JP4498200B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP4498200B2
JP4498200B2 JP2005119726A JP2005119726A JP4498200B2 JP 4498200 B2 JP4498200 B2 JP 4498200B2 JP 2005119726 A JP2005119726 A JP 2005119726A JP 2005119726 A JP2005119726 A JP 2005119726A JP 4498200 B2 JP4498200 B2 JP 4498200B2
Authority
JP
Japan
Prior art keywords
image
forming apparatus
image forming
cleaning blade
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005119726A
Other languages
Japanese (ja)
Other versions
JP2006301092A5 (en
JP2006301092A (en
Inventor
正治 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005119726A priority Critical patent/JP4498200B2/en
Publication of JP2006301092A publication Critical patent/JP2006301092A/en
Publication of JP2006301092A5 publication Critical patent/JP2006301092A5/ja
Application granted granted Critical
Publication of JP4498200B2 publication Critical patent/JP4498200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真システムを用いて画像を形成する複写機、プリンタ、ファクシミリ等の画像形成装置に関する。   The present invention relates to an image forming apparatus such as a copying machine, a printer, and a facsimile that forms an image using an electrophotographic system.

一般的に、複写機、プリンタ、ファクシミリのように画像を紙等の記録媒体に記録する画像形成装置では、画像を記録媒体に記録するシステムとして、電子写真システムが採用されている。電子写真システムは、表面に感光物質が塗布された感光ドラムを像担持体とする。まず、感光ドラムの表面が一様に帯電された後に、感光ドラムの表面にレーザ光が照射され、照射された部分と照射されなかった部分との間に電位差が与えられる。次に、現像剤に含まれる帯電したトナーが感光ドラムの表面に付着することによって、感光ドラムの表面上にトナー像が形成される。その後、そのトナー像が記録媒体に転写され、記録媒体上に画像が形成される。   In general, in an image forming apparatus that records an image on a recording medium such as paper such as a copying machine, a printer, and a facsimile, an electrophotographic system is employed as a system for recording the image on the recording medium. In an electrophotographic system, a photosensitive drum having a surface coated with a photosensitive material is used as an image carrier. First, after the surface of the photosensitive drum is uniformly charged, the surface of the photosensitive drum is irradiated with laser light, and a potential difference is given between the irradiated portion and the non-irradiated portion. Next, the charged toner contained in the developer adheres to the surface of the photosensitive drum, whereby a toner image is formed on the surface of the photosensitive drum. Thereafter, the toner image is transferred to a recording medium, and an image is formed on the recording medium.

最近では、出力機器の高画質化、低ランニングコスト化等の要求が強まり、上記電子写真システムで用いられる像担持体である感光ドラムとしては、高分解能の必要性から、より感光層膜厚の薄いものが使用され、また、その上で、低ランニングコスト化のために、感光ドラム自身の寿命を長くする必要性から、感光体表面の電気的、機械的強度や耐磨耗性向上が図られている。   Recently, demands such as higher image quality and lower running cost of output devices have increased, and the photosensitive drum as an image carrier used in the electrophotographic system has a higher photosensitive layer thickness because of the necessity of high resolution. Thin ones are used, and in addition, in order to reduce the running cost, it is necessary to extend the life of the photosensitive drum itself, so that the electrical, mechanical strength and abrasion resistance of the photosensitive member surface can be improved. It has been.

しかしそのような感光ドラムを用いる画像形成装置には、以下のような課題が発生した。   However, an image forming apparatus using such a photosensitive drum has the following problems.

高強度、耐磨耗性の高い高耐久感光ドラムが使用されようになったため、感光ドラム表面が削れることによるリフレシュがされなくなり、帯電等での電気的ダメージや、放電生成物の付着等による表面劣化、クリーニングブレード等との摺擦による機械的ダメージ等が長期的に蓄積し、感光ドラム表面の滑り性(特に対クリーニングブレード)が低下しクリーニングブレードのビビリや鳴き、捲れ等が発生し易くなってくる。更に感光体表面が削れないため、放電生成物の除去が成されず、画像流れが発生してくるという問題点が生じた。そこでこの問題点を解決するためにこれまでに様々な手法が考えられてきた。   High-strength, high-abrasion photosensitive drums with high durability are now used, so the surface of the photosensitive drum is not refreshed due to scraping, electrical damage due to charging, etc., surface due to adhesion of discharge products, etc. Deterioration, mechanical damage due to rubbing with the cleaning blade, etc. accumulates over the long term, reducing the slipperiness of the photosensitive drum surface (especially the cleaning blade) and making the cleaning blade more susceptible to chatter, squealing, and wobbling. Come. Further, since the surface of the photosensitive member cannot be scraped, the discharge product is not removed, and there is a problem in that image flow occurs. Therefore, various methods have been considered so far to solve this problem.

例えばヒーターによる加熱で水分吸着による感光体表面の低抵抗化を防ぎ画像流れを防止するという手法がある(特許文献1参照)。しかしながら、ヒーターを設けることは熱制御手段等も必要となりその構成が煩雑化するのみならず、特に複写機、プリンタの小型化、パーソナル化の中でヒーターを用いると、システムが複雑になってしまう。また、ヒーターの昇温には一定の時間を要し、電源を入れてからプリントするまでの時間(ウォームアップタイム)が長く、そのための消費電力を要する。また、感光体が加熱されて、トナーのTG温度(ガラス転移温度)近くまで昇温されると、感光体表面にトナーが固着してしまう。という種々の問題が発生する。また別の手法として、弾性ローラにより感光体表面を摺擦してコロナ生成物を取り除く方法等が考えられている(特許文献2参照)。この方法では、摺擦力は十分に発揮されるが、感光ドラム表面からかきとり、自身に付着したトナーは更に他の手段でかきとらないと、いつまでもローラに付着しているため、感光ドラムとローラ間で摺擦を繰り返すことにより、融着を起こしてしまう。また逆に、十分にローラ表面からのかきとりが成されて、転写残トナーが少な過ぎる場合、感光ドラム表面に対してローラ表面が直接接触、摺擦されて感光ドラム表面が傷ついてしまうことがあった。   For example, there is a method of preventing image flow by preventing a reduction in resistance of the surface of the photoreceptor due to moisture adsorption by heating with a heater (see Patent Document 1). However, the provision of a heater not only requires a heat control means and the configuration thereof becomes complicated, but also the system becomes complicated especially when the heater is used in the miniaturization and personalization of copying machines and printers. . Moreover, a certain time is required for raising the temperature of the heater, and the time (warm-up time) from when the power is turned on until printing is long, and power consumption for that is required. Further, when the photosensitive member is heated to a temperature close to the TG temperature (glass transition temperature) of the toner, the toner adheres to the surface of the photosensitive member. Various problems occur. As another method, a method of removing the corona product by rubbing the surface of the photoreceptor with an elastic roller is considered (see Patent Document 2). In this method, the rubbing force is sufficiently exerted, but since the toner scraped off from the surface of the photosensitive drum and adhering to itself is not further scraped off by other means, it is adhered to the roller indefinitely. Repeated rubbing between them causes fusion. Conversely, if the roller surface is sufficiently scraped and the transfer residual toner is too small, the surface of the photosensitive drum may be damaged by direct contact and rubbing against the surface of the photosensitive drum. It was.

実公平1−34205号公報No. 1-334205 特開昭61−100780号公報JP-A-61-100780

本発明は上記問題を解決するものであって、高耐久(高強度、高耐磨耗性)感光体を用いながらも長期に渡り安定したクリーニング性能を保ち、また画像流れも発生させず、高寿命、高画質、低ランニングコストの画像形成装置を提供することを目的としている。   The present invention solves the above-mentioned problems, and maintains a stable cleaning performance for a long period of time while using a highly durable (high strength, high wear resistance) photosensitive member, and does not cause image flow, and has a high An object of the present invention is to provide an image forming apparatus having a long life, high image quality and low running cost.

上記目的は本発明の下記の構成を特徴とする画像形成装置により達成される。   The above object is achieved by an image forming apparatus having the following configuration according to the present invention.

(1)少なくとも、導電性支持体上に感光層を有する像担持体、該像担持体を帯電する帯電手段、帯電された像担持体に静電潜像を形成する静電潜像形成手段静電潜像にトナーを転移現像する現像手段、像担持体上に形成されたトナー像を記録媒体に転写する転写手段、転写残トナーを像担持体上から除去するクリーニング手段を有する画像形成装置において、
該像担持体は25℃湿度50%の環境下でビッカース四角錐ダイヤモンド圧子を用いて硬度試験を行い、最大荷重6mNで押し込んだ時のHU(ユニバーサル硬さ値)が150N/mm2以上220N/mm2以下であり、かつ弾性変形率Weが40%以上65%以下である像担持体であって、
該像担持体は表面粗さRzが0.2〜3.0μm、表面凹凸平均間隔Smが10〜100μmであり、かつ表面の尖り度Rkuが3<Rku<20の範囲にあって、
該像担持体表面上には、粒子形状が立方体状及び/または直方体状である1次粒子の粒径が30〜300nmの無機微粉体が供給されることを特徴とする画像形成装置。
(1) at least an image bearing member having a photosensitive layer on a conductive support, a charging means, an electrostatic latent image forming means for forming an electrostatic latent image on the charged image bearing member to charge the image bearing member, developing means for transfer developed toner to the electrostatic latent image, transfer means for transferring to a recording medium the toner image formed on an image bearing member, an image having a cleaning means for removing residual toner from the image bearing member In the forming device,
The image bearing member performs a hardness test using a Vickers quadrangular pyramid diamond indenter under 25 ° C. humidity of 50%, HU when pushed by the maximum load 6 mN (universal hardness value) of 150 N / mm 2 or more 220 N / an image bearing member having an elastic deformation rate We of 40% or more and 65% or less, which is equal to or less than mm 2 ,
The image carrier has a surface roughness Rz of 0.2 to 3.0 μm, a surface irregularity average interval Sm of 10 to 100 μm, and a surface sharpness Rku in the range of 3 <Rku <20,
An image forming apparatus, characterized in that an inorganic fine powder having primary particles having a cubic shape and / or a rectangular parallelepiped shape having a particle size of 30 to 300 nm is supplied on the surface of the image carrier.

(2)前記像担持体表面を摺擦する部材を設けており、その部材がファーブラシであり、ファーブラシの繊維径をA(μm)とすると、Sm>Aであり、ファーブラシが回転駆動することを特徴とする(1)に記載の画像形成装置。 (2) A member for rubbing the surface of the image carrier is provided, and the member is a fur brush. When the fiber diameter of the fur brush is A (μm), Sm> A, and the fur brush is driven to rotate. the image forming apparatus according to the dynamic to Rukoto wherein (1).

(3)前記像担持体表面を摺擦する部材を設けており、その部材が弾性ローラであることを特徴とする(1)に記載の画像形成装置。   (3) The image forming apparatus according to (1), wherein a member for rubbing the surface of the image carrier is provided, and the member is an elastic roller.

)前記帯電工程は接触式ローラ部材により行われ、該接触式ローラー部材の回転軸と該像担持体の回転軸が互いに交差するよう配置されていることを特徴とする(1)〜()に記載の画像形成装置。 ( 4 ) The charging step is performed by a contact roller member, and the rotation axis of the contact roller member and the rotation axis of the image carrier are arranged to intersect each other. The image forming apparatus according to 3 ).

)前記クリーニング工程が該像担持体に接触するクリーニングブレードによって成され、該クリーニングブレードは硬度60〜85(ショア硬さHS)、100%モジュラスが20〜80(kgf/cm2)、反発弾性が5〜50%の範囲にあることを特徴とする(1)〜()に記載の画像形成装置。 ( 5 ) The cleaning step is performed by a cleaning blade that contacts the image carrier. The cleaning blade has a hardness of 60 to 85 (Shore hardness HS), a 100% modulus of 20 to 80 (kgf / cm 2 ), and repulsion. The image forming apparatus according to any one of (1) to ( 4 ), wherein the elasticity is in the range of 5 to 50%.

)前記像担持体表面と前記クリーニングブレードとの間の動摩擦係数μが0.1≦μ≦3であることを特徴とする()に記載の画像形成装置。 ( 6 ) The image forming apparatus according to ( 5 ), wherein a coefficient of dynamic friction μ between the surface of the image carrier and the cleaning blade is 0.1 ≦ μ ≦ 3.

本発明によれば、特定の像担持体表面上に特定の無機微粉体を供給する構成をとることにより、長期にわたり画像流れやクリーニングブレードのビビリ、鳴き、捲れ等の発生しない安定した画像形成を行える効果を有する。   According to the present invention, by adopting a configuration in which a specific inorganic fine powder is supplied onto the surface of a specific image carrier, stable image formation that does not cause image flow, cleaning blade chatter, squealing, or blurring over a long period of time is achieved. Has the effect of being able to do.

以下本発明に係る画像形成装置の実施形態及び実施例の構成、動作を図面を参照して説明する。   The configuration and operation of an image forming apparatus according to an embodiment of the present invention and examples will be described below with reference to the drawings.

図1は本発明に係る画像形成装置の一実施形態である複写機の概略図である。まず複写機全体の概略について説明すると、像担持体である感光体ドラム1には負帯電有機感光体を使用し、現像剤としては負帯電トナーを使用する、いわゆる反転現像方式を利用しているものである。また感光体を一様に帯電させる方式として、低コストな接触帯電方式の一つであるローラ帯電方式を利用しているが、コロナ帯電方式を用いても何ら問題ない。   FIG. 1 is a schematic view of a copying machine as an embodiment of an image forming apparatus according to the present invention. First, the outline of the entire copying machine will be described. A so-called reversal developing system is used in which a negatively charged organic photoreceptor is used for the photosensitive drum 1 as an image carrier and a negatively charged toner is used as a developer. Is. As a method for uniformly charging the photosensitive member, a roller charging method, which is one of low-cost contact charging methods, is used, but there is no problem even if a corona charging method is used.

この複写機の作像プロセスについて説明する。感光体ドラム1はまず帯電装置を構成する帯電ローラ2により一様の電位に帯電され、図示せぬ露光光学系により画像情報に対応したレーザービームLが感光体ドラム1の軸方向に主走査され、感光体ドラム1の回転により副走査される。これにより感光体ドラム1上には画像情報に対応した静電潜像が形成される。この静電潜像は現像装置3によって現像されてトナー像となる。トナー像は転写装置4により記録媒体Pに転写される。この像を転写された記録媒体は、感光体ドラム1から分離されて搬送され、その後定着器5により像を加圧、加熱して定着されてプリントが完了する。一方、転写後の感光体ドラム1上に残留したトナーはクリーニング装置6によって感光ドラム1上より除去される。その後感光体ドラム1上に残留している電荷は、除電ランプ7の除電光により除電され、感光体ドラム1は次回の作像に備えられる。   The image forming process of this copying machine will be described. The photosensitive drum 1 is first charged to a uniform potential by a charging roller 2 constituting a charging device, and a laser beam L corresponding to image information is main-scanned in the axial direction of the photosensitive drum 1 by an exposure optical system (not shown). Sub-scanning is performed by the rotation of the photosensitive drum 1. As a result, an electrostatic latent image corresponding to the image information is formed on the photosensitive drum 1. This electrostatic latent image is developed by the developing device 3 to become a toner image. The toner image is transferred to the recording medium P by the transfer device 4. The recording medium to which the image has been transferred is separated from the photosensitive drum 1 and conveyed, and then the image is fixed by pressurizing and heating the fixing device 5 to complete printing. On the other hand, the toner remaining on the photosensitive drum 1 after the transfer is removed from the photosensitive drum 1 by the cleaning device 6. Thereafter, the charge remaining on the photosensitive drum 1 is neutralized by the neutralizing light from the neutralizing lamp 7, and the photosensitive drum 1 is prepared for the next image formation.

[像担持体]
本発明における像担持体である感光体について以下に説明する(以下、像担持体を感光体、もしくは感光ドラムと称す。)。
[Image carrier]
A photoconductor that is an image carrier in the invention will be described below (hereinafter, the image carrier is referred to as a photoconductor or a photosensitive drum).

本発明に使用される感光体は少なくても表面層が重合或いは架橋し、硬化させた化合物を含有している電子写真感光体であり、その硬化手段は熱や可視光、紫外線等の光、更に放射線を用いることが出来る。従って本発明における表面層を形成する手は、表面層用の重合或いは架橋し硬化させることが出来る化合物を融解、含有している塗布溶液を用い、浸漬コーティング法、スプレーコーティング法、カーテンコーティング法、スピンコーティング等により塗工し、これを前記した硬化手段により硬化するという手順となる。感光体を効率よく大量生産するには含浸コーティング法が最良であり本発明においても浸漬塗布法は可能である。   The photoconductor used in the present invention is an electrophotographic photoconductor containing a compound in which at least the surface layer is polymerized or crosslinked and cured, and the curing means is light such as heat, visible light, ultraviolet light, Furthermore, radiation can be used. Therefore, the hand for forming the surface layer in the present invention uses a coating solution that melts and contains a compound that can be polymerized or crosslinked and cured for the surface layer, dip coating method, spray coating method, curtain coating method, The procedure is such that coating is performed by spin coating or the like, and this is cured by the above-described curing means. The impregnation coating method is the best for efficient mass production of the photoreceptor, and the dip coating method is also possible in the present invention.

本発明の感光体の構成は外径約30mmの導電性基体上に、電荷発生物質と電荷輸送物質の双方を同一の層に含有する層構成の単層型、或いは電荷発生物質を含有する電荷発生層と電荷輸送物質を含有合する電荷輸送層を、この順に、又は逆の順に積層した構成の積層型の何れかである。更に、前記感光層上に表面保護層を形成することも可能である。本発明は、少なくても感光体の表面層が、熱や可視光、紫外線等の光、更に放射線により重合或いは架橋し硬化させることが出来る化合物を含有していればよい。但し、感光体としての特性、特に残留電位など電気的特性及び耐久性の点より電荷発生層/電荷輸送層を、この順に積層した機能分離型の感光体構成、又は、この構成で積層された感光層上に表面保護層を形成した構成が好ましい。   The structure of the photoconductor of the present invention is a single layer type in which both a charge generation material and a charge transport material are contained in the same layer on a conductive substrate having an outer diameter of about 30 mm, or a charge containing a charge generation material. The charge transport layer containing the generation layer and the charge transport material is either of the stacked type in which the layers are stacked in this order or in the reverse order. Furthermore, a surface protective layer can be formed on the photosensitive layer. In the present invention, at least the surface layer of the photoreceptor should contain a compound that can be polymerized or crosslinked and cured by heat, light such as visible light, ultraviolet light, and radiation. However, from the viewpoint of characteristics as a photoreceptor, particularly electrical characteristics such as residual potential and durability, a charge generation layer / charge transport layer is laminated in this order, or a functionally separated photoreceptor structure is laminated. A configuration in which a surface protective layer is formed on the photosensitive layer is preferable.

本発明において、表面層の重合或いは架橋させる化合物の硬化法は、感光体特性の劣化無く残留電位の上昇が起こらず、十分な硬度を示すことが出来る点で、放射線を用いることが好適である。   In the present invention, it is preferable to use radiation in the method of curing the compound for crosslinking or crosslinking the surface layer, since the residual potential does not increase without deterioration of the photoreceptor characteristics and sufficient hardness can be exhibited. .

この際、使用する放射線とは電子線及びガンマ線である。電子線を照射する場合、加速器としてスキャニング型、エレクトロンカーテン型、ブロードビーム型、パルス型及びらミーナ型等の何れの形式も使用することが出来る。電子線を照射する場合に、本発明の感光体における電気特性、及び耐久性能を発現する上で、その照射条件は、加速電圧は250kV以下が好ましく、最適には150kV以下である。また照射線量は好ましくは10KGyから1000KGyの範囲、より好ましくは30KGyから500KGyの範囲である。加速電圧が上記を越えると感光体特性に対する電子線照射のダメージが増加する傾向にある。また、照射線量が上記範囲より少ない場合には硬化が不十分となりやすく、線量が多い場合には感光体特性の劣化が起こりやすいので注意が必要である。   At this time, the radiation used is an electron beam and a gamma ray. When irradiating with an electron beam, any of a scanning type, an electron curtain type, a broad beam type, a pulse type, and a minor type can be used as an accelerator. In the case of irradiating an electron beam, the acceleration voltage is preferably 250 kV or less and optimally 150 kV or less, in order to develop the electrical characteristics and durability of the photoreceptor of the present invention. The irradiation dose is preferably in the range of 10 KGy to 1000 KGy, more preferably in the range of 30 KGy to 500 KGy. If the accelerating voltage exceeds the above, the electron beam irradiation damage tends to increase on the characteristics of the photoreceptor. In addition, it is necessary to be careful since curing is likely to be insufficient when the irradiation dose is less than the above range, and deterioration of the photoreceptor characteristics is likely to occur when the dose is large.

重合或いは架橋し硬化させることの出来る表面層用化合物としては、反応性の高さ、反応速度の速さ、硬化後に達成される硬度の高さの点から、分子内に不飽和重合性官能基を持つものが好ましく、更にその中でもアクリル基、メタクリル基、及びスチレン基をもつ化合物が特に好ましい。   As the surface layer compound that can be polymerized or crosslinked and cured, the unsaturated polymerizable functional group in the molecule has high reactivity, high reaction rate, and high hardness achieved after curing. Among them, compounds having an acrylic group, a methacryl group, and a styrene group are particularly preferable.

本発明に用いる表面保護層の膜厚は0.2〜10μmの範囲が好ましく、より好ましくは0.5〜6μmの範囲である。   The film thickness of the surface protective layer used in the present invention is preferably in the range of 0.2 to 10 μm, more preferably in the range of 0.5 to 6 μm.

また本発明におけるHU(ユニバーサル硬さ値)及び弾性変形率は、圧子に連続的に荷重をかけ、荷重下での押し込み深さを直読し連続的硬さを求められる微小硬さ測定装置フィシャースコープH100V(Fischer社製)を用いて測定した。圧子は対面角136°のビッカース四角錐ダイヤモンド圧子を使用した。荷重の条件は最終荷重6mNまで段階的に(各点0.1sの保持時間で273点)測定した。   In addition, the HU (universal hardness value) and elastic deformation rate in the present invention are the microhardness measuring device Fischerscope in which the indenter is continuously loaded and the indentation depth under the load is directly read to obtain the continuous hardness. Measurement was performed using H100V (Fischer). The indenter used was a Vickers square pyramid diamond indenter with a face angle of 136 °. The load conditions were measured stepwise up to a final load of 6 mN (273 points with a holding time of 0.1 s for each point).

HU(ユニバーサル硬さ値:以下HUと呼ぶ)は、6mNで押し込んだ時の同荷重下での押し込み深さから下記式(1)によって規定される。   HU (universal hardness value: hereinafter referred to as HU) is defined by the following formula (1) from the indentation depth under the same load when indented at 6 mN.

Figure 0004498200
Figure 0004498200

弾性変形率は圧子が膜に対して行った仕事量(エネルギー)、すなわち圧子の膜に対する荷重の増減によるエネルギーの変化より求めたものであり、下記式(2)からその値は求まる。ここでWt(nW)は全仕事量で、Wo(nW)は弾性変形の仕事量である。
弾性変形率We=Wo/Wt ×100(%) (2)
The elastic deformation rate is obtained from the work (energy) performed by the indenter on the membrane, that is, the change in energy due to the increase or decrease of the load of the indenter on the membrane, and the value can be obtained from the following equation (2). Here, Wt (nW) is the total work, and Wo (nW) is the work of elastic deformation.
Elastic deformation rate We = Wo / Wt × 100 (%) (2)

前述の如く、有機電子写真感光体に求められる性能として機械的劣化に対する耐久性の向上が挙げられる。一般的に膜の硬度は外部応力に対する変形量が小さいほど高く、電子写真感光体も当然の如く鉛筆硬度やビッカース硬度が高いものが機械的劣化に対する耐久性が向上すると考えられている。しかしながら、これらの測定により得られる硬度が高いものが必ずしも耐久性の向上を望めたわけではなかった。   As described above, the performance required for the organic electrophotographic photosensitive member includes improved durability against mechanical deterioration. In general, the hardness of the film is higher as the amount of deformation with respect to external stress is smaller, and it is considered that the electrophotographic photosensitive member having higher pencil hardness or Vickers hardness naturally improves durability against mechanical deterioration. However, the high hardness obtained by these measurements has not always been expected to improve durability.

我々は鋭意検討の末、HUと弾性変形率の値が、ある範囲の場合に感光体表面層の機械的劣化が起り難くなることを見出し、本発明に至った。すなわち、ビッカース四角錐ダイヤモンド圧子を用いて硬度試験を行い、最大荷重6mNで押し込んだ時のHUが150N/mm2以上220N/mm2以下であり、かつ、弾性変形率が40%以上65%以下である電子写真感光体を用いることによって飛躍的に向上した。 As a result of intensive studies, we found that mechanical deterioration of the surface layer of the photoconductor hardly occurs when the values of HU and elastic deformation ratio are within a certain range, and the present invention has been achieved. That is, a hardness test is performed using a Vickers square pyramid diamond indenter, the HU when pressed at a maximum load of 6 mN is 150 N / mm 2 or more and 220 N / mm 2 or less, and the elastic deformation rate is 40% or more and 65% or less. By using the electrophotographic photosensitive member, which is

本実施形に用いられる像担持体である感光体表面の磨耗量はテーバー磨耗試験器では2mg以下である。テーバー磨耗試験の試験方法は、テーバー磨耗試験機(Y.S.S.Taber 安田製作所製)の試料台にサンプルを装着し、2個の表面にラッピングテープ(富士フィルム製 品名:C2000)を装着したゴム製の磨耗輪(CS−0)の各々荷重500grをかけ、1000回転後のサンプルの質量減少を精密天秤にて測定する方法である。   The amount of wear on the surface of the photoreceptor, which is the image carrier used in this embodiment, is 2 mg or less in the Taber abrasion tester. The test method for the Taber abrasion test is to mount the sample on the sample stand of the Taber abrasion tester (YSS Taber Yasuda Seisakusho) and attach the wrapping tape (Fuji Film product name: C2000) to the two surfaces. This is a method of applying a load of 500 gr to each rubber worn wheel (CS-0) and measuring the decrease in mass of the sample after 1000 revolutions with a precision balance.

また、本発明では電子写真感光体の表面形状を表面粗さRz(10点平均面粗さ)が0.23.0μm、表面凹凸平均間隔Smが10〜100μmであり、かつ表面の尖り度RKuが3<Rku<20の範囲とする。Rzが0.2μmより小さい場合、クリーニングブレードと感光体表面の接触面積が大きくなりすぎ、ブレードのビビリ、ブレード磨耗、欠け、といった問題が発生し良好なクリーニング性が得られない。同様にSmが100μmより大きくなってもブレード−感光体表面間の密着性が高くなりすぎ良好にクリーニングできない。逆にRzが3μmより大きい、あるいはSmが10μmより小さくなった場合はクリーニングブレードが感光体表面形状に追従しきれず接触面積が低下しすぎ、転写残トナーを塞き止めることが出来なくなりすり抜けといったクリーニング不良が発生する。 In the present invention, the surface shape of the electrophotographic photoreceptor is such that the surface roughness Rz (10-point average surface roughness) is 0.2 to 3.0 μm , the surface unevenness average interval Sm is 10 to 100 μm, and the surface The sharpness RKu is in the range of 3 <Rku <20. When Rz is smaller than 0.2 μm, the contact area between the cleaning blade and the photoreceptor surface becomes too large, and problems such as blade chatter, blade wear, and chipping occur, and good cleaning properties cannot be obtained. Similarly, even when Sm is larger than 100 μm, the adhesion between the blade and the surface of the photoconductor becomes too high to perform good cleaning. On the contrary, when Rz is larger than 3 μm or Sm is smaller than 10 μm, the cleaning blade cannot follow the surface shape of the photosensitive member, the contact area is too low, and the remaining toner cannot be blocked. Defects occur.

次に表面形状を表すパラメータRkuについて説明する。Rku(またはKurtosis)は、ADF(変調密度関数)曲線および表面の「先の尖った状態(Spikiness)」の鋭さの測定値で、図2に示すように感光体表面が正規分布となるような状態ではRku=3であり、上下どちらかに偏りのある尖り具合を有するほど3から離れた値となる。Rkuは以下の式より計算される。ここで、nはそのプロファイル内の要素Yiの数で、Rqは粗さの2乗平均である。   Next, the parameter Rku representing the surface shape will be described. Rku (or Kurtosis) is a measurement of the sharpness of the ADF (Modulation Density Function) curve and the “Spikness” of the surface, as shown in FIG. In the state, Rku = 3, and the value becomes farther from 3 as the sharpness is biased in either the upper or lower direction. Rku is calculated from the following equation. Here, n is the number of elements Yi in the profile, and Rq is the root mean square roughness.

Figure 0004498200
Figure 0004498200

Rkuが3以下の場合、感光体表面形状の凸部に鋭い形状を有するためクリーニングブレードとの接触面積が小さくなる方向である。そのためRz、Smが上記範囲に入っていてもクリーニングブレードによる転写残トナーの塞き止め力が弱いためすり抜けが発生してしまう状況が起こりえる。また接触面積が小さいためにクリーニングブレードによる放電生成物の除去がされにくくなり画像流れが発生しやすい。さらに感光体表面形状が耐久後も維持されるため感光体表面の凸部の尖度の高い部分でクリーニングブレードのエッジ磨耗が激しくなり耐久後のクリーニング性に問題を生じる場合があった。   When Rku is 3 or less, the contact area with the cleaning blade is reduced because the convex portions of the surface shape of the photoreceptor have a sharp shape. For this reason, even if Rz and Sm are within the above ranges, there may be a situation in which slipping-out occurs due to the weak blocking force of the transfer residual toner by the cleaning blade. In addition, since the contact area is small, it is difficult to remove the discharge products by the cleaning blade, and image flow is likely to occur. Further, since the surface shape of the photosensitive member is maintained even after the endurance, the edge of the cleaning blade is severely worn at a portion having a high kurtosis on the surface of the photosensitive member, which may cause a problem in cleaning performance after the endurance.

一方、Rkuを3より大きくするとブレード−感光体表面間の接触面積が適度になり良好なクリーニング性が得られた。   On the other hand, when Rku is larger than 3, the contact area between the blade and the surface of the photoreceptor becomes appropriate, and good cleaning properties are obtained.

以上述べてきたように本発明のような磨耗レートが小さいドラムを使いこなす為にはRz、Sm、Rkuの範囲を適切に設定することが重要となってくる。感光体表面の磨耗レートが大きいものは初期に表面形状を決めてもその形状を維持することが出来ないため耐久後のクリーニング性にあまり関与しない。そして常に表面がリフレッシュされるため放電生成物等が蓄積せずクリーニングブレード−感光体表面間の摩擦係数はそれほど増加しない。一方、本発明のような高耐久性を有する感光体では放電生成物等が蓄積、あるいはブレードでそれらを除去しなければならずブレードにかかる負荷が大きくなりブレード磨耗、ビビリ、捲れといった問題を発生させる。そこで磨耗レートが非常に小さい感光ドラムは長期耐久後も表面形状が維持されるため最初の表面形状決定が重要となる。   As described above, it is important to appropriately set the ranges of Rz, Sm, and Rku in order to make full use of a drum having a low wear rate as in the present invention. Those having a large wear rate on the surface of the photosensitive member are not significantly involved in the cleaning performance after endurance because the shape cannot be maintained even if the surface shape is determined in the initial stage. Since the surface is always refreshed, discharge products and the like do not accumulate, and the friction coefficient between the cleaning blade and the photoreceptor surface does not increase so much. On the other hand, in the photoconductor having high durability as in the present invention, discharge products or the like are accumulated, or they must be removed by the blade, and the load on the blade is increased, causing problems such as blade wear, chattering, and sag. Let Therefore, since the surface shape of a photosensitive drum having a very low wear rate is maintained even after long-term durability, the first surface shape determination is important.

本発明において電子写真感光体の表面の表面粗さは、接触式面粗さ測定機(商品名:サーフコーダSE3500、(株)小坂研究所製)を用いて以下のように測定を行う。   In the present invention, the surface roughness of the surface of the electrophotographic photosensitive member is measured as follows using a contact type surface roughness measuring machine (trade name: Surfcorder SE3500, manufactured by Kosaka Laboratory Ltd.).

検出器:R2μm、0.7mNのダイアモンド針、フィルタ:2CR、カットオフ値:0.8mm、測定長さ:2.5mm、送り速さ:0.1mmとし、JIS規格B0601で定義される10点平均面粗さRzのデータを処理した。また表面の凹凸の平均間隔Smは同様の条件で測定し以下の式から得られる算術平均値である。   Detector: R2 μm, 0.7 mN diamond needle, filter: 2CR, cutoff value: 0.8 mm, measurement length: 2.5 mm, feed rate: 0.1 mm, 10 points defined by JIS standard B0601 Data of average surface roughness Rz was processed. The average spacing Sm of the surface irregularities is an arithmetic average value obtained from the following equation measured under the same conditions.

Figure 0004498200
Smi:凹凸の間隔
n:基準長さ内で凹凸の間隔の個数
Figure 0004498200
Smi: spacing of irregularities n: number of irregularities within the reference length

またRkuはZygo社のNewview 5000システムで測定し、Metroproにより解析を行った値である。測定の際、10Xミラウの干渉対物レンズを使用した。   Rku is a value measured by a Newview 5000 system of Zygo and analyzed by Metropro. During the measurement, a 10X Mirau interference objective lens was used.

次に本発明の電子写真感光体の表面形状を制御する粗面化手段として、研磨シートを含む研磨機の一例を図3に示す。研磨シートは、研磨砥粒が結着樹脂に分散されたものが基材に塗布されたシートである。研磨シート8は空洞の軸aに巻かれており、軸aにシートが送られる方向と逆方向に、研磨シート8に張力が与えられるよう図示しないモータが配置されている。研磨シート8は矢印方向に送られ、ガイドローラ2−1、2−2を介してバックアップローラ11を通り、研磨後のシートはガイドローラ2−3、2−4を介して図示しないモータにより巻き取り手段12に巻き取られる。研磨は、基本的に未処理の研磨シートが感光体表面に常時圧接され、感光体表面を粗面化することで行われる。   Next, FIG. 3 shows an example of a polishing machine including a polishing sheet as roughening means for controlling the surface shape of the electrophotographic photosensitive member of the present invention. The abrasive sheet is a sheet in which abrasive grains are dispersed in a binder resin and applied to a substrate. The polishing sheet 8 is wound around a hollow shaft a, and a motor (not shown) is disposed so that tension is applied to the polishing sheet 8 in a direction opposite to the direction in which the sheet is fed to the shaft a. The polishing sheet 8 is fed in the direction of the arrow, passes through the backup roller 11 through the guide rollers 2-1 and 2-2, and the polished sheet is wound by a motor (not shown) through the guide rollers 2-3 and 2-4. The take-up means 12 is wound up. The polishing is basically performed by constantly pressing an untreated polishing sheet against the surface of the photoconductor to roughen the surface of the photoconductor.

また図4に別の方法で表面形状を制御する砥粒吐出手段の概略図を示す。砥粒の吐出装置9、電子写真感光体10を矢印c方向に回転させるための駆動手段(不示図)、排気装置(不示図)により構成される。所望の回転数で回転される電子写真感光体10の表面に吐出装置9より研磨砥粒が吹付けられ、吐出装置9又は電子写真感光体10がスラスト方向に移動することにより、電子写真感光体の表面全面が粗面化される。その際、図示されない排気装置により、吐出装置9より出た研磨砥粒が吸引される。研磨砥粒は再利用しても良い。粗面化工程に使用される研磨砥粒は、金属、ガラス、樹脂等が好ましい。その中から、電子写真感光体表面形状として上述したに所望の形状が得られるものを選択すればよい。研磨砥粒の粒径は金属の場合1〜100μmが好ましく、さらには5〜60μmが好ましい。樹脂の場合30〜200μmが好ましい。研磨砥粒の形状は、不定形では感光体表面に深い凹部が発生しやすいので球形のほうが好ましい。粗面化の際、複数の粒径、形状、材質の異なる物を用いても良い。   FIG. 4 shows a schematic view of abrasive grain discharging means for controlling the surface shape by another method. It comprises an abrasive discharge device 9, driving means (not shown) for rotating the electrophotographic photosensitive member 10 in the direction of arrow c, and an exhaust device (not shown). The abrasive grains are sprayed from the discharge device 9 onto the surface of the electrophotographic photosensitive member 10 rotated at a desired number of revolutions, and the discharge device 9 or the electrophotographic photosensitive member 10 moves in the thrust direction, whereby the electrophotographic photosensitive member. The entire surface of is roughened. At that time, the abrasive grains discharged from the discharge device 9 are sucked by an exhaust device (not shown). The abrasive grains may be reused. The abrasive grains used in the roughening step are preferably metal, glass, resin or the like. Among them, the electrophotographic photosensitive member surface shape that can obtain the desired shape as described above may be selected. In the case of metal, the abrasive grain size is preferably 1 to 100 μm, and more preferably 5 to 60 μm. In the case of resin, 30-200 micrometers is preferable. The shape of the abrasive grains is preferably spherical if it is indeterminate because deep recesses are likely to occur on the surface of the photoreceptor. In roughening, a plurality of particles having different particle diameters, shapes, and materials may be used.

以上述べた表面形状制御手段は感光体表面として膜を形成、硬化後に粗面化処理を行うことにより所望の表面形状を得る手法について説明したが、基材のシリンダ等を粗し所望の形状となる膜を形成後、硬化させる手段をとっても何ら問題ない。   The surface shape control means described above has described a method for obtaining a desired surface shape by forming a film on the surface of the photoconductor and performing a roughening treatment after curing. There is no problem even if a means for curing is formed after forming the film.

[現像]
本発明の画像形成装置に用いられる現像方法としては、感光ドラムに対して非接触状態で現像する方法(一成分非接触現像)、感光ドラムに対して接触状態で現像する方法(一成分接触現像)、トナー粒子に対して磁性キャリアを混合したものを現像剤として用い、この現像剤を磁気力により搬送し、感光ドラムに対して接触状態で現像する方法(二成分接触現像)、上記二成分現像剤を感光ドラムに対して非接触状態で現像する方法(二成分非接触現像法)の何れも好適に用いることが出来る。本実施形態では現像装置の簡易化、低ランニングコストを達成できることから、磁性トナーを用いた一成分非接触現像とした。
[developing]
As a developing method used in the image forming apparatus of the present invention, a developing method in a non-contact state with respect to the photosensitive drum (one-component non-contact developing), a developing method in a contact state with respect to the photosensitive drum (one-component contact developing) ), A method in which toner particles are mixed with a magnetic carrier as a developer, the developer is conveyed by magnetic force, and developed in contact with a photosensitive drum (two-component contact development), the above two components Any of the methods for developing the developer in a non-contact state with respect to the photosensitive drum (two-component non-contact development method) can be suitably used. In this embodiment, since the developing device can be simplified and low running cost can be achieved, the one-component non-contact development using the magnetic toner is adopted.

[無機微粉体]
本発明では、感光体表面上に粒子形状が立方体状及び/または直方体状である1次粒子の粒径が30〜300nmの無機微粉体を供給する構成とする。無機微粉体は硬度が高く優れた研磨性能を持つ。無機微紛体としては例えばチタン酸ストロンチウム、チタン酸バリウム、チタン酸カルシウム等が用いられる。本発明の実施形態では、粒子形状が立方体状及び/または直方体状であるペロブスカイト型結晶形にすることでその効果を発揮する。本発明で用いる感光体はその高耐久性から上述したようにRz、Sm、Rkuを適切な範囲に設定する必要がある。しかし上記範囲ではクリーニングブレードのビビリ、捲れ、すり抜けといった現象に関しては問題が発生しないが、画像流れや融着といった問題が発生する場合がある。これは感光体表面形状が維持されるため感光体表面の凹部に放電生成物や外添剤、トナー等が蓄積するため起こる現象であると考えられる。この凹部ではクリーニングブレードによる摺擦力が不足する部分が生じ、そこに放電生成物や外添剤等が蓄積する。特に本発明ではRku>3とするため凹部が尖状になっている為その細部までクリーニングブレードによる掻き出し作用を受けることが出来ない。しかしながら無機微粉体として粒子形状が立方体状及び/または直方体状であるペロブスカイト型結晶形のものを感光体表面上に供給すると、この凹部に蓄積する帯電生成物や外添剤の除去を効率的に行える(図9)。これは、粒子形状が立方体状及び/または直方体状であることで、感光体表面との接触面積を大きくすることができ、また立方体または直方体の稜線が感光体表面に当接することで良好な掻き取り性を得ることができるためだと考えられる。この掻き取り作用はクリーニングブレードニップ部で無機微粉体が感光体表面に圧接される際に主に行われると考えられる。
[Inorganic fine powder]
In the present invention, an inorganic fine powder having a particle size of 30 to 300 nm of primary particles having a cubic shape and / or a rectangular parallelepiped shape on the surface of the photoreceptor is supplied. Inorganic fine powder has high hardness and excellent polishing performance. As the inorganic fine powder, for example, strontium titanate, barium titanate, calcium titanate and the like are used. In the embodiment of the present invention, the perovskite crystal form having a cubic and / or rectangular parallelepiped shape is effective. The photoconductor used in the present invention needs to set Rz, Sm, and Rku in appropriate ranges as described above due to its high durability. However, in the above range, there is no problem with phenomena such as chattering, wobbling and slipping of the cleaning blade, but problems such as image flow and fusion may occur. This is considered to be a phenomenon that occurs because discharge products, external additives, toner, and the like accumulate in the recesses on the surface of the photoconductor because the surface shape of the photoconductor is maintained. In this recess, a portion where the rubbing force by the cleaning blade is insufficient is generated, and discharge products, external additives, and the like accumulate therein. In particular, in the present invention, since the concave portion is pointed to satisfy Rku> 3, the details cannot be scraped by the cleaning blade. However, if an inorganic fine powder having a cubic and / or cuboidal perovskite crystal form is supplied onto the surface of the photoreceptor, the charged products and external additives accumulated in the recesses can be efficiently removed. Yes (Fig. 9). This is because the particle shape is cubic and / or rectangular parallelepiped, the contact area with the surface of the photoconductor can be increased, and the ridgeline of the cube or cuboid is in contact with the surface of the photoconductor. It is thought that it is because it is possible to obtain a take-off. This scraping action is considered to be performed mainly when the inorganic fine powder is pressed against the surface of the photoreceptor at the cleaning blade nip.

一方、無機微粉体として不定形あるいは球状のものを用いると、その研磨能力を効果的に発揮できず画像流れを防ぎきれない。   On the other hand, when an amorphous or spherical inorganic fine powder is used, the polishing ability cannot be effectively exhibited and the image flow cannot be prevented.

本発明において使用されるペロブスカイト型結晶のチタン酸ストロンチウムは一次粒子の平均粒径が30nm以上300nm以下であるものが好ましい。平均粒径が30nm未満では当該粒子の研磨効果が不十分であり、一方、300nmを超えると上記研磨効果が強すぎるため感光体キズ、帯電ローラ損傷が発生する場合があるため適さない。研磨性能は無機微粉体の粒径にも大きく関わり、粒径が大きいものほど研磨効果が大きくなる。   The strontium titanate of the perovskite crystal used in the present invention preferably has an average primary particle size of 30 nm to 300 nm. If the average particle size is less than 30 nm, the polishing effect of the particles is insufficient. On the other hand, if the average particle size exceeds 300 nm, the polishing effect is too strong, which may cause damage to the photoconductor and damage to the charging roller. The polishing performance is greatly related to the particle size of the inorganic fine powder, and the larger the particle size, the greater the polishing effect.

感光体表面に上記無機微粉体を供給する手段としては、現像トナーに外添する方法、クリーニング装置内に無機微粉体供給部材を設ける方法等が挙げられるが、特に限定されるものではない。   Examples of means for supplying the inorganic fine powder to the surface of the photoreceptor include a method of externally adding to the developing toner and a method of providing an inorganic fine powder supply member in the cleaning device, but are not particularly limited.

[クリーニング装置]
電子写真システムにおけるクリーニングとしては、感光ドラムの表面がトナー像形成用に何度も繰り返し使用されるため、記録媒体へのトナー像の転写後に、記録媒体に転写されずに感光ドラムの表面に残る残留トナーを十分に除去することが必要となる。残留トナーを除去する方法としては、従来から幾多の提案がなされているが、弾性材料からなるカウンターブレードであるクリーニングブレードを感光ドラムの表面に当接して、残留トナーをかき落とす方法が、低コストであり、電子写真システム全体を簡単でコンパクトな構成にでき、トナー除去効率も優れているので、広く実用化されている。クリーニングブレードの材料としては、高硬度でしかも弾性に富み、耐磨耗性や、機械的強度や、耐油性や、耐オゾン性などに卓越しているウレタンゴムが一般的に用いられている。
[Cleaning device]
As cleaning in the electrophotographic system, the surface of the photosensitive drum is repeatedly used for forming a toner image. Therefore, after the toner image is transferred to the recording medium, it remains on the surface of the photosensitive drum without being transferred to the recording medium. It is necessary to sufficiently remove the residual toner. Many methods have been proposed for removing residual toner, but a method of scraping residual toner by contacting a cleaning blade, which is a counter blade made of an elastic material, with the surface of the photosensitive drum is low cost. Since the entire electrophotographic system can be made simple and compact and has excellent toner removal efficiency, it has been widely put into practical use. As a material for the cleaning blade, urethane rubber is generally used that has high hardness and high elasticity, and is excellent in wear resistance, mechanical strength, oil resistance, ozone resistance, and the like.

図5にクリーニングブレードに関する図を示す。クリーニングブレード8aは板金の先端部に一体的に保持されたポリウレタンゴムからなり、感光体1に対して所定の侵入量δ、設定角θの条件で当接されている。本実施形態では試行錯誤を繰り返して最適条件を見出した結果、硬度60〜85(ショア硬さHS)、100%モジュラスが20〜80(kgf/cm2)、反発弾性が5〜50%の範囲にあれば安定してクリーニングできることが分かった。 FIG. 5 shows a diagram relating to the cleaning blade. The cleaning blade 8a is made of polyurethane rubber that is integrally held at the front end of the sheet metal, and is in contact with the photoreceptor 1 under conditions of a predetermined penetration amount δ and a set angle θ. As a result of repeating trial and error in this embodiment and finding optimum conditions, the hardness is in the range of 60 to 85 (Shore hardness HS), the 100% modulus is 20 to 80 (kgf / cm 2 ), and the resilience is 5 to 50%. It was found that it can be cleaned stably.

次に動摩擦係数μの測定方法について説明する。   Next, a method for measuring the dynamic friction coefficient μ will be described.

感光体が、シート状、平板状、又はエンドレス(無端)のベルト状の場合は、クリーニングブレードと、感光体表面との間の動摩擦係数μは、通常、HEIDON社製の表面性試験装置(形式HEIDON−14)により測定される。クリーニングブレードを一定の荷重(gf)で感光体に押し当て、この状態でクリーニングブレードを感光体表面に対して平行に動かしたときに加わる力(gf)を測定する。動摩擦係数μは、〔感光体に加わる力(gf)〕/〔ブレードに加えた荷重(gf)〕で得られる。   When the photoconductor is in the form of a sheet, flat plate, or endless (endless) belt, the coefficient of dynamic friction μ between the cleaning blade and the surface of the photoconductor is usually a surface property test apparatus (type) manufactured by HEIDON. Measured by HEIDON-14). The cleaning blade is pressed against the photoreceptor with a constant load (gf), and the force (gf) applied when the cleaning blade is moved in parallel with the surface of the photoreceptor in this state is measured. The coefficient of dynamic friction μ is obtained by [force applied to the photoreceptor (gf)] / [load applied to the blade (gf)].

しかしながら電子写真方式の画像形成装置に組み込まれる感光体は、ドラム状の感光体ドラム主流であり、その場合の動摩擦係数μは、感光体ドラム自体の回転トルクT1(kgf・cm)と、クリーニングブレードが荷重F(kgf)で圧接された状態の感光体ドラムに転写工程後の残留トナーが介在した系における回転トルクT2(kgf・cm)とを測定し、下記の式により計算して求められる。ただし、γは感光体ドラムの半径(cm)である。
μ=(T2−T1)/(F・γ)
However, the photoreceptor incorporated in the electrophotographic image forming apparatus is a drum-shaped photoreceptor drum mainstream, and the dynamic friction coefficient μ in this case is the rotational torque T1 (kgf · cm) of the photoreceptor drum itself and the cleaning blade. Is obtained by measuring the rotational torque T2 (kgf · cm) in a system in which residual toner after the transfer step is interposed on the photosensitive drum in a state where the toner is pressed with a load F (kgf), and calculating by the following formula. Where γ is the radius (cm) of the photosensitive drum.
μ = (T2−T1) / (F · γ)

この動摩擦係数μの値としては0.1〜3の範囲であれば良好にクリーニングできた。μが0.1未満だとトナーすり抜けを起こす場合があり、逆に3を超えるとクリーニングブレードのビビリや捲れの発生、クリーニングブレードの磨耗が激しくなる等の問題を引き起こす。動摩擦係数μの調整は先に述べた感光体表面形状によって可能であるし、クリーニングブレードの感光体に対する当接条件によっても可能である。   When the value of the dynamic friction coefficient μ was in the range of 0.1 to 3, it was possible to clean well. If μ is less than 0.1, the toner may slip through. On the other hand, if it exceeds 3, problems such as chattering and squeezing of the cleaning blade and severe wear of the cleaning blade may occur. The adjustment of the dynamic friction coefficient μ can be made according to the surface shape of the photosensitive member described above, and can also be made by the contact condition of the cleaning blade to the photosensitive member.

以下に、実施例を示して、本発明をより具体的に説明する。なお、これらの実施例は、本発明における最良の実施形態の一例ではあるものの、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. These examples are examples of the best mode of the present invention, but the present invention is not limited to these examples.

[実施例1]
本実施例ではユニバーサル硬さ値が200N/mm2、弾性変形率Weが50%の感光体を使用した。また表面の粗面化は、図3に示す装置で研磨シート(商品名:AX−3000(富士写真フィルム(株)製)、研磨砥粒:アルミナ(平均粒径:5μm)、基材:ポリエステルフィルム(厚さ:75μm)を用い、研磨シート送りスピード:150mm/sec、感光体回転数:15rpm、押し当て圧:7.5N/m2、シート及び電子写真感光体の回転方向は同方向、バックアップローラは外径:直径40cm、アスカーC硬度:40のものを用い、300sec間粗面化を行った。感光体表面のRz、Sm、RkuはそれぞれRz=0.33μm、Sm=15μm、Rku=4であった。
[Example 1]
In this embodiment, a photoconductor having a universal hardness value of 200 N / mm 2 and an elastic deformation rate We of 50% was used. Further, the surface roughening was performed by using the apparatus shown in FIG. 3 with a polishing sheet (trade name: AX-3000 (manufactured by Fuji Photo Film Co., Ltd.)), polishing abrasive grains: alumina (average particle diameter: 5 μm), and substrate: polyester. Using a film (thickness: 75 μm), polishing sheet feed speed: 150 mm / sec, photoreceptor rotation speed: 15 rpm, pressing pressure: 7.5 N / m 2 , the rotation direction of the sheet and the electrophotographic photoreceptor is the same direction, A backup roller having an outer diameter of 40 cm and an Asker C hardness of 40 was used and roughened for 300 sec.Rz, Sm, and Rku on the surface of the photoreceptor were Rz = 0.33 μm, Sm = 15 μm, and Rku, respectively. = 4.

無機微粉体の感光体上への供給は現像トナーに外添することにより行った。本例では一次粒子の平均粒径が100nmのペロブスカイト型結晶のチタン酸ストロンチウム(図6に示す)をヘンシェルミキサーFM10Bにて現像トナー100質量部に対して、1.5質量部外添したものを用いた。   The inorganic fine powder was supplied onto the photoreceptor by externally adding it to the developing toner. In this example, a strontium titanate perovskite crystal having an average primary particle diameter of 100 nm (shown in FIG. 6) is externally added by 1.5 parts by mass to 100 parts by mass of the developing toner with a Henschel mixer FM10B. Using.

本実施例ではクリーニングブレードとして硬度70(ショア硬さHS)、100%モジュラス25kgf/cm2、反発弾性11%のウレタンゴムを用い、設定角θ=25°、侵入量δ=0.7mm、感光体2への当接圧が約25g/cmとなるようにした。 In this embodiment, urethane rubber having a hardness of 70 (Shore hardness HS), a 100% modulus of 25 kgf / cm 2 and a rebound resilience of 11% is used as a cleaning blade, a set angle θ = 25 °, an intrusion amount δ = 0.7 mm, and a photosensitivity. The contact pressure to the body 2 was set to about 25 g / cm.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は見られたが、実使用上問題の無いレベルであった。感光体表面に付着した放電生成物等の除去が成されないと感光体表面とクリーニングブレードとの摩擦力が増大し、ブレード磨耗が大きくなる。そこでブレード磨耗量を見ることで感光体表面が効果的にリフレッシュされているかを判断することができる。またブレード磨耗が進むと転写残トナーを塞き止める力が弱くなり、すり抜けといったクリーニング不良に繋がる。感光体表面とクリーニングブレードとの間の動摩擦係数μは0.9であった。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. Although the cleaning blade was worn, it was at a level causing no problem in practical use. If the discharge products and the like attached to the surface of the photosensitive member are not removed, the frictional force between the surface of the photosensitive member and the cleaning blade increases, and blade wear increases. Therefore, it is possible to determine whether the surface of the photoreceptor is effectively refreshed by looking at the blade wear amount. Further, as the blade wear progresses, the force to block the transfer residual toner becomes weak, which leads to cleaning failure such as slipping through. The dynamic friction coefficient μ between the photoreceptor surface and the cleaning blade was 0.9.

[比較例1]
本比較例では感光体上に供給する無機微粉体として一次粒子の平均粒径が500nmの不定形チタン酸ストロンチウム(図7に示す)を用いた。その他の構成は実施例1と同様とした。高温高湿下(30℃80%)で10万枚耐久評価した結果、耐久初期より画像流れが発生した。ブレードは実施例1に比べ激しく損傷しており耐久後半はトナーのすり抜けが見られた。
[Comparative Example 1]
In this comparative example, amorphous strontium titanate (shown in FIG. 7) having an average primary particle size of 500 nm was used as the inorganic fine powder supplied onto the photoreceptor. Other configurations were the same as those in Example 1. As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (80 ° C. at 30 ° C.), an image flow occurred from the beginning of the endurance. The blade was severely damaged as compared with Example 1, and toner slipping was observed in the second half of the durability.

[実施例2]
本実施例ではユニバーサル硬さ値が200N/mm2、弾性変形率Weが50%の感光体を使用した。粗面化処理は図4の装置を用いて、感光体回転数:30rpmとして、研磨砥粒:形状ガラスビーズ(平均粒径;40μm)を用い、乾式ブラストで表面の粗面化を行った。表面形状は、Rz=0.8μm、Sm=45μm、Rku=6.5であった。無その他の構成は実施例1と同様にした。
[Example 2]
In this embodiment, a photoconductor having a universal hardness value of 200 N / mm 2 and an elastic deformation rate We of 50% was used. For the roughening treatment, the surface of the surface was roughened by dry blasting using the apparatus shown in FIG. 4 at a rotational speed of the photosensitive member of 30 rpm and using abrasive grains: shaped glass beads (average particle size: 40 μm). The surface shape was Rz = 0.8 μm, Sm = 45 μm, and Rku = 6.5. The other configurations were the same as in Example 1.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は見られたが、実使用上問題の無いレベルであった。感光体表面とクリーニングブレードとの間の動摩擦係数μは1.1であった。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. Although the cleaning blade was worn, it was at a level causing no problem in practical use. The dynamic friction coefficient μ between the photoreceptor surface and the cleaning blade was 1.1.

[実施例3]
本実施例ではクリーニングブレードの感光ドラム回転方向上流側に回転駆動するファーブラシを設けた。ファーブラシは感光体との当接部において感光体と同方向に移動し対感光体110%の周速となるよう駆動させた。ファーブラシは繊維径30μmのアクリル素材、繊維密度100本/mm2、対感光体進入量1mmとした。その他の構成は実施例2と同様にした。
[Example 3]
In this embodiment, a fur brush that is rotationally driven is provided upstream of the cleaning blade in the photosensitive drum rotation direction. The fur brush moved in the same direction as the photoconductor at the contact portion with the photoconductor, and was driven so that the peripheral speed of the photoconductor was 110%. The fur brush was made of an acrylic material having a fiber diameter of 30 μm, a fiber density of 100 fibers / mm 2 , and an amount of entry to the photoreceptor of 1 mm. Other configurations were the same as those in Example 2.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は実施例1に比べさらに良いものとなっていた。これはファーブラシによる感光体表面摺擦と、ファーブラシが無機微粉体を担持し、より無機微粉体の研磨性能を引き出しているためだと考えられる。またファーブラシ繊維径を感光体表面凹凸間隔:Smより小さくしていることで凹部にブラシ繊維が入り込みより確実に凹部に蓄積した放電生成物等を掻き取る効果が得られると考えられる。感光体表面とクリーニングブレードとの間の動摩擦係数μは0.8であった。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. The cleaning blade wear was better than that in Example 1. This is considered to be because the surface of the photoreceptor is rubbed with the fur brush and the fur brush carries the inorganic fine powder, and the polishing performance of the inorganic fine powder is further extracted. Further, it is considered that the effect of scraping off the discharge products and the like that have entered the recesses more reliably and accumulated in the recesses can be obtained by setting the fur brush fiber diameter to be smaller than the photoreceptor surface irregularity interval: Sm. The dynamic friction coefficient μ between the surface of the photoreceptor and the cleaning blade was 0.8.

[実施例4]
本実施例ではクリーニングブレードの感光ドラム回転方向上流側に回転駆動する弾性ローラを設けた。弾性ローラとしては、発泡ポリウレタン、発泡シリコン、発泡EPDM等のスポンジローラが好適に用いられ、本実施例では発泡ポリウレタンを使用した。スポンジローラの外径は15.4mmであり、その硬度は30°(アスカーC)である。ローラ硬度としては10〜50°(アスカーC)が好ましく、10°以下では摺擦力不足で期待する効果が得られず、50°以上では、感光体に対して傷をつけてしまうから場合がある。感光体へは、侵入量0.6mmで、線圧40g/cmで当接しており、感光体の回転方向においてクリーニングブレード8aの上流側に、回転可能に配設されており、感光体との当接部において感光体と同方向に移動し対感光体110%の周速となるよう駆動させた。その他の構成は実施例1と同様にした。
[Example 4]
In this embodiment, an elastic roller that is rotationally driven is provided upstream of the cleaning blade in the photosensitive drum rotation direction. As the elastic roller, a sponge roller such as foamed polyurethane, foamed silicon, foamed EPDM or the like is preferably used. In this embodiment, foamed polyurethane is used. The outer diameter of the sponge roller is 15.4 mm, and its hardness is 30 ° (Asker C). The roller hardness is preferably 10 to 50 ° (Asker C). If the roller hardness is 10 ° or less, the expected effect cannot be obtained due to insufficient rubbing force. If the roller hardness is 50 ° or more, the photosensitive member may be damaged. is there. An intrusion amount of 0.6 mm is in contact with the photosensitive member at a linear pressure of 40 g / cm, and is rotatably disposed upstream of the cleaning blade 8a in the rotational direction of the photosensitive member. The contact portion was moved in the same direction as the photoconductor, and was driven so that the peripheral speed of the photoconductor was 110%. Other configurations were the same as those in Example 1.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は実施例1に比べさらに良いものとなっていた。これは弾性ローラによる感光体表面摺擦と、スポンジローラ表面又はスポンジセルに担持した無機微粉体が効果的に感光体表面を摺擦させているためだと考えられる。また弾性ローラが感光体に圧接する際、凹部に存在する無機微粉体を、より放電生成物等を掻き出す方向に作用させていると考えられる。感光体表面とクリーニングブレードとの間の動摩擦係数μは0.6であった。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. The cleaning blade wear was better than that in Example 1. This is presumably because the surface of the photoconductor is rubbed by the elastic roller and the surface of the photoconductor is effectively rubbed by the inorganic fine powder supported on the surface of the sponge roller or sponge cell. Further, it is considered that when the elastic roller is in pressure contact with the photosensitive member, the inorganic fine powder existing in the concave portion acts more in the direction of scraping out the discharge products and the like. The coefficient of dynamic friction μ between the photoreceptor surface and the cleaning blade was 0.6.

[実施例5]
本実施例ではクリーニングブレードの感光ドラム回転方向上流側に回転駆動するマグローラを設けた。マグローラは感光体との当接部において感光体と同方向に移動し対感光体110%の周速となるよう駆動させた。マグローラには現像トナーと同じ磁性トナーが担持され磁気ブラシを形成する。その他の構成は実施例1と同様にした。
[Example 5]
In this embodiment, a mag roller that is rotationally driven is provided upstream of the cleaning blade in the photosensitive drum rotation direction. The mag roller moved in the same direction as the photosensitive member at the contact portion with the photosensitive member, and was driven so that the peripheral speed of the photosensitive member was 110%. The magnetic roller carries the same magnetic toner as the developing toner to form a magnetic brush. Other configurations were the same as those in Example 1.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は実施例1に比べさらに良いものとなっていた。これは磁気ブラシによる感光体表面摺擦と、磁気ブラシが無機微粉体を担持し、より効果的に無機微粉体の研磨性能を引き出しているためだと考えられる。また磁性トナーの粒径は7μmのものを使用しているため感光体表面の凹部に磁気ブラシが入り込みより確実に凹部に蓄積した放電生成物等を掻き取る効果が得られると考えられる。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. The cleaning blade wear was better than that in Example 1. This is considered to be because the surface of the photoreceptor is rubbed by the magnetic brush and the magnetic brush carries the inorganic fine powder, and the polishing performance of the inorganic fine powder is more effectively extracted. Further, since the magnetic toner having a particle diameter of 7 μm is used, it is considered that the magnetic brush enters the concave portion on the surface of the photoreceptor and the effect of scraping the discharge product and the like accumulated in the concave portion more reliably can be obtained.

本実施例では現像トナーとして磁性トナーとしているため、磁性トナーを磁気ブラシとして用いたが、二成分現像系でキヤリアを用いる場合、そのキヤリアを磁気ブラシとして用いても良い。感光体表面とクリーニングブレードとの間の動摩擦係数μは0.6であった。   In this embodiment, since magnetic toner is used as the developing toner, the magnetic toner is used as the magnetic brush. However, when the carrier is used in the two-component developing system, the carrier may be used as the magnetic brush. The coefficient of dynamic friction μ between the photoreceptor surface and the cleaning blade was 0.6.

[実施例6]
本実施例では帯電ローラの回転軸と感光体の回転軸との間に角度0.2°の交差角を設けてある(図8に示す)。交差角を設ける目的は、外添剤等からの帯電ローラの汚染を出来るだけ拡散させ、局所的に発生する帯電不良を防ぐという目的もあるが、本実施例の場合、その摺擦力に期待している。すなわち、帯電ローラと感光ドラムの回転方向のベクトルが異なるため、そのニップ部において摺擦力が発生する。その他の構成は実施例1と同様にした。
[Example 6]
In this embodiment, a crossing angle of 0.2 ° is provided between the rotating shaft of the charging roller and the rotating shaft of the photosensitive member (shown in FIG. 8). The purpose of providing the crossing angle is to diffuse the contamination of the charging roller from external additives as much as possible to prevent local charging failure, but in the case of this embodiment, the frictional force is expected. is doing. That is, since the vectors in the rotation direction of the charging roller and the photosensitive drum are different, a rubbing force is generated at the nip portion. Other configurations were the same as those in Example 1.

以上の構成で高温高湿下(30℃80%)で10万枚耐久評価した結果、画像流れ、融着、クリーニング性、共に良好な結果が得られた。クリーニングブレード磨耗は実施例1に比べさらに良いものとなっていた。これは帯電ローラに交差角を設けることによりニップ部で感光体表面に効果的に摺擦を与えているためだと考えられる。また帯電ローラニップ部で凹部に存在する無機微粉体を、より放電生成物等を掻き出す方向に作用させていると考えられる。感光体表面とクリーニングブレードとの間の動摩擦係数μは0.75であった。   As a result of the endurance evaluation of 100,000 sheets under high temperature and high humidity (30 ° C., 80%) with the above configuration, good results were obtained in terms of image flow, fusion, and cleaning properties. The cleaning blade wear was better than that in Example 1. This is considered to be because the surface of the photosensitive member is effectively rubbed at the nip portion by providing a crossing angle on the charging roller. In addition, it is considered that the inorganic fine powder existing in the concave portion at the charging roller nip portion acts more in the direction of scraping discharge products and the like. The dynamic friction coefficient μ between the photoreceptor surface and the cleaning blade was 0.75.

本発明に好適な画像形成装置の概略構成断面図である。1 is a schematic cross-sectional view of an image forming apparatus suitable for the present invention. Rkuの説明図である。It is explanatory drawing of Rku. 研磨機の説明図である。It is explanatory drawing of a grinder. 砥粒吐出装置の説明図である。It is explanatory drawing of an abrasive-grain discharge apparatus. クリーニングブレードを説明する部分拡大図である。It is the elements on larger scale explaining a cleaning blade. ペロブスカイト型結晶のチタン酸ストロンチウムの写真に基づく図である。It is a figure based on the photograph of the strontium titanate of a perovskite type crystal. 不定形型のチタン酸ストロンチウムの写真に基づく図である。It is a figure based on the photograph of amorphous strontium titanate. 帯電ローラの交差角図である。It is a crossing angle view of a charging roller. 感光体表面凹部図である。It is a photoreceptor surface recessed part figure.

符号の説明Explanation of symbols

1 感光ドラム
2 帯電ローラ
3 現像装置
4 転写装置
5 定着器
6 クリーニング装置
8 研磨シート
8−a クリーニングブレード
9 吐出装置
10 電子写真感光体
11 バックアップローラ
12 研磨シート巻取り手段
13 感光体表面凹部
14 放電生成物や外添剤
15 ペロブスカイト型結晶の無機微粉体
16 クリーニングブレード
17 外添剤
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Charging roller 3 Developing device 4 Transfer device 5 Fixing device 6 Cleaning device 8 Polishing sheet 8-a Cleaning blade 9 Discharge device 10 Electrophotographic photosensitive member 11 Backup roller 12 Polishing sheet winding means 13 Photosensitive member surface concave portion 14 Discharge Products and external additives 15 Inorganic fine powders of perovskite crystals 16 Cleaning blades 17 External additives

Claims (6)

少なくとも、導電性支持体上に感光層を有する像担持体、該像担持体を帯電する帯電手段、帯電された像担持体に静電潜像を形成する静電潜像形成手段静電潜像にトナーを転移現像する現像手段、像担持体上に形成されたトナー像を記録媒体に転写する転写手段、転写残トナーを像担持体上から除去するクリーニング手段を有する画像形成装置において、
該像担持体は25℃湿度50%の環境下でビッカース四角錐ダイヤモンド圧子を用いて硬度試験を行い、最大荷重6mNで押し込んだ時のHU(ユニバーサル硬さ値)が150N/mm2以上220N/mm2以下であり、かつ弾性変形率Weが40%以上65%以下である像担持体であって、
該像担持体は表面粗さRzが0.2〜3.0μm、表面凹凸平均間隔Smが10〜100μmであり、かつ表面の尖り度Rkuが3<Rku<20の範囲にあって、
該像担持体表面上には、粒子形状が立方体状及び/または直方体状である1次粒子の粒径が30〜300nmの無機微粉体が供給されることを特徴とする画像形成装置。
At least, the image bearing member having a photosensitive layer on a conductive support, a charging means, an electrostatic latent image forming means for forming an electrostatic latent image on the charged image bearing member to charge the image bearing member, said electrostatic developing means for transfer a toner to the latent image development, transfer means for transferring to a recording medium the toner image formed on an image bearing member, an image forming apparatus having a cleaning means for removing residual toner from the image bearing member ,
The image bearing member performs a hardness test using a Vickers quadrangular pyramid diamond indenter under 25 ° C. humidity of 50%, HU when pushed by the maximum load 6 mN (universal hardness value) of 150 N / mm 2 or more 220 N / an image bearing member having an elastic deformation rate We of 40% or more and 65% or less, which is equal to or less than mm 2 ,
The image carrier has a surface roughness Rz of 0.2 to 3.0 μm, a surface irregularity average interval Sm of 10 to 100 μm, and a surface sharpness Rku in the range of 3 <Rku <20,
An image forming apparatus, characterized in that an inorganic fine powder having primary particles having a cubic shape and / or a rectangular parallelepiped shape having a particle size of 30 to 300 nm is supplied on the surface of the image carrier.
前記像担持体表面を摺擦する部材を設けており、その部材がファーブラシであり、ファーブラシの繊維径をA(μm)とすると、Sm>Aであり、ファーブラシが回転駆動することを特徴とする請求項1に記載の画像形成装置。   A member for rubbing the surface of the image carrier is provided, and the member is a fur brush. When the fiber diameter of the fur brush is A (μm), Sm> A, and the fur brush is driven to rotate. The image forming apparatus according to claim 1, wherein: 前記像担持体表面を摺擦する部材を設けており、その部材が弾性ローラであることを特徴とする請求項1に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein a member that slides on the surface of the image carrier is provided, and the member is an elastic roller. 前記帯電工程は接触式ローラ部材により行われ、該接触式ローラ部材の回転軸と該像担持体の回転軸が互いに交差するよう配置されていることを特徴とする請求項1乃至3のいずれかに記載の画像形成装置。   4. The charging process according to claim 1, wherein the charging step is performed by a contact roller member, and the rotation shaft of the contact roller member and the rotation shaft of the image carrier are arranged to intersect each other. The image forming apparatus described in 1. 前記クリーニング工程が該像担持体に接触するクリーニングブレードによって成され、該クリーニングブレードは硬度60〜85(ショア硬さHS)、100%モジュラスが20〜80(kgf/cm2)、反発弾性が5〜50%の範囲にあることを特徴とする請求項1乃至4のいずれかに記載の画像形成装置。 The cleaning step is performed by a cleaning blade that contacts the image carrier. The cleaning blade has a hardness of 60 to 85 (Shore hardness HS), a 100% modulus of 20 to 80 (kgf / cm 2 ), and a resilience of 5 The image forming apparatus according to claim 1, wherein the image forming apparatus is in a range of ˜50%. 前記像担持体表面と前記クリーニングブレードとの間の動摩擦係数μが0.1≦μ≦3であることを特徴とする請求項5に記載の画像形成装置。   The image forming apparatus according to claim 5, wherein a coefficient of dynamic friction μ between the surface of the image carrier and the cleaning blade satisfies 0.1 ≦ μ ≦ 3.
JP2005119726A 2005-04-18 2005-04-18 Image forming apparatus Expired - Fee Related JP4498200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119726A JP4498200B2 (en) 2005-04-18 2005-04-18 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119726A JP4498200B2 (en) 2005-04-18 2005-04-18 Image forming apparatus

Publications (3)

Publication Number Publication Date
JP2006301092A JP2006301092A (en) 2006-11-02
JP2006301092A5 JP2006301092A5 (en) 2008-05-29
JP4498200B2 true JP4498200B2 (en) 2010-07-07

Family

ID=37469482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119726A Expired - Fee Related JP4498200B2 (en) 2005-04-18 2005-04-18 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4498200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604431B2 (en) 2021-05-25 2023-03-14 Fujifilm Business Innovation Corp. Cleaning component, cleaning apparatus using same, process cartridge, and image forming apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241098B2 (en) * 2006-12-28 2013-07-17 キヤノン株式会社 Image forming method
JP5274090B2 (en) * 2008-04-15 2013-08-28 キヤノン株式会社 Cleaning device
JP5444832B2 (en) * 2008-05-28 2014-03-19 コニカミノルタ株式会社 Image forming method
JP2010014984A (en) * 2008-07-03 2010-01-21 Canon Inc Image forming apparatus
JP5511401B2 (en) * 2010-01-12 2014-06-04 キヤノン株式会社 Image forming apparatus
US10175590B2 (en) * 2015-01-30 2019-01-08 Kyocera Document Solutions Inc. Electrophotographic photosensitive body and image forming apparatus provided with same
JP6616697B2 (en) * 2016-01-27 2019-12-04 信越ポリマー株式会社 Developing roller, developing device, and image forming apparatus
JP7057104B2 (en) * 2017-11-24 2022-04-19 キヤノン株式会社 Process cartridge and electrophotographic image forming apparatus
JP6672253B2 (en) * 2017-12-27 2020-03-25 キヤノン株式会社 Image forming apparatus and method of manufacturing the same
JP7375385B2 (en) * 2019-09-02 2023-11-08 株式会社リコー Photoconductor drum, image forming device, and photoconductor drum regeneration method
JP7375529B2 (en) 2019-12-24 2023-11-08 沖電気工業株式会社 Charging device, image forming unit, and image forming device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371146A (en) * 1989-08-10 1991-03-26 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPH05265243A (en) * 1992-03-23 1993-10-15 Canon Inc Electrophotographic photoreceptor and electrophotographic device and facsimile provided with this electrophotographic photoreceptor
JPH0862887A (en) * 1994-08-25 1996-03-08 Konica Corp Electrostatic charge image developing toner and image forming method
JPH0950144A (en) * 1995-08-07 1997-02-18 Konica Corp Electrophotographic photoreceptor, electrophotographic device and device unit
JP2001042557A (en) * 1999-08-03 2001-02-16 Canon Inc Image forming device
JP2002149031A (en) * 2000-09-01 2002-05-22 Canon Inc Image forming apparatus
JP2003277054A (en) * 2002-03-19 2003-10-02 Titan Kogyo Kk Strontium titanate fine powder, method for manufacturing the same and electrostatic recording toner which uses the powder as external additive
JP2004198877A (en) * 2002-12-20 2004-07-15 Canon Inc Image forming method
JP2004198552A (en) * 2002-12-16 2004-07-15 Ricoh Co Ltd Image forming method, image forming apparatus, and process cartridge for image forming apparatus
JP2005091498A (en) * 2003-09-12 2005-04-07 Canon Inc Electrophotographic apparatus, process cartridge and facsimile machine
JP2005091499A (en) * 2003-09-12 2005-04-07 Canon Inc Image forming apparatus
JP2005091500A (en) * 2003-09-12 2005-04-07 Canon Inc Image forming apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371146A (en) * 1989-08-10 1991-03-26 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPH05265243A (en) * 1992-03-23 1993-10-15 Canon Inc Electrophotographic photoreceptor and electrophotographic device and facsimile provided with this electrophotographic photoreceptor
JPH0862887A (en) * 1994-08-25 1996-03-08 Konica Corp Electrostatic charge image developing toner and image forming method
JPH0950144A (en) * 1995-08-07 1997-02-18 Konica Corp Electrophotographic photoreceptor, electrophotographic device and device unit
JP2001042557A (en) * 1999-08-03 2001-02-16 Canon Inc Image forming device
JP2002149031A (en) * 2000-09-01 2002-05-22 Canon Inc Image forming apparatus
JP2003277054A (en) * 2002-03-19 2003-10-02 Titan Kogyo Kk Strontium titanate fine powder, method for manufacturing the same and electrostatic recording toner which uses the powder as external additive
JP2004198552A (en) * 2002-12-16 2004-07-15 Ricoh Co Ltd Image forming method, image forming apparatus, and process cartridge for image forming apparatus
JP2004198877A (en) * 2002-12-20 2004-07-15 Canon Inc Image forming method
JP2005091498A (en) * 2003-09-12 2005-04-07 Canon Inc Electrophotographic apparatus, process cartridge and facsimile machine
JP2005091499A (en) * 2003-09-12 2005-04-07 Canon Inc Image forming apparatus
JP2005091500A (en) * 2003-09-12 2005-04-07 Canon Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604431B2 (en) 2021-05-25 2023-03-14 Fujifilm Business Innovation Corp. Cleaning component, cleaning apparatus using same, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2006301092A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4498200B2 (en) Image forming apparatus
JP6602173B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic image forming apparatus
US7460821B2 (en) Image heating apparatus including heating rotatable member and cooperating rubbing rotatable member
US8107872B2 (en) Image forming apparatus and process cartridge
JP2962843B2 (en) Cleaning blade and device using the same
JP2007187814A (en) Image forming apparatus
JP5570208B2 (en) Image forming apparatus and intermediate transfer belt manufacturing method
JP6801579B2 (en) Image forming device
US7711307B2 (en) Cleaning device and image forming apparatus including same
JP5906795B2 (en) Image forming apparatus, protective agent supply member, and protective layer forming apparatus
JP5962136B2 (en) Image forming apparatus
JP2010014984A (en) Image forming apparatus
JP4834383B2 (en) Image forming apparatus
JP2005309398A (en) Conductive member and process cartridge using the same
JP2008051901A (en) Cleaning blade and image forming apparatus
JP3356603B2 (en) Charging device and image forming apparatus incorporating the same
JP5013464B2 (en) Image carrier protecting agent, protective layer forming apparatus, image forming method, image forming apparatus, and process cartridge
JP5661413B2 (en) Image forming method and image forming apparatus
JP5594016B2 (en) Image forming method, electrophotographic photoreceptor
JP2007178588A (en) Image forming apparatus
JP2007078987A (en) Image forming apparatus, and process cartridge attachable to and detachable from image forming apparatus
JP2015022015A (en) Cleaning device, image forming apparatus, and process cartridge
JP7222708B2 (en) Electrophotographic roller, process cartridge and electrophotographic image forming apparatus
JP2005195681A (en) Image forming apparatus
JP2004133269A (en) Image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees