0004498962
この表1において、aは剪断スパン(mm)、Dは直径(mm)、dは設計上の有効高さ(mm)、a/dはせん断スパン比、fC ′はコンクリートの圧縮強度(N/mm2 )、EC はコンクリートの弾性係数(kN/mm2 )、Pt は引張鉄筋比、fy は軸方向鉄筋の降伏強度(N/mm2 )である。
Figure 0004498962
In Table 1, a is the shear span (mm), D is the diameter (mm), d is the effective design height (mm), a / d is the shear span ratio, and f C ′ is the compressive strength of the concrete (N / Mm 2 ), E C is the elastic modulus (kN / mm 2 ) of concrete, P t is the tensile reinforcement ratio, and f y is the yield strength (N / mm 2 ) of the axial reinforcement.

ここでは、逆対称の曲げ荷重を作用させるため、コンクリート構造物11の上下にフーチング12,13を設けた(図3参照)。また、軸方向鉄筋3は、高強度鉄筋を用いることとしたが、付着破壊を回避する観点から、軸方向鉄筋3をSD390程度の普通強度鉄筋と仮定してもせん断破壊するように供試体の設計を行った。
次に、載荷方法および測定項目について説明する。
Here, footings 12 and 13 are provided above and below the concrete structure 11 in order to apply an antisymmetric bending load (see FIG. 3). In addition, although the high-strength reinforcing bar is used as the axial rebar 3, from the viewpoint of avoiding the adhesion failure, the specimen of the specimen is subjected to shear failure even if the axial rebar 3 is assumed to be a normal strength reinforcing bar of about SD390. Designed.
Next, a loading method and measurement items will be described.

本実験では、変位制御により、図3の上フーチング12を水平加力することによって逆対称曲げ荷重を作用させた。また、本実験の主な測定項目は、載荷点の荷重、変位、ひび割れ性状、およびコンクリート内部のひずみである。
以下、コンクリート内部のひずみ測定について詳述する。
境界条件の異なるRC部材のせん断耐力、および破壊に至るメカニズムを議論する上で、コンクリート内部のひずみは、非常に重要な情報となる。また、有限要素法等の解析的手法は、ひび割れ面、またはひび割れ後のコンクリートのモデル化等により、それ以降の応力状態が大きく影響されるため、現状では、終局時の応力状態の精度よい把握が困難である。
In this experiment, an antisymmetric bending load was applied by applying horizontal force to the upper footing 12 of FIG. 3 by displacement control. The main measurement items of this experiment are the load at the loading point, displacement, crack properties, and strain inside the concrete.
Hereinafter, the strain measurement inside concrete will be described in detail.
In discussing the shear strength of RC members with different boundary conditions and the mechanism leading to failure, the strain inside the concrete is very important information. In addition, analytical methods such as the finite element method greatly affect the stress state after that due to the modeling of the crack surface or concrete after cracking. Is difficult.

(測定方法)
せん断破壊するRC部材は、2軸のひずみ場であり、また、ひび割れの発生にともなって主ひずみの方向が変化するため、従来の測定方法では、ひずみの把握が困難であった。本発明では、上記した図1及び図2に示すように、3軸ひずみゲージ2を2軸のひずみ場に対応できる形状に加工したアクリル板1′に貼付し、コンクリート構造物11に埋め込むことにより、ひずみの測定を行った(図1参照)。また、本実験で用いたアクリル板1′は、厚さ10mm、弾性係数3.1kN/mm2 であり、供試体に対する面積比、および剛性比ともに十分小さいため、耐力におよぼす影響はないものと考えられる。このようなアクリル板1′に貼付した3軸ひずみゲージ2により、本発明では、コンクリート内部の最大主ひずみ、最小主ひずみ、および主ひずみの角度の算定が可能になった。
(Measuring method)
The RC member that shears and breaks is a biaxial strain field, and the direction of the main strain changes with the occurrence of cracks. Therefore, it is difficult to grasp the strain with the conventional measurement method. In the present invention, as shown in FIG. 1 and FIG. 2 described above, the triaxial strain gauge 2 is attached to an acrylic plate 1 ′ processed into a shape corresponding to a biaxial strain field and embedded in a concrete structure 11. The strain was measured (see FIG. 1). In addition, the acrylic plate 1 'used in this experiment has a thickness of 10 mm and an elastic modulus of 3.1 kN / mm 2 , and since the area ratio and the rigidity ratio with respect to the specimen are sufficiently small, there is no influence on the proof stress. Conceivable. With the triaxial strain gauge 2 affixed to the acrylic plate 1 ', the maximum principal strain, minimum principal strain, and principal strain angle inside the concrete can be calculated in the present invention.

(測定位置)
アクリル板1は、載荷方向と平行に軸方向鉄筋の内側に配置した。供試体Iのアクリル板1の配置は図2の通りである。供試体II、および供試体III についても同様に側面からみて端部(S点,N点)、および部材軸(C点,E点)になるように配置した。また、3軸ひずみゲージ2は、供試体全体のひずみ分布が把握できるように、供試体の下端から上端まで、100mm、または150mm間隔に配置した。
(Measurement position)
The acrylic plate 1 was arranged inside the axial reinforcing bar in parallel with the loading direction. The arrangement of the acrylic plate 1 of the specimen I is as shown in FIG. Similarly, the specimen II and specimen III were arranged so as to be at the end (S point, N point) and the member axis (C point, E point) when viewed from the side. In addition, the triaxial strain gauge 2 was arranged at intervals of 100 mm or 150 mm from the lower end to the upper end of the specimen so that the strain distribution of the entire specimen could be grasped.

(測定結果の検証)
ここで、アクリル板1に貼付した3軸ひずみゲージ2の測定値の検証を行う。せん断スパン比が最も大きい供試体III のN点の測定値から算定した最大主ひずみ、および主ひずみの角度を検証例とし、図4および図5に示す。ここで、横軸は、最大主ひずみ(図4)、または主ひずみの角度(図5)、縦軸は部材高さである。載荷は、図2中のS点からN点方向に行うため、N点の上側は引張、下側は圧縮となる。また、主ひずみの角度は、図6に示すように水平方向から最大主ひずみ直交方向、つまり、ひび割れ方向を時計回りにとることとした。
(Verification of measurement results)
Here, the measured value of the triaxial strain gauge 2 attached to the acrylic plate 1 is verified. The maximum principal strain calculated from the measured value of the N point of the specimen III having the largest shear span ratio and the angle of the principal strain are shown in FIG. 4 and FIG. 5 as verification examples. Here, the horizontal axis represents the maximum principal strain (FIG. 4) or the principal strain angle (FIG. 5), and the vertical axis represents the member height. Since loading is performed in the N point direction from the S point in FIG. 2, the upper side of the N point is tensile and the lower side is compressed. Further, as shown in FIG. 6, the angle of the main strain is determined such that the horizontal direction is the maximum main strain orthogonal direction, that is, the crack direction is clockwise.

せん断スパン比の大きい供試体III では、上端から300mmの位置で、81kNの時に曲げひび割れが発生した。図4より、74kNから104kNのとき、上端から300mmの位置の最大主ひずみが、コンクリートの引張強度時のひずみ(以下、限界引張ひずみ)約100μを超えていることがわかる。また、主ひずみ角度についても上端が0度、つまり、ひび割れ方向が水平、下端が90度、つまり、ひび割れ方向が鉛直を示しており、想定されるひび割れ性状と一致した。このように、3軸ひずみゲージによりコンクリート内部のひずみを精度良く測定できることが確認できた。   In the specimen III having a large shear span ratio, bending cracks occurred at a position of 300 mm from the upper end at 81 kN. From FIG. 4, it can be seen that the maximum principal strain at a position 300 mm from the upper end exceeds the strain at the time of tensile strength of the concrete (hereinafter, the limit tensile strain) of about 100 μm from 74 kN to 104 kN. Also, the main strain angle was 0 degree at the upper end, that is, the crack direction was horizontal, and the lower end was 90 degrees, that is, the crack direction was vertical, which was consistent with the assumed crack property. Thus, it was confirmed that the strain inside the concrete can be measured with high accuracy by the triaxial strain gauge.

更に、実際のコンクリート構造物に対しても、応力状態が複雑な構造に適用することによって、破壊に対する安全性を定量的に判定することが可能になる。例えば、せん断スパン比の小さな柱部材、梁部材、または、目視調査が不可能な杭等の地中構造物に配置することによって、地震等の大きな外力を受けた後の構造物の安全性の評価が可能になる。また、プレストレスコンクリート構造に対しては、定着部や偏向部等の応力が複雑な部位の評価、および一般部のひずみの測定によって定着不良等の欠陥の発見が可能になる。   Furthermore, even for an actual concrete structure, the safety against fracture can be quantitatively determined by applying it to a structure having a complicated stress state. For example, by placing it on an underground structure such as a pillar member, beam member, or pile that cannot be visually inspected with a low shear span ratio, the safety of the structure after receiving a large external force such as an earthquake Evaluation becomes possible. In addition, for prestressed concrete structures, it is possible to find defects such as poor fixing by evaluating parts with complicated stresses such as fixing parts and deflecting parts, and measuring distortion of general parts.

また、実験供試体としては、構造は、鉄筋コンクリート構造、無筋コンクリート、プレストレスコンクリート構造、複合構造などでもよい。
ゲージの配置は、想定したひび割れ間隔以下が望ましいが、必ずしも想定したひび割れ間隔以下でなくともよい。測定方向とゲージ貼付け面が平行になるように配置する。
更に、本発明のコンクリート構造物内部ひずみの測定方法は、
(1)目視調査が不可能なコンクリート杭などの地中コンクリート構造物のヘルスモニタリングを行うことができる。
Moreover, as an experimental specimen, the structure may be a reinforced concrete structure, an unreinforced concrete structure, a prestressed concrete structure, a composite structure, or the like.
The arrangement of the gauge is preferably equal to or less than the assumed crack interval, but may not necessarily be equal to or less than the assumed crack interval. Arrange so that the measurement direction and gauge attachment surface are parallel.
Furthermore, the method for measuring the internal strain of the concrete structure of the present invention is as follows:
(1) Health monitoring of underground concrete structures such as concrete piles that cannot be visually inspected.

(2)また、前記3軸ひずみゲージからの出力を遠隔地から収集して遠隔地からのコンクリート構造物のヘルスモニタリングを行うことができる。
すなわち、目視調査が不可能なコンクリート杭などの地中コンクリート構造物が、偶発的な地震や風水害等による損傷後の健全度(具体的には、主ひずみと損傷レベルの関係を与える損傷指標で評価)を迅速に行う手段として活用でき、その判定に基づき取替えや補強等の措置を講じるなどしてコンクリート構造物の早期復旧の実現に寄与することができる。
(2) Moreover, the health monitoring of the concrete structure from a remote place can be performed by collecting the output from the triaxial strain gauge from a remote place.
That is, underground concrete structures such as concrete piles that cannot be visually inspected are damaged after accidental earthquakes, storms and floods, etc. (specifically, the damage index that gives the relationship between main strain and damage level) (Evaluation) can be used as a means for speeding up, and it can contribute to the realization of early restoration of concrete structures by taking measures such as replacement and reinforcement based on the determination.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明のコンクリート構造物内部ひずみの測定方法及びコンクリート構造物は、応力状態が複雑なコンクリート構造内部ひずみの測定に利用可能である。   The method for measuring internal strain of a concrete structure and the concrete structure of the present invention can be used for measuring internal strain of a concrete structure having a complicated stress state.

本発明の実施例を示す3軸ひずみゲージを有するアクリル板の要素形状を示す図である。It is a figure which shows the element shape of the acrylic board which has a triaxial strain gauge which shows the Example of this invention. 本発明の実施例を示すコンクリート構造物へのアクリル板の配置を示す図である。It is a figure which shows arrangement | positioning of the acrylic board to the concrete structure which shows the Example of this invention. 供試体であるコンクリート構造物を示す図である。It is a figure which shows the concrete structure which is a test body. 最大ひずみの測定例を示す図である。It is a figure which shows the example of a measurement of maximum distortion. 主ひずみの角度の測定例を示す図である。It is a figure which shows the example of a measurement of the angle of main distortion. 主ひずみの角度を示す図である。It is a figure which shows the angle of the main distortion.

1 十字形状が連続的に形成された長尺状のアクリル板
1′ 十字形状に加工したアクリル板
2 3軸ひずみゲージ
3 軸方向鉄筋
11 コンクリート構造物
12,13 フーチング
DESCRIPTION OF SYMBOLS 1 Long acrylic board in which cross shape was formed continuously 1 'Acrylic board processed into cross shape 2 Triaxial strain gauge 3 Axial rebar 11 Concrete structure 12, 13 Footing

Claims (10)

ンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有する部材を、x軸,y軸及びxy軸の2軸場のひずみを測定できるよう3軸ひずみゲージのx軸及びy軸と対応させたx軸及びy軸を有する十字形状に形成し、該十字形状の部材のx軸部及びy軸部に前記コンクリート構造物との付着・定着性能を確保する手段を施し、前記十字形状の部材の中央部にx軸,y軸及びxy軸からなる前記3軸ひずみゲージを貼付け、該3軸ひずみゲージが貼り付けられた前記十字形状の部材をy軸方向に一列に並ぶように複数個連設し、該連設した部材をx軸方向に所定間隔をとって複数個並べて前記コンクリート構造物に埋め込み、前記3軸ひずみゲージからの測定値を用いて前記コンクリート構造物内部の応力状態を測定することを特徴とするコンクリート構造物内部ひずみの測定方法。 Without affecting the performance of the concrete structure, and a member having rigidity to withstand pouring pressure of the concrete after casting, so that it can measure the distortion of the 2 Jikujo the x-axis, y-axis and xy axis 3 Formed in a cross shape having an x-axis and a y-axis corresponding to the x-axis and y-axis of the axial strain gauge , and adhesion / fixing performance with the concrete structure on the x-axis portion and the y-axis portion of the cross-shaped member The triaxial strain gauge comprising the x-axis, y-axis and xy-axis is attached to the center of the cross-shaped member , and the cross-shaped member to which the triaxial strain gauge is attached is attached. A plurality of connected members are arranged in a line in the y-axis direction, and a plurality of the arranged members are arranged at predetermined intervals in the x-axis direction and embedded in the concrete structure, and measured values from the triaxial strain gauge are obtained. the concrete structure in using Concrete structure internal strain measurement method and measuring the state of stress. 請求項1記載のコンクリート構造物内部ひずみの測定方法において、前記部材のコンクリートとの付着・定着性能を確保する手段が形成される間隔は、前記3軸ひずみゲージを挟んでx軸方向、y軸方向とも等間隔、かつ、想定されるひび割れの間隔よりも小さく設定することを特徴とするコンクリート構造物内部ひずみの測定方法。 In the method of internal strain concrete structure according to claim 1 Symbol placement, spacing means for ensuring the adhesion and fixing performance of the concrete of the member is formed, x-axis direction across the triaxial strain gauge, y A method for measuring internal strain of a concrete structure, characterized in that it is set at equal intervals in the axial direction and smaller than an assumed crack interval. 請求項1記載のコンクリート構造物内部ひずみの測定方法において、目視調査が不可能なコンクリート杭などの地中コンクリート構造物のヘルスモニタリングに用いることを特徴とするコンクリート構造物内部ひずみの測定方法。 The method for measuring internal strain of a concrete structure according to claim 1, wherein the internal strain is used for health monitoring of an underground concrete structure such as a concrete pile that cannot be visually inspected. 請求項1記載のコンクリート構造物内部ひずみの測定方法において、前記3軸ひずみゲージからの出力を遠隔地から収集して遠隔地からのヘルスモニタリングを行うことを特徴とするコンクリート構造物内部ひずみの測定方法。 In claim 1 the measuring method of the concrete structure inside strain, wherein said triaxial strain output from the gauge was collected remotely internal strain of the concrete structure and performing Health monitoring from a remote location Measuring method. コンクリート構造物の性能に影響を及ぼさず、かつ、コンクリート打設時の打設圧に耐えうる剛性を有し、x軸,y軸及びxy軸の2軸場のひずみを測定できるよう3軸ひずみゲージのx軸及びy軸と対応させたx軸及びy軸を有する十字形状に形成した部材と、該部材の前記十字形状の中央部に貼付けられるx軸,y軸及びxy軸からなる3軸ひずみゲージとを備え、前記部材にはx軸部及びy軸部に前記コンクリートとの付着・定着性能を確保できる手段を設け、前記3軸ひずみゲージが貼り付けられた前記十字形状の部材をy軸方向に一列に並ぶように複数個連設し、該連設した部材をx軸方向に所定間隔をとって複数個並べて前記コンクリート構造物に埋め込んだ前記コンクリート構造物内部の応力状態を測定しうる測定装置を具備することを特徴とするコンクリート構造物。 Without adversely affecting the performance of the concrete structure, and have a rigidity to withstand pouring pressure of the concrete after casting, strain triaxial as capable of measuring the strain of 2 Jikujo the x-axis, y-axis and xy axes a member formed into a cross shape having an x-axis and y-axis in correspondence with the x-axis and y-axis of the gauge, 3 consisting of the x-axis is pasted to the central portion in the cross-shaped, y-axis and xy axis of the member An axial strain gauge, and the member is provided with means for ensuring adhesion and fixing performance to the concrete at the x-axis portion and the y-axis portion, and the cross-shaped member to which the triaxial strain gauge is attached is provided. plurality continuously arranged so as to line up in a row in the y-axis direction,該連set the member taking a predetermined interval in the x-axis direction plural side by side stress state of the interior of the concrete structure I embed the concrete structure Equipped with a measuring device that can measure Concrete structure characterized by Rukoto. 請求項記載のコンクリート構造物において、前記部材がプラスチック板であることを特徴とするコンクリート構造物。 6. The concrete structure according to claim 5 , wherein the member is a plastic plate. 請求項記載のコンクリート構造物において、前記部材がアクリル板であることを特徴とするコンクリート構造物。 6. The concrete structure according to claim 5 , wherein the member is an acrylic plate. 請求項記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材に形成された切り欠きであることを特徴とするコンクリート構造物。 In claim 5 concrete structure according, concrete structure, characterized in that means for securing the adhesion and fixing performance of the concrete is cut edge formed in the member. 請求項記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材内に形成された切り抜きであることを特徴とするコンクリート構造物。 In claim 5 concrete structure according, concrete structure, characterized in that means for securing the adhesion and fixing performance of the concrete is-out cut unplug formed in said member. 請求項記載のコンクリート構造物において、前記コンクリートとの付着・定着性能を確保する手段は前記部材の表面に施された目粗し処理であることを特徴とするコンクリート構造物。 In claim 5 concrete structure according, concrete structure, characterized by means for securing the adhesion and fixing performance of the concrete is a roughening treatment to be applied to the surface of the member.
JP2005093927A 2005-03-29 2005-03-29 Method for measuring internal strain of concrete structure and concrete structure Active JP4498962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093927A JP4498962B2 (en) 2005-03-29 2005-03-29 Method for measuring internal strain of concrete structure and concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093927A JP4498962B2 (en) 2005-03-29 2005-03-29 Method for measuring internal strain of concrete structure and concrete structure

Publications (2)

Publication Number Publication Date
JP2006275698A JP2006275698A (en) 2006-10-12
JP4498962B2 true JP4498962B2 (en) 2010-07-07

Family

ID=37210624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093927A Active JP4498962B2 (en) 2005-03-29 2005-03-29 Method for measuring internal strain of concrete structure and concrete structure

Country Status (1)

Country Link
JP (1) JP4498962B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229982A (en) * 2011-04-26 2012-11-22 Toyo Constr Co Ltd Method and apparatus for health monitoring of concrete structure
JP6528197B2 (en) * 2015-03-31 2019-06-12 太平洋セメント株式会社 How to identify vulnerable parts of concrete
CN110398217A (en) * 2019-06-10 2019-11-01 浙江省建工集团有限责任公司 A kind of detection method using the wooden beam string strain of vibrating string extensometer measurement assembled Long span

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524284A (en) * 1975-06-30 1977-01-13 Fusoo Kk Tension analysis method
JPS5944602A (en) * 1982-09-07 1984-03-13 Kiyokuyou Denki Kk Method and instrument for measuring strain of concrete structure
JPH0886704A (en) * 1994-09-19 1996-04-02 Fujita Corp Estimating method of stress acting on existing concrete structure
JP2002022437A (en) * 2000-07-11 2002-01-23 Taisei Corp Strain gauge of concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524284A (en) * 1975-06-30 1977-01-13 Fusoo Kk Tension analysis method
JPS5944602A (en) * 1982-09-07 1984-03-13 Kiyokuyou Denki Kk Method and instrument for measuring strain of concrete structure
JPH0886704A (en) * 1994-09-19 1996-04-02 Fujita Corp Estimating method of stress acting on existing concrete structure
JP2002022437A (en) * 2000-07-11 2002-01-23 Taisei Corp Strain gauge of concrete

Also Published As

Publication number Publication date
JP2006275698A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Cunha et al. An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete
CN104344993B (en) Method for testing and measuring member bearing capacity and material performance parameters
Shi et al. Monotonic loading tests on semi-rigid end-plate connections with welded I-shaped columns and beams
De Diego et al. Behaviour of FRP confined concrete in square columns
CN104792256A (en) Device and method for concrete interior strain testing
JP4498962B2 (en) Method for measuring internal strain of concrete structure and concrete structure
Cardone et al. Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars
Hannewald et al. Quasi-static cyclic tests on RC bridge piers with detailing deficiencies
Sohoni et al. TECHNOLOGY (IJCIET)
Woo et al. Bond-slip parameter determination procedure of RC flexure member strengthened with prestressed CFRP plates
JP2005315611A (en) Horizontal load testing method of pile
WO2013030566A1 (en) Method and apparatus for determining interlaminar shear mechanical properties of composite laminates
Kong et al. Local bond-slip monitoring in a steel plate-ultra high performance concrete (S-UHPC) beam using smart aggregates
Vaghani et al. Performance of RC beam column connections subjected to cyclic loading
Gunadi et al. The Behavior of Slab-Column Connections with Modified Shear Reinforcement under Cyclic Load.
Dymond et al. Investigation of shear distribution factors in prestressed concrete girder bridges
KR100870096B1 (en) Stress Measurement Techniques for the Concrete Structures according to measuring displacement due to Stress-Relief
Alian Amiri Performance of Reinforced Concrete Bridge Columns with Various Reinforcement Details Subject to Long-Duration Earthquakes
CN114396085B (en) Stress detection method for glass fiber anchor rod
Ariyasajjakorn Full scale testing of overhang falsework hangers on NCDOT modified bulb tee (MBT) girders
Alekhin et al. Investigation of longitudinal reinforcement contribution in shear punching of reinforced concrete flat slabs without transverse reinforcement
Nilimaa et al. Testing to Failure of a 55-year-old Prestressed Concrete Bridge in Kiruna: Bending, Shear and Punching of Girders and Slab. Fracture Properties of Materials. Test Results, Modelling and Assessment. Final Report BBT 2017-030
Amiri Performance of Reinforced Concrete Bridge Columns with Various Reinforcement Details Subject to Long-Duration Earthquakes
Pan et al. Analytical and numerical modelling of FRP debonding from concrete substrate under pure shearing
Mateckova et al. Detection of cracks in concrete slab on subsoil using acoustic emission and numerical modelling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250