JP4498629B2 - Optical diffraction structure and manufacturing method thereof - Google Patents

Optical diffraction structure and manufacturing method thereof Download PDF

Info

Publication number
JP4498629B2
JP4498629B2 JP2001071756A JP2001071756A JP4498629B2 JP 4498629 B2 JP4498629 B2 JP 4498629B2 JP 2001071756 A JP2001071756 A JP 2001071756A JP 2001071756 A JP2001071756 A JP 2001071756A JP 4498629 B2 JP4498629 B2 JP 4498629B2
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction
pattern
pixels
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001071756A
Other languages
Japanese (ja)
Other versions
JP2002267826A (en
Inventor
修司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001071756A priority Critical patent/JP4498629B2/en
Publication of JP2002267826A publication Critical patent/JP2002267826A/en
Application granted granted Critical
Publication of JP4498629B2 publication Critical patent/JP4498629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/30Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
    • G03H2001/303Interleaved sub-holograms, e.g. three RGB sub-holograms having interleaved pixels for reconstructing coloured holobject

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Credit Cards Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カードや有価証券に適用すると偽造防止効果が高い、ホログラムシールや回折格子シール等の光回折構造に関するものである。
【0002】
【従来の技術】
クレジットカードや預貯金用カード等のカードには、偽造を防止する目的で、ホログラムシールが貼り付けられている。また、株券、証券、金券、もしくは商品券等にも、同様の目的でホログラムシールが貼り付けられている。
なお、これらの「ホログラムシール」としては、立体画像を表現するホログラムが形成されているものと、回折格子の領域をパターン状に形成したものとが利用されているが、いずれも、「ホログラムシール」と呼ばれており、また、ホログラムも広義には回折格子の一種であるため、この明細書においても、同様の呼び方にならうことにする。
【0003】
ホログラムシールは、簡単なものでは、回折格子を構成する平行な溝を有する区域を、デザインされたパターンに合わせて形成することにより、回折格子特有の干渉色を持つパターンが見えるものである。
しかしがら、このようなホログラムシールも、クレジットカード等では、既に長期間使用されており、玩具の分野では、市販もされている状態にある。
また、製造技術的に高度とされているものの、基本的な製造技術は知られており、不正な意図での複製も、過去に比べれば、より容易化している恐れがある。
【0004】
そこで、近年、クレジットカード分野では、見る角度により複数のパターンが現出する複合ホログラムシールを作成して使用し、偽造の防止、安全性の向上を図っている。
一般的に、回折格子は、線巾、ピッチ、および面上での角度をパラメータとしているが、上記の複合ホログラムシールにおいては、パターンごとに、これらのうち、一つもしくはそれ以上のパラメータを変更することにより、同一個所に複数のパターンが見えるよう構成していた。
【0005】
しかしながら、これらのパターンにおけるパラメータは解析が不可能なものではなく、また、パターンそのものは比較的単純な幾何学模様であるため、不正な意図を持つ者が、同様なものを作り出す可能性が無いとは言えなかった。
【0006】
【発明が解決しようとする課題】
本発明においては、上記のように、不正な意図でホログラムシールの偽造を企てる者が容易には解析しにくいホログラムシールを提供することを課題とする。
【0007】
【課題を解決する手段】
本発明者の検討によれば、各パターンの回折格子のパラメータとして、新たに回折格子が形成された面と溝との角度を、従来の直角のものに変えて、斜めの角度とし、さらに、パターンごとに回折格子が形成された面と溝との角度を変えることにより、解析が困難で、従って、偽造が極めて困難なホログラムシールを提供することができた。
【0008】
第1の発明は、光回折構造層の表面に、多数の微細な溝の群として形成された回折格子が輪郭された複数の回折格子パターンを有しており、前記回折格子パターンの前記溝において、前記光回折構造層の表面と、溝の開口部の中心線と溝の底の中心線の両者を通る面とが交差する角度が、前記各回折格子パターン間で相違することを特徴とする光回折構造に関するものである。第2の発明は、第1の発明において、前記各回折格子パターン間で、さらに、前記溝の巾、ピッチ、もしくは前記光回折構造層の表面における溝の開口部の中心線の角度の各パラメータのうちの少なくともいずれかが相違することを特徴とする光回折構造に関するものである。第3の発明は、第1または第2の発明において、前記各回折格子パターンは、回折格子が所定の微小形状に輪郭された領域からなる回折格子画素の集合体からなることを特徴とする光回折構造に関するものである。第4の発明は、第3の発明において、異なる前記回折格子パターンを構成する前記回折格子画素どうしが重複する個所において、当該回折格子画素が、当該回折格子画素領域をさらに細分化した、複数の副画素からなる単位副画素配列を形成し、前記単位副画素配列の前記副画素ごとに、異なる前記回折格子パターンを構成する前記回折格子画素の回折格子が配置されていることを特徴とする光回折構造に関するものである。第5の発明は、第3の発明において、異なる前記回折格子パターンを構成する前記回折格子画素どうしが重複する個所において、前記重複する箇所の領域にある複数の当該回折格子画素の各々を、隣接して交互に配置し、その各々を副画素と位置づけて、単位副画素配列と成し、前記単位副画素配列の前記副画素ごとに、異なる前記回折格子パターンを構成する前記回折格子画素が配置されていることを特徴とする光回折構造に関するものである。第6の発明は、型形成用基板の表面に、請求項1記載の複数の回折格子パターンに対応する位置ごとに、請求項1記載のの開口部の中心線と溝の底の中心線の両者を通る面が前記型形成用基板の光回折構造層の表面と交差する角度を変えたビーム露光による描画を行なうことにより、回折格子の多数の微細な溝を形成して型を製造し、得られた前記型を使用して樹脂材表面に、前記型の型面形状を転移させることからなる光回折構造の製造方法に関するものである。第7の発明は、第6の発明において、前記ビーム露光を行なう際に、さらに、前記パターンごとに、前記溝の巾、ピッチ、もしくは前記光回折構造層の表面における溝の開口部の中心線の角度のうちの少なくともいずれかを相違させることを特徴とする光回折構造の製造方法に関するものである。第8の発明は、第6または第7の発明において、前記溝に対応する所定の線巾、ピッチ、および角度の線を所定の輪郭内に配置した回折格子画素を複数準備した後、前記各パターン内に、前記回折格子画素を選択して配置し、回折格子パターンデータを作成すること、および前記のパターンごとに、溝が前記型形成用基板の光回折構造層の表面となす角度を設定することとを行なった後、前記回折格子パターンデータに基づいて前記描画を行なうための描画用データを作成し、前記の溝が前記型形成用基板の表面となす角度ごとに、前記描画を行なうことを特徴とする光回折構造の製造方法に関するものである。第9の発明は、第8の発明において、少なくとも前記各パターンが重複する区域において、前記回折格子画素を細分割した副画素からなる単位副画素配列、もしくは隣接する前記回折格子画素を副画素とする単位副画素配列を設定すると共に、前記単位副画素配列中のいずれの前記副画素に、いずれの前記パターンに対応付けられるべき前記回折格子画素を配列すべきかのルールを前以って決めておき、前記ルールに基づいて、前記副画素ごとに前記各回折格子画素を配置することを特徴とする光回折構造の製造方法に関するものである。
【0009】
【発明の実施の形態】
以下に、図を引用しながら、本発明をより詳しく説明する。
本発明の光回折構造は、図1(a)に例示するように、好ましくは、カード1に適用されている。
このカード1は、カード基材2上に光回折構造を有する光回折構造層3(一般的表現では「ホログラムシール」である。)が積層されたもので、光回折構造層3は、図1(a)に示すように、二つのパターンP1およびP2を有しているものである。
なお、光回折構造層はホログラムの視認性を高める目的で、通常、下層側にアルミニウム等の金属反射層や光回折構造層とは光の屈折率の異なる透明反射層を有しているが、図示は省略する。
【0010】
図1(a)に示すカードのA−A線で切断した断面を図1(b)に示す。
二つのパターンP1およびP2は、それぞれ、異なる角度で形成された回折格子の溝4を光回折構造層の下面に有しており、パターンP1では、溝4は光回折構造の下面から右上がりの傾斜を有し、また、パターンP2では、溝4は光回折構造の下面から左上がりの傾斜を有している、
【0011】
従来技術においては、回折格子の線巾、ピッチ、および面上での角度をパラメータとしていたが、本発明の回折格子においては、回折格子の溝と光回折構造層のなす角度を第1のパラメータとし、最小限、この第1のパラメータである回折格子の溝と光回折構造層のなす角度がパターン間で相違していればよい。
このように、回折格子の溝と光回折構造層のなす角度がパターン間で相違していれば、見る角度によって、各パターンの見え方が相違し、同一のホログラムシールから、複数のパターンの各々を他のパターンと分離して見ることができる。
【0012】
ところで、本発明の回折格子においては、回折格子の溝と光回折構造層のなす角度を第1優先として、各パターン間で相違させるが、上記のように回折格子の溝と光回折構造層のなす角度が各パターン間で相違していれば、従来のパラメータである回折格子の線巾、ピッチ、および面上での角度のうち、一つ、もしくはそれ以上を変更して、各パターン間により変化を持たせてもよい。
【0013】
ホログラムシール等における本発明の光回折構造は、ガラス板、樹脂板、もしくは金属板、あるいはガラス板や金属板上に樹脂コートして作成した適宜な型形成用基板(作業対象の意味で「ワーク」とも言う。)に、電子線やレーザー光を光源とする描画装置を用いてビーム露光することにより、回折格子の溝を彫刻して型を製造し、得られた型を使用して樹脂等の表面に、型の型面形状を転移させて製造することができる。
【0014】
なお、描画装置を用いて回折格子の溝を彫刻する際に、型における回折格子の溝と光回折構造層3とがなす角度を変えるには、ワークを載せる台(=ステージ)を傾けるか、もしくは光源を傾けるかのいずれかによればよいが、図2に示すように、ステージを傾けた方がやりやすい。
また、回折格子の溝と光回折構造層3とがなす角度以外の、溝の巾、ピッチ、もしくは前記光回折構造層の表面における角度の変更も、ステージの動きによって行なうことが好ましい。
【0015】
描画装置は、通常、光源6とワーク7を載せるステージ7が、露光ビーム6aがステージ(ステージとワークは平行とする。)と直交するような位置関係にあるので、本発明の光回折構造のように、回折格子の溝と光回折構造層3とがなす角度を変えるためには、型を作成する際に、ステージ5を水平な位置から、時計回り、もしくは逆回りに角度を変える。
なお、ここでは、上記の反時計回りの角度を+、時計回りを−とし、露光ビーム6aからワーク7の垂線を時計回りに測った角度を+、反時計回りに測った角度を−とし、便宜上、型の回折格子の溝と型面のなす角度も露光ビームから見たワーク垂線との角度として表現する。なお、得られる光回折構造における回折格子の溝についても、光回折構造層の垂線から見た回折格子の溝の角度(より正確には、光回折構造層の表面と、溝の開口部の中心線と溝の底の中心線の両者を通る面とが交差する角度である。)で表現する。
【0016】
描画装置を用いて型を製造する際には、型のどの部分にどのような回折格子を形成するかをデータとして、描画装置に与える必要があるので、このため、画素ごとに所定の回折格子を配置することを行なう。
【0017】
上記の目的を果たすため、まず、回折格子が、所定の微小形状に輪郭された領域からなる回折格子画素を、回折格子を色々と変えて準備する。各回折格子画素としては、回折格子の溝と光回折構造層3とがなす角度が異なるものを準備するが、回折格子の溝と光回折構造層3とがなす角度が異なっていれば、さらに、溝の巾、ピッチ、もしくは前記光回折構造層の表面における角度は同じでも、異なっていてもよい。
図3は、回折格子画素のごく一例を示すものである。
なお、本発明においては、回折格子の溝と光回折構造層3とがなす角度が異なる複数の回折格子画素を使用していれば、それらに加えて、回折格子の溝と光回折構造層3とがなす角度が同じで、溝の巾、ピッチ、もしくは前記光回折構造層の表面における角度が異なる回折格子画素を使用してもよい。
【0018】
図4は、パターンを画素で表示したもので、簡単のために、図4(a)では数字「1」を、また図4(b)では数字「2」を縦横5×5の画素で表示したものである。勿論、パターンは任意であるし、画素の分割の細かさについても任意に定めることができる。なお、画素の大きさは、得られる光回折構造において、例えば、10〜100μm程度である。
図4(a)の「1」のパターンには、例えば、横方向の太い多数の線で表示する回折格子画素Aが配置されており、図4(b)の「2」のパターンには、例えば、横方向の細い線で表示する回折格子画素Bが配置されている。図4で、二種類の回折格子画素の線巾を相違させたのは、二つの回折格子画素を図上で区別する都合上であって、勿論、本発明においては、図2の下部に示したような、回折格子の溝と光回折構造層3とがなす角度が異なるものどうし、例えば図2(a)の下方に示すような角度が+45°のもの、および図2(b)に示すような角度が−45°のものを配置する。
【0019】
この例では、両回折格子画素における、回折格子の溝と光回折構造層3とがなす角度が90°異なることになり、このような場合、概ね+30°〜+80°の方向からは一方のパターンが、また、概ね−30°〜−80°の方向からは、他方のパターンが見える。
当然ながら、回折格子の溝と光回折構造層のなす角度が、パターン間で近いと、各パターンが見る角度により分離して見える効果が薄れるので、上記の例のように、大きく異なることが好ましいが、実用的には、少なくとも10°〜30°、あるいはそれ以上の差違を有していれば、二つのパターンが見る角度によって明瞭に分離する。
また、パターンが3つ以上あるときは、互いに、少なくとも10°〜30°、あるいはそれ以上程度の差違を有していることが好ましい。
【0020】
ところで、図4(c)においても明らかなように、図4(a)の「1」のパターンと、図4(b)の「2」のパターンとを重ねると、重複部が生じる。図4(a)および図4(b)に示すように、各々のパターンには、別の回折格子画素が配置されることが予定されているので、この重複部において、いずれの回折格子画素を配置するかが問題となる。
一般的にこの種のホログラムシールにおいては、見る角度によって、ほぼ同じ位置にある複数のパターンが一つずつ見える必要があるので、重複部において、いずれかのパターンを単純に無くすのではなく、できるだけいずれのパターンも生かす必要がある。
【0021】
そこで、このような場合を想定して、画素に対して、副画素の概念を持ち込んで、対処する。
例えば、図5(a)に示すように、一つの画素を縦線で四分割した単位副画素配列(○で囲んだもの、以下も同じ。)や、図5(b)に示すように、縦横に四分割した単位副画素配列である。図5(a)に示す例においては、例えば、向かって最も左側の副画素と一つおいた右側の副画素に一方のパターンの回折格子画素を、向かって最も右側の副画素と一つおいた左側の副画素に他方のパターンの回折格子画素を配置することにより、重複部において、二つのパターンが両立する。また、図5(b)に示す例においては、例えば、左上および右下の副画素に一方のパターンを、また、左下および右上の副画素に他方のパターンを配置すればよい。
【0022】
単位副画素配列の概念を持ち込むことは、パターンどうしの重複のない部分では、必ずしも必要ではないが、いずれの画素にもこのように単位副画素配列を形成しておき、単位副画素配列内のいずれの副画素にいずれのパターンの画素を配置するかを決めておけば、重複の有無を判断せずに、回折格子画素の配置が行なえる利点がある。
なお、単位副画素配列は、さらに細かく分割して形成し、例えば縦横に9分割して3つのパターンの重複に対処することもでき、それ以上の重複に対処することも可能である。
【0023】
なお、単位副画素配列は、画素の分割によらず、隣接する画素どうしを、各々副画素とみなし、図5(c)に示すように縦横四つまとめて形成することもできる。図5(c)に示すような場合、図5(a)におけるのと同様、左上および右下の副画素に一方のパターンを、また、左下および右上の副画素に他方のパターンを配置すればよい。この場合、パターンの一部は間引かれることになるが、もともと精密なパターンであるため、間引きにより、見た目に分かるほど劣化することはない。
【0024】
図6は、図5(a)に示すような、画素を縦線で四分割した単位副画素配列を重複部において利用し、図4に示したパターンの重複に適用した例で、図中、○で囲んだ3つの重複部において、右側に拡大図で示すように、向かって最も左側の副画素と一つおいた右側の副画素に「1」のパターンの回折格子画素を配置し、また、向かって最も右側の副画素と一つおいた左側の副画素に「2」のパターンの回折格子画素を配置し、その他の、即ち、重複部以外では、画素にそのまま、各パターンの回折格子画素を配置する。このようにして、パターンの重複のある回折格子パターンデータを作成することができる。
【0025】
具体例を挙げると、上記の例において、「1」のパターンに配置する回折格子画素Aは、線幅;0.5μm、ピッチ;1μm、型面上での線の描画角度;0°(即ち、図の水平方向である。)、回折格子の溝と光回折構造層3とがなす角度;+45°(図1(b)のパターンP1の角度θ(45°を想定している。)の型部分から得られ、また、「2」のパターンに配置する回折格子画素Bは、線幅、ピッチ、および型面上での線の描画角度は回折格子画素Aと同じで、回折格子の溝と光回折構造層3とがなす角度;−45°(図1(b)のパターンP2の角度θ(−45°を想定している。)の型部分から得られる。
【0026】
以上に説明した光回折構造を製造するには、光回折構造上での複数のパターンおよびその配置や、複数の回折格子画素を記憶するデザインデータ記憶装置、デザインデータ記憶装置に記憶されたデータに基づき、各パターンに回折格子画素を配置して回折格子パターンデータを作成するデザインデータの処理装置、回折格子パターンデータを描画用データに変換し、描画用光源の出力および描画用ステージの動きおよび傾きを制御する光源・ステージ制御系とからなる製造装置を使用して、まず、型を製造する。
【0027】
得られた型は、必要に応じて、複製型(以降、型もしくは複製型を単に型と言う。)を製造し、型を樹脂材料からなる光回折構造形成用層に加熱加圧して型付けするか、型の型面に紫外線硬化性樹脂等の硬化性で流動性の樹脂組成物を接触させ、必要に応じて、プラスチックフィルムで被覆した後に、プラスチックフィルム上から紫外線を照射して樹脂組成物を硬化させることにより、型付けを行なうことができる。
その後、型付けされた面に反射層の薄膜を形成し、さらに接着剤層を積層する等して、種々の対象に適用しやすいシール形態とする。あるいは、先に挙げたプラスチックフィルムとして剥離性のものを使用する等して、光回折構造層、反射層、接着剤層等の積層体が転写できるような転写シートを形成して、種々の対象に適用してもよい。
【0028】
【発明の効果】
請求項1の発明によれば、複数の回折格子パターン間で、回折格子を構成する溝において、
前記光回折構造層の表面と、溝の開口部の中心線と溝の底の中心線の両者を通る面とが交差する角度が、前記各回折格子パターン間で相違しているので、見る角度によって見えるパターンが変る効果を有していて、かつ、従来のものにくらべて解析がより困難な光回折構造を提供することができる。請求項2の発明によれば、請求項1の発明の効果に加え、光回折構造のパラメータとして、二次元的なものが加味されるので、より外観の変化のある光回折構造を提供することができる。請求項3の発明によれば、各回折格子パターンは、微小な画素からなっているので、描画装置を用いて型を製造するのに適した光回折構造を提供することができる。請求項4の発明によれば、請求項3の発明の効果に加え、パターンどうしの重複部において、画素をさらに細分化した単位副画素配列の副画素ごとに、異なる前記回折格子パターンを構成する回折格子画素を配置するので、複数のパターンの各々を損なうことなく、見る角度によって見えるパターンが変る光回折構造を提供できる。請求項5の発明によれば、請求項3の発明の効果に加え、パターンどうしの重複部において、隣接する前記回折格子画素を副画素と位置づけて、単位副画素配列と成し、その単位副画素配列の副画素ごとに、異なる前記回折格子パターンを構成する回折格子画素を配置するので、画素の一部は間引かれるものの、副画素と位置づけることによっ前記回折格子画素をそのまま利用して形成可能な光回折構造を提供できる。請求項6の発明によれば、描画装置により型を製造する際に、露光ビームの型面への入射角度をパターン間で変えることにより、回折格子の溝の開口部の中心線と溝の底の中心線の両者を通る面が前記型形成用基板の光回折構造層の表面と交差する角度が、各パターン間で相違させることが効率よく行なえる光回折構造の製造方法を提供することができる。請求項7の発明によれば、請求項6の発明の効果に加え、ビーム露光時に、回折格子の溝の巾、ピッチ、もしくは前記光回折構造層の表面における溝の開口部の中心線の角度等をパターンごとに変えるため、より変化に富んだ製品が得られる光回折構造の製造方法を提供できる。請求項8の発明によれば、請求項6または7の発明の効果に加え、デザインデータ記憶装置、デザインデータの処理装置、光源・ステージ制御系等からなる製造装置を使用して、パターンでデータを生成させ、これに基づいて描画を行なうことにより型の製造が効率的な光回折構造の製造方法を提供できる。請求項9の発明によれば、回折格子画素を細分割した副画素からなる単位副画素配列、もしくは隣接する前記回折格子画素を副画素とする単位副画素配列を設定して、副画素に各パターンの回折格子画素を配置するので、重複部の処理が効率的で、しかも、重複部における各パターンの欠損の少ない製品が得られる光回折構造の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の光回折構造(ホログラムシール)の適用例を示す図である。
【図2】光回折構造を製造する型の製造方法を示す図である。
【図3】回折格子画素パターンの例を示す図である。
【図4】パターンの重複を説明する図である。
【図5】単位副画素配列を示す図である。
【図6】パターンの重複部の処理例を示す図である。
【符号の説明】
1 カード
2 カード基材
3 光回折構造(ホログラムシール)
4 溝
5 ステージ
6 光源(6a;ビーム)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical diffractive structure such as a hologram seal or a diffraction grating seal that has a high effect of preventing forgery when applied to cards and securities.
[0002]
[Prior art]
A hologram sticker is affixed to a card such as a credit card or a deposit and saving card for the purpose of preventing forgery. In addition, a hologram seal is affixed to a stock certificate, securities, cash voucher, gift certificate or the like for the same purpose.
In addition, as these “hologram seals”, those in which a hologram representing a stereoscopic image is formed and those in which a region of a diffraction grating is formed in a pattern are used. In addition, the hologram is a kind of diffraction grating in a broad sense, and therefore, in this specification, the same term is used.
[0003]
In a simple hologram seal, a pattern having an interference color peculiar to the diffraction grating can be seen by forming an area having parallel grooves constituting the diffraction grating in accordance with the designed pattern.
However, such a hologram sticker has already been used for a long time in a credit card or the like, and is commercially available in the toy field.
In addition, although the manufacturing technology is advanced, the basic manufacturing technology is known, and duplication with an unauthorized intention may be easier than in the past.
[0004]
Therefore, in recent years, in the credit card field, composite hologram seals in which a plurality of patterns appear depending on the viewing angle are created and used to prevent counterfeiting and improve safety.
In general, diffraction gratings have parameters such as line width, pitch, and angle on the surface. In the above-mentioned composite hologram seal, one or more of these parameters are changed for each pattern. By doing so, a plurality of patterns can be seen at the same location.
[0005]
However, the parameters in these patterns are not impossible to analyze, and the pattern itself is a relatively simple geometric pattern, so there is no possibility that a person with an unintentional intention will create a similar one. I couldn't say that.
[0006]
[Problems to be solved by the invention]
In the present invention, as described above, it is an object to provide a hologram seal that is difficult for a person who attempts to counterfeit a hologram seal with an unauthorized intention to easily analyze.
[0007]
[Means for solving the problems]
According to the inventor's study, as a parameter of the diffraction grating of each pattern, the angle between the surface on which the diffraction grating is newly formed and the groove is changed to a conventional right angle to make an oblique angle, By changing the angle between the surface on which the diffraction grating was formed and the groove for each pattern, it was possible to provide a hologram seal that was difficult to analyze and therefore extremely difficult to counterfeit.
[0008]
1st invention has the several diffraction grating pattern by which the diffraction grating formed as the group of many fine groove | channels was contoured on the surface of the optical diffraction structure layer, In the said groove | channel of the said diffraction grating pattern , The angle at which the surface of the optical diffraction structure layer intersects with the plane passing through both the center line of the groove opening and the center line of the groove bottom is different between the diffraction grating patterns. It relates to a light diffraction structure. According to a second invention, in the first invention, each parameter of the groove width, the pitch, or the angle of the center line of the groove opening on the surface of the optical diffraction structure layer, between the diffraction grating patterns. The present invention relates to an optical diffraction structure characterized in that at least one of them is different. According to a third invention, in the first or second invention, each of the diffraction grating patterns is formed of an aggregate of diffraction grating pixels including a region in which the diffraction grating is outlined in a predetermined minute shape. It relates to a diffractive structure. A fourth aspect based on the third aspect, in place of the diffraction grating pixels each other to configure the different said diffraction grating pattern overlap, the diffraction grating pixels and subdivided the diffraction grating pixel areas, a plurality of A light comprising: a unit subpixel array composed of subpixels; and a diffraction grating of the diffraction grating pixels constituting the different diffraction grating pattern for each subpixel of the unit subpixel array. It relates to a diffractive structure. According to a fifth aspect of the present invention, in the third aspect, in the portion where the diffraction grating pixels constituting the different diffraction grating patterns overlap each other , the plurality of the diffraction grating pixels in the region of the overlapping portion are adjacent to each other. Are alternately arranged, each of which is positioned as a sub-pixel to form a unit sub-pixel array, and each of the sub-pixels of the unit sub-pixel array includes the diffraction grating pixels constituting the different diffraction grating pattern The present invention relates to a light diffractive structure. According to a sixth aspect of the present invention , on the surface of the mold forming substrate, the center line of the groove opening and the center line of the bottom of the groove are provided for each position corresponding to the plurality of diffraction grating patterns according to claim 1. The mold is manufactured by forming many fine grooves of the diffraction grating by performing drawing by beam exposure with the angle passing through the surface intersecting with the surface of the optical diffraction structure layer of the mold forming substrate being changed. Further, the present invention relates to a method for producing an optical diffraction structure comprising transferring the mold surface shape of the mold to the surface of a resin material using the obtained mold. According to a seventh invention, in the sixth invention, when performing the beam exposure, for each of the patterns, the groove width, pitch, or the center line of the groove opening on the surface of the optical diffraction structure layer The present invention relates to a method for manufacturing an optical diffraction structure, wherein at least one of the angles is made different. According to an eighth invention, in the sixth or seventh invention, after preparing a plurality of diffraction grating pixels in which lines having a predetermined line width, pitch, and angle corresponding to the groove are arranged in a predetermined contour, Select and arrange the diffraction grating pixels in the pattern, create diffraction grating pattern data, and set the angle that the groove forms with the surface of the optical diffraction structure layer of the mold forming substrate for each of the patterns Then, drawing data for performing the drawing is created based on the diffraction grating pattern data, and the drawing is performed for each angle formed by the groove with the surface of the mold forming substrate. The present invention relates to a method for manufacturing an optical diffraction structure. According to a ninth invention, in the eighth invention, a unit subpixel array comprising subpixels obtained by subdividing the diffraction grating pixels, or the adjacent diffraction grating pixels as subpixels, at least in an area where the patterns overlap. The unit subpixel array to be set is set, and a rule as to which of the subpixels in the unit subpixel array should be arranged with which diffraction grating pixel to be associated with the pattern is determined in advance. In addition, the present invention relates to a method of manufacturing an optical diffraction structure, wherein each diffraction grating pixel is arranged for each sub-pixel based on the rule.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
The light diffraction structure of the present invention is preferably applied to a card 1 as illustrated in FIG.
This card 1 is formed by laminating a light diffractive structure layer 3 having a light diffractive structure (generally expressed as a “hologram seal”) on a card substrate 2, and the light diffractive structure layer 3 is shown in FIG. As shown to (a), it has two patterns P1 and P2.
The light diffraction structure layer usually has a transparent reflection layer having a refractive index different from that of a metal reflection layer such as aluminum or a light diffraction structure layer on the lower layer side for the purpose of improving the visibility of the hologram. Illustration is omitted.
[0010]
FIG. 1B shows a cross section taken along line AA of the card shown in FIG.
Each of the two patterns P1 and P2 has a diffraction grating groove 4 formed at a different angle on the lower surface of the light diffraction structure layer. In the pattern P1, the groove 4 rises to the right from the lower surface of the light diffraction structure. In addition, in the pattern P2, the groove 4 has a slope that rises to the left from the lower surface of the light diffraction structure.
[0011]
In the prior art, the line width, pitch, and angle on the surface of the diffraction grating were used as parameters. However, in the diffraction grating of the present invention, the angle formed by the grooves of the diffraction grating and the optical diffraction structure layer is the first parameter. As a minimum, the angle formed by the groove of the diffraction grating and the optical diffraction structure layer, which is the first parameter, may be different between the patterns.
Thus, if the angle formed by the groove of the diffraction grating and the light diffraction structure layer is different between the patterns, the appearance of each pattern is different depending on the viewing angle. From the same hologram seal, each of the plurality of patterns Can be seen separately from other patterns.
[0012]
By the way, in the diffraction grating of the present invention, the angle formed by the groove of the diffraction grating and the light diffraction structure layer is given priority as a first priority. If the angle is different between the patterns, change one or more of the conventional parameters of line width, pitch, and angle on the surface, which are the conventional parameters, and You may change it.
[0013]
The light diffractive structure of the present invention in a hologram seal or the like is a glass plate, a resin plate, or a metal plate, or an appropriate mold forming substrate prepared by resin coating on a glass plate or a metal plate (in the sense of work, “workpiece” )), And by performing beam exposure using a drawing apparatus using an electron beam or laser light as a light source, a groove is formed by engraving the grooves of the diffraction grating, and a resin or the like is obtained using the obtained mold. The mold surface shape can be transferred to the surface of the mold.
[0014]
In order to change the angle formed by the groove of the diffraction grating in the mold and the light diffraction structure layer 3 when engraving the groove of the diffraction grating using the drawing apparatus, the stage (= stage) on which the workpiece is placed is tilted, Alternatively, the light source may be tilted, but it is easier to tilt the stage as shown in FIG.
It is also preferable to change the groove width, pitch, or angle on the surface of the light diffraction structure layer other than the angle formed by the grooves of the diffraction grating and the light diffraction structure layer 3 by the movement of the stage.
[0015]
In the drawing apparatus, normally, the stage 7 on which the light source 6 and the work 7 are placed is in a positional relationship such that the exposure beam 6a is orthogonal to the stage (the stage and the work are parallel). As described above, in order to change the angle formed by the groove of the diffraction grating and the light diffraction structure layer 3, the angle of the stage 5 is changed clockwise or counterclockwise from the horizontal position when the mold is formed.
Here, the counterclockwise angle is +, the clockwise direction is-, the angle obtained by measuring the perpendicular of the workpiece 7 from the exposure beam 6a in the clockwise direction is +, and the angle measured in the counterclockwise direction is-. For convenience, the angle formed between the groove of the diffraction grating of the mold and the mold surface is also expressed as an angle with respect to the workpiece normal viewed from the exposure beam. The groove of the diffraction grating in the obtained light diffraction structure also applies to the angle of the groove of the diffraction grating as viewed from the perpendicular of the light diffraction structure layer (more precisely, the surface of the light diffraction structure layer and the center of the opening of the groove). This is the angle at which the line and the plane passing through the center line at the bottom of the groove intersect.
[0016]
When manufacturing a mold using a drawing apparatus, it is necessary to provide the drawing apparatus with what diffraction grating is to be formed in which part of the mold. For this reason, a predetermined diffraction grating is provided for each pixel. To place.
[0017]
In order to achieve the above object, first, a diffraction grating pixel having a region in which the diffraction grating is outlined in a predetermined minute shape is prepared by changing the diffraction grating in various ways. As each diffraction grating pixel, those having different angles formed by the grooves of the diffraction grating and the light diffraction structure layer 3 are prepared. If the angles formed by the grooves of the diffraction grating and the light diffraction structure layer 3 are different, The groove width, pitch, or angle at the surface of the light diffraction structure layer may be the same or different.
FIG. 3 shows only one example of the diffraction grating pixel.
In the present invention, if a plurality of diffraction grating pixels having different angles between the groove of the diffraction grating and the light diffraction structure layer 3 are used, in addition to these, the groove of the diffraction grating and the light diffraction structure layer 3 are used. Diffraction grating pixels having the same angle and different groove width, pitch, or angle on the surface of the optical diffraction structure layer may be used.
[0018]
FIG. 4 shows the pattern displayed in pixels. For simplicity, the number “1” is displayed in FIG. 4A and the number “2” is displayed in 5 × 5 pixels in FIG. 4B. It is a thing. Of course, the pattern is arbitrary, and the fineness of pixel division can also be determined arbitrarily. The size of the pixel is, for example, about 10 to 100 μm in the obtained light diffraction structure.
In the pattern “1” in FIG. 4A, for example, a diffraction grating pixel A that is displayed with a large number of thick horizontal lines is arranged. In the pattern “2” in FIG. For example, a diffraction grating pixel B that is displayed by a thin horizontal line is arranged. The reason why the line widths of the two types of diffraction grating pixels are different in FIG. 4 is to distinguish the two diffraction grating pixels on the drawing. Of course, in the present invention, the line width is shown in the lower part of FIG. As shown in FIG. 2B, the angles formed by the grooves of the diffraction grating and the optical diffraction structure layer 3 are different, for example, those having an angle of + 45 ° as shown in the lower part of FIG. An angle of −45 ° is arranged.
[0019]
In this example, the angles formed by the grooves of the diffraction grating and the light diffraction structure layer 3 in both diffraction grating pixels are different from each other by 90 °. In such a case, one pattern is seen from the direction of approximately + 30 ° to + 80 °. However, from the direction of approximately −30 ° to −80 °, the other pattern can be seen.
Naturally, if the angle formed by the groove of the diffraction grating and the light diffraction structure layer is close between the patterns, the effect that each pattern appears to be separated depending on the viewing angle is diminished. However, practically, if there is a difference of at least 10 ° to 30 ° or more, the two patterns are clearly separated according to the viewing angle.
Further, when there are three or more patterns, it is preferable that the patterns have a difference of at least 10 ° to 30 ° or more.
[0020]
4C, when the pattern “1” in FIG. 4A and the pattern “2” in FIG. 4B are overlapped, an overlapping portion is generated. As shown in FIGS. 4 (a) and 4 (b), each pattern is scheduled to have another diffraction grating pixel, so any diffraction grating pixel is placed in this overlapping portion. The problem is whether to place them.
In general, in this type of hologram seal, it is necessary to see a plurality of patterns at almost the same position one by one depending on the viewing angle. Therefore, instead of simply eliminating one of the patterns at the overlapping portion, as much as possible It is necessary to make use of both patterns.
[0021]
Therefore, assuming such a case, the concept of the sub-pixel is brought into the pixel to deal with it.
For example, as shown in FIG. 5A, a unit sub-pixel array (one surrounded by circles, the same applies hereinafter) obtained by dividing one pixel into four by vertical lines, and as shown in FIG. 5B, It is a unit sub-pixel array divided into four vertically and horizontally. In the example shown in FIG. 5A, for example, one pattern of diffraction grating pixels is placed on the leftmost subpixel and one rightmost subpixel, and one rightmost subpixel is placed on the rightmost subpixel. By arranging the diffraction grating pixel of the other pattern in the left sub-pixel, the two patterns are compatible in the overlapping portion. In the example shown in FIG. 5B, for example, one pattern may be arranged in the upper left and lower right subpixels, and the other pattern may be arranged in the lower left and upper right subpixels.
[0022]
It is not always necessary to introduce the concept of unit subpixel arrangement in a portion where there is no overlap between patterns. However, a unit subpixel arrangement is formed in any pixel in this way, If it is decided which pixel of which pattern is to be arranged in which sub-pixel, there is an advantage that the diffraction grating pixel can be arranged without determining the presence or absence of overlap.
Note that the unit sub-pixel array can be formed by dividing it further finely. For example, the unit sub-pixel array can be divided into 9 parts vertically and horizontally to cope with the overlap of three patterns, and it is also possible to cope with further overlaps.
[0023]
Note that the unit sub-pixel array can be formed as a group of four vertically and horizontally as shown in FIG. 5C by regarding adjacent pixels as sub-pixels, regardless of pixel division. In the case shown in FIG. 5C, as in FIG. 5A, if one pattern is arranged in the upper left and lower right subpixels, and the other pattern is arranged in the lower left and upper right subpixels. Good. In this case, a part of the pattern is thinned out. However, since the pattern is originally a precise pattern, the thinning does not deteriorate so as to be visually recognized.
[0024]
FIG. 6 shows an example in which the unit subpixel array obtained by dividing the pixel into four vertical lines as shown in FIG. 5A is used in the overlapping portion, and is applied to the overlapping pattern shown in FIG. In the three overlapping portions surrounded by circles, as shown in the enlarged view on the right side, a diffraction grating pixel having a pattern of “1” is arranged on the leftmost subpixel and the rightmost subpixel on the right side. The diffraction grating pixels having the pattern “2” are arranged in the rightmost subpixel and the leftmost subpixel, and the diffraction gratings of the respective patterns are left as they are in the pixels except for the overlapping portion. Arrange the pixels. In this way, diffraction grating pattern data having overlapping patterns can be created.
[0025]
Specifically, in the above example, the diffraction grating pixels A arranged in the pattern “1” have a line width of 0.5 μm, a pitch of 1 μm, a line drawing angle on the mold surface of 0 ° (ie, The angle formed by the groove of the diffraction grating and the light diffraction structure layer 3 is + 45 ° (assuming that the angle θ of the pattern P1 in FIG. 1B is 45 °). The diffraction grating pixel B obtained from the mold portion and arranged in the pattern “2” has the same line width, pitch, and drawing angle of the line on the mold surface as the diffraction grating pixel A, and the grooves of the diffraction grating. And the optical diffraction structure layer 3 is obtained from a mold part having an angle θ of −45 ° (an angle θ of the pattern P2 in FIG. 1B (assuming −45 ° is assumed)).
[0026]
In order to manufacture the light diffraction structure described above, a plurality of patterns and their arrangement on the light diffraction structure, a design data storage device storing a plurality of diffraction grating pixels, and data stored in the design data storage device are used. Based on the design data processing device that creates the diffraction grating pattern data by arranging the diffraction grating pixels in each pattern, converts the diffraction grating pattern data into drawing data, and outputs the drawing light source and the movement and tilt of the drawing stage First, a mold is manufactured using a manufacturing apparatus including a light source / stage control system for controlling the light source.
[0027]
If necessary, the obtained mold is manufactured as a replica mold (hereinafter, the mold or the replica mold is simply referred to as a mold), and the mold is molded by applying heat and pressure to the optical diffraction structure forming layer made of a resin material. Alternatively, the mold surface of the mold is brought into contact with a curable and fluid resin composition such as an ultraviolet curable resin, and after coating with a plastic film as necessary, the resin composition is irradiated with ultraviolet rays from the plastic film. Molding can be performed by curing.
Thereafter, a thin film of a reflective layer is formed on the molded surface, and an adhesive layer is further laminated, so that a seal form that can be easily applied to various objects is obtained. Alternatively, by using a releasable plastic film as mentioned above, a transfer sheet on which a laminated body such as a light diffraction structure layer, a reflective layer, an adhesive layer, etc. can be transferred is formed. You may apply to.
[0028]
【The invention's effect】
According to invention of Claim 1, in the groove | channel which comprises a diffraction grating between several diffraction grating patterns ,
The angle at which the surface of the optical diffraction structure layer intersects with the plane passing through both the center line of the groove opening and the center line of the groove bottom is different between the diffraction grating patterns. It is possible to provide an optical diffraction structure that has an effect of changing the pattern that is visible depending on the condition and that is more difficult to analyze than the conventional one. According to the invention of claim 2, in addition to the effect of the invention of claim 1, since a two-dimensional parameter is taken into consideration as a parameter of the light diffraction structure, an optical diffraction structure with a further change in appearance is provided. Can do. According to the invention of claim 3, since each diffraction grating pattern is composed of minute pixels, an optical diffraction structure suitable for manufacturing a mold using a drawing apparatus can be provided. According to the invention of claim 4, in addition to the effect of the invention of claim 3, different diffraction grating patterns are formed for each subpixel of the unit subpixel array in which the pixels are further subdivided in the overlapping portion of the patterns. Since the diffraction grating pixels are arranged, it is possible to provide an optical diffraction structure in which a visible pattern changes depending on a viewing angle without damaging each of the plurality of patterns. According to the invention of claim 5, in addition to the effect of the invention of claim 3, the adjacent diffraction grating pixels are positioned as sub-pixels in the overlapping portion of patterns to form a unit sub-pixel array, and the unit sub-pixels are arranged. for each sub-pixel of the pixel array, since arranging the diffraction grating pixels constituting different said diffraction grating pattern, although some of the pixels are thinned out, as it utilizes the diffraction grating pixels by the be positioned with subpixel Thus, an optical diffraction structure that can be formed can be provided. According to the sixth aspect of the present invention, when the mold is manufactured by the drawing apparatus, the angle of incidence of the exposure beam on the mold surface is changed between the patterns, whereby the center line of the opening of the diffraction grating and the bottom of the groove are formed. It is possible to provide a method for manufacturing an optical diffraction structure in which the angle at which the plane passing through both of the center lines intersects the surface of the optical diffraction structure layer of the mold forming substrate can be efficiently varied between the patterns. it can. According to the invention of claim 7, in addition to the effect of the invention of claim 6, at the time of beam exposure, the groove width and pitch of the diffraction grating, or the angle of the center line of the groove opening on the surface of the optical diffraction structure layer Therefore, it is possible to provide a method for manufacturing an optical diffraction structure that can provide a product with more variety. According to the invention of claim 8, in addition to the effect of the invention of claim 6 or 7, in addition to the effect of the invention of claim 6 or 7, using a manufacturing apparatus comprising a design data storage device, a design data processing device, a light source / stage control system, etc. Can be generated, and drawing can be performed based on this to provide a method for manufacturing an optical diffraction structure in which the mold can be manufactured efficiently. According to the ninth aspect of the present invention, a unit subpixel array composed of subpixels obtained by subdividing a diffraction grating pixel or a unit subpixel array having the adjacent diffraction grating pixel as a subpixel is set, and each subpixel is set to each subpixel. Since the diffraction grating pixels of the pattern are arranged, it is possible to provide a method for manufacturing an optical diffraction structure in which an overlapping portion is efficiently processed and a product with few defects in each pattern in the overlapping portion can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an application example of a light diffraction structure (hologram seal) of the present invention.
FIG. 2 is a diagram showing a method for manufacturing a mold for manufacturing a light diffraction structure.
FIG. 3 is a diagram illustrating an example of a diffraction grating pixel pattern.
FIG. 4 is a diagram illustrating pattern duplication.
FIG. 5 is a diagram illustrating a unit subpixel arrangement.
FIG. 6 is a diagram illustrating a processing example of an overlapping portion of a pattern.
[Explanation of symbols]
1 card 2 card base 3 light diffraction structure (hologram seal)
4 groove 5 stage 6 light source (6a; beam)

Claims (9)

光回折構造層の表面に、多数の微細な溝の群として形成された回折格子が輪郭された複数の回折格子パターンを有しており、前記回折格子パターンの前記溝において、
前記光回折構造層の表面と、溝の開口部の中心線と溝の底の中心線の両者を通る面とが交差する角度が、前記各回折格子パターン間で相違することを特徴とする光回折構造。
The surface of the optical diffraction structure layer has a plurality of diffraction grating patterns in which a diffraction grating formed as a group of many fine grooves is outlined, and in the grooves of the diffraction grating pattern ,
The angle at which the surface of the optical diffractive structure layer intersects the plane passing through both the center line of the groove opening and the center line of the groove bottom is different between the diffraction grating patterns. Diffraction structure.
前記各回折格子パターン間で、さらに、前記溝の巾、ピッチ、もしくは前記光回折構造層の表面における溝の開口部の中心線の角度の各パラメータのうちの少なくともいずれかが相違することを特徴とする請求項1記載の光回折構造。Further, at least one of the parameters of the groove width, the pitch, or the angle of the center line of the groove opening on the surface of the optical diffraction structure layer is different between the diffraction grating patterns. The light diffraction structure according to claim 1. 前記各回折格子パターンは、回折格子が所定の微小形状に輪郭された領域からなる回折格子画素の集合体からなることを特徴とする請求項1または2記載の光回折構造。  3. The optical diffraction structure according to claim 1, wherein each diffraction grating pattern is composed of an assembly of diffraction grating pixels including a region in which the diffraction grating is outlined in a predetermined minute shape. 異なる前記回折格子パターンを構成する前記回折格子画素どうしが重複する個所において、当該回折格子画素が、
当該回折格子画素領域をさらに細分化した、複数の副画素からなる単位副画素配列を形成し、前記単位副画素配列の前記副画素ごとに、異なる前記回折格子パターンを構成する前記回折格子画素の回折格子が配置されていることを特徴とする請求項3記載の光回折構造。
In places where the diffraction grating pixels each other to configure the different said diffraction grating pattern overlap, the diffraction grating pixels,
The diffraction grating pixel region is further subdivided to form a unit subpixel array composed of a plurality of subpixels, and each of the subpixels of the unit subpixel array has a different diffraction grating pattern. 4. The light diffraction structure according to claim 3, wherein a diffraction grating is disposed.
異なる前記回折格子パターンを構成する前記回折格子画素どうしが重複する個所において、
前記重複する箇所の領域にある複数の当該回折格子画素の各々を、隣接して交互に配置し、その各々を副画素と位置づけて、単位副画素配列と成し、前記単位副画素配列の前記副画素ごとに、異なる前記回折格子パターンを構成する前記回折格子画素が配置されていることを特徴とする請求項3記載の光回折構造。
Where the diffraction grating pixels constituting the different diffraction grating patterns overlap,
Each of the plurality of diffraction grating pixels in the overlapping part region is alternately arranged adjacently, each of which is positioned as a sub-pixel, forming a unit sub-pixel array, and the unit sub-pixel array 4. The optical diffraction structure according to claim 3, wherein the diffraction grating pixels constituting the different diffraction grating patterns are arranged for each sub-pixel.
形成用基板の表面に、請求項1記載の複数の回折格子パターンに対応する位置ごとに、請求項1記載のの開口部の中心線と溝の底の中心線の両者を通る面が前記型形成用基板の光回折構造層の表面と交差する角度を変えたビーム露光による描画を行なうことにより、回折格子の多数の微細な溝を形成して型を製造し、得られた前記型を使用して樹脂材表面に、前記型の型面形状を転移させることからなる光回折構造の製造方法。A surface passing through both the center line of the groove opening and the center line of the bottom of the groove is formed on the surface of the mold forming substrate for each position corresponding to the plurality of diffraction grating patterns according to claim 1. By performing drawing by beam exposure at different angles intersecting the surface of the optical diffraction structure layer of the mold forming substrate, a large number of fine grooves of the diffraction grating are formed to manufacture the mold, and the obtained mold The manufacturing method of the optical diffraction structure which transfers the mold surface shape of the said type | mold to the resin material surface using a. 前記ビーム露光を行なう際に、さらに、前記パターンごとに、前記溝の巾、ピッチ、もしくは前記光回折構造層の表面における溝の開口部の中心線の角度のうちの少なくともいずれかを相違させることを特徴とする請求項6記載の光回折構造の製造方法。At the time of performing the beam exposure, at least one of the groove width, pitch, or the angle of the center line of the groove opening on the surface of the optical diffraction structure layer is made different for each pattern. The method for producing an optical diffraction structure according to claim 6. 前記溝に対応する所定の線巾、ピッチ、および角度の線を所定の輪郭内に配置した回折格子画素を複数準備した後、前記各パターン内に、前記回折格子画素を選択して配置し、回折格子パターンデータを作成すること、および前記のパターンごとに、溝が前記型形成用基板の光回折構造層の表面となす角度を設定することとを行なった後、前記回折格子パターンデータに基づいて前記描画を行なうための描画用データを作成し、前記の溝が前記型形成用基板の表面となす角度ごとに、前記描画を行なうことを特徴とする請求項6または7記載の光回折構造の製造方法。  After preparing a plurality of diffraction grating pixels in which lines of a predetermined line width, pitch, and angle corresponding to the grooves are arranged in a predetermined contour, the diffraction grating pixels are selected and arranged in each pattern, Based on the diffraction grating pattern data, after creating diffraction grating pattern data and setting an angle formed by the groove with the surface of the optical diffraction structure layer of the mold forming substrate for each of the patterns 8. The optical diffraction structure according to claim 6, wherein drawing data for performing the drawing is created, and the drawing is performed at each angle formed by the groove with the surface of the mold forming substrate. Manufacturing method. 少なくとも前記各パターンが重複する区域において、前記回折格子画素を細分割した副画素からなる単位副画素配列、もしくは隣接する前記回折格子画素を副画素とする単位副画素配列を設定すると共に、前記単位副画素配列中のいずれの前記副画素に、いずれの前記パターンに対応付けられるべき前記回折格子画素を配列すべきかのルールを前以って決めておき、前記ルールに基づいて、前記副画素ごとに前記各回折格子画素を配置することを特徴とする請求項8記載の光回折構造の製造方法。  At least in a region where each pattern overlaps, a unit subpixel array composed of subpixels obtained by subdividing the diffraction grating pixels, or a unit subpixel array having the adjacent diffraction grating pixels as subpixels are set, and the unit A rule as to which of the sub-pixels in the sub-pixel array should be arranged with which of the diffraction grating pixels to be associated with the pattern is determined in advance. The method of manufacturing an optical diffraction structure according to claim 8, wherein each of the diffraction grating pixels is disposed in a position.
JP2001071756A 2001-03-14 2001-03-14 Optical diffraction structure and manufacturing method thereof Expired - Fee Related JP4498629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071756A JP4498629B2 (en) 2001-03-14 2001-03-14 Optical diffraction structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071756A JP4498629B2 (en) 2001-03-14 2001-03-14 Optical diffraction structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002267826A JP2002267826A (en) 2002-09-18
JP4498629B2 true JP4498629B2 (en) 2010-07-07

Family

ID=18929441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071756A Expired - Fee Related JP4498629B2 (en) 2001-03-14 2001-03-14 Optical diffraction structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4498629B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126326A (en) * 2002-10-04 2004-04-22 Toppan Printing Co Ltd Diffraction grating array having blazed diffraction grating pattern
US20070096359A1 (en) * 2003-07-08 2007-05-03 Torfs Jan C Method for surface marking a molded article
JP6382482B2 (en) * 2011-06-16 2018-08-29 大日本印刷株式会社 Diffraction grating recording medium
JP6382483B2 (en) * 2011-10-12 2018-08-29 大日本印刷株式会社 Diffraction grating recording medium
CN106019434B (en) * 2016-07-27 2018-09-18 京东方科技集团股份有限公司 Optical diaphragm and preparation method thereof, display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116805A (en) * 1988-09-30 1990-05-01 Lgz Landis & Gyr Zug Ag Diffraction element
JPH052148A (en) * 1991-01-29 1993-01-08 Toppan Printing Co Ltd Display with diffraction grating pattern
JPH06337622A (en) * 1993-05-27 1994-12-06 Dainippon Printing Co Ltd Hologram recording medium and method and device for generating the medium
JPH08146209A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Production of curved surface grating
JPH103002A (en) * 1996-06-14 1998-01-06 Nikon Corp Method for manufacturing blaze diffraction optical element, and device therefor
JPH10206621A (en) * 1997-01-22 1998-08-07 Toshiba Corp Manufacture of holographic optical element
JP2000100758A (en) * 1998-09-18 2000-04-07 Canon Inc Electron-beam lithography apparatus and pattern formation
JP2000304912A (en) * 1999-04-22 2000-11-02 Toppan Printing Co Ltd Diffraction grating pattern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116805A (en) * 1988-09-30 1990-05-01 Lgz Landis & Gyr Zug Ag Diffraction element
JPH052148A (en) * 1991-01-29 1993-01-08 Toppan Printing Co Ltd Display with diffraction grating pattern
JPH06337622A (en) * 1993-05-27 1994-12-06 Dainippon Printing Co Ltd Hologram recording medium and method and device for generating the medium
JPH08146209A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Production of curved surface grating
JPH103002A (en) * 1996-06-14 1998-01-06 Nikon Corp Method for manufacturing blaze diffraction optical element, and device therefor
JPH10206621A (en) * 1997-01-22 1998-08-07 Toshiba Corp Manufacture of holographic optical element
JP2000100758A (en) * 1998-09-18 2000-04-07 Canon Inc Electron-beam lithography apparatus and pattern formation
JP2000304912A (en) * 1999-04-22 2000-11-02 Toppan Printing Co Ltd Diffraction grating pattern

Also Published As

Publication number Publication date
JP2002267826A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US11529822B2 (en) Micro-optic device with integrated focusing element and image element structure
US20180257320A1 (en) Display and labeled article
JP5163036B2 (en) Display and labeled goods
US10987967B2 (en) Micro-optic device with double sided optical effect
JP4930937B2 (en) Security element
JP6550338B2 (en) Security device
JP5303879B2 (en) Display and labeled goods
JP4905824B2 (en) Printed information
JP4876853B2 (en) OVD medium and printed information including OVD medium
CN107533814A (en) Safety means and manufacture method
JP2018504634A (en) Method for forming a security element and security document
CZ2003252A3 (en) Optically active structure for personalization of cards and the like objects as well as process for producing the same
JP4940858B2 (en) display
JP4498629B2 (en) Optical diffraction structure and manufacturing method thereof
JP2007309960A (en) Display and method for manufacturing the same
JP4992381B2 (en) Diffraction grating pattern and its verification method
JP2013020084A (en) Display body with computer-generated hologram, and labeled article
JP5482391B2 (en) Image display body and information medium
JP2004151182A (en) Light guide type diffraction grating display body
US20220326540A1 (en) Micro-Optic Device
US10908330B2 (en) Display
JP6061192B2 (en) Three-dimensional display formed body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4498629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees