JP4495313B2 - Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate - Google Patents
Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate Download PDFInfo
- Publication number
- JP4495313B2 JP4495313B2 JP2000212320A JP2000212320A JP4495313B2 JP 4495313 B2 JP4495313 B2 JP 4495313B2 JP 2000212320 A JP2000212320 A JP 2000212320A JP 2000212320 A JP2000212320 A JP 2000212320A JP 4495313 B2 JP4495313 B2 JP 4495313B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- compound
- methyl
- represented
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fats And Perfumes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光学活性ムスコン(3−メチルシクロペンタデカノン)の合成中間体として重要な、光学活性3−メチル−5−シクロペンタデセン−1−オン、該化合物を高収率、高純度に製造できる新規な製法及び新規中間体に関する。
【0002】
【従来の技術】
ムスコン(3−メチルシクロペンタデカノン)は、その光学異性体である(R)−(−)−体が天然麝香の主要香気成分として存在し、特に、この(R)−(−)−体は、(S)−(+)−体に比べてより強く、拡散性が優れたボリューム感のある香気を有し、重要なムスク系合成香料である。
【0003】
ムスコンの合成法としてはこれまで種々の提案がなされ、例えば、ドデカン−1,12−ジアールを出発原料とする合成法(特開昭55−111438号公報)、ノナジエン酸エステルからの合成法(Tetrahedron Lett.,2257(1979))、シクロドデセンを出発原料とする合成法(J.Org.Chem.,52,3798-3806(1987))などが提案されている。
【0004】
また、光学活性ムスコンの合成法としては、例えば、3−メチル−2−シクロペンタデセン−1−オンにルテニウム−光学活性ホスフィン錯体を触媒として不斉水素化する方法(特開平6−192161号公報)、R体またはS体のシトロネラールと、ハロゲン化不飽和炭化水素を反応する方法(特開2000−26361号公報)などが提案されている。しかしながら、上記の特開平6−192161号公報で提案されている光学活性ムスコンの合成法は、使用されている触媒が再利用可能であること、および高収率であるなど有効な合成法であるが、出発原料が高価であるなどの問題がある。また、上記の特開2000−26361号公報で提案されている合成法は、光学活性シトロネラールとハロゲン化不飽和炭化水素を反応させ、得られる11−ヒドロキシ−13,17−ジメチルオクタデカ−1,16−ジエン誘導体とし、オゾン酸化を行った後、閉環して製造されており必ずしも工業的に有利な合成法とは言い難い。
【0005】
一方、特開平6−192680号公報には3−メチル−5−シクロペンタデセン−1−オンが香料化合物として有用であり、特にシス異性体がトランス異性体より有用であることが示されている。しかしながら、上記特許には該化合物の光学活性体については何ら記載も示唆もされていない。
【0006】
さらに、(S)−(−)−3−メチル−5−シクロペンタデセン−1−オンはそのシス−、トランス−立体配位は記載されていないが、ムスコンの合成中間体として記載されている(Huaxue Xuebao,53(9),909−915,1995参照)。しかしながら、この化合物についての芳香特性については記述されていない。
【0007】
【発明が解決しようとする課題】
従って、本発明は光学活性3−メチル−5−シクロペンタデセン−1−オンおよび該化合物を有効成分として含有するムスク様香気を有する香料組成物を提供することである。
【0009】
また、本発明は安価な原料を使用して、かつ高収率で、更に簡便な方法により、工業的に有利に光学活性3−メチル−5−シクロペンタデセン−1−オンを製造する方法を提供することである。
さらに、本発明の他の目的は、光学活性3−メチル−5−シクロペンタデセン−1−オンの製造のために有用な新規中間体を提供することである。
【0010】
【課題を解決するための手段】
そこで本発明者らは、上記の課題を解決するため鋭意検討を行った結果、上記式(1)−1および/または上記式(1)−2で表される(R)−(−)または(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンがムスク様の香料として有用であること、また、(R)−(−)−または(S)−(+)−3−メチル−5−ヘキセンニトリルを出発原料として10−ウンデセニル−1−マグネシウムハライドと反応し、閉環するという簡便な方法で、且つ高収率で光学活性3−メチル−5−シクロペンタデセン−1−オンが得られることを見出し本発明を完成した。
【0011】
従って、本発明は下記式(1)−1
【0012】
【化11】
で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンの製法である。式中、波線はシス−、トランス−異性体の存在を示す。
【0013】
また本発明は下記式(1)−1
【化12】
で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンおよび/または下記式(1)−2
【0015】
【化13】
で表される(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンを有効成分として含有することを特徴とする香料組成物の製法である。
【0016】
また本発明は下記式(3)−1
【0017】
【化14】
で表される(R)−(−)−3−メチル−5−ヘキセンニトリルを、有機溶媒中、10−ウンデセニル−1−マグネシウムハライド(C11H21MgX)とカップリング反応せしめて下記式(2)−1
【0018】
【化15】
で表される(R)−(+)−4−メチル−1,16−ヘプタデカジエン−6−オンを形成させ、これを閉環して下記式(1)−1
【0019】
【化16】
で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンの製法である。
【0020】
また本発明は下記式(3)−2
【0021】
【化17】
で表される(S)−(+)−3−メチル−5−ヘキセンニトリルを、有機溶媒中、10−ウンデセニル−1−マグネシウムハライド(C11H21MgX)とカップリング反応せしめて下記式(2)−2
【0022】
【化18】
で表される(S)−(−)−4−メチル−1,16−ヘプタデカジエン−6−オンを形成させ、これを閉環して下記式(1)−2
【0023】
【化19】
で表される(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンの製法である。
【0024】
上記式(2)−1、式(2)−2、式(3)−1および式(3)−2で表される(R)−(+)−4−メチル−1,16−ヘプタデカジエン−6−オン、(S)−(−)−4−メチル−1,16−ヘプタデカジエン−6−オン、(R)−(−)−3−メチル−5−ヘキセンニトリルおよび(S)−(+)−3−メチル−5−ヘキセンニトリルは文献未記載の新規化合物である。
【0025】
【発明の実施の形態】
本発明の製法に従って、式(3)−1の化合物から式(1)−1の化合物を合成する態様を反応行程[以下、(A)製法と称す]で示すと、以下の如くになる。
(A)製法
【0026】
【化20】
また、本発明の製法に従って、式(3)−2の化合物から式(1)−2の化合物を合成する態様を反応行程[以下、(B)製法と称す]で示すと、以下の如くとなる。
(B)製法
【0027】
【化21】
本発明の光学活性3−メチル−5−シクロペンタデセン−1−オンの製法は上記の(A)製法および(B)製法に従って合成することができる。本発明の出発原料である式(3)−1の化合物および式(3)−2の化合物は、特に限定されないが、例えば、式(3)−1の化合物は下記式(9)−1の化合物から容易に合成することができる。式(9)−1の化合物から式(3)−1の化合物を合成する態様を反応行程[以下、(C)製法と称す]で示すと、以下の如くとなる。
(C)製法
【0028】
【化22】
[式中、Tsはトシル基、DIBAHはジイソブチルアルミニウムハイドライドを示す]
また例えば、式(3)−2の化合物は下記式(18)−2の化合物から容易に合成することができる。式(18)−2の化合物から式(3)−2の化合物を合成する態様を反応行程[以下、(D)製法と称す]で示すと、以下の如くとなる。
(D)製法
【0029】
【化23】
[式中、THPはテトラヒドロピラピラニル基、Tsはトシル基、Bnはベンジル基を示す]
以下、上記の(A)製法及び(B)製法に従い、各工程別に詳細に説明する。
(A)製法
(R)−(+)−4−メチル−1,16−ペンタデカジエン−6−オン[式(2)−1の化合物]の合成(第1行程)
式(3)−1の化合物を有機溶媒中、10−ウンデセニル−1−マグネシウムハライドとカップリング反応させる第1行程により式(2)−1の化合物を容易に製造できる。
【0030】
この反応の反応温度および反応時間は、例えば、約−20℃〜約70℃程度、より好ましくは約20℃〜約40℃の温度範囲で、約1時間〜約2時間程度を採用することができる。使用する10−ウンデセニル−1−マグネシウムハライドのハロゲン原子の種類としては、例えば、フッ素、塩素、臭素、ヨウ素を挙げることができ、その使用量は式(3)−1の化合物1モルに対して、例えば、約1モル以上、より好ましくは約1.2モル〜約2モル程度の範囲を例示できる。
【0031】
また、この反応に用いる有機溶媒としては、例えば、テトラヒドロフラン、エーテル、ジメトキシエタン、トルエンなどを示すことができる。これらの有機溶媒の使用量は、例えば、式(3)−1の化合物1重量部に対して約1〜約10重量部の範囲を例示できる。反応終了後、洗浄、抽出、乾燥、蒸留、カラムクロマトグラフィーなどの通常の分離手段を適宜に採用して高収率、高純度に式(2)−1の化合物が得られる。
【0032】
(R)−(−)−3−メチル−5−シクロペンタデセン−1−オン[式(1)−1の化合物]の合成(第2行程)
式(2)−1の化合物をオレフィンメタセシス反応による第2行程により式(1)−1の化合物を容易に製造できる。
【0033】
この反応の反応温度および反応時間は、例えば、約−10℃〜約100℃程度、より好ましくは約40℃〜約50℃の温度範囲で、約1時間〜約3時間程度を採用することができる。この反応で使用できる触媒としては、例えば、下記式(a)及び(b)
【0034】
【化24】
【0063】
【化25】
[式中、Cyはシクロヘキシルを、Phはフェニルを意味する]
で表される化合物を挙げることができ、その使用量は式(2)−1の化合物1モルに対して、約0.01モル〜約0.10モル程度を採用することができる。また、この反応に用いる有機溶媒としては、例えば、テトラヒドロフラン、エーテル、ジメトキシエタン、トルエン、塩化メチレン、クロロホルム、四塩化炭素などを示すことができる。これらの有機溶媒の使用量は、例えば、式(2)−1の化合物1重量部に対して約10〜約1000重量部の範囲を例示できる。反応終了後、洗浄、抽出、乾燥、蒸留、カラムクロマトグラフィーなどの通常の分離手段を適宜に採用して高収率、高純度に式(1)−1の化合物が得られる。
【0035】
このようにして得られる式(1)−1で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンは、それ自体香料組成物として有用であるが、該化合物のオレフィンを水素化することにより(R)−(−)−ムスコンを容易に製造できる。この反応の反応温度および反応時間は、例えば、約10℃〜約100℃程度、より好ましくは約30℃〜約50℃の温度範囲で、約1時間〜約3時間程度を採用することができる。この反応で使用できる触媒としては、例えば、Pd−C、Pd−Alumina、Ru−C、Ru−Alumina、Pt−Cを挙げることができ、その使用量は式(1)−1の化合物1モルに対して、約0.02モル〜約0.1モル程度を採用することができる。また、この反応に用いる有機溶媒としては、例えば、テトラヒドロフラン、エーテル、ジメトキシエタン、トルエン、エタノール、ヘキサンなどを示すことができる。これらの有機溶媒の使用量は、例えば、式(1)−1の化合物1重量部に対して約1〜約10重量部の範囲を例示できる。反応終了後、洗浄、抽出、乾燥、蒸留、カラムクロマトグラフィーなどの通常の分離手段を適宜に採用して高収率、高純度に(R)−(−)−ムスコンが得られる。
【0036】
次に、式(1)−2の化合物の合成法について、(B)製法に従って説明する。
(B)製法
本発明のもう一方の目的化合物である式(1)−2で表される(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンは、鏡像関係にある式(1)−1で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンの合成法に準じて製造することができる。
【0037】
即ち、前記反応行程図の(B)製法において、式(2)−2で表される(S)−(−)−4−メチル−1,16−ヘプタデカジエン−6−オンを合成する第3行程は、前記(A)製法の式(3)−1の化合物を式(3)−2の化合物に変える以外は(A)製法と同様に合成することができる。以下同様にして、式(1)−2の化合物を合成する第4行程は、該行程に対応する第2行程の製造方法と同じ操作を行うことにより、目的とする式(1)−2で表される(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンを高収率、高純度で合成することができる。
【0038】
このようにして得られる式(1)−2で表される(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンは、それ自体香料組成物として有用であるが、該化合物のオレフィンを水素化することにより(S)−(+)−ムスコンを容易に製造できる。この反応の反応条件は、前記した式(1)−1で表される(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンから(R)−(−)−ムスコンを製造する方法に準じて製造することができる。
【0039】
【実施例】
以下に本発明について実施例、参考例を挙げて更に詳細に説明する。
【0040】
参考例1:(R)−3−メチル−γ−ブチロラクトン[式(7)−1の化合物]の合成
300ml4径フラスコ中に(R)−3−カルボキシブチリックアシッド t−ブチルエステル[式(9)−1の化合物]25g(0.133モル)、テトラヒドロフラン50mlを仕込み、−10〜−20℃に冷却する。そこへ、1Mボランテトラヒドロフラン溶液135ml(0.135モル)を同温下に1.5時間で滴下した。滴下終了後、徐々に温度を上げ室温下に一夜攪拌した。GLCで未反応の消失を確認後、水10mlと酢酸10mlの混合液を滴下し、テトラヒドロフランをエバポレーターで濃縮する。酢酸エチルで抽出し、ソーダ灰洗浄、硫酸マグネシウム乾燥後、濃縮し、式(8)−1で表される化合物の粗製21.05gを得、パラトルエンスルホン酸0.4gとトルエン200mlを加え、加熱しながらラクトン化を行った。反応終了後、これに水を加え、有機層をソーダ灰水洗、ブライン洗浄後、溶剤回収、減圧蒸留し、式(7)−1の化合物8.6gを得た(収率;65%,bp:92℃/2.4KPa)。
【0041】
参考例2:(R)−2−メチル−4−ペンテン−1−オール[式(5)−1の化合物]の合成
100ml3径フラスコ中に(R)−3−メチル−γ−ブチロラクトン[式(7)−1の化合物]3.0g(30ミリモル)、乾燥ジクロルエタン20mlを仕込み、−65〜−60℃下に1Mジイソブチルアルミニウムハイドライドトルエン溶液36ml(36ミリモル)を30分で加え、同温下に1.5時間反応させた後、塩化アンモニウム水溶液5mlを加え、昇温し、エーテルで希釈し、室温下に30分攪拌した。常温下に溶剤回収し式(6)−1で表される化合物の粗製を得た。次いで、200ml反応フラスコにアルゴン下、60%水素化ナトリウム2.2g(0.09モル)、ジメチルスルホキシド50mlを仕込み、室温下に1時間反応を行った。メチルトリフェニルホスホニウムブロマイド35.7g(0.1モル)、ジメチルスルホキシド20mlを加え攪拌し、式(6)−1の粗製、ジメチルスルホキシド30mlを加え、室温下に一夜放置した。水を加え攪拌し、エーテル抽出、溶剤回収後、シリカゲルカラムクロマトグラフィーにより精製し、式(5)−1の(R)−2−メチル−4−ペンテン−1−オール1.3gを得た(収率44.4%)。
【0042】
参考例3:(R)−2−メチル−4−ペンテン−1−イル p−トルエンスルホネート[式(4)−1の化合物]の合成
100ml反応フラスコ中に(R)−2−メチル−4−ペンテン−1−オール[式(5)−1の化合物]1.3g(13.2ミリモル)、乾燥ピリジン40mlを仕込み、氷冷下0℃でパラトルエンスルホニウムクロリド3.3g(17.6ミリモル)を加え、冷蔵庫に一夜放置する。反応終了後、水を加え、エーテル抽出、ブライン洗浄、硫酸銅水洗浄、ブライン洗浄、ソーダ灰水洗浄、ブライン洗浄後、溶剤回収し、式(4)−1の粗製2.7gを得た(収率81.1%)。
【0043】
実施例1:(R)−(−)−3−メチル−5−ヘキセンニトリル[式(3)−1の化合物]の合成
100mlフラスコ中に粗製の(R)−2−メチル−4−ペンテン−1−イル p−トルエンスルホネート[式(4)−1の化合物]2.7g(10.7ミリモル)、ジメチルスルホキシド10ml、シアン化ナトリウム0.8g(17.1ミリモル)を仕込み、一夜攪拌した。水を加え、エーテル抽出後、溶剤を常圧回収し、減圧下に蒸留して式(3)−1の化合物1.0gを得た(収率87.6%、bp:79〜81℃/4.55kPa)。
[α]20D=−12.93(c=0.7150、MeOH)
1H−NMR(400MHz、TMS、CDCL3)δ(ppm)5.73(1H、ddt、J=17.3Hz、10.3Hz、3.4Hz)、5.11(1H、d、J=17.3Hz)、5.08(1H、d、J=10.3Hz)、2.36〜2.23(2H、m)、2.15〜2.08(2H、m)、2.01〜1.89(2H、m)、1.10(3H、d、J=6.8Hz)。
【0044】
実施例2:(R)−(+)−4−メチル−1,16−ヘプタデカジエン−6−オン[式(2)−1の化合物]の合成
30mlフラスコ中にマグネシウム0.8g(31.3ミリモル)、乾燥エーテル2mlを仕込み、ブロモ−10−ウンデセン6.1g(26ミリモル)を滴下した。室温下に1時間攪拌後、同温下に(R)−(−)−3−メチル−5−ヘキセンニトリル[式(3)−1の化合物]1.0g(9.2ミリモル)を滴下した。同温下に2時間反応し、原料の消失を確認後、50%塩酸水溶液13mlを冷却下に加え、室温に戻し2時間攪拌した。エーテル抽出、ソーダ灰水洗浄、ブライン洗浄後、溶剤回収し、シリカゲルカラムクロマトグラフィーにより精製し式(2)−1の化合物を1.6g得た(収率65.4%)。
[α]20D=3.15(c=0.7582、MeOH)
1H−NMR(400MHz、TMS、CDCL3)δ(ppm)5.69(2H、m)、4.94〜4.82(4H、m)、2.33(1H、dd、J=16.0Hz、5.6Hz)、2.27(2H、t、J=7.6Hz)、2.14〜1.86(6H、m)、1.53〜1.20(14H、m)、0.83(3H、d、J=6.4Hz)。
【0045】
実施例3:(R)−(−)−3−メチル−5−シクロペンタデセン−1−オン[式(1)−1の化合物]の合成
200mlフラスコ中にルテニウム触媒0.23g(0.28ミリモル)を仕込み、系内をアルゴン置換する。(R)−(+)−4−メチル−1,16−ヘプタデカジエン−6−オン[式(2)−1の化合物]1.5g(5.68ミリモル)、アルゴン下で蒸留した塩化メチレン1500ml溶液を加え、41℃で4時間反応を行った。減圧下に溶媒を回収後、シリカゲルカラムクロマトグラフィーにより精製し、シス異性体0.47g、トランス異性体0.15gを得た(収率46.2%)。
シス異性体
[α]20D=−11.56(c=0.7544、MeOH)
1H−NMR(400MHz、TMS、CDCL3)δ(ppm)5.39〜5.29(2H、m)、2.5〜2.2(3H、m)、2.2〜1.9(6H、m)、1.6〜1.2(14H、m)、0.93(3H、d、J=6.1Hz)
13C−NMR(100MHz、CDCl3)δ(ppm)132.7、129.7(オレフィン)
香気特性:強く、ピュアーなムスク様、若干暖かみがあり、肌くさい、ふくよかな匂い。
トランス異性体
[α]20D=−4.22(c=0.8654、MeOH)
1H−NMR(400MHz、TMS、CDCL3)δ(ppm)5.47〜5.36(2H、m)、2.5〜2.2(3H、m)、2.2〜1.9(6H、m)、1.6〜1.2(14H、m)、0.99(3H、d、J=6.6Hz)
13C−NMR(100MHz、CDCl3)δ(ppm)132.0、127.2(オレフィン)
香気特性:強く、ピュアーなムスク様の匂い。
【0046】
参考例4:(S)−メチル3−テトラヒドロピラニロキシ−2−メチルプロピオネート[式(17)−2の化合物]の合成
300ml4径フラスコ中に(S)−メチル3−ヒドロキシ−2−メチルプロピオネート[式(18)−2の化合物]23.6g(0.20モル)、エーテル100ml、ジヒドロピラン20.2g(0.24モル)およびパラトルエンスルホン酸0.5g(2ミリモル)を仕込み、室温下に16時間攪拌する。反応液を重ソー水中に注ぎ分液する。有機層をブラインで洗浄し、無水硫酸マグネシウムで乾燥する。溶媒回収後、減圧下に蒸留し、式(17)−2の化合物を34.5g得た(収率85.4%、bp:83〜88℃/0.39kPa)
参考例5:(R)−3−テトラヒドロピラノロキシ−2−メチルプロパノール[式(16)−2の化合物]の合成
1L4径フラスコ中にリチウムアルミニウムハイドライド6.4g(0.17モル)および乾燥エーテル400mlを仕込み、氷水冷却下、5〜10℃/1時間で(S)−メチル3−テトラヒドロピラニロキシ−2−メチルプロピオネート[式(17)−2の化合物]34.0g(0.17モル)の乾燥エーテル150ml溶液を滴下する。滴下後、室温下に4時間攪拌し、GLCで未反応の消失を確認後、再び冷却し、硫酸ナトリウム水を少しずつ滴下してクエンチする。固形物をろ別し、溶剤回収後、減圧下に蒸留し、式(16)−2を23.6g得た(収率80.6%、bp:97〜99℃/0.46kPa)。
【0047】
参考例6:(S)−3−ベンジロキシ−2−メチルプロパノール[式(14)−2の化合物]の合成
500ml4径フラスコ中に60%水素化ナトリウム3.9g(98モル)、テトラヒドロフラン200ml、ジメチルホルムアミド90mlを仕込み加熱する。60〜70℃で(R)−3−テトラヒドロピラニロキシ−2−メチルプロパナール[式(16)−2の化合物]13.0g(75ミリモル)のテトラヒドロフラン溶液30mlを滴下し、滴下後同温下に1時間撹拌する。次に同温下にベンジルブロミド14.1g(82ミリモル)のテトラヒドロフラン溶液30mlを滴下し、さらに1時間撹拌する。反応液を冷却後、メタノール9.5mlを加えてクエンチし、反応液を減圧下に濃縮する。残さをエーテルで希釈し、水、ブラインで洗浄し、無水硫酸マグネシウムで乾燥する。エーテルをエバポレーターで濃縮し、式(15)−2で表される化合物の粗製22.0gを得る。この粗製に、メタノール200mlを加えて希釈し、さらにパラトルエンスルホン酸1.0gを加えて室温下に16時間撹拌する。反応液に重ソー粉末2g加え、溶媒回収後水を加え、エーテル抽出した。ブライン洗浄後、減圧蒸留し、式(14)−2の化合物を12.5g得た(収率97.8%、bp:115〜120℃/0.65kPa)。
【0048】
参考例7:(R)−3−ベンジロキシ−2−メチルプロピル p−トルエンスルホネート[式(13)−2の化合物]の合成
200ml4径フラスコ中に(S)−3−ベンジロキシ−2−メチルプロパノール[式(14)−2の化合物]9.0g(50ミリモル)、乾燥ピリジン60mlを仕込み氷水冷する。パラトルエンスルホニルクロリド12.4g(65ミリモル)を少しづつ加えて、さらに0℃で3時間撹拌する。反応液を冷蔵庫中で一夜放置し、翌日、氷水中に注ぎエーテル抽出する。有機層を水洗、硫酸銅水洗、水洗、重ソー水洗、ブライン洗浄し、無水硫酸マグネシウムで乾燥する。エーテルをエバポレーターで濃縮し、得られた粗製15.0gをシリカゲルカラムクロマトにて精製し(n−ヘキサン:酢酸エチル=9:1)、式(13)−2の化合物を14.3g得た(収率85.5%)。
【0049】
参考例8:(S)−4−ベンジロキシ−3−メチルブタノニトリル[式(12)−2の化合物]の合成
100ml反応フラスコ中に(R)−3−ベンジロキシ−2−メチルプロピル p−トルエンスルホネート[式(13)−2の化合物]7.0g(21.0ミリモル)、ジメチルスルホキシド20ml、シアン化ナトリウム1.8g(36.7ミリモル)を加え、室温下に一夜放置した。水を加え、エーテル抽出、ブライン洗浄、溶剤回収後、減圧下に蒸留し、式(12)−2の化合物を3.8g得た(収率95.0%、bp:130〜132℃/0.39kPa)。
【0050】
参考例9:(S)−4−ベンジロキシ−3−メチルブタナール[式(11)−2の化合物]の合成
100ml反応フラスコ中に(S)−4−ベンジロキシ−3−メチルブタノニトリル[式(12)−2の化合物]4.6g(24.4ミリモル)、乾燥 ジクロルエタン46mlを仕込み、アルゴン下に冷却した。−78℃で1.0Mのジイソブチルアルミニウムハイドライドトルエン溶液27ml(27ミリモル)を30分で加え室温まで昇温した。反応後、5%硫酸を加え30分攪拌後、エーテル抽出、ソーダ灰洗浄、ブライン洗浄、溶剤回収後、減圧下に蒸留し、式(11)−2の化合物を3.8g得た(収率81.4%、bp:115〜120℃/0.65kPa)。
【0051】
参考例10:(S)−5−ベンジロキシ−4−メチル−1−ペンテン[式(10)−2の化合物]の合成
100ml反応フラスコ中、アルゴン下に、メチルトリフェニルホスホニウムブロマイド14.3g(40ミリモル)、乾燥テトラヒドロフラン50mlを仕込み、n−BuLi/ヘキサン22.5ml(35.9ミリモル)を−20〜−30℃にて30分で加え、同温下に30分攪拌した。(S)−4−ベンジロキシ−3−メチルブタナール[式(11)−2の化合物]4.6g(24.0ミリモル)、乾燥テトラヒドロフラン20mlを加え、同温下に1時間攪拌した。水を加え、エーテル抽出、溶剤回収後、減圧下に蒸留し、式(10)−2の化合物を4.3g得た(収率93.8%、bp:85〜87℃/0.39kPa)。
【0052】
参考例11:(S)−2−メチル−4−ペンテノール[式(5)−2の化合物]の合成
1L4径フラスコ中に液体アンモニア250mlを仕込み、(S)−5−ベンジロキシ−4−メチル−1−ペンテン[式(10)−2の化合物]4.3g(22.5ミリモル)の乾燥テトラヒドロフラン溶液40mlを加える。−50〜−40℃で金属ナトリウム1.9g(82.5ミリモル)を少しづつ加え、さらに−50℃で1時間撹拌する。反応液に粉末塩化アンモニウム9.2gを加えてクエンチし、昇温してアンモニアを飛ばす。残さに塩化アンモニウム水溶液を加え、エーテル抽出、ブライン洗浄、溶剤回収後、減圧下に蒸留し、式(5)−2の化合物を2.0g得た(収率88.1%、bp:72〜75℃/4.55kPa)。
【0053】
参考例12:(S)−2−メチル−4−ペンテン−1−イル p−トルエンスルホネート[式(4)−2の化合物]の合成
100ml反応フラスコ中に(S)−2−メチル−4−ペンテノール[式(5)−2の化合物]1.9g(19ミリモル)、乾燥ピリジン20mlを仕込み氷水冷する。パラトルエンスルホニウムクロリド5.4g(28ミリモル)を少しづつ加えて、さらに0℃で3時間撹拌する。反応液を冷蔵庫中で一夜放置する。反応終了後、水を加え、エーテル抽出、ブライン洗浄、硫酸銅水洗浄、ブライン洗浄、ソーダ灰水洗浄、ブライン洗浄後、溶剤回収し式(4)−2の化合物の粗製を4.8g得た(収率100.3%)。
【0054】
実施例4:(S)−(+)−3−メチル−5−ヘキセンニトリル[式(3)−2の化合物]の合成
100mlフラスコに粗製の(S)−2−メチル−4−ペンテン−1−イル p−トルエンスルホネート[式(4)−2の化合物]4.8g(19.0ミリモル)、ジメチルスルホキシド20ml、シアン化ナトリウム1.8g(36.7ミリモル)を仕込み一夜攪拌した。水を加え、エーテル抽出後、溶媒を常圧回収後、減圧下に蒸留し、式(3)−2の化合物を1.8g得た(収率87.6%、bp:79〜81℃/4.55kpPa)。
[α]20D=13.24(c=0.8910、MeOH)
1H−NMR(400MHz、TMS、CDCl3)δ(ppm)5.73(1H、ddt、J=17.3Hz、10.3Hz、3.4Hz)、5.11(1H、d、J=17.3Hz)、5.08(1H、d、J=10.3Hz)、2.36〜2.23(2H、m)、2.15〜2.08(2H、m)、2.01〜1.89(2H、m)、1.10(3H、d、J=6.8Hz)。
【0055】
実施例5:(S)−(−)−4−メチル−1,16−ヘプタデカジエン−6−オン[式(2)−2の化合物]の合成
30mlフラスコにマグネシウム1.0g(39.1ミリモル)、乾燥エーテル2mlを仕込み、ブロモ−10−ウンデセン7.6g(32.4ミリモル)を滴下した。室温下に1時間攪拌後、同温下に(S)−(+)−3−メチル−5−ヘキセンニトリル[式(3)−2の化合物]1.8g(16.2ミリモル)を滴下した。同温下に2時間反応し原料の消失を確認後、50%塩酸20gを冷却下に加え、室温に戻し2時間攪拌した。エーテル抽出、ソーダ灰水洗浄、ブライン洗浄後、溶剤回収し、シリカゲルカラムクロマトグラフィーにより精製し、式(2)−1の化合物を3.1g得た(収率72.8%)。
[α]20D=−2.36(c=1.0992、MeOH)
1H−NMR(400MHz、TMS、CDCl3)δ(ppm)5.69(2H、m)、4.94〜4.82(4H、m)、2.33(1H、dd、J=16.0Hz、5.6Hz)、2.27(2H、t、J=7.6Hz)、2.14〜1.86(6H、m)、1.53〜1.20(14H、m)、0.83(3H、d、J=6.4Hz)。
【0056】
実施例6:(S)−(+)−3−メチル−5−シクロペンタデセン−1−オン[式(1)−2の化合物]の合成
3000mlフラスコ中にRu−cat.0.47g(0.57ミリモル)を仕込み、系内をアルゴン置換する。(S)−(−)−4−メチル−1,16−ヘプタデカジエン−6−オン[式(2)−2の化合物]2.95g(11.2ミリモル)、塩化メチレン溶液3000mlを加え、41℃で4時間反応を行った。減圧下に溶媒を回収後、シリカゲルカラムクロマトグラフィーにより精製し、式(1)−2の化合物を1.36g得た(収率51.5%)。このものを更に中圧カラムによりシス異性体0.78g、トランス異性体0.29gに分離した。
シス異性体
[α]20D=10.17(c=0.9634、MeOH)
1H−NMR(400MHz、TMS、CDCl3)δ(ppm)5.39〜5.29(2H、m)、2.5〜2.2(3H、m)、2.2〜1.9(6H、m)、1.6〜1.2(14H、m)、0.93(3H、d、J=6.1Hz)
13C−NMR(100MHz、CDCl3)δ(ppm)132.7、129.7(オレフィン)
香気特性:弱い、ムスク様、ややウッディー感ある匂い。
トランス異性体
[α]20D=4.51(c=0.9744、MeOH)
1H−NMR(400MHz、TMS、CDCl3)δ(ppm)5.47〜5.36(2H、m)、2.5〜2.2(3H、m)、2.2〜1.9(6H、m)、1.6〜1.2(14H、m)、0.93(3H、d、J=6.6Hz)
13C−NMR(100MHz、CDCl3)δ(ppm)132.0、127.2(オレフィン)
香気特性:弱い、ムスク様、ややウッディー感ある匂い。
【0057】
実施例7:香料組成物の製造
実施例3および実施例6で調製した(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンまたは(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンを用い、下記処方のムスクタイプの石鹸用香料組成物を調製し、10名の専門パネラーによる評価を行った。その結果、本発明の(R)−(−)−3−メチル−5−シクロペンタデセン−1−オンまたは(S)−(+)−3−メチル−5−シクロペンタデセン−1−オンを含有した香料組成物において嗜好性の高いパウダリームスク様香気が付与されることが確認された。
香料組成物
アミルサリシレート 200g
シダー 160
ゼラニウム 100
サンタール 90
パチュリー 40
クマリン 40
ヘリオトロピン 70
ベチバー 40
フェニルエチルアルコール 90
シクロペンタデカノリド 30
ペルーバルサム 30
ベルガモット 60
ターピニルアセテート 50
計 1000
【0058】
【発明の効果】
本発明は、光学活性ムスコン(3−メチルシクロペンタデカノン)の合成中間体として重要な、光学活性3−メチル−5−シクロペンタデセン−1−オン、該化合物を高収率、高純度に製造できるため極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optically active 3-methyl-5-cyclopentadecen-1-one, which is important as an intermediate for the synthesis of optically active muscone (3-methylcyclopentadecanone). New manufacturing method and new intermediateTo the bodyRelated.
[0002]
[Prior art]
Muscon (3-methylcyclopentadecanone) has an (R)-(−)-isomer, which is an optical isomer, as a main aroma component of natural musk, and in particular, the (R)-(−)-isomer. Is an important musk-based synthetic fragrance that is stronger than the (S)-(+)-form and has a voluminous fragrance excellent in diffusibility.
[0003]
Various methods for synthesizing muscone have been proposed so far. For example, a synthesis method using dodecane-1,12-dial as a starting material (Japanese Patent Laid-Open No. 55-111438), a synthesis method from nonadienoic acid ester (Tetrahedron) Lett., 2257 (1979)), a synthesis method using cyclododecene as a starting material (J. Org. Chem., 52, 3798-3806 (1987)), and the like have been proposed.
[0004]
As a method for synthesizing optically active muscone, for example, 3-methyl-2-cyclopentadecene-1-one is asymmetrically hydrogenated using a ruthenium-optically active phosphine complex as a catalyst (Japanese Patent Laid-Open No. 6-192161). ), A method of reacting an R-form or S-form citronellal with a halogenated unsaturated hydrocarbon (Japanese Patent Application Laid-Open No. 2000-26361) has been proposed. However, the method for synthesizing optically active muscone proposed in the above-mentioned JP-A-6-192161 is an effective synthesis method such that the catalyst used can be reused and the yield is high. However, there are problems such as expensive starting materials. In addition, the synthesis method proposed in the above Japanese Patent Application Laid-Open No. 2000-26361 involves reacting optically active citronellal with a halogenated unsaturated hydrocarbon to obtain 11-hydroxy-13,17-dimethyloctadeca-1, It is a 16-diene derivative, which is produced by ring closure after ozone oxidation and is not necessarily an industrially advantageous synthesis method.
[0005]
On the other hand, JP-A-6-192680 discloses that 3-methyl-5-cyclopentadecene-1-one is useful as a perfume compound, and that the cis isomer is more useful than the trans isomer. . However, the above patent does not describe or suggest any optically active form of the compound.
[0006]
Further, (S)-(−)-3-methyl-5-cyclopentadecene-1-one is not described in its cis- or trans-configuration, but is described as a synthetic intermediate for muscone. (See Huaxue Xuebao, 53 (9), 909-915, 1995). However, no fragrance properties are described for this compound.
[0007]
[Problems to be solved by the invention]
Accordingly, the present invention is to provide a fragrance composition having an optically active 3-methyl-5-cyclopentadecene-1-one and a musk-like fragrance containing the compound as an active ingredient.
[0009]
In addition, the present invention provides a method for producing optically active 3-methyl-5-cyclopentadecene-1-one industrially advantageously by using a cheap raw material, in a high yield, and by a simpler method. Is to provide.
Furthermore, another object of the present invention is to provide a novel intermediate useful for the production of optically active 3-methyl-5-cyclopentadecen-1-one.
[0010]
[Means for Solving the Problems]
Thus, as a result of intensive studies to solve the above problems, the present inventors have obtained (R)-(−) or (R)-(−) represented by the above formula (1) -1 and / or the above formula (1) -2. (S)-(+)-3-methyl-5-cyclopentadecene-1-one is useful as a musk-like fragrance, and (R)-(-)-or (S)-(+) Optically active 3-methyl-5-cyclopentadecene- in a high yield with a simple method of reacting with 10-undecenyl-1-magnesium halide using -3-methyl-5-hexenenitrile as a starting material and ring-closing The present invention was completed by finding that 1-one can be obtained.
[0011]
Therefore, this departureTomorrowFollowing formula (1) -1
[0012]
Embedded image
(R)-(−)-3-Methyl-5-cyclopentadecene-1-one represented byManufacturing methodIt is. In the formula, wavy lines indicate the presence of cis- and trans-isomers.
[0013]
Also this departureTomorrowFollowing formula (1) -1
Embedded image
(R)-(−)-3-methyl-5-cyclopentadecene-1-one represented by the following formula (1) -2
[0015]
Embedded image
A fragrance composition comprising (S)-(+)-3-methyl-5-cyclopentadecene-1-one represented by the formula:Manufacturing methodIt is.
[0016]
Also this departureTomorrowFollowing formula (3) -1
[0017]
Embedded image
(R)-(−)-3-methyl-5-hexenenitrile represented by the following formula (2) -1 is subjected to a coupling reaction with 10-undecenyl-1-magnesium halide (C11H21MgX) in an organic solvent.
[0018]
Embedded image
(R)-(+)-4-methyl-1,16-heptadecadien-6-one represented by the following formula (1) -1
[0019]
Embedded image
(R)-(−)-3-methyl-5-cyclopentadecen-1-one represented by
[0020]
Also this departureTomorrowFollowing formula (3) -2
[0021]
Embedded image
(S)-(+)-3-methyl-5-hexenenitrile represented by the following formula (2) -2 is subjected to a coupling reaction with 10-undecenyl-1-magnesium halide (C11H21MgX) in an organic solvent.
[0022]
Embedded image
(S)-(−)-4-methyl-1,16-heptadecadien-6-one represented by formula (1) -2
[0023]
Embedded image
(S)-(+)-3-methyl-5-cyclopentadecen-1-one represented by
[0024]
(R)-(+)-4-methyl-1,16-heptadecadien- represented by the above formula (2) -1, formula (2) -2, formula (3) -1 and formula (3) -2 6-one, (S)-(−)-4-methyl-1,16-heptadecadien-6-one, (R)-(−)-3-methyl-5-hexenenitrile and (S)-(+) -3-Methyl-5-hexenenitrile is a novel compound not described in any literature.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of synthesizing the compound of the formula (1) -1 from the compound of the formula (3) -1 according to the production method of the present invention is shown as follows in the reaction process [hereinafter referred to as (A) production method].
(A) Manufacturing method
[0026]
Embedded image
An embodiment of synthesizing the compound of the formula (1) -2 from the compound of the formula (3) -2 according to the production method of the present invention is shown in the reaction process [hereinafter referred to as (B) production method] as follows. Become.
(B) Manufacturing method
[0027]
Embedded image
The production method of the optically active 3-methyl-5-cyclopentadecene-1-one of the present invention can be synthesized according to the production method (A) and the production method (B). The compound of the formula (3) -1 and the compound of the formula (3) -2 that are starting materials of the present invention are not particularly limited. For example, the compound of the formula (3) -1 is represented by the following formula (9) -1. It can be easily synthesized from a compound. An embodiment of synthesizing the compound of the formula (3) -1 from the compound of the formula (9) -1 is represented by the reaction process [hereinafter referred to as (C) production method] as follows.
(C) Manufacturing method
[0028]
Embedded image
[Wherein Ts represents a tosyl group and DIBAH represents diisobutylaluminum hydride]
Further, for example, the compound of the formula (3) -2 can be easily synthesized from the compound of the following formula (18) -2. An embodiment in which the compound of the formula (3) -2 is synthesized from the compound of the formula (18) -2 is represented by the reaction process [hereinafter referred to as (D) production method] as follows.
(D) Manufacturing method
[0029]
Embedded image
[Wherein THP represents a tetrahydropyrapyranyl group, Ts represents a tosyl group, and Bn represents a benzyl group]
Hereinafter, according to said (A) manufacturing method and (B) manufacturing method, it demonstrates in detail for every process.
(A) Manufacturing method
Synthesis of (R)-(+)-4-methyl-1,16-pentadecadien-6-one [compound of formula (2) -1] (first step)
The compound of formula (2) -1 can be easily produced by the first step of coupling the compound of formula (3) -1 with 10-undecenyl-1-magnesium halide in an organic solvent.
[0030]
The reaction temperature and reaction time for this reaction may be, for example, about -20 ° C to about 70 ° C, more preferably about 20 ° C to about 40 ° C, and about 1 hour to about 2 hours. it can. Examples of the halogen atom of 10-undecenyl-1-magnesium halide to be used include fluorine, chlorine, bromine and iodine, and the amount used is 1 mol of the compound of formula (3) -1. For example, a range of about 1 mol or more, more preferably about 1.2 mol to about 2 mol can be exemplified.
[0031]
Moreover, as an organic solvent used for this reaction, tetrahydrofuran, ether, dimethoxyethane, toluene etc. can be shown, for example. Examples of the amount of these organic solvents used include a range of about 1 to about 10 parts by weight with respect to 1 part by weight of the compound of formula (3) -1. After completion of the reaction, the compound of formula (2) -1 can be obtained in high yield and high purity by appropriately adopting usual separation means such as washing, extraction, drying, distillation, column chromatography and the like.
[0032]
Synthesis of (R)-(−)-3-methyl-5-cyclopentadecen-1-one [compound of formula (1) -1] (second step)
The compound of formula (1) -1 can be easily produced by the second step of the compound of formula (2) -1 by olefin metathesis reaction.
[0033]
The reaction temperature and reaction time for this reaction may be, for example, about -10 ° C to about 100 ° C, more preferably about 40 ° C to about 50 ° C, and about 1 hour to about 3 hours. it can. Examples of the catalyst that can be used in this reaction include the following formulas (a) and (b):
[0034]
Embedded image
[0063]
Embedded image
[Wherein Cy represents cyclohexyl and Ph represents phenyl]
The compound can be used in an amount of about 0.01 mol to about 0.10 mol with respect to 1 mol of the compound of formula (2) -1. Moreover, as an organic solvent used for this reaction, tetrahydrofuran, ether, dimethoxyethane, toluene, a methylene chloride, chloroform, carbon tetrachloride etc. can be shown, for example. Examples of the amount of these organic solvents used include a range of about 10 to about 1000 parts by weight with respect to 1 part by weight of the compound of the formula (2) -1. After completion of the reaction, the compound of formula (1) -1 can be obtained in high yield and high purity by appropriately adopting usual separation means such as washing, extraction, drying, distillation, column chromatography and the like.
[0035]
The (R)-(−)-3-methyl-5-cyclopentadecene-1-one represented by the formula (1) -1 thus obtained is useful as a perfume composition in itself. (R)-(-)-muscone can be easily produced by hydrogenating the olefin of the compound. The reaction temperature and reaction time for this reaction may be, for example, about 10 ° C. to about 100 ° C., more preferably about 30 ° C. to about 50 ° C., and about 1 hour to about 3 hours. . Examples of the catalyst that can be used in this reaction include Pd-C, Pd-Alumina, Ru-C, Ru-Alumina, and Pt-C. The amount used is 1 mol of the compound of the formula (1) -1. On the other hand, about 0.02 mol to about 0.1 mol can be employed. Moreover, as an organic solvent used for this reaction, tetrahydrofuran, ether, dimethoxyethane, toluene, ethanol, hexane etc. can be shown, for example. Examples of the amount of these organic solvents used include a range of about 1 to about 10 parts by weight with respect to 1 part by weight of the compound of formula (1) -1. After completion of the reaction, (R)-(-)-muscone can be obtained in high yield and purity by appropriately adopting usual separation means such as washing, extraction, drying, distillation, column chromatography and the like.
[0036]
Next, the synthesis method of the compound of Formula (1) -2 is demonstrated according to (B) manufacturing method.
(B) Manufacturing method
(S)-(+)-3-methyl-5-cyclopentadecene-1-one represented by formula (1) -2, which is another target compound of the present invention, is represented by formula (1) ) -1, and can be produced according to the synthesis method of (R)-(−)-3-methyl-5-cyclopentadecen-1-one.
[0037]
That is, the third step of synthesizing (S)-(−)-4-methyl-1,16-heptadecadien-6-one represented by the formula (2) -2 in the production process (B) of the reaction process diagram. Can be synthesized in the same manner as in the process (A) except that the compound of formula (3) -1 in the process (A) is changed to the compound of formula (3) -2. In the same manner, the fourth step of synthesizing the compound of the formula (1) -2 is carried out by the same operation as the production method of the second step corresponding to the step, thereby obtaining the target formula (1) -2. The represented (S)-(+)-3-methyl-5-cyclopentadecene-1-one can be synthesized with high yield and high purity.
[0038]
The (S)-(+)-3-methyl-5-cyclopentadecene-1-one represented by the formula (1) -2 thus obtained is useful as a perfume composition in itself. (S)-(+)-muscone can be easily produced by hydrogenating the olefin of the compound. The reaction conditions of this reaction are (R)-(−)-3-methyl-5-cyclopentadecene-1-one represented by the above formula (1) -1 to (R)-(−)-muscone. It can be manufactured according to the method of manufacturing.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and reference examples.
[0040]
Reference Example 1: Synthesis of (R) -3-methyl-γ-butyrolactone [compound of formula (7) -1]
Into a 300 ml 4-diameter flask was charged 25 g (0.133 mol) of (R) -3-carboxybutyric acid t-butyl ester [compound of formula (9) -1] and 50 ml of tetrahydrofuran, and cooled to -10 to -20 ° C. To do. Thereto, 135 ml (0.135 mol) of 1M borane tetrahydrofuran solution was added dropwise at the same temperature over 1.5 hours. After completion of the dropwise addition, the temperature was gradually raised and the mixture was stirred overnight at room temperature. After confirming the disappearance of unreacted by GLC, a mixed solution of 10 ml of water and 10 ml of acetic acid is added dropwise, and tetrahydrofuran is concentrated by an evaporator. Extracted with ethyl acetate, washed with soda ash, dried over magnesium sulfate and concentrated to obtain crude 21.05 g of the compound represented by formula (8) -1, added 0.4 g of paratoluenesulfonic acid and 200 ml of toluene, Lactonization was performed while heating. After completion of the reaction, water was added thereto, and the organic layer was washed with soda ash and brine, then the solvent was recovered and distilled under reduced pressure to obtain 8.6 g of the compound of formula (7) -1 (yield: 65%, bp : 92 ° C./2.4 KPa).
[0041]
Reference Example 2: Synthesis of (R) -2-methyl-4-penten-1-ol [compound of formula (5) -1]
In a 100 ml three-diameter flask, 3.0 g (30 mmol) of (R) -3-methyl-γ-butyrolactone [compound of formula (7) -1] and 20 ml of dry dichloroethane were charged, and 1M diisobutyl at −65 to −60 ° C. 36 ml (36 mmol) of an aluminum hydride toluene solution was added in 30 minutes and reacted at the same temperature for 1.5 hours. Then, 5 ml of an aqueous ammonium chloride solution was added, the temperature was raised, diluted with ether, and stirred at room temperature for 30 minutes. did. The solvent was recovered at room temperature to obtain a crude compound represented by formula (6) -1. Subsequently, 2.2 g (0.09 mol) of 60% sodium hydride and 50 ml of dimethyl sulfoxide were charged in a 200 ml reaction flask under argon, and reacted at room temperature for 1 hour. 35.7 g (0.1 mol) of methyltriphenylphosphonium bromide and 20 ml of dimethyl sulfoxide were added and stirred, and 30 ml of crude dimethyl sulfoxide of formula (6) -1 was added and left overnight at room temperature. Water was added and stirred, followed by ether extraction and solvent recovery, followed by purification by silica gel column chromatography to obtain 1.3 g of (R) -2-methyl-4-penten-1-ol of formula (5) -1. Yield 44.4%).
[0042]
Reference Example 3: Synthesis of (R) -2-methyl-4-penten-1-yl p-toluenesulfonate [compound of formula (4) -1]
In a 100 ml reaction flask, 1.3 g (13.2 mmol) of (R) -2-methyl-4-penten-1-ol [compound of formula (5) -1] and 40 ml of dry pyridine were charged, and 0 ml under ice cooling. Add 3.3 g (17.6 mmol) of paratoluenesulfonium chloride at 0 ° C. and leave in the refrigerator overnight. After completion of the reaction, water was added, and after ether extraction, brine washing, copper sulfate water washing, brine washing, soda ash water washing and brine washing, the solvent was recovered to obtain crude 2.7 g of the formula (4) -1 ( Yield 81.1%).
[0043]
Example 1: Synthesis of (R)-(-)-3-methyl-5-hexenenitrile [compound of formula (3) -1]
Crude (R) -2-methyl-4-penten-1-yl p-toluenesulfonate [compound of formula (4) -1] 2.7 g (10.7 mmol), dimethyl sulfoxide 10 ml, cyanide in a 100 ml flask Sodium chloride 0.8 g (17.1 mmol) was charged and stirred overnight. After adding water and extracting with ether, the solvent was recovered at normal pressure and distilled under reduced pressure to obtain 1.0 g of the compound of formula (3) -1 (yield: 87.6%, bp: 79-81 ° C. / 4.55 kPa).
[Α] 20D = -12.93 (c = 0.150, MeOH)
1H-NMR (400 MHz, TMS, CDCL3) δ (ppm) 5.73 (1H, ddt, J = 17.3 Hz, 10.3 Hz, 3.4 Hz), 5.11 (1H, d, J = 17.3 Hz) ), 5.08 (1H, d, J = 10.3 Hz), 2.36 to 2.23 (2H, m), 2.15 to 2.08 (2H, m), 2.01 to 1.89. (2H, m), 1.10 (3H, d, J = 6.8 Hz).
[0044]
Example 2: Synthesis of (R)-(+)-4-methyl-1,16-heptadecadien-6-one [compound of formula (2) -1]
A 30 ml flask was charged with 0.8 g (31.3 mmol) of magnesium and 2 ml of dry ether, and 6.1 g (26 mmol) of bromo-10-undecene was added dropwise. After stirring at room temperature for 1 hour, 1.0 g (9.2 mmol) of (R)-(−)-3-methyl-5-hexenenitrile [compound of formula (3) -1] was added dropwise at the same temperature. . After reacting at the same temperature for 2 hours and confirming disappearance of the raw materials, 13 ml of 50% aqueous hydrochloric acid solution was added under cooling, and the mixture was returned to room temperature and stirred for 2 hours. After ether extraction, soda ash water washing and brine washing, the solvent was recovered and purified by silica gel column chromatography to obtain 1.6 g of the compound of formula (2) -1 (yield 65.4%).
[Α] 20D = 3.15 (c = 0.5822, MeOH)
1H-NMR (400 MHz, TMS, CDCL3) δ (ppm) 5.69 (2H, m), 4.94 to 4.82 (4H, m), 2.33 (1H, dd, J = 16.0 Hz, 5.6 Hz), 2.27 (2 H, t, J = 7.6 Hz), 2.14 to 1.86 (6 H, m), 1.53 to 1.20 (14 H, m), 0.83 ( 3H, d, J = 6.4 Hz).
[0045]
Example 3: Synthesis of (R)-(-)-3-methyl-5-cyclopentadecene-1-one [compound of formula (1) -1]
Into a 200 ml flask is charged 0.23 g (0.28 mmol) of a ruthenium catalyst, and the system is purged with argon. (R)-(+)-4-Methyl-1,16-heptadecadien-6-one [compound of formula (2) -1] 1.5 g (5.68 mmol), 1500 ml of methylene chloride distilled under argon And reacted at 41 ° C. for 4 hours. After recovering the solvent under reduced pressure, it was purified by silica gel column chromatography to obtain 0.47 g of cis isomer and 0.15 g of trans isomer (yield 46.2%).
Cis isomer
[Α] 20D = −11.56 (c = 0.7544, MeOH)
1H-NMR (400 MHz, TMS, CDCL3) δ (ppm) 5.39-5.29 (2H, m), 2.5-2.2 (3H, m), 2.2-1.9 (6H, m), 1.6 to 1.2 (14H, m), 0.93 (3H, d, J = 6.1 Hz)
13C-NMR (100 MHz, CDCl 3) δ (ppm) 132.7, 129.7 (olefin)
Aroma characteristics: Strong, pure musk-like, slightly warm, soft and fluffy odor.
Trans isomer
[Α] 20D = −4.22 (c = 0.8654, MeOH)
1H-NMR (400 MHz, TMS, CDCL3) δ (ppm) 5.47-5.36 (2H, m), 2.5-2.2 (3H, m), 2.2-1.9 (6H, m), 1.6-1.2 (14H, m), 0.99 (3H, d, J = 6.6 Hz)
13C-NMR (100 MHz, CDCl 3) δ (ppm) 132.0, 127.2 (olefin)
Aroma characteristics: Strong and pure musk-like odor.
[0046]
Reference Example 4: Synthesis of (S) -methyl 3-tetrahydropyranyloxy-2-methylpropionate [compound of formula (17) -2]
(S) -methyl 3-hydroxy-2-methylpropionate [compound of formula (18) -2] 23.6 g (0.20 mol), ether 100 ml, dihydropyran 20.2 g (0) .24 mol) and 0.5 g (2 mmol) of paratoluenesulfonic acid are charged and stirred at room temperature for 16 hours. The reaction solution is poured into heavy water and separated. The organic layer is washed with brine and dried over anhydrous magnesium sulfate. After recovering the solvent, it was distilled under reduced pressure to obtain 34.5 g of the compound of formula (17) -2 (yield 85.4%, bp: 83-88 ° C./0.39 kPa).
Reference Example 5: Synthesis of (R) -3-tetrahydropyranoroxy-2-methylpropanol [compound of formula (16) -2]
6.4 g (0.17 mol) of lithium aluminum hydride and 400 ml of dry ether were charged into a 1 L 4-diameter flask, and (S) -methyl 3-tetrahydropyranyloxy-2-methyl was cooled at 5-10 ° C./1 hour under ice water cooling. A solution of 34.0 g (0.17 mol) of propionate [compound of formula (17) -2] in 150 ml of dry ether is added dropwise. After the dropwise addition, the mixture is stirred at room temperature for 4 hours. After confirming the disappearance of unreacted by GLC, the mixture is cooled again and quenched by adding sodium sulfate aqueous solution little by little. The solid was filtered off, and after solvent recovery, distilled under reduced pressure to obtain 23.6 g of the formula (16) -2 (yield: 80.6%, bp: 97 to 99 ° C./0.46 kPa).
[0047]
Reference Example 6: Synthesis of (S) -3-benzyloxy-2-methylpropanol [compound of formula (14) -2]
In a 500 ml 4-diameter flask, 3.9 g (98 mol) of 60% sodium hydride, 200 ml of tetrahydrofuran and 90 ml of dimethylformamide are charged and heated. At 60 to 70 ° C., 30 ml of a tetrahydrofuran solution of 13.0 g (75 mmol) of (R) -3-tetrahydropyranyloxy-2-methylpropanal [compound of formula (16) -2] was added dropwise, and the temperature was then lowered. For 1 hour. Next, 30 ml of a tetrahydrofuran solution of 14.1 g (82 mmol) of benzyl bromide is added dropwise at the same temperature, and the mixture is further stirred for 1 hour. The reaction solution is cooled, quenched by adding 9.5 ml of methanol, and the reaction solution is concentrated under reduced pressure. The residue is diluted with ether, washed with water, brine and dried over anhydrous magnesium sulfate. Ether is concentrated by an evaporator to obtain 22.0 g of a crude product of the compound represented by formula (15) -2. To this crude product, 200 ml of methanol is added for dilution, 1.0 g of paratoluenesulfonic acid is further added, and the mixture is stirred at room temperature for 16 hours. 2 g of heavy saw powder was added to the reaction solution, and after solvent recovery, water was added and extracted with ether. After washing with brine, it was distilled under reduced pressure to obtain 12.5 g of the compound of formula (14) -2 (yield 97.8%, bp: 115 to 120 ° C./0.65 kPa).
[0048]
Reference Example 7: Synthesis of (R) -3-benzyloxy-2-methylpropyl p-toluenesulfonate [compound of formula (13) -2]
In a 200 ml 4-diameter flask, 9.0 g (50 mmol) of (S) -3-benzyloxy-2-methylpropanol [compound of formula (14) -2] and 60 ml of dry pyridine are charged and ice-cooled. 12.4 g (65 mmol) of paratoluenesulfonyl chloride is added little by little, and the mixture is further stirred at 0 ° C. for 3 hours. The reaction solution is left in the refrigerator overnight, and poured into ice water the next day and extracted with ether. The organic layer is washed with water, washed with copper sulfate, washed with water, washed with sodium bicarbonate water, washed with brine, and dried over anhydrous magnesium sulfate. Ether was concentrated by an evaporator, and 15.0 g of the resulting crude was purified by silica gel column chromatography (n-hexane: ethyl acetate = 9: 1) to obtain 14.3 g of the compound of formula (13) -2 ( Yield 85.5%).
[0049]
Reference Example 8: Synthesis of (S) -4-benzyloxy-3-methylbutanonitrile [compound of formula (12) -2]
In a 100 ml reaction flask, 7.0 g (21.0 mmol) of (R) -3-benzyloxy-2-methylpropyl p-toluenesulfonate [compound of formula (13) -2], dimethyl sulfoxide 20 ml, sodium cyanide 1. 8 g (36.7 mmol) was added and left overnight at room temperature. Water was added, ether extraction, brine washing, solvent recovery and distillation under reduced pressure to obtain 3.8 g of the compound of formula (12) -2 (yield 95.0%, bp: 130-132 ° C / 0). .39 kPa).
[0050]
Reference Example 9: Synthesis of (S) -4-benzyloxy-3-methylbutanal [compound of formula (11) -2]
In a 100 ml reaction flask, 4.6 g (24.4 mmol) of (S) -4-benzyloxy-3-methylbutanonitrile [compound of formula (12) -2] and 46 ml of dry dichloroethane were charged and cooled under argon. . At −78 ° C., 27 ml (27 mmol) of a 1.0 M diisobutylaluminum hydride toluene solution was added in 30 minutes, and the temperature was raised to room temperature. After the reaction, 5% sulfuric acid was added and stirred for 30 minutes, followed by ether extraction, soda ash washing, brine washing, solvent recovery, and distillation under reduced pressure to obtain 3.8 g of the compound of formula (11) -2 (yield) 81.4%, bp: 115-120 ° C./0.65 kPa).
[0051]
Reference Example 10: Synthesis of (S) -5-benzyloxy-4-methyl-1-pentene [compound of formula (10) -2]
In a 100 ml reaction flask, under argon, 14.3 g (40 mmol) of methyltriphenylphosphonium bromide and 50 ml of dry tetrahydrofuran were charged, and 22.5 ml (35.9 mmol) of n-BuLi / hexane was brought to -20 to -30 ° C. For 30 minutes, and stirred at the same temperature for 30 minutes. 4.6 g (24.0 mmol) of (S) -4-benzyloxy-3-methylbutanal [compound of formula (11) -2] and 20 ml of dry tetrahydrofuran were added, and the mixture was stirred at the same temperature for 1 hour. Water was added, ether extraction, solvent recovery, and distillation under reduced pressure gave 4.3 g of the compound of formula (10) -2 (yield 93.8%, bp: 85-87 ° C./0.39 kPa). .
[0052]
Reference Example 11: Synthesis of (S) -2-methyl-4-pentenol [compound of formula (5) -2]
A 1 L 4-diameter flask was charged with 250 ml of liquid ammonia, and (S) -5-benzyloxy-4-methyl-1-pentene [compound of formula (10) -2] 4.3 g (22.5 mmol) in a dry tetrahydrofuran solution 40 ml. Add At −50 to −40 ° C., 1.9 g (82.5 mmol) of metallic sodium is added little by little, and the mixture is further stirred at −50 ° C. for 1 hour. The reaction solution is quenched by adding 9.2 g of powdered ammonium chloride, and the temperature is raised to drive off ammonia. Aqueous ammonium chloride solution was added to the residue, ether extraction, brine washing, solvent recovery, and distillation under reduced pressure gave 2.0 g of the compound of formula (5) -2 (yield 88.1%, bp: 72- 75 ° C./4.55 kPa).
[0053]
Reference Example 12: Synthesis of (S) -2-methyl-4-penten-1-yl p-toluenesulfonate [compound of formula (4) -2]
1.9 g (19 mmol) of (S) -2-methyl-4-pentenol [compound of formula (5) -2] and 20 ml of dry pyridine are charged into a 100 ml reaction flask and cooled with ice water. 5.4 g (28 mmol) of paratoluenesulfonium chloride is added little by little, and the mixture is further stirred at 0 ° C. for 3 hours. The reaction is left in the refrigerator overnight. After completion of the reaction, water was added, and ether extraction, brine washing, copper sulfate water washing, brine washing, soda ash water washing and brine washing were followed by solvent recovery to obtain 4.8 g of a crude compound of formula (4) -2. (Yield 100.3%).
[0054]
Example 4: Synthesis of (S)-(+)-3-methyl-5-hexenenitrile [compound of formula (3) -2]
Crude (S) -2-methyl-4-penten-1-yl p-toluenesulfonate [compound of formula (4) -2] 4.8 g (19.0 mmol), dimethyl sulfoxide 20 ml, cyanide in a 100 ml flask Sodium 1.8 g (36.7 mmol) was charged and stirred overnight. After adding water and extracting with ether, the solvent was recovered at atmospheric pressure and distilled under reduced pressure to obtain 1.8 g of the compound of formula (3) -2 (yield: 87.6%, bp: 79-81 ° C. / 4.55 kpPa).
[Α] 20D = 13.24 (c = 0.8910, MeOH)
1H-NMR (400 MHz, TMS, CDCl3) δ (ppm) 5.73 (1H, ddt, J = 17.3 Hz, 10.3 Hz, 3.4 Hz), 5.11 (1H, d, J = 17.3 Hz) ), 5.08 (1H, d, J = 10.3 Hz), 2.36 to 2.23 (2H, m), 2.15 to 2.08 (2H, m), 2.01 to 1.89. (2H, m), 1.10 (3H, d, J = 6.8 Hz).
[0055]
Example 5: Synthesis of (S)-(-)-4-methyl-1,16-heptadecadien-6-one [compound of formula (2) -2]
A 30 ml flask was charged with 1.0 g (39.1 mmol) of magnesium and 2 ml of dry ether, and 7.6 g (32.4 mmol) of bromo-10-undecene was added dropwise. After stirring for 1 hour at room temperature, 1.8 g (16.2 mmol) of (S)-(+)-3-methyl-5-hexenenitrile [compound of formula (3) -2] was added dropwise at the same temperature. . After reacting for 2 hours at the same temperature and confirming disappearance of the raw materials, 20 g of 50% hydrochloric acid was added under cooling, and the mixture was returned to room temperature and stirred for 2 hours. After ether extraction, soda ash water washing and brine washing, the solvent was recovered and purified by silica gel column chromatography to obtain 3.1 g of the compound of formula (2) -1 (yield 72.8%).
[Α] 20D = −2.36 (c = 1.9902, MeOH)
1H-NMR (400 MHz, TMS, CDCl3) δ (ppm) 5.69 (2H, m), 4.94 to 4.82 (4H, m), 2.33 (1H, dd, J = 16.0 Hz, 5.6 Hz), 2.27 (2 H, t, J = 7.6 Hz), 2.14 to 1.86 (6 H, m), 1.53 to 1.20 (14 H, m), 0.83 ( 3H, d, J = 6.4 Hz).
[0056]
Example 6: Synthesis of (S)-(+)-3-methyl-5-cyclopentadecene-1-one [compound of formula (1) -2]
In a 3000 ml flask, Ru-cat. 0.47 g (0.57 mmol) is charged, and the system is purged with argon. 2.95 g (11.2 mmol) of (S)-(−)-4-methyl-1,16-heptadecadien-6-one [compound of formula (2) -2] and 3000 ml of methylene chloride solution were added, and the temperature reached 41 ° C. The reaction was carried out for 4 hours. After recovering the solvent under reduced pressure, it was purified by silica gel column chromatography to obtain 1.36 g of the compound of formula (1) -2 (yield 51.5%). This was further separated into 0.78 g of cis isomer and 0.29 g of trans isomer by a medium pressure column.
Cis isomer
[Α] 20D = 10.17 (c = 0.9634, MeOH)
1H-NMR (400 MHz, TMS, CDCl3) δ (ppm) 5.39-5.29 (2H, m), 2.5-2.2 (3H, m), 2.2-1.9 (6H, m), 1.6 to 1.2 (14H, m), 0.93 (3H, d, J = 6.1 Hz)
13C-NMR (100 MHz, CDCl 3) δ (ppm) 132.7, 129.7 (olefin)
Aroma characteristics: weak, musk-like, somewhat woody odor.
Trans isomer
[Α] 20D = 4.51 (c = 0.9744, MeOH)
1H-NMR (400 MHz, TMS, CDCl3) δ (ppm) 5.47-5.36 (2H, m), 2.5-2.2 (3H, m), 2.2-1.9 (6H, m), 1.6-1.2 (14H, m), 0.93 (3H, d, J = 6.6 Hz)
13C-NMR (100 MHz, CDCl 3) δ (ppm) 132.0, 127.2 (olefin)
Aroma characteristics: weak, musk-like, somewhat woody odor.
[0057]
Example 7: Production of a perfume composition
(R)-(−)-3-Methyl-5-cyclopentadecene-1-one or (S)-(+)-3-methyl-5-cyclopentadecene- prepared in Example 3 and Example 6 Using 1-one, a musk-type soap perfume composition having the following formulation was prepared and evaluated by 10 expert panelists. As a result, (R)-(−)-3-methyl-5-cyclopentadecene-1-one or (S)-(+)-3-methyl-5-cyclopentadecene-1-one of the present invention It was confirmed that a powdery musk-like aroma having high palatability was imparted in the contained fragrance composition.
Fragrance composition
Amyl salicylate 200g
Cedar 160
Geranium 100
Santart 90
Patchouli 40
Coumarin 40
Heliotropin 70
Vetiver 40
Phenylethyl alcohol 90
Cyclopentadecanolide 30
Peruvian balsam 30
Bergamot 60
Tarpinyl acetate 50
Total 1000
[0058]
【The invention's effect】
The present invention relates to an optically active 3-methyl-5-cyclopentadecen-1-one, which is important as an intermediate for the synthesis of optically active muscone (3-methylcyclopentadecanone). Since it can be manufactured, it is extremely useful.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212320A JP4495313B2 (en) | 2000-07-13 | 2000-07-13 | Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212320A JP4495313B2 (en) | 2000-07-13 | 2000-07-13 | Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002030022A JP2002030022A (en) | 2002-01-29 |
JP4495313B2 true JP4495313B2 (en) | 2010-07-07 |
Family
ID=18708257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000212320A Expired - Fee Related JP4495313B2 (en) | 2000-07-13 | 2000-07-13 | Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4495313B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4550514B2 (en) * | 2004-08-03 | 2010-09-22 | 花王株式会社 | Steroid hormone secretion regulator |
EP1884509B1 (en) | 2005-05-23 | 2013-01-02 | Takasago International Corporation | Optically active 3-methylcyclopentadecanone and method for producing intermediate thereof |
CN103787856B (en) * | 2010-10-22 | 2015-07-29 | 安徽中天方生物科技有限公司 | The purposes of 3-methyl cyclotetradecanone and preparation method |
JP6419198B2 (en) * | 2014-01-14 | 2018-11-07 | フイルメニツヒ ソシエテ アノニムFirmenich Sa | Powdery musky fragrance macrocycle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06192680A (en) * | 1992-07-30 | 1994-07-12 | Firmenich Sa | Method for imparting, improving, strengthening or modifying fragrant characteristic of perfume composition or fragrant product and perfume composision or fragrant product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4081733B2 (en) * | 1998-07-02 | 2008-04-30 | 曽田香料株式会社 | Muscon manufacturing method, novel intermediate compound and perfume composition |
-
2000
- 2000-07-13 JP JP2000212320A patent/JP4495313B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06192680A (en) * | 1992-07-30 | 1994-07-12 | Firmenich Sa | Method for imparting, improving, strengthening or modifying fragrant characteristic of perfume composition or fragrant product and perfume composision or fragrant product |
Also Published As
Publication number | Publication date |
---|---|
JP2002030022A (en) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW509672B (en) | Novel intermediate compounds and processes for the production of optical active octanoic acid derivatives | |
JP2836556B2 (en) | Method for producing intermediate of 5,6,7-trinor-4,8-inter-m-phenylene PG12 derivative | |
JP4495313B2 (en) | Process for producing optically active 3-methyl-5-cyclopentadecen-1-one and novel intermediate | |
US20050272943A1 (en) | Process for preparing prostaglandin derivatives and starting materials for the same | |
JP4651155B2 (en) | Manufacturing method of optically active Muscon | |
JP5014732B2 (en) | Method for producing anteisoaliphatic aldehyde and perfume composition containing the same | |
JP3828154B2 (en) | Tricyclocarboxylic acid ester, process for producing the same, and fragrance comprising the same | |
JP3396097B2 (en) | Method for producing 4-isopropylcyclohexanecarboxylic acid ester derivative | |
JP4958513B2 (en) | Method for producing sedanenolide | |
JP2824159B2 (en) | (S)-(-)-α-Damascon production method | |
JPS6334127B2 (en) | ||
JPS588372B2 (en) | Method for producing optically active β-substituted aldehyde compound | |
JPH0245614B2 (en) | ||
JP3071621B2 (en) | Process for producing (-)-8α, 13-epoxy-14,15,16-trinorrabuda-12-ene and a novel intermediate thereof | |
JPH0578541B2 (en) | ||
JP3266701B2 (en) | Method for producing 2,3-dihydropolyprenol | |
JPH0244459B2 (en) | ||
JP3029753B2 (en) | Method for producing meso- (3E, 7E) -5,6-bis (hydroxymethyl) -3,7-decadiene | |
EP1421054A2 (en) | Process for the preparation of beta-ionylideneacetaldehyde | |
JPH10182523A (en) | Production of 1-substituted-2,2-difluoro-3-butene-1-ol | |
JPS63188652A (en) | Production of 5-hydroxy-2-alkynic acid ester | |
JPH08151340A (en) | Production of meso-(3e,7e)-5,6-bis(hydroxymethyl)-3,7 decadiene | |
JP2003002887A (en) | Method for producing 14-methylcyclopentadecanolide and new intermediate | |
JPH04305548A (en) | Halogeno allyl alcohol derivative | |
JPS61254544A (en) | Production of 4,4,4-trifluorovaline compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4495313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |