JP4497711B2 - Heat-meltable fluororesin mixed fiber and method for producing the same - Google Patents

Heat-meltable fluororesin mixed fiber and method for producing the same Download PDF

Info

Publication number
JP4497711B2
JP4497711B2 JP2000383507A JP2000383507A JP4497711B2 JP 4497711 B2 JP4497711 B2 JP 4497711B2 JP 2000383507 A JP2000383507 A JP 2000383507A JP 2000383507 A JP2000383507 A JP 2000383507A JP 4497711 B2 JP4497711 B2 JP 4497711B2
Authority
JP
Japan
Prior art keywords
heat
meltable fluororesin
fluororesin
liquid crystal
mixed fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000383507A
Other languages
Japanese (ja)
Other versions
JP2002180326A (en
Inventor
庭昌 李
彰作 近藤
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP2000383507A priority Critical patent/JP4497711B2/en
Publication of JP2002180326A publication Critical patent/JP2002180326A/en
Application granted granted Critical
Publication of JP4497711B2 publication Critical patent/JP4497711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維状の液晶ポリマーを熱溶融性フッ素樹脂マトリックス中に存在させて機械的強度を強化したフッ素樹脂混合繊維及びその製法に関する。さらに詳しくは、熱溶融性フッ素樹脂の一部に官能基を有するものを使用し、適切な条件で溶融紡糸することによって、フッ素樹脂マトリックス中に微細な液晶ポリマー繊維を均一に存在させ、フッ素樹脂の優れた耐熱性及び耐薬品性を保持しながら、熱収縮率や引張りモジュラスを改善した熱溶融性フッ素樹脂混合繊維に関する。
【0002】
【従来の技術】
非溶融型フッ素樹脂のポリテトラフルオロエチレン(PTFE)及び熱溶融性フッ素樹脂のテトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)などは、優れた耐熱性、耐薬品性、非粘着性などを有している。しかしこれらフッ素樹脂の持つ特性を期待して成形される繊維の物性は必ずしも満足する水準にはない。とくにフッ素樹脂は線膨張係数が大きいため、フッ素樹脂繊維の高温での収縮率も大きくなるという問題がある。
【0003】
一方、液晶ポリマーを樹脂マトリックス中に繊維状に配向させ、マトリックスの強度を向上させる、イン シチュ コンポジット(in situ composite)による複合化が近年提案されている(例えば、最近の総説論文としては、Journal of macromolecular science, chemical physics, 1995(C35) p183、特開平2−32147号公報)。この方法は、従来のガラス繊維や炭素繊維による強化樹脂に比べ、液晶ポリマーによる溶融粘度の低下、全成形工程の簡略化などの利点がある。
【0004】
ところが溶融紡糸によって得られるイン シチュ コンポジット繊維の機械強度は、樹脂マトリックスとそのマトリックス中に存在する繊維状の液晶ポリマーとの界面接着力に大きく影響される。しかるにフッ素樹脂と液晶ポリマーの間では分子間相互作用が殆ど無いため、従来提案のイン シチュ コンポジット法で得られるフッ素樹脂混合繊維では、フッ素樹脂/液晶ポリマー間の界面接着力が非常に小さく、フッ素樹脂に液晶ポリマーを混合したフッ素樹脂混合繊維でも弾性率や力学強度は他の高分子繊維に比べて低かった。またフッ素樹脂マトリックス中に液晶ポリマー相が均一に分散されていないため、溶融紡糸過程で溶融粘度が変化し、フッ素樹脂混合繊維の外径が不均一になる原因となった。
【0005】
【発明が解決しようとする課題】
そこで本発明者らは、フッ素樹脂組成物における液晶相分散相を均一にし、さらにフッ素樹脂混合繊維の直径を均一にするために、特定の官能基を持つフッ素樹脂(以下、相溶化剤ということがある)の導入を先に提案した(特願平11−366797号)。これによってフッ素樹脂と液晶ポリマー間の界面張力が小さくでき、フッ素樹脂マトリックス中に分散されている液晶相の分散状態が均一になり、溶融紡糸過程においても混合物の溶融粘度が均一になるため、フッ素樹脂混合繊維の直径を均一にすることが可能となった。また単に混合繊維のみでなく、綿状物、不織布あるいは液晶ポリマーが繊維状で含有されている種々の形状のフッ素樹脂複合体においても、同様に優れた機械的特性を保有させることが可能となった。
【0006】
本発明の目的は、この先願発明において、とりわけ優れた機械的強度、低い収縮率あるいは線膨張係数、優れた耐熱性及び耐薬品性を有するフッ素樹脂混合繊維及びその製法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち本発明は、熱溶融性フッ素樹脂と熱可塑性液晶ポリマーの混合物からなる混合繊維であって、熱溶融性フッ素樹脂はテトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)から選ばれるモノマーの重合体又は共重合体であり、かつ、熱溶融性フッ素樹脂の一部は、上記モノマーと、更に下記式(1)で表される官能基Xを含有するパーフルオロビニルエーテル化合物とを共重合させた共重合体であって、ポリマー混合物の相溶化剤として配合され、熱可塑性液晶ポリマーが熱溶融性フッ素樹脂マトリックス中に繊維状で分散しており、200℃における収縮率が10%以下である熱溶融性フッ素樹脂混合繊維である。
CF 2 =CF[OCF CF(CF )] −O−(CF 2 ) n −X・・・(1)
[式中、mは0〜3、nは0〜4、Xは−COOH、−CH 2 COOH、−COOCH 3 、−CH 2 OH、−CN、−CH 2 O(CO)NH 2 、−CH 2 OCN、−CH 2 OP(O)(OH) 2 、−CH 2 OP(O)Cl 2 、または−SO 2 Fである。]
【0008】
本発明はまた、上記熱溶融性フッ素樹脂と熱可塑性液晶ポリマーの混合物を、延伸比50〜9000、引取速度100m/min以上で溶融紡糸することを特徴とする熱溶融性フッ素樹脂混合繊維の製造方法に関する。
【0009】
【発明の実施の形態】
本発明においては、一般成形に用いられる熱溶融性フッ素樹脂のほか官能基を含有する熱溶融性フッ素樹脂の合わせて少なくとも二種の熱溶融性フッ素樹脂が使用される。前者の成形用熱溶融性フッ素樹脂はすでに広く知られているものであって、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)から選ばれるモノマーの重合体又は共重合体である。
【0010】
より具体的には、テトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロ(アルキルビニルエーテル)共重合体(EPE)、などを挙げることができる。
【0011】
本発明においては、これらの熱溶融性フッ素樹脂とともに、カルボン酸基又はその誘導基、水酸基、ニトリル基、シアナト基、カルバモイルオキシ基、ホスホノオキシ基、ハロホスホノオキシ基、スルホン酸基又はその誘導基及びスルホハライド基から選ばれる官能基を含有する熱溶融性フッ素樹脂が相溶化剤として使用される。これら相溶化剤は、熱溶融性フッ素樹脂の性質を大きく損なわない範囲で前記官能基含有しているものであって、前記例で示すような熱溶融性フッ素樹脂を合成しておき、後からこれら官能基を付加あるいは置換することにより導入するか、あるいは前記例示の熱溶融性フッ素樹脂の合成時にこれら官能基を持ったモノマーを共重合させることによって得ることができる。
【0012】
前記官能基の具体例として、ーCOOH、ーCH2COOH、−COOCH3
ーCONH2、−OH、ーCH2OH、−CN、ーCH2O(CO)NH2
ーCH2OCN、ーCH2OP(O)(OH)2、ーCH2OP(O)Cl2
ーSO2Fなどの基を例示することができる。これらの官能基は、これら官能基を有するフッ素含有モノマーをフッ素樹脂製造時に共重合することにより相溶化剤中に導入するのが好ましい。
【0013】
このような官能基を有する共重合に適したフッ素含有モノマーの例としては、例えば
式 CF2=CF[OCFCF(CF)]−O(CF2)n−X[式中、mは、0〜3、nは、0〜4、Xは、−COOH、−CH2COOH、−COOCH3 、−CH2OH、−CN、−CH2O(CO)NH2、−CH2OCN、−CH2OP(O)(OH)2、−CH2OP(O)Cl2、−SO2Fなど]で示されるパーフルオロビニルエーテル化合物である。このようなフッ素化ビニルエーテルの最も好ましいものは、
式 CF2=CF−O−CF2CF2−SO2F あるいは
式 CF2=CF[OCF2CF(CF3)]O(CF22−Y
(式中、Yは、−SO2F、−CN、−COOH、−COOCH3など)
あるいは
式 CF2=CF[OCF2CF(CF3)]O(CF22−CH2−Z
(式中、Zは、−COOH、−OH、−OCN、−OP(O)(OH)2
−OP(O)Cl2、O(CO)NH2など)などで表されるものである。
【0014】
これら官能基含有モノマーは、相溶化剤中、例えば0.5〜10重量%、とくに1〜5重量%のような量で共重合されていることが好ましい。相溶化剤における官能基含有モノマーの含有割合が少なすぎると相溶化剤としての効果が少なく、一方その含有割合が多くなりすぎると相溶化剤同士の強い相互作用で架橋反応に類似した反応が起こる可能性があり、紡糸原料組成物の溶融粘度が急に増加するため、溶融紡糸が困難になる場合がある。またその含有量が多くなると、相溶化剤の耐熱性が悪くなる。
【0015】
相溶化剤の粘度あるいは分子量にはとくに制限はないが、これら相溶化剤を配合する熱溶融性フッ素樹脂の粘度あるいは分子量を越えない範囲であって、好ましくは同じレベルのものがよい。
【0016】
本発明において使用される液晶ポリマーは、サーモトロピック液晶を形成する熱可塑性樹脂であり、溶融成形温度での耐熱性に問題がない限り液晶ポリマーの融点にはとくに制限はない。しかし成形性や熱安定性の点から、成形用熱溶融性フッ素樹脂の融点より20℃以上高いものを用いるのが好ましい。このような液晶ポリマーとしては、ポリエステル、ポリエステルアミド、ポリエステルイミド、ポリエステルウレタンなどを挙げることができ、とくにポリエステルが最も好ましい。液晶ポリエステルの代表的なものは、全芳香族ポリエステルであり、すでに非常に多くのものが知られている。例えば、芳香族ジカルボン酸と芳香族ジヒドロキシ化合物及び又は芳香族ヒドロキシカルボン酸などから誘導されるものであって、その一部が脂肪族ジカルボン酸、脂肪族ジヒドロキシ化合物、脂肪族ヒドロキシカルボン酸などから誘導される重合単位で置換されたものであってもよい。より具体的にはテレフタル酸、イソフタル酸、2,6−ナフタリンジカルボン酸などの芳香族ジカルボン酸、ハイドロキノン、レゾルシン、2,6ージヒドロキシナフタリン、ビスフェノールA、ジヒドロキシジフェニルのような芳香族ジヒドロキシ化合物、パラヒドロキシ安息香酸のような芳香族ヒドロキシカルボン酸などから誘導される重合単位を有するものを例示することができる。
【0017】
本発明においては、前記成形用熱溶融性フッ素樹脂及び官能基含有フッ素樹脂と液晶ポリマーから繊維状の液晶ポリマーを含むフッ素樹脂混合繊維が形成されるが、この混合繊維形成に際し、後者の官能基を有するフッ素樹脂(相溶化剤)の配合割合は、官能基の種類や官能基含量によっても若干異なるが、前記樹脂原料の1〜20重量%、とくに1〜10重量%程度とするのが好ましい。すなわち相溶化剤の配合割合が多くなるほどフッ素樹脂/液晶ポリマー間の界面張力は低くなり、界面接着力は強くなるが、あまり多量に配合すると相溶化剤同士の強い相互作用で架橋反応に類似した反応が起こる可能性があり、紡糸原料組成物の粘度が急に増加するため、溶融紡糸が困難になる場合がある。またその配合割合が多くなりすぎると、混合繊維の耐熱性が悪くなる。
【0018】
前記樹脂原料中における液晶ポリマーの配合割合は、液晶ポリマーが0.5〜20重量%、とくに通常の単軸押出機を用いた溶融紡糸では、1〜15重量%となるように調節することが好ましい。すなわち液晶ポリマーの配合量が少なすぎると充分な補強効果が期待できなくなる。また逆にその配合割合が多くなりすぎると大量の連続した繊維状の液晶ポリマーがフッ素樹脂マトリックス中に存在し、フッ素樹脂混合繊維が脆くなる恐れがある。液晶ポリマーの配合割合が多くなりすぎた場合はまた、溶融紡糸過程で粘度が急に低くなって溶融紡糸ができなくなるかまたは糸切れの原因になる。
【0019】
本発明の熱溶融性フッ素樹脂及び官能基含有フッ素樹脂と熱可塑性液晶ポリマーの混合は通常の溶融混合法によって行うことができるが、押出機を用いて行うのが好ましく、その際、高剪断速度の方が液晶分散相の大きさがより小さくなるため、単軸押出機より二軸押出機を用いる方が好ましい。溶融混合過程で液晶分散相をフッ素樹脂マトリックス中に小さく分散させるためには、押出温度は使用する熱溶融性フッ素樹脂と熱可塑性液晶ポリマーのうち融点の高い樹脂の融点より10〜20℃程度高い温度とすることが好ましい。また溶融紡糸工程で、フッ素樹脂マトリックス中により均一な大きさの繊維状の液晶ポリマーにするためには、溶融紡糸前の溶融混合した状態で、液晶ポリマーの粒子径を10μm以下、好ましくは0.5〜5μm程度にすることが望ましい。
【0020】
溶融紡糸した熱溶融性フッ素樹脂混合繊維のフッ素樹脂マトリックス中に存在する液晶ポリマーの直径は、溶融紡糸前の溶融混合物中に分散されている液晶相の大きさと溶融紡糸工程の延伸比(紡糸口金断面積/繊維断面積)で制御することができる。液晶分散相の大きさが小さいほどあるいは引取速度が速いほど繊維状の液晶ポリマーの直径と長さが小さくなる。したがって収縮率を改善するという目的のためには、延伸比50〜9000かつ引取速度100m/min以上とするのが好ましい
【0021】
熱溶融性フッ素樹脂混合繊維を製造する他の方法は、複数の成分がそれぞれ樹脂の長さ方向に連続した構造で短繊維内で相互接着している一般の複合繊維の製法であり、例えば本発明の熱溶融性フッ素樹脂混合繊維(A)を芯成分とし、熱溶融性フッ素樹脂(B)あるいは官能基を含有する熱溶融性フッ素樹脂(C)を鞘成分となるような芯鞘法または並列法を採用することができる。
【0022】
芯鞘法による例として、通常の複合紡糸装置を用いて、複合繊維の中心から各成分がA/B、A/C、A/C/B、A/B/Cとなる多層断面形状を有する熱溶融性フッ素樹脂複合繊維にすることができる。とくにこのような芯鞘法で得られる複合繊維は、熱溶融性フッ素樹脂混合繊維表面がフッ素樹脂で覆われているため、半導体関連装置でも液晶ポリマーによる装置汚染の問題が無くなるという利点がある。また繊維表面に出る官能基を含有する熱溶融性フッ素樹脂の官能基の種類や量を変えることで熱溶融性フッ素樹脂複合繊維の濡れ特性や疎水性を制御することも可能になる。
【0023】
本発明の熱溶融性樹脂混合繊維には、必要に応じ任意の添加剤が配合されていてもよい。このような添加剤の例として、酸化防止剤、光安定剤、帯電防止剤、蛍光増白剤、着色剤、カーボンブラック等の無機物質などを挙げることができる。
【0024】
【実施例】
以下、本発明を実施例により説明する。
【0025】
[実施例1〜3]
フッ素樹脂PFA(三井・デュポンフロロケミカル社製PF004、融点304℃、メルトフローレート(372℃、5000g荷重)35g/10分)と液晶ポリマー(デュポン社製Zenite 7000、融点353℃)を充分に乾燥した後、テトラフルオロエチレン、パーフルオロ(プロピルビニルエーテル)(PPVE)及びCF2=CF[OCF2CF(CF3)]OCF2CF2CH2OH[9,9−ジヒドロー9−ヒドロキシーパーフルオロ(3,6−ジオキサー5−メチルー1−ノネン)]の3元共重合体である相溶化剤A(PPVE含量3.7重量%、上記水酸基含有モノマー含量1.1重量%、メルトフローレート15g/10分)と共に2軸押出機で溶融ブレンドして(樹脂温度365℃)フッ素樹脂混合物を作った。尚、液晶ポリマーは5重量%、相溶化剤Aは2.5重量%となる割合で配合した。
【0026】
ペレットにした上記フッ素樹脂混合物を、30mm単軸押出機(L/D:25)を用いて、孔径2.8mm、孔数6の紡糸口金より紡糸温度365℃で紡出し、引取ローラで100、200、300m/minの速度で引取った。
得られた熱溶融性フッ素樹脂混合繊維の電子顕微鏡(SEM)観察から、殆どの液晶ポリマーは直径3μm以下の繊維状構造を形成していた(図1)。また熱溶融性フッ素樹脂混合繊維の直径測定結果を表1に示す。
【0027】
また得られた熱溶融性フッ素樹脂混合繊維を試料長さ250mm、引張速度300mm/minの条件で引張り、引張弾性率、引張強度及び伸び率を測定した結果を表1に併記した。
【0028】
さらに熱溶融性フッ素樹脂混合繊維の収縮率を測定した結果を表1に併記する。尚、収縮率は、長さ300mmの試料を150℃、200℃、250℃で30分間熱処理した後、25℃に冷却し、その長さの変化から次式により求めた。
収縮率=((加熱前の長さー加熱後の長さ)/加熱前の長さ)×100
【0029】
[参考例1]
液晶ポリマーと相溶化剤を使用しない例である。PFAペレットをそのまま溶融紡糸して繊維を作り、延伸比率2倍で延伸ローラで延伸した後、実施例1〜3と同じ手順で繊維の直径、引張特性及び収縮率の測定を行った。結果を表1に併記する。
【0030】
【表1】

Figure 0004497711
【0031】
表1の熱溶融性フッ素樹脂混合繊維の直径測定結果からは、引取速度に比例して繊維の直径は細くなった。繊維の直径は場所に関係なくほぼ一定であった。また引張試験では、引取速度が速いと引張弾性率と引張強度は共に増加し、伸び率は減少した。これは引取速度の違いによって溶融紡糸過程で繊維状になる液晶ポリマーの径と長さが変わるためである。さらに熱溶融性フッ素樹脂混合繊維の方(実施例1〜3)が純粋なPFA(参考例1)より引張弾性率が高かった。これも熱溶融性フッ素樹脂混合繊維に液晶ポリマーが繊維状で存在していたためである。
【0032】
表1で分かるように、繊維状の液晶相がPFAマトリックス中に存在する方(実施例1〜3)が純粋なPFA繊維(参考例1)より収縮率がかなり小さくなっている。250℃でも繊維状の液晶相を含む繊維の収縮率は、純粋なPFA繊維の収縮率の約17%である。熱溶融性フッ素樹脂混合繊維の収縮率が引取速度の増加と共に一旦上がってから再び下がる理由は、引取速度が速くなると、繊維状の液晶相の直径は細くなり、その長さも短くなるためである。収縮率は液晶繊維の直径とその長さによって変化する。
【0033】
【発明の効果】
本発明によれば、熱溶融性フッ素樹脂繊維のマトリックス中に液晶ポリマーを均一な繊維状に存在させることにより、収縮率が非常に小さく、強度及び弾性率が高い熱溶融性フッ素樹脂混合繊維を提供することができる。また、極性を持つ液晶ポリマー及び相溶化剤を含むことで、溶融紡糸中に静電気による繊維同士の絡み合いを防止できるという利点もある。
【0034】
さらに、通常の複合紡糸装置を用いて、本発明の熱溶融性フッ素樹脂混合繊維を芯成分とし、本発明の使用原料であるフッ素樹脂あるいは官能基を含有する熱溶融性フッ素樹脂を鞘成分となるような芯鞘法で得られる複合繊維は、熱溶融性フッ素樹脂混合繊維表面がフッ素樹脂に覆われているため、半導体関連装置でも液晶ポリマーによる装置汚染の問題が無くなる利点がある。また表面に出る官能基を含有する熱溶融性フッ素樹脂中の官能基の種類や量を変えることにより、熱溶融性フッ素樹脂混合繊維の濡れ特性や疎水性を制御することも可能になる。また耐薬品性も向上される。
【0035】
上記のような熱溶融性フッ素樹脂混合繊維あるいは複合繊維は、耐熱性、耐薬品性、高い強度、高温で小さい収縮率が要求されるゴミ焼却炉用のバックフィルターとしての用途にも有用である。とくに静電気を発生しにくいため、バックフィルターから粉塵を除去するのが容易である。
【図面の簡単な説明】
【図1】実施例3で得られた熱溶融性フッ素樹脂混合繊維の破断面の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluororesin mixed fiber in which a fibrous liquid crystal polymer is present in a heat-meltable fluororesin matrix to enhance mechanical strength and a method for producing the same. More specifically, by using a part having a functional group as a part of a heat-meltable fluororesin and performing melt spinning under appropriate conditions, fine liquid crystal polymer fibers are uniformly present in the fluororesin matrix, and the fluororesin It is related with the heat-melting fluororesin mixed fiber which improved the heat shrinkage rate and the tensile modulus while maintaining the excellent heat resistance and chemical resistance.
[0002]
[Prior art]
Non-melting type fluororesin polytetrafluoroethylene (PTFE) and heat-melting fluororesin tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) Tetrafluoroethylene / ethylene copolymer (ETFE) has excellent heat resistance, chemical resistance, non-adhesiveness and the like. However, the physical properties of the fibers formed with the expectation of the characteristics of these fluororesins are not always satisfactory. In particular, since the fluororesin has a large linear expansion coefficient, there is a problem that the shrinkage rate of the fluororesin fiber at a high temperature also increases.
[0003]
On the other hand, in-situ composites have recently been proposed that align liquid crystal polymers in a resin matrix and improve the strength of the matrix (for example, as a recent review paper, Journal of macromolecular science, chemical physics, 1995 (C35) p183, JP-A-2-32147). This method has advantages such as a decrease in melt viscosity due to the liquid crystal polymer and simplification of the entire molding process, as compared with conventional reinforced resins made of glass fiber or carbon fiber.
[0004]
However, the mechanical strength of the in-situ composite fiber obtained by melt spinning is greatly influenced by the interfacial adhesive force between the resin matrix and the fibrous liquid crystal polymer present in the matrix. However, since there is almost no intermolecular interaction between the fluororesin and the liquid crystal polymer, the interfacial adhesive force between the fluororesin / liquid crystal polymer is very small in the fluororesin mixed fiber obtained by the in-situ composite method proposed heretofore. Even in the fluororesin mixed fiber in which the liquid crystal polymer was mixed with the resin, the elastic modulus and mechanical strength were lower than those of other polymer fibers. In addition, since the liquid crystal polymer phase is not uniformly dispersed in the fluororesin matrix, the melt viscosity changes during the melt spinning process, which causes the outer diameter of the fluororesin mixed fiber to become nonuniform.
[0005]
[Problems to be solved by the invention]
Accordingly, the present inventors have made a fluororesin having a specific functional group (hereinafter referred to as a compatibilizer) in order to make the liquid crystal phase dispersed phase in the fluororesin composition uniform and to make the diameter of the fluororesin mixed fiber uniform. Was previously proposed (Japanese Patent Application No. 11-366797). As a result, the interfacial tension between the fluororesin and the liquid crystal polymer can be reduced, the dispersion state of the liquid crystal phase dispersed in the fluororesin matrix becomes uniform, and the melt viscosity of the mixture becomes uniform even in the melt spinning process. It became possible to make the diameter of the resin mixed fiber uniform. In addition, not only mixed fibers but also various shapes of fluororesin composites containing cotton, non-woven fabric, or liquid crystal polymer in the form of fibers can similarly have excellent mechanical properties. It was.
[0006]
An object of the present invention is to provide a fluororesin mixed fiber having excellent mechanical strength, low shrinkage coefficient or linear expansion coefficient, excellent heat resistance and chemical resistance, and a method for producing the same, in the prior invention.
[0007]
[Means for Solving the Problems]
That is, the present invention is a mixed fiber comprising a mixture of a heat-meltable fluororesin and a thermoplastic liquid crystal polymer, and the heat-meltable fluororesin is a monomer selected from tetrafluoroethylene, hexafluoropropylene, and perfluoro (alkyl vinyl ether). A part of the heat-meltable fluororesin, which is a polymer or copolymer, is obtained by copolymerizing the above monomer with a perfluorovinyl ether compound containing a functional group X represented by the following formula (1). A copolymer, which is blended as a compatibilizing agent for the polymer mixture, and the thermoplastic liquid crystal polymer is dispersed in the form of fibers in the heat-meltable fluororesin matrix, and the shrinkage at 200 ° C. is 10% or less. It is a heat-meltable fluororesin mixed fiber.
CF 2 = CF [OCF 2 CF (CF 3 )] m −O− (CF 2 ) n −X (1)
[Wherein, m is 0 to 3, n is 0 to 4, X is —COOH, —CH 2 COOH, —COOCH 3 , —CH 2 OH, —CN, —CH 2 O (CO) NH 2 , —CH 2 OCN, —CH 2 OP (O) (OH) 2 , —CH 2 OP (O) Cl 2 , or —SO 2 F. ]
[0008]
The present invention also relates to the thermally mixture of meltable fluororesin and a thermoplastic liquid crystal polymer, a draw ratio from 50 to 9000, the production of melt processible fluoropolymer mixed fibers, which comprises melt-spun at a take-up speed 100 m / min or more Regarding the method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in addition to the heat-meltable fluororesin used for general molding, at least two types of heat-meltable fluororesins are used in combination with the heat-meltable fluororesin containing a functional group. Molding the melt processible fluoropolymer in the former be those which are already widely known, Te tiger fluoro ethylene les down, f hexafluoropropylene, copolymer of monomers selected from perfluoro (alkyl vinyl ether) or a copolymer is there.
[0010]
More specifically, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / hexafluoropropylene / perfluoro (alkyl vinyl ether) ) Copolymer (EPE) , and the like .
[0011]
In the present invention, together with these heat-meltable fluororesins, carboxylic acid groups or derivatives thereof, hydroxyl groups, nitrile groups, cyanato groups, carbamoyloxy groups, phosphonooxy groups, halophosphonooxy groups, sulfonic acid groups or derivatives thereof And a hot-melt fluororesin containing a functional group selected from sulfohalide groups is used as a compatibilizing agent . These compatibilizers contain the functional group as long as the properties of the heat-meltable fluororesin are not significantly impaired. These functional groups can be introduced by adding or substituting them, or can be obtained by copolymerizing monomers having these functional groups during the synthesis of the above-described heat-meltable fluororesin.
[0012]
Specific examples of the functional group include —COOH, —CH 2 COOH, —COOCH 3 ,
Over CONH 2, -OH, chromatography CH 2 OH, -CN, chromatography CH 2 O (CO) NH 2 ,
Chromatography CH 2 OCN, chromatography CH 2 OP (O) (OH ) 2, over CH 2 OP (O) Cl 2 ,
A group such as —SO 2 F can be exemplified. These functional groups are preferably introduced into the compatibilizing agent by copolymerizing a fluorine-containing monomer having these functional groups during the production of the fluororesin.
[0013]
Examples of fluorine-containing monomers suitable for copolymerization having such a functional group include, for example, the formula CF 2 = CF [OCF 2 CF (CF 3 )] m -O (CF 2 ) n -X [ where m is, 0 to 3, n is, 0 to 4, X is, -COOH, -CH 2 COOH, -COOCH 3, -CH 2 OH, -CN, -CH 2 O (CO) NH 2, -CH 2 OCN , -CH 2 OP (O) ( OH) 2, -CH 2 OP (O) Cl 2, a perfluorovinyl ether compound represented by -SO 2 F, etc.]. Most preferred of such fluorinated vinyl ethers are
Formula CF 2 = CF-OCF 2 CF 2 -SO 2 F or formula CF 2 = CF [OCF 2 CF (CF 3)] O (CF 2) 2 -Y
(Where Y is -SO 2 F, -CN, -COOH, -COOCH 3 etc.)
Or the formula CF 2 = CF [OCF 2 CF (CF 3)] O (CF 2) 2 -CH 2 -Z
(In the formula, Z represents —COOH, —OH, —OCN, —OP (O) (OH) 2 ,
-OP (O) Cl 2, O (CO) such as NH 2) is represented by like.
[0014]
These functional group-containing monomers are preferably copolymerized in the compatibilizer in an amount of, for example, 0.5 to 10% by weight, particularly 1 to 5% by weight. If the content of the functional group-containing monomer in the compatibilizer is too small, the effect as a compatibilizer is small, while if the content is too large, a reaction similar to a crosslinking reaction occurs due to strong interaction between the compatibilizers. There is a possibility that the melt viscosity of the spinning raw material composition suddenly increases, which may make melt spinning difficult. Moreover, when the content increases, the heat resistance of the compatibilizer becomes worse.
[0015]
There is no particular limitation on the viscosity or molecular weight of the compatibilizer, but it is within the range not exceeding the viscosity or molecular weight of the hot-melting fluororesin blended with these compatibilizers, preferably the same level.
[0016]
The liquid crystal polymer used in the present invention is a thermoplastic resin that forms a thermotropic liquid crystal, and the melting point of the liquid crystal polymer is not particularly limited as long as there is no problem in heat resistance at the melt molding temperature. However, from the viewpoint of moldability and thermal stability, it is preferable to use a resin that is 20 ° C. higher than the melting point of the heat-meltable fluororesin for molding. Examples of such a liquid crystal polymer include polyester, polyester amide, polyester imide, and polyester urethane, and polyester is most preferable. A typical example of the liquid crystal polyester is a wholly aromatic polyester, and a great many of them are already known. For example, it is derived from an aromatic dicarboxylic acid and an aromatic dihydroxy compound and / or an aromatic hydroxycarboxylic acid, and a part thereof is derived from an aliphatic dicarboxylic acid, an aliphatic dihydroxy compound, an aliphatic hydroxycarboxylic acid, etc. It may be substituted with a polymerized unit. More specifically, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, aromatic dihydroxy compounds such as hydroquinone, resorcin, 2,6-dihydroxynaphthalene, bisphenol A, dihydroxydiphenyl, para Examples thereof include those having a polymerized unit derived from an aromatic hydroxycarboxylic acid such as hydroxybenzoic acid.
[0017]
In the present invention, a fluororesin mixed fiber containing a fibrous liquid crystal polymer is formed from the heat-meltable fluororesin for molding and the functional group-containing fluororesin and a liquid crystal polymer. In forming the mixed fiber, the latter functional group is formed. The blending ratio of the fluororesin (compatibilizing agent) having a difference of 1 to 20% by weight, particularly about 1 to 10% by weight of the resin raw material, is slightly different depending on the type of functional group and the functional group content. . In other words, the higher the blending ratio of the compatibilizing agent, the lower the interfacial tension between the fluororesin / liquid crystal polymer and the stronger the interfacial adhesive strength. However, when blended too much, it is similar to the crosslinking reaction due to the strong interaction between the compatibilizing agents. Reaction may occur, and melt spinning may be difficult because the viscosity of the spinning raw material composition suddenly increases. Moreover, when the mixture ratio increases too much, the heat resistance of mixed fiber will worsen.
[0018]
The blending ratio of the liquid crystal polymer in the resin raw material can be adjusted so that the liquid crystal polymer is 0.5 to 20% by weight, particularly 1 to 15% by weight in melt spinning using a normal single-screw extruder. preferable. That is, if the blending amount of the liquid crystal polymer is too small, a sufficient reinforcing effect cannot be expected. Conversely, if the blending ratio is too high, a large amount of continuous fibrous liquid crystal polymer exists in the fluororesin matrix, and the fluororesin mixed fiber may become brittle. If the blending ratio of the liquid crystal polymer is too large, the viscosity is suddenly lowered during the melt spinning process, so that melt spinning cannot be performed or thread breakage occurs.
[0019]
The heat-meltable fluororesin and functional group-containing fluororesin of the present invention and the thermoplastic liquid crystal polymer can be mixed by a usual melt-mixing method, preferably using an extruder, and at that time, a high shear rate Since the liquid crystal dispersed phase is smaller in this case, it is preferable to use a twin screw extruder rather than a single screw extruder. In order to disperse the liquid crystal dispersed phase in the fluororesin matrix small in the melt mixing process, the extrusion temperature is about 10 to 20 ° C. higher than the melting point of the high melting point resin of the hot melt fluororesin and the thermoplastic liquid crystal polymer used. It is preferable to set the temperature. Further, in order to obtain a fibrous liquid crystal polymer having a more uniform size in the fluororesin matrix in the melt spinning step, the particle size of the liquid crystal polymer is 10 μm or less, preferably 0. It is desirable to be about 5 to 5 μm.
[0020]
The diameter of the liquid crystal polymer present in the fluororesin matrix of the melt-spun thermomeltable fluororesin mixed fiber is determined by the size of the liquid crystal phase dispersed in the melt mixture before melt spinning and the draw ratio of the melt spinning process (spinneret (Cross section / fiber cross section). The smaller the size of the liquid crystal dispersed phase or the faster the take-up speed, the smaller the diameter and length of the fibrous liquid crystal polymer. Therefore, for the purpose of improving the shrinkage rate, it is preferable that the draw ratio is 50 to 9000 and the take-up speed is 100 m / min or more.
Another method for producing a heat-meltable fluororesin mixed fiber is a method for producing a general composite fiber in which a plurality of components are bonded to each other within a short fiber in a structure in which a plurality of components are continuous in the length direction of the resin. A core-sheath method in which the heat-meltable fluororesin mixed fiber (A) of the invention is a core component, and the heat-meltable fluororesin (B) or a heat-meltable fluororesin (C) containing a functional group is a sheath component or A parallel method can be employed.
[0022]
As an example by the core-sheath method, using an ordinary composite spinning apparatus, each component has a multilayer cross-sectional shape of A / B, A / C, A / C / B, and A / B / C from the center of the composite fiber. A heat-meltable fluororesin composite fiber can be obtained. In particular, the composite fiber obtained by such a core-sheath method has an advantage that the problem of device contamination by the liquid crystal polymer is eliminated even in a semiconductor-related device because the surface of the heat-meltable fluororesin mixed fiber is covered with the fluororesin. In addition, the wettability and hydrophobicity of the heat-meltable fluororesin composite fiber can be controlled by changing the type and amount of the functional group of the heat-meltable fluororesin containing the functional group appearing on the fiber surface.
[0023]
An arbitrary additive may be blended in the heat-meltable resin mixed fiber of the present invention as necessary. Examples of such additives include antioxidants, light stabilizers, antistatic agents, fluorescent brighteners, colorants, inorganic substances such as carbon black, and the like.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0025]
[Examples 1 to 3]
Fluorine resin PFA (PF004, Mitsui / DuPont Fluorochemicals, melting point 304 ° C., melt flow rate (372 ° C., 5000 g load) 35 g / 10 min) and liquid crystal polymer (Zenite 7000, melting point 353 ° C.) sufficiently dried Tetrafluoroethylene, perfluoro (propyl vinyl ether) (PPVE) and CF 2 ═CF [OCF 2 CF (CF 3 )] OCF 2 CF 2 CH 2 OH [9,9-dihydro-9-hydroxy-perfluoro ( 3,6-dioxa-5-methyl-1-nonene)], a compatibilizer A (PPVE content 3.7% by weight, hydroxyl group-containing monomer content 1.1% by weight, melt flow rate 15 g / 10 minutes) and melt blended with a twin screw extruder (resin temperature 365 ° C.) to make a fluororesin mixture . The liquid crystal polymer was blended at a ratio of 5% by weight and the compatibilizer A at 2.5% by weight.
[0026]
Using a 30 mm single screw extruder (L / D: 25), the pellets of the fluororesin mixture were spun from a spinneret having a hole diameter of 2.8 mm and a number of holes of 6 at a spinning temperature of 365 ° C. They were taken at a speed of 200, 300 m / min.
From observation of an electron microscope (SEM) of the obtained heat-meltable fluororesin mixed fiber, most liquid crystal polymers formed a fibrous structure having a diameter of 3 μm or less (FIG. 1). Table 1 shows the diameter measurement result of the heat-meltable fluororesin mixed fiber.
[0027]
Table 1 also shows the results of measuring the tensile modulus, tensile strength and elongation of the obtained hot-meltable fluororesin mixed fiber under the conditions of a sample length of 250 mm and a tensile speed of 300 mm / min.
[0028]
Furthermore, the result of having measured the shrinkage | contraction rate of a heat-meltable fluororesin mixed fiber is written together in Table 1. The shrinkage rate was determined by the following equation from the change in length after a 300 mm long sample was heat-treated at 150 ° C., 200 ° C. and 250 ° C. for 30 minutes and then cooled to 25 ° C.
Shrinkage rate = ((length before heating−length after heating) / length before heating) × 100
[0029]
[Reference Example 1]
This is an example in which a liquid crystal polymer and a compatibilizer are not used. PFA pellets were melt spun as they were to make fibers, and after stretching with a stretching roller at a stretching ratio of 2 times, the fiber diameter, tensile properties and shrinkage were measured in the same procedure as in Examples 1-3. The results are also shown in Table 1.
[0030]
[Table 1]
Figure 0004497711
[0031]
From the diameter measurement result of the heat-meltable fluororesin mixed fiber in Table 1, the fiber diameter was reduced in proportion to the take-off speed. The fiber diameter was almost constant regardless of location. In the tensile test, when the take-up speed was high, both the tensile modulus and tensile strength increased, and the elongation decreased. This is because the diameter and length of the liquid crystal polymer that becomes fibrous during the melt spinning process vary depending on the take-up speed. Further, the heat-meltable fluororesin mixed fibers (Examples 1 to 3) had higher tensile elastic modulus than pure PFA (Reference Example 1). This is also because the liquid crystal polymer was present in a fiber form in the heat-meltable fluororesin mixed fiber.
[0032]
As can be seen from Table 1, the shrinkage rate is considerably smaller in the case where the fibrous liquid crystal phase is present in the PFA matrix (Examples 1 to 3) than in the pure PFA fiber (Reference Example 1). Even at 250 ° C., the shrinkage of the fiber containing the fibrous liquid crystal phase is about 17% of the shrinkage of the pure PFA fiber. The reason why the shrinkage rate of the heat-meltable fluororesin mixed fiber increases once with the increase in take-up speed and then decreases again is that when the take-up speed increases, the diameter of the fibrous liquid crystal phase becomes thinner and its length also becomes shorter. . The shrinkage ratio varies depending on the diameter and length of the liquid crystal fiber.
[0033]
【The invention's effect】
According to the present invention, by allowing the liquid crystal polymer to exist in a uniform fiber form in the matrix of the heat-meltable fluororesin fiber, the heat-meltable fluororesin mixed fiber having a very low shrinkage and high strength and elastic modulus. Can be provided. In addition, the inclusion of a polar liquid crystal polymer and a compatibilizing agent also has an advantage of preventing entanglement of fibers due to static electricity during melt spinning.
[0034]
Furthermore, using a normal composite spinning apparatus, the heat-meltable fluororesin mixed fiber of the present invention is used as a core component, and the heat-meltable fluororesin containing a fluororesin or a functional group as a raw material of the present invention is used as a sheath component. The composite fiber obtained by the core-sheath method has an advantage that the problem of device contamination due to the liquid crystal polymer is eliminated even in a semiconductor-related device because the surface of the heat-meltable fluororesin mixed fiber is covered with the fluororesin. It is also possible to control the wettability and hydrophobicity of the heat-meltable fluororesin mixed fiber by changing the type and amount of the functional group in the heat-meltable fluororesin containing the functional group appearing on the surface. Chemical resistance is also improved.
[0035]
The heat-meltable fluororesin mixed fiber or composite fiber as described above is also useful as a back filter for a garbage incinerator that requires heat resistance, chemical resistance, high strength, and low shrinkage at high temperatures. . In particular, since it is difficult to generate static electricity, it is easy to remove dust from the back filter.
[Brief description of the drawings]
1 is an electron micrograph of a fracture surface of a heat-meltable fluororesin mixed fiber obtained in Example 3. FIG.

Claims (4)

熱溶融性フッ素樹脂と熱可塑性液晶ポリマーの混合物からなる混合繊維であって、熱溶融性フッ素樹脂はテトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)から選ばれるモノマーの重合体又は共重合体であり、かつ、熱溶融性フッ素樹脂の一部は、上記モノマーと、更に下記式(1)で表される官能基Xを含有するパーフルオロビニルエーテル化合物とを共重合させた共重合体であって、ポリマー混合物の相溶化剤として配合され、熱可塑性液晶ポリマーが熱溶融性フッ素樹脂マトリックス中に繊維状で分散しており、200℃における収縮率が10%以下である熱溶融性フッ素樹脂混合繊維。
CF 2 =CF[OCF CF(CF )] −O−(CF 2 ) n −X・・・(1)
[式中、mは0〜3、nは0〜4、Xは−COOH、−CH 2 COOH、−COOCH 3 、−CH 2 OH、−CN、−CH 2 O(CO)NH 2 、−CH 2 OCN、−CH 2 OP(O)(OH) 2 、−CH 2 OP(O)Cl 2 、または−SO 2 Fである。]
A mixed fiber comprising a mixture of a heat-meltable fluororesin and a thermoplastic liquid crystal polymer, wherein the heat-meltable fluororesin is a polymer or copolymer of monomers selected from tetrafluoroethylene, hexafluoropropylene, and perfluoro (alkyl vinyl ether) A part of the heat-meltable fluororesin is a copolymer obtained by copolymerizing the monomer and a perfluorovinyl ether compound containing a functional group X represented by the following formula (1). A heat-meltable fluororesin blended as a compatibilizing agent for a polymer mixture, wherein the thermoplastic liquid crystal polymer is dispersed in the form of fibers in the heat-meltable fluororesin matrix, and the shrinkage at 200 ° C. is 10% or less. Mixed fiber.
CF 2 = CF [OCF 2 CF (CF 3 )] m −O− (CF 2 ) n −X (1)
[Wherein, m is 0 to 3, n is 0 to 4, X is —COOH, —CH 2 COOH, —COOCH 3 , —CH 2 OH, —CN, —CH 2 O (CO) NH 2 , —CH 2 OCN, —CH 2 OP (O) (OH) 2 , —CH 2 OP (O) Cl 2 , or —SO 2 F. ]
相溶化剤が、熱溶融性フッ素樹脂と熱可塑性液晶ポリマーの混合物の1〜20重量%の割合で配合されてなる請求項1記載の熱溶融性フッ素樹脂混合繊維。The heat-meltable fluororesin mixed fiber according to claim 1 , wherein the compatibilizing agent is blended in an amount of 1 to 20% by weight of the mixture of the heat-meltable fluororesin and the thermoplastic liquid crystal polymer . 請求項1〜2記載の熱溶融性フッ素樹脂混合繊維を芯成分とし、熱溶融性フッ素樹脂を鞘成分とする少なくとも2層構造を有する熱溶融性フッ素樹脂複合繊維。  A heat-meltable fluororesin composite fiber having at least a two-layer structure having the heat-meltable fluororesin mixed fiber according to claim 1 as a core component and a heat-meltable fluororesin as a sheath component. 請求項1〜2記載の熱溶融性フッ素樹脂と熱可塑性液晶ポリマーの混合物を、延伸比50〜9000、引取速度100m/min以上で溶融紡糸することを特徴とする熱溶融性フッ素樹脂混合繊維の製造方法。A heat-meltable fluororesin mixed fiber, wherein the mixture of the heat-meltable fluororesin and the thermoplastic liquid crystal polymer according to claim 1 is melt-spun at a draw ratio of 50 to 9000 and a take-up speed of 100 m / min or more. Production method.
JP2000383507A 2000-12-18 2000-12-18 Heat-meltable fluororesin mixed fiber and method for producing the same Expired - Lifetime JP4497711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000383507A JP4497711B2 (en) 2000-12-18 2000-12-18 Heat-meltable fluororesin mixed fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383507A JP4497711B2 (en) 2000-12-18 2000-12-18 Heat-meltable fluororesin mixed fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002180326A JP2002180326A (en) 2002-06-26
JP4497711B2 true JP4497711B2 (en) 2010-07-07

Family

ID=18851152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383507A Expired - Lifetime JP4497711B2 (en) 2000-12-18 2000-12-18 Heat-meltable fluororesin mixed fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4497711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220084346A (en) * 2019-11-27 2022-06-21 다이킨 고교 가부시키가이샤 Methods for making composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232147A (en) * 1988-07-20 1990-02-01 Toray Ind Inc Composite material of fluororesin and production thereof
WO1995033782A1 (en) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefin, fluoropolymer, and thermoplastic resin composition containing the polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232147A (en) * 1988-07-20 1990-02-01 Toray Ind Inc Composite material of fluororesin and production thereof
WO1995033782A1 (en) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefin, fluoropolymer, and thermoplastic resin composition containing the polymer

Also Published As

Publication number Publication date
JP2002180326A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
US6433093B2 (en) Melt processible fluoropolymer composites
JP4406099B2 (en) Formulation of fluorine plastics and polyether ketone ketone
US7261937B2 (en) Fluoropolymer laminates and a process for manufacture thereof
RU2168525C2 (en) Composition of thermoplastic resin
TW201008995A (en) Creep resistant fluoropolymer
EP1242657B1 (en) Melt processible fluoropolymer composite fibers
JP4497711B2 (en) Heat-meltable fluororesin mixed fiber and method for producing the same
JP3738794B2 (en) Stretched polyamide fiber and method for producing the same
JP6520899B2 (en) Resin composition
JP4425790B2 (en) Liquid crystal polymer composition
JP2817922B2 (en) Fluorine resin molding
EP1086987A1 (en) Method of fabricating composite fluoroplastic articles
JP4892999B2 (en) Melt liquid crystal forming polyester composite fiber
JP2020094300A (en) Heat fusible fluororesin mixed fiber, and method for producing the same
JPH04224853A (en) Molten fluororesin composition
JPH083040B2 (en) Polyamideimide resin molding composition
JP2614649B2 (en) Polyvinylidene fluoride molded body
TWI767980B (en) Filament and fluororesin composition for filament
JP3804954B2 (en) Polyvinyl chloride fiber
JP5290808B2 (en) Rope structure
JP3073083B2 (en) Fibrous polyimide resin molding for reinforcing composite materials
JP2020094301A (en) Latently crimpable fluororesin straight fiber, method for producing the same, and method for producing crimped fiber
JP2887381B2 (en) Polyphenylene sulfide monofilament
TW202239862A (en) Plastic optical fiber and method of manufacturing the same having a clad made of a material capable of achieving properties required for the clad and capable of being melt-spun
JP2001123063A (en) Straight-chain polyphenylene sulfide resin composition and sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4497711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term