JP4498029B2 - Nonwoven fabric for cooling - Google Patents

Nonwoven fabric for cooling Download PDF

Info

Publication number
JP4498029B2
JP4498029B2 JP2004189306A JP2004189306A JP4498029B2 JP 4498029 B2 JP4498029 B2 JP 4498029B2 JP 2004189306 A JP2004189306 A JP 2004189306A JP 2004189306 A JP2004189306 A JP 2004189306A JP 4498029 B2 JP4498029 B2 JP 4498029B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
particles
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004189306A
Other languages
Japanese (ja)
Other versions
JP2006009200A (en
Inventor
愉之 戸澤
達郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2004189306A priority Critical patent/JP4498029B2/en
Publication of JP2006009200A publication Critical patent/JP2006009200A/en
Application granted granted Critical
Publication of JP4498029B2 publication Critical patent/JP4498029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水などの液体を含有させた状態の布帛に通風させ、当該液体の気化熱消費を利用することにより、布帛を通過した空気などの気体を冷却する技術に関する。   The present invention relates to a technique for cooling a gas such as air that has passed through a fabric by passing air through a fabric containing a liquid such as water and utilizing vaporization heat consumption of the liquid.

周知の通り、建築物や自動車、或いはその他、身の回りに有るものを冷却する技術は古くから利用されている。その中で、食品を保存するための冷蔵庫、居室や車室の温度を下げるための空調機器などは広く普及しており、主として大気圧下で揮発性を有するフロン類を冷媒として用い、当該冷媒の気化熱による冷却効果を利用してきた。しかし、この種の冷媒が大気中に放出される結果、地球環境に対して種々の悪影響を来すことが知られるに至っている。   As is well known, techniques for cooling buildings, automobiles, and other things around us have been used for a long time. Among them, refrigerators for storing food, air conditioners for lowering the temperature of living rooms and passenger compartments, etc. are widely used, and chlorofluorocarbons that are volatile at atmospheric pressure are mainly used as refrigerants. The cooling effect of the heat of vaporization has been used. However, as a result of this type of refrigerant being released into the atmosphere, it has been known that various adverse effects are caused on the global environment.

また、例えば特開2002−201727号公報(特許文献1)に開示されるように、近年の鉄筋コンクリート造構造物等の増加により、都市部や建物が密集している地域では、夏期に構造物から放射される熱により気温が上昇するヒートアイランド現象が社会問題化している。この公報に提案される技術は、構造物の壁面または屋根面の所定領域に、水膜を保持することのできる親水性の層を形成し、この親水性の層形成領域に水を供給し、蒸発に伴う潜熱により周辺空気および構造物を冷却するものである。   In addition, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-201727 (Patent Document 1), in an area where urban areas and buildings are concentrated due to the recent increase in reinforced concrete structures and the like, the structure starts in summer. The heat island phenomenon, where the temperature rises due to radiated heat, has become a social problem. The technology proposed in this publication forms a hydrophilic layer capable of holding a water film in a predetermined region of the wall surface or roof surface of the structure, supplies water to this hydrophilic layer forming region, The surrounding air and the structure are cooled by latent heat accompanying evaporation.

上述した親水性の層を形成するに当たっては、超親水性作用をもたらすもので有れば、活性酸素発生効率の高い光触媒群と必ずしも一致する必要が無いと開示されている。従って各種光触媒の中で親水性に優れる光触媒を選択して用いることが望ましいとされ、具体的には、TiO、ZnO、SrTiO、WO、Bi、Fe、SnO等の光触媒半導体材料が挙げられている。この場合、必要とする親水性の度合いは、供給した水流が完全に濡れ拡がる程度であり、概ね接触角(水滴の端部接触角)が10°以下、好ましくは5°以下、より好ましくは3°以下であることが望ましいとされる。 In forming the hydrophilic layer described above, it is disclosed that it does not necessarily coincide with the photocatalyst group having high active oxygen generation efficiency as long as it has a superhydrophilic action. Thus is it is desirable to select and use a photocatalyst having excellent hydrophilicity among various photocatalyst, specifically, TiO 2, ZnO, SrTiO 3 , WO 3, Bi 2 O 3, Fe 2 O 3, SnO 2 Photocatalytic semiconductor materials such as In this case, the required degree of hydrophilicity is such that the supplied water stream is completely wetted and spread, and the contact angle (water droplet end contact angle) is generally 10 ° or less, preferably 5 ° or less, more preferably 3 It is desirable that the temperature is not more than °.

また、特開2003−340978号公報(特許文献2)には、親水性層として光触媒含有層を有し、水を滴下することにより断熱効果を発揮し、さらには脱臭・抗菌効果を発揮する親水性メッシュシートが提案されている。このメッシュシートとして、メッシュ状であるシート状基材、この基材の表面上に形成された柔軟性を有するフッ素樹脂の層、このフッ素樹脂の層の表面上に形成されたポリシロキサン樹脂の層、及び、このポリシロキサン樹脂の層の表面上に形成された光触媒含有層を含んでなる構成が提案されている。係るメッシュシートの基材は、有機または無機繊維とするのが好適とされ、さらに具体的には、平織、綾織、朱子織、模紗織、カラミ織などの形態が提案されている。   JP-A-2003-340978 (Patent Document 2) has a photocatalyst-containing layer as a hydrophilic layer, exhibits a heat insulating effect by dripping water, and further exhibits a deodorizing and antibacterial effect. Sex mesh sheets have been proposed. As the mesh sheet, a mesh-like sheet-like base material, a flexible fluororesin layer formed on the surface of the base material, and a polysiloxane resin layer formed on the surface of the fluororesin layer And the structure containing the photocatalyst containing layer formed on the surface of the layer of this polysiloxane resin is proposed. The base material of the mesh sheet is preferably organic or inorganic fibers, and more specifically, forms such as plain weave, twill weave, satin weave, imitation weave, and calami weave have been proposed.

他方、本出願人は特開2004−3070号公報(特許文献3)において、少なくとも表面が熱可塑性樹脂から主としてなる繊維の表面に固体粒子を担持した繊維又は繊維シートと、その製造技術を提案している。この文献技術によれば、バインダー等により固体粒子を繊維に固定する技術に比べて、固体粒子の表面特性を有効に保持したまま、しかも均一に固着した上記繊維又は繊維シートを提供することができる。   On the other hand, the present applicant proposed in Japanese Patent Application Laid-Open No. 2004-3070 (Patent Document 3) a fiber or fiber sheet in which solid particles are supported on the surface of a fiber whose surface is mainly composed of a thermoplastic resin, and a manufacturing technique thereof. ing. According to this document technique, it is possible to provide the above-described fiber or fiber sheet that is firmly fixed while maintaining the surface characteristics of the solid particles effectively as compared with the technique of fixing the solid particles to the fibers with a binder or the like. .

特開2002−201727号公報([特許請求の範囲]、[従来の技術]、[0020]並びに[0021])JP 2002-201727 A ([Claims], [Prior Art], [0020] and [0021]) 特開2003−340978号公報([特許請求の範囲]、[発明の属する技術分野]、[発明の実施の形態])JP 2003-340978 A ([Claims], [Technical field to which the invention belongs], [Embodiment of the invention]) 特開2004−3070号公報([特許請求の範囲]、[課題を解決するための手段])JP 2004-3070 A ([Claims], [Means for Solving the Problems])

上述したように、水との接触角を極めて小さくし得る光触媒半導体材料等を種々のシート状物に担持することによってシート全面に水を拡散させ、気化熱を利用した冷却技術は電力等のエネルギーを節約し得ることから、極めて有望な技術である。しかしながら、前述した従来の技術では、塗料や織編物を超親水化することで気化熱による冷却を図っている。このため、冷却用の水を供給するに当たり、水の保持に着眼したものとは言い難く、比較的長時間に渡って効率的な冷却を図ることが難しいという問題点が有った。このような技術背景の下、本出願に係る発明者は、布帛の中でも、保水性に富んだ不織布に対して前述した特許文献3に係る技術を適用し、従来知られているものとの比較検討を行った結果、本発明を完成したものである。従って、この発明の目的は、気化熱を利用した冷却作用を有し、保水性を持たせることによって効率的な冷却を図ることが可能な冷却用不織布を提供することにある。   As described above, the photocatalytic semiconductor material that can make the contact angle with water extremely small is supported on various sheet-like materials to diffuse water throughout the sheet, and the cooling technology using the heat of vaporization is energy such as electric power. This is a very promising technology. However, in the conventional technique described above, cooling by vaporization heat is achieved by making the paint or woven or knitted fabric super hydrophilic. For this reason, when supplying the water for cooling, it cannot be said that it was focusing on water maintenance, and there existed a problem that it was difficult to aim at efficient cooling over a comparatively long time. Under such a technical background, the inventor according to the present application applies the technology according to Patent Document 3 described above to a nonwoven fabric rich in water retention among fabrics, and compares it with a conventionally known one. As a result of the examination, the present invention has been completed. Accordingly, an object of the present invention is to provide a cooling nonwoven fabric that has a cooling action utilizing heat of vaporization and that can achieve efficient cooling by providing water retention.

この目的の達成を図るため、本出願に係る冷却用不織布の構成によれば、少なくとも表面が熱可塑性樹脂からなる繊維の表面に、親水化粒子が担持された不織布であって、前記熱可塑性樹脂の融点以上の温度に加熱した親水化粒子を前記繊維の表面に接触させることで前記繊維の表面に前記親水化粒子が固着しており、前記親水化粒子が、TiO 、ZnO、SrTiO 、WO 、Bi 、Fe 、SnO から選ばれる光触媒粒子であり、前記親水化粒子には波長365(nm)を含む紫外線が照射されており、前記親水化粒子が担持された不織布の見掛け密度が0.100〜0.200(g/cm )であり、当該不織布の保水量が100(g/m)以上であることを特徴としている。
In order to achieve this object, according to the configuration of the nonwoven fabric for cooling according to the present application, at least the surface is a nonwoven fabric in which hydrophilic particles are supported on the surface of a fiber made of a thermoplastic resin, and the thermoplastic resin The hydrophilic particles are fixed to the surface of the fiber by bringing the hydrophilic particles heated to a temperature equal to or higher than the melting point of the fiber into contact with the surface of the fiber, and the hydrophilic particles include TiO 2 , ZnO, SrTiO 3 , It is a photocatalytic particle selected from WO 3 , Bi 2 O 3 , Fe 2 O 3 , and SnO 2 , and the hydrophilic particles are irradiated with ultraviolet rays having a wavelength of 365 (nm), and the hydrophilic particles are supported. The apparent density of the nonwoven fabric is 0.100 to 0.200 (g / cm 3 ), and the water retention amount of the nonwoven fabric is 100 (g / m 2 ) or more.

この発明に係る冷却用不織布の構成を採用することにより、気化熱を利用した冷却作用を有し、所定の保水性を持たせることによって効率的な冷却を実現することができる。   By adopting the configuration of the cooling nonwoven fabric according to the present invention, it is possible to achieve efficient cooling by having a cooling action utilizing heat of vaporization and having a predetermined water retention.

以下、本出願に係る発明の実施形態につき説明する。既に述べたように、本発明は、少なくとも表面が熱可塑性樹脂からなる繊維の表面に、親水化粒子が担持された不織布からなり、この不織布の保水量が100(g/m)以上であることを主たる特徴としている。ここで、本発明の実施に当たって、親水化粒子を担持する不織布として種々のものを用いることができる。具体的には、スパンボンド法、メルトブロー法若しくはフラッシュ紡糸法を応用した不織布調製技術、或いは短繊維を利用したカード法や湿式抄造により調製したもの、さらに、これら各種の不織布に対してニードルパンチ法や高圧水流法による絡合を施したものを用いることができる。 Hereinafter, embodiments of the invention according to the present application will be described. As already described, the present invention is made of a nonwoven fabric in which hydrophilic particles are supported on at least the surface of a fiber made of a thermoplastic resin, and the water retention amount of the nonwoven fabric is 100 (g / m 2 ) or more. This is the main feature. Here, in the practice of the present invention, various types of nonwoven fabrics that carry the hydrophilic particles can be used. Specifically, non-woven fabric preparation technology applying the spunbond method, melt blow method or flash spinning method, or those prepared by card method or wet papermaking using short fibers, and needle punch method for these various non-woven fabrics Or those entangled by the high-pressure water flow method can be used.

また、これら不織布を構成する繊維としては、少なくとも表面が1種または2種以上の熱可塑性樹脂からなるものであって、繊維表面が単一組成からなる単繊維や断面同心円状に複数成分を配置した芯鞘型繊維、または海島繊維、割繊可能な分割繊維、偏芯した芯鞘型繊維のように、複数の熱可塑性樹脂が表面に共存する複合繊維などとすることができる。この熱可塑性樹脂が備えるべき要件として、不織布を構成する繊維のうち、当該繊維表面に露出している、少なくとも1つの樹脂成分の融点(若しくは軟化点)が、担持される親水化粒子の融点又は分解温度以下であることが必要となる。後段で詳述するが、前述した特許文献3に開示される技術では、固体粒子(本願の親水化粒子に相当)が繊維表面を構成する熱可塑性樹脂の融点以上の温度となった状態で、当該繊維表面と接触することによって、その接触部分に固着される。従って、本発明にあっても、不織布を構成する繊維表面の全てが、加熱された親水化粒子の温度以下に融点を有する場合には、当該繊維表面の全てに親水化粒子を固着担持せしめることが可能となる。また、親水化粒子が有する融点又は分解温度以上に融点を持つ繊維、即ち、当該粒子の固着に関与しない繊維を含んでいても良い。親水化粒子の固着に関与する繊維と関与しない繊維との比率は、設計に応じて任意好適に選択することができるが、当該粒子の固着に関与する繊維の比率は50重量%以上とするのが好ましい。このような親水化粒子の融点または分解温度以下に融点を有する熱可塑性樹脂として、具体的には、ポリエステル、ポリオレフィン、ポリアミドなどを挙げることができる。   Further, as the fibers constituting these nonwoven fabrics, at least the surface is made of one or more thermoplastic resins, and the fiber surface is a single fiber having a single composition or a plurality of components arranged concentrically in cross section. The core-sheath fiber, the sea-island fiber, the split fiber that can be split, and the core-sheath fiber that is eccentric, can be a composite fiber in which a plurality of thermoplastic resins coexist on the surface. As a requirement that this thermoplastic resin should have, the melting point (or softening point) of at least one resin component that is exposed on the fiber surface among the fibers constituting the nonwoven fabric is the melting point of the supported hydrophilic particles or It is necessary to be below the decomposition temperature. As will be described in detail later, in the technique disclosed in Patent Document 3 described above, in a state where the solid particles (corresponding to the hydrophilic particles of the present application) are at a temperature equal to or higher than the melting point of the thermoplastic resin constituting the fiber surface, By contacting the fiber surface, it is fixed to the contact portion. Therefore, even in the present invention, when all the fiber surfaces constituting the nonwoven fabric have a melting point below the temperature of the heated hydrophilic particles, the hydrophilic particles are fixedly supported on all the fiber surfaces. Is possible. Moreover, the fiber which has melting | fusing point more than melting | fusing point or decomposition temperature which the hydrophilization particle | grains have, ie, the fiber which is not concerned in fixation of the said particle | grain may be included. The ratio of the fibers involved in the fixation of the hydrophilic particles and the fibers not involved can be arbitrarily selected according to the design, but the ratio of the fibers involved in the fixation of the particles is 50% by weight or more. Is preferred. Specific examples of the thermoplastic resin having a melting point below the melting point or decomposition temperature of such hydrophilic particles include polyester, polyolefin, polyamide and the like.

次いで、本発明の冷却用不織布に担持する親水化粒子について説明する。本発明では、既に述べた特許文献1等に開示されるとおり、供給した水流が完全に濡れ拡がる程度の接触角が10°以下、好ましくは5°以下、より好ましくは3°以下の親水化粒子を用いることができる。さらに、このような親水化を発揮し得るものであれば、活性酸素発生効率の高い光触媒群と必ずしも一致する必要は無い。しかしながら、当該活性酸素を発生する光触媒粒子で有れば、冷却用不織布が含水した状態で長時間使用されることによる雑菌の繁殖や種々の臭気発生を回避し得ることから、より好ましい。従って、不織布に担持される親水化粒子としては、前述した特許文献1に開示されるように、TiO、ZnO、SrTiO、WO、Bi、Fe、SnO等を挙げることができ、より好ましくは、光触媒粒子としてのアナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、或いは硫化カドミウム、ガリウムリンなどを用いることができる。これら粒子のうち、耐光性並びに耐摩耗性、或いは安全性にも優れたアナターゼ型酸化チタン(融点1843℃)を用いるのが最も好ましい。 Next, the hydrophilized particles carried on the cooling nonwoven fabric of the present invention will be described. In the present invention, as disclosed in Patent Document 1 and the like already described, the hydrophilized particles having a contact angle of 10 ° or less, preferably 5 ° or less, more preferably 3 ° or less, at which the supplied water stream is completely wetted and spread. Can be used. Furthermore, the photocatalyst group having high active oxygen generation efficiency is not necessarily required as long as it can exhibit such hydrophilicity. However, the photocatalyst particles that generate the active oxygen are more preferable because they can avoid the propagation of various germs and the generation of various odors due to the use of the nonwoven fabric for cooling for a long time in a wet state. Accordingly, as disclosed in Patent Document 1 mentioned above, TiO 2 , ZnO, SrTiO 3 , WO 3 , Bi 2 O 3 , Fe 2 O 3 , SnO 2, etc. are used as the hydrophilic particles supported on the nonwoven fabric. More preferably, anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, cadmium sulfide, gallium phosphorus, or the like can be used as photocatalyst particles. Of these particles, it is most preferable to use anatase-type titanium oxide (melting point: 1843 ° C.) excellent in light resistance, abrasion resistance, and safety.

前述した種々の好適形態を満たす不織布に対し、その構成繊維の表面に親水化粒子を固着担持する工程として、前述した特許文献3に開示した技術と同様に、
(1)加熱した親水化粒子を含有する気流を不織布に吹き付ける手段
(2)加熱した親水化粒子を不織布に対して自然落下させる手段
(3)加熱した親水化粒子と不織布とを装入した耐熱性容器を振盪する手段
(4)加熱した親水化粒子中に不織布を浸漬する手段
(5)加熱した親水化粒子の流動層中に不織布を晒す手段
等の何れかの手段を適用した後、当該粒子の固着に関与する熱可塑性樹脂の融点以下にまで冷却(又は放冷)する。この後、不織布の構成繊維の表面に固着されていない余剰の親水化粒子を高圧エアー等によって除去するのが好ましい。
For the nonwoven fabric satisfying the various preferred forms described above, as a step of fixing and supporting the hydrophilic particles on the surface of the constituent fibers, as in the technique disclosed in Patent Document 3 described above,
(1) Means for blowing an air stream containing heated hydrophilized particles onto the nonwoven fabric (2) Means for allowing the heated hydrophilized particles to spontaneously fall on the nonwoven fabric (3) Heat resistance charged with the heated hydrophilized particles and the nonwoven fabric (4) means for immersing the non-woven fabric in the heated hydrophilized particles (5) after applying any means such as a means for exposing the non-woven fabric in the fluidized bed of heated hydrophilized particles, Cool (or allow to cool) to below the melting point of the thermoplastic resin involved in particle fixation. After that, it is preferable to remove excess hydrophilized particles not fixed to the surface of the constituent fibers of the nonwoven fabric with high-pressure air or the like.

また、本発明の冷却用不織布は、100(g/m)以上の保水量を有することが必要である。ここに言う保水量とは、冷却用不織布を純水に1分間浸漬した後に引き揚げ、1分間静置した後に保持されている水の単位面積当たりの重量とする。尚、この保水量は、本発明の冷却用不織布を規定するための数値条件であり、実際に使用する際には、純水、雨水、汚濁水を始めとし、保水した状態で気化熱を利用した冷却効果を奏するもので有れば、何れの液体を用いても良い。 Moreover, the cooling nonwoven fabric of this invention needs to have a water retention amount of 100 (g / m 2 ) or more. The water retention amount referred to here is the weight per unit area of water held after the cooling nonwoven fabric is dipped in pure water for 1 minute and then lifted and left to stand for 1 minute. The water retention amount is a numerical condition for defining the cooling nonwoven fabric of the present invention. When actually used, the heat of vaporization is used in the state of water retention, including pure water, rain water, and polluted water. Any liquid may be used as long as it exhibits the cooling effect.

さらに、本発明の冷却用不織布の見掛け密度を0.100(g/cm)以上0.200(g/cm)以下とするのが好適である。この範囲よりも見掛け密度を小さく採る場合、供給した水の不織布への拡散効率が低下するとともに、不織布を構成する繊維が形成する微細な網目の開きが大きくなるため、水の表面張力を利用して網目部分に保持される水量が少なくなり、不織布全体の保水量が減少する。この範囲を超えて見掛け密度を大きく採る場合には、不織布厚み方向の内部空間が減少するため不織布全体の保水量が減少するとともに、通風量が減少するため、気化効率が低下する。なお、ここで言う見掛け密度とは、単位体積あたりの繊維の占める密度であり、面密度および見掛けの厚さから算出した値とする。見掛けの厚さとは、JIS B7503に規定されるダイヤルゲージ(測定力0.9N以内)で測定した値とする。 Furthermore, it is preferable that the apparent density of the nonwoven fabric for cooling of the present invention is 0.100 (g / cm 3 ) or more and 0.200 (g / cm 3 ) or less. When the apparent density is smaller than this range, the efficiency of diffusion of the supplied water into the nonwoven fabric decreases, and the fine mesh opening formed by the fibers constituting the nonwoven fabric increases, so the surface tension of water is used. As a result, the amount of water retained in the mesh portion is reduced, and the amount of water retained throughout the nonwoven fabric is reduced. When the apparent density is increased beyond this range, the internal space in the thickness direction of the nonwoven fabric is reduced, so that the water retention amount of the entire nonwoven fabric is reduced and the ventilation rate is reduced, so that the vaporization efficiency is lowered. The apparent density referred to here is the density occupied by the fibers per unit volume, and is a value calculated from the surface density and the apparent thickness. The apparent thickness is a value measured with a dial gauge (measuring force within 0.9 N) defined in JIS B7503.

以下、本発明の実施例として、冷却用不織布の調製例と、その評価結果につき説明する。尚、以下の説明では、この発明の理解のため、材料、形状、配置関係、数値的条件及びその他、特定の条件を例示するが、本発明は、これら条件にのみ限定されるものではなく、本発明の目的の範囲内で任意好適な設計の変更及び変形を行い得る。   Hereinafter, as examples of the present invention, preparation examples of cooling nonwoven fabric and evaluation results thereof will be described. In the following description, in order to understand the present invention, materials, shapes, arrangement relationships, numerical conditions and other specific conditions are exemplified, but the present invention is not limited only to these conditions. Any suitable design changes and modifications may be made within the scope of the present invention.

(実施例1)
まず、ポリプロピレン(融点167℃)を芯部とし、ポリエチレン(融点135℃)を鞘部に配置した市販の芯鞘型繊維(繊度0.8デシテックス、繊維長5mm)のみを湿式抄造し、ドライヤーで乾燥・熱接着を施すことによって面密度50(g/m)の湿式不織布を得た。次いで、親水化粒子の一例としての光触媒粒子『ST−01』(石原産業株式会社製:粒度分布計測定による平均粒径3μm、カタログ表示の一次粒子径が7nmであるアナターゼ型酸化チタンの商品名)を250℃に加熱し、160℃の気流と共に、上述した湿式不織布に吹き付けた後に放冷した。次いで、不織布の構成繊維間に絡んだのみであり、繊維表面に固着されていない光触媒粒子をエアーにより除去した。このようにして、8(g/m)の光触媒粒子が繊維表面に担持固着された面密度58.0(g/m)、見掛けの厚さが0.38(mm)の実施例1に係る冷却用不織布を得た。
Example 1
First, only a commercially available core-sheath fiber (fineness 0.8 decitex, fiber length 5 mm) with polypropylene (melting point 167 ° C.) as the core and polyethylene (melting point 135 ° C.) in the sheath is wet-made and drier A wet nonwoven fabric having an areal density of 50 (g / m 2 ) was obtained by drying and thermal bonding. Next, photocatalyst particles “ST-01” (made by Ishihara Sangyo Co., Ltd .: an anatase-type titanium oxide having an average particle size of 3 μm as measured by a particle size distribution meter and a primary particle size of 7 nm displayed in a catalog as an example of hydrophilic particles) ) Was heated to 250 ° C. and sprayed onto the above-described wet nonwoven fabric together with an air flow of 160 ° C. and then allowed to cool. Next, the photocatalyst particles that were only entangled between the constituent fibers of the nonwoven fabric and were not fixed to the fiber surface were removed with air. In this way, Example 1 having an areal density of 58.0 (g / m 2 ) and an apparent thickness of 0.38 (mm) in which 8 (g / m 2 ) photocatalyst particles are supported and fixed on the fiber surface. The nonwoven fabric for cooling which concerns on was obtained.

(実施例2)
次に、ポリプロピレン(融点167℃)を芯部とし、ポリエチレン(融点135℃)を鞘部に配置した市販の芯鞘型繊維(繊度7.3デシテックス、繊維長102mm)を50重量%、これと同一の繊維構成を有する市販の芯鞘型繊維(繊度22デシテックス、繊維長102mm)を20重量%、及びポリプロピレンのみからなる市販の短繊維(繊度7.3デシテックス、繊維長51mm)30重量%を混綿してカード機にかけた後に熱接着することによって、面密度52.3(g/m)の乾式不織布を得た。次いで、実施例1と同様にして1.5(g/m)の光触媒粒子が繊維表面に担持固着された面密度53.8(g/m)、見掛けの厚さが0.51(mm)の実施例2に係る冷却用不織布を得た。
(Example 2)
Next, 50% by weight of a commercially available core-sheath fiber (fineness 7.3 dtex, fiber length 102 mm) having polypropylene (melting point 167 ° C.) as the core and polyethylene (melting point 135 ° C.) in the sheath, 20% by weight of a commercially available core-sheath fiber (fineness 22 dtex, fiber length 102 mm) having the same fiber configuration, and 30% by weight of a commercially available short fiber (fineness 7.3 dtex, fiber length 51 mm) made of only polypropylene. A dry nonwoven fabric having an areal density of 52.3 (g / m 2 ) was obtained by heat-bonding after blending and applying to a card machine. Subsequently, in the same manner as in Example 1, 1.5 (g / m 2 ) of photocatalyst particles were supported and fixed on the fiber surface, the surface density was 53.8 (g / m 2 ), and the apparent thickness was 0.51 ( mm), a cooling nonwoven fabric according to Example 2 was obtained.

(実施例3)
次に、面密度を90.0(g/m)としたことを除いては実施例2と同様にして得られた乾式不織布に対して、上述した光触媒粒子の担持工程を施し、3.0(g/m)の光触媒粒子が繊維表面に担持固着された面密度93.0(g/m)、見掛けの厚さが0.75(mm)の実施例3に係る冷却用不織布を得た。
(Example 3)
Next, the above-described photocatalyst particle supporting step is performed on the dry nonwoven fabric obtained in the same manner as in Example 2 except that the surface density is 90.0 (g / m 2 ). Non-woven fabric for cooling according to Example 3 having a surface density of 93.0 (g / m 2 ) in which 0 (g / m 2 ) photocatalyst particles are supported and fixed on the fiber surface and an apparent thickness of 0.75 (mm) Got.

(比較例1並びに比較例2)
上述した実施例1〜3との比較検討を行う目的で、比較例1として前述した特許文献2に相当する『FK−500HS』(泉株式会社製,商品名:編織物に対してフッ素系バインダーで光触媒粒子を被着させた面密度180.0(g/m)、見掛けの厚さが0.43(mm)のメッシュ)、並びに比較例2として『IY−45』(泉株式会社製,商品名:立体的に編まれた編織物に対して同様な被着手段で構成した面密度235.0(g/m)、見掛けの厚さが3.6(mm)のメッシュ)を選定した。
(Comparative Example 1 and Comparative Example 2)
“FK-500HS” (trade name: manufactured by Izumi Co., Ltd., trade name: fluorinated binder for knitted fabric) corresponding to Patent Document 2 described above as Comparative Example 1 for the purpose of comparative study with Examples 1 to 3 described above. In addition, “IY-45” (manufactured by Izumi Co., Ltd.) was used as Comparative Example 2 and a surface density of 180.0 (g / m 2 ) on which photocatalyst particles were deposited with a mesh of 0.43 (mm). , Trade name: Mesh having a surface density of 235.0 (g / m 2 ) and an apparent thickness of 3.6 (mm) composed of the same attaching means to a three-dimensional knitted fabric Selected.

これら実施例1〜3、並びに比較例1及び比較例2に係る各サンプルに対して、前述した様に、純水に1分間浸漬した後に引き揚げ、1分間静置した後の保水量を求めた。この保水量測定は、各サンプルに担持された粒子の親水化機能を充分に発現させるための前処理として、波長365(nm)、照射強度5(mW/cm)の紫外線を1時間照射した後に行った。この結果につき、表1に、各サンプルの面密度、見掛けの厚さ、並びに、これらから算出した見掛け密度と共に示す。 For each of the samples according to Examples 1 to 3 and Comparative Example 1 and Comparative Example 2, as described above, the sample was lifted after being immersed in pure water for 1 minute, and the amount of water retained after standing for 1 minute was determined. . In this water retention measurement, ultraviolet rays having a wavelength of 365 (nm) and an irradiation intensity of 5 (mW / cm 2 ) were irradiated for 1 hour as a pretreatment for fully expressing the hydrophilicity of the particles carried on each sample. I went later. About this result, it shows in Table 1 with the surface density of each sample, apparent thickness, and the apparent density computed from these.

Figure 0004498029
Figure 0004498029

この結果から理解できるように、本発明の構成を採用した実施例1〜3に係る冷却用不織布では、親水化粒子(光触媒粒子)を担持しつつ、何れの比較例に対しても大きな保水量を実現し得た。   As can be understood from the results, in the cooling nonwoven fabrics according to Examples 1 to 3 adopting the configuration of the present invention, the water retention amount is large for any of the comparative examples while supporting the hydrophilic particles (photocatalyst particles). Could be realized.

(冷却効率の評価)
次いで、上述した各サンプルに関し、冷却効率を評価した結果につき説明する。この評価においては、各サンプルを横47(mm)×縦150(mm)の短冊状に裁断し、予め25℃、相対湿度40RH%で重量平衡となるように静置した後、当該短冊状のサンプルの横端部を上下方向として縦長にぶら下げた。次いで、市販のマイクロチューブポンプ(チューブ径φ2.15(mm))によって、1.5(mL/min)並びに0.75(mL/min)の2水準の流速で純水を上端部中央から連続的に供給し続け、サンプル表面の温度並びにサンプル面内での水の拡散保持状態を観察した。また、各サンプルの下端部から水が滴下した時点で水の供給を止め、冷却効果が持続する保持時間を計測した。このように、所定の流速で気温平衡に達した純水を連続的に給水した場合を連続給水、水の下端部からの滴下時に給水を停止した場合を単発給水と称する。このサンプル表面温度の測定は、市販の温度センサによって行った。測定部分は各サンプルの上端部から120(mm)の部分に統一し、測定開始からの温度変化が±1(℃/min)の温度平衡に達した時点から10秒間隔で計測記録を行った。この際、連続給水時の測定は計測記録の開始から30分間に渡って行い、その間の平均温度を温度測定結果とし、単発給水時の場合には、計測記録から各保持時間に渡る平均温度を温度測定結果とした。これらの結果について、表2に示す。尚、表2では、さらに、拡散保持状態の観察結果として、サンプル表面の90%以上の面積に渡って湿潤した場合を◎、同60%以上90%未満の場合を○、同40%以上60%未満の場合を△、同40%未満の場合を×で判定した。加えて、サンプル表面温度の測定結果については、サンプル表面の温度測定結果から外気温(25℃)を差し引いた差(夫々摂氏で計測)を「K」によって表してある。
(Evaluation of cooling efficiency)
Next, the results of evaluating the cooling efficiency for each sample described above will be described. In this evaluation, each sample was cut into a rectangular shape of 47 mm (width) × 150 mm (length), and left in advance to be in a weight equilibrium at 25 ° C. and a relative humidity of 40 RH%. The sample was hung vertically with the horizontal end of the sample in the vertical direction. Next, pure water was continuously supplied from the center of the upper end by a commercially available microtube pump (tube diameter φ 2.15 (mm)) at two flow rates of 1.5 (mL / min) and 0.75 (mL / min). The sample was continuously supplied, and the temperature of the sample surface and the state of diffusion and retention of water in the sample surface were observed. Moreover, when water dropped from the lower end of each sample, the supply of water was stopped, and the holding time during which the cooling effect was maintained was measured. Thus, the case where the pure water which reached the air temperature equilibrium at the predetermined flow rate is continuously supplied is referred to as continuous water supply, and the case where the water supply is stopped when the water is dripped from the lower end portion is referred to as single supply water. The sample surface temperature was measured with a commercially available temperature sensor. The measurement part was unified to 120 (mm) from the upper end of each sample, and measurement recording was performed at 10 second intervals from the time when the temperature change from the start of measurement reached a temperature equilibrium of ± 1 (° C./min). . At this time, measurement during continuous water supply is performed for 30 minutes from the start of the measurement record, and the average temperature during that period is taken as the temperature measurement result. In the case of single water supply, the average temperature over the holding time from the measurement record is calculated. It was set as the temperature measurement result. These results are shown in Table 2. In Table 2, the observation results of the diffusion holding state are as follows: ◎ when wet over an area of 90% or more of the sample surface, ◯ when 60% or more and less than 90%, and 40% or more and 60%. The case of less than% was judged as Δ, and the case of less than 40% was judged as ×. In addition, regarding the measurement result of the sample surface temperature, the difference (measured in degrees Celsius) obtained by subtracting the outside air temperature (25 ° C.) from the temperature measurement result of the sample surface is represented by “K”.

Figure 0004498029
Figure 0004498029

この表2に示す結果からも理解できるように、何れの給水形態を採った場合であっても、各サンプルの冷却能力は実質的に同等であった。しかしながら、単発給水時の保持時間を比較した場合、本発明の構成を採用した実施例1〜実施例3では、比較例1並びに比較例2との間に、有意な持続性が認められた。即ち、実施例に係るサンプルは、比較例のサンプルに較べて約5〜10倍の長時間に渡って冷却能力を維持することができ、効率的な冷却用不織布を実現することができた。   As can be understood from the results shown in Table 2, the cooling capacity of each sample was substantially the same regardless of the water supply configuration. However, when the retention time at the time of single water supply was compared, in Examples 1 to 3 employing the configuration of the present invention, significant sustainability was observed between Comparative Example 1 and Comparative Example 2. That is, the sample according to the example was able to maintain the cooling capacity for about 5 to 10 times longer than the sample of the comparative example, and an efficient cooling nonwoven fabric could be realized.

尚、各実施例に係るサンプルにおける担持量は、本発明の実施に用いる親水化粒子の比重や粒子径、不織布の面密度および不織布を構成する繊維の表面積によって、好適な担持量は変化する。一例として、上述した実施例1に係るサンプルでは、繊維表面積が22.1(m/m)で、面密度50(g/m)の不織布に対し、平均粒子径3μmのアナターゼ型酸化チタン粒子を8(g/m)担持する場合を例示した。この平均粒径の粒子を種々の担持量で担持させ、拡散保持状態を確認したところ、当該不織布に対して10重量%以上の担持量とすることによって十分な親水化機能を発現させることができた。さらに、実施例3に係るサンプルでは、上記粒子を繊維表面積11.2(m/m)で面密度90(g/m)の不織布に担持する場合、不織布に対して3重量%以上の担持量であることが親水化機能発現に有効であることが確認された。 The carrying amount in the sample according to each example varies depending on the specific gravity and particle diameter of the hydrophilic particles used in the practice of the present invention, the surface density of the nonwoven fabric, and the surface area of the fibers constituting the nonwoven fabric. As an example, in the sample according to Example 1 described above, an anatase-type oxidation having a fiber surface area of 22.1 (m 2 / m 2 ) and an average density of 3 μm with respect to a non-woven fabric having an areal density of 50 (g / m 2 ). The case where 8 (g / m 2 ) of titanium particles are supported was exemplified. When the particles having this average particle size are supported in various supported amounts and the diffusion holding state is confirmed, a sufficient hydrophilizing function can be exhibited by setting the supported amount to 10% by weight or more with respect to the nonwoven fabric. It was. Furthermore, in the sample according to Example 3, when the particles are supported on a nonwoven fabric having a fiber surface area of 11.2 (m 2 / m 2 ) and an areal density of 90 (g / m 2 ), 3% by weight or more based on the nonwoven fabric. It was confirmed that the supported amount was effective in expressing the hydrophilic function.

以上に述べたとおり、本発明の構成を採用することにより、用いる水を有効に利用し、効率的な冷却を実現することができる。従って、本発明を適用することによって、背景技術として述べた種々の構造物の他、給水に動力を利用することが難しい災害被災地でのテント、ベビーカー、ペット小屋などの冷却への応用が期待できる。
As described above, by adopting the configuration of the present invention, it is possible to effectively use water to be used and realize efficient cooling. Therefore, the application of the present invention is expected to be applied to the cooling of tents, strollers, pet huts, etc. in disaster-affected areas where it is difficult to use power for water supply in addition to the various structures described as the background art. it can.

Claims (1)

少なくとも表面が熱可塑性樹脂からなる繊維の表面に、親水化粒子が担持された不織布であって、前記熱可塑性樹脂の融点以上の温度に加熱した親水化粒子を前記繊維の表面に接触させることで前記繊維の表面に前記親水化粒子が固着しており、前記親水化粒子が、TiO 、ZnO、SrTiO 、WO 、Bi 、Fe 、SnO から選ばれる光触媒粒子であり、前記親水化粒子には波長365(nm)を含む紫外線が照射されており、前記親水化粒子が担持された不織布の見掛け密度が0.100〜0.200(g/cm )であり、当該不織布の保水量が100(g/m)以上であることを特徴とする冷却用不織布。 A nonwoven fabric in which hydrophilic particles are supported on at least the surface of a fiber made of a thermoplastic resin, and the hydrophilic particles heated to a temperature equal to or higher than the melting point of the thermoplastic resin are brought into contact with the surface of the fiber. The hydrophilic particles are fixed on the surface of the fiber, and the hydrophilic particles are photocatalytic particles selected from TiO 2 , ZnO, SrTiO 3 , WO 3 , Bi 2 O 3 , Fe 2 O 3 , SnO 2. The hydrophilic particles are irradiated with ultraviolet rays having a wavelength of 365 (nm), and the apparent density of the nonwoven fabric carrying the hydrophilic particles is 0.100 to 0.200 (g / cm 3 ). The cooling nonwoven fabric , wherein the water retention amount of the nonwoven fabric is 100 (g / m 2 ) or more.
JP2004189306A 2004-06-28 2004-06-28 Nonwoven fabric for cooling Expired - Fee Related JP4498029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189306A JP4498029B2 (en) 2004-06-28 2004-06-28 Nonwoven fabric for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189306A JP4498029B2 (en) 2004-06-28 2004-06-28 Nonwoven fabric for cooling

Publications (2)

Publication Number Publication Date
JP2006009200A JP2006009200A (en) 2006-01-12
JP4498029B2 true JP4498029B2 (en) 2010-07-07

Family

ID=35776745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189306A Expired - Fee Related JP4498029B2 (en) 2004-06-28 2004-06-28 Nonwoven fabric for cooling

Country Status (1)

Country Link
JP (1) JP4498029B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103667A1 (en) * 2012-12-28 2014-07-03 日本バイリーン株式会社 Functional nonwoven fabric and manufacturing method therefor
GB2515005A (en) 2013-05-31 2014-12-17 Jaguar Land Rover Ltd Vehicle communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209515A (en) * 1994-10-11 1996-08-13 Japan Vilene Co Ltd Heat-resistant sheet for sputter and its use
JP2001020175A (en) * 1999-07-07 2001-01-23 Akira Fujishima Photocatalyst-containing sheet and its production
JP2001175265A (en) * 1999-12-21 2001-06-29 Toray Ind Inc Sound absorbing material
JP2003340978A (en) * 2002-05-27 2003-12-02 Kazuhito Hashimoto Hydrophilic mesh sheet
JP2004003070A (en) * 2001-09-06 2004-01-08 Japan Vilene Co Ltd Method and equipment for producing solid particle-bearing fiber and solid particle-bearing fiber sheet, and solid particle-bearing fiber and solid particle-bearing fiber sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209515A (en) * 1994-10-11 1996-08-13 Japan Vilene Co Ltd Heat-resistant sheet for sputter and its use
JP2001020175A (en) * 1999-07-07 2001-01-23 Akira Fujishima Photocatalyst-containing sheet and its production
JP2001175265A (en) * 1999-12-21 2001-06-29 Toray Ind Inc Sound absorbing material
JP2004003070A (en) * 2001-09-06 2004-01-08 Japan Vilene Co Ltd Method and equipment for producing solid particle-bearing fiber and solid particle-bearing fiber sheet, and solid particle-bearing fiber and solid particle-bearing fiber sheet
JP2003340978A (en) * 2002-05-27 2003-12-02 Kazuhito Hashimoto Hydrophilic mesh sheet

Also Published As

Publication number Publication date
JP2006009200A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7247237B2 (en) Fluid cleaning filter and filter device
JP4742127B2 (en) Method for producing catalyst-supported fiber structure
JPWO2018139610A1 (en) Bipolar electrolytic cell, bipolar electrolytic cell for alkaline water electrolysis, and hydrogen production method
CN101534954B (en) Particle filter system incorporating nanofibers
JP4696567B2 (en) Hygroscopic filter and humidifier
TWI324948B (en) Photocatalystic composite material, method for producing the same and application thereof
JP4984550B2 (en) Vaporization filter and humidifier
CN108472567A (en) catalytic filter material
JP4717564B2 (en) Water-absorbing nonwoven fabric and humidifier elements
JP4956996B2 (en) Fuel cell air purification method and apparatus, and fuel cell
CN105849205A (en) Hydrophilic coating film, method for producing same, humidifier element and humidifier
JP4498029B2 (en) Nonwoven fabric for cooling
JP6076553B1 (en) Humidifier and air conditioner
JP2017057514A (en) Non-woven fabric and air filter made therefrom
Gu et al. Polylactic acid based Janus membranes with asymmetric wettability for directional moisture transport with enhanced UV protective capabilities
US20210340682A1 (en) Electrolytic Devices and Methods for Dry Hydrogen Peroxide Production
WO2009042124A1 (en) Air filter and system
ES2953814T3 (en) Composite body
CN105324625B (en) Full heat exchanging element partition member, full heat exchanging element and Total heat exchange formula air interchanger using the component
JP5142816B2 (en) Fiber structure for vaporization filter
JP2008104556A (en) Laminated sheet
JP2006043582A (en) Hygroscopic filter, its production method, recycle method, wetting apparatus and dehumidification apparatus
JP4007425B2 (en) Structure cooling material and cooling method
JP2017031796A (en) Concrete curing sheet
JP7047593B2 (en) Wet non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees