JP4494868B2 - Non-ferrous metal casting feeder - Google Patents

Non-ferrous metal casting feeder Download PDF

Info

Publication number
JP4494868B2
JP4494868B2 JP2004151768A JP2004151768A JP4494868B2 JP 4494868 B2 JP4494868 B2 JP 4494868B2 JP 2004151768 A JP2004151768 A JP 2004151768A JP 2004151768 A JP2004151768 A JP 2004151768A JP 4494868 B2 JP4494868 B2 JP 4494868B2
Authority
JP
Japan
Prior art keywords
feeder
metal
molten metal
inductor
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004151768A
Other languages
Japanese (ja)
Other versions
JP2005329450A (en
Inventor
鋼太郎 平山
直喜 林
敦 酒井
真司 高田
正明 田島
誠 松浦
三知男 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2004151768A priority Critical patent/JP4494868B2/en
Publication of JP2005329450A publication Critical patent/JP2005329450A/en
Application granted granted Critical
Publication of JP4494868B2 publication Critical patent/JP4494868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、砂型などを用いた鋳造装置に引け巣防止手段として設ける押湯装置に関し、詳しくは、アルミニウム系や,亜鉛系,マグネシウム系などの非鉄金属を鋳造する装置に用いる非鉄金属鋳造用押湯装置に関する。   The present invention relates to a feeder device provided as a means for preventing shrinkage in a casting apparatus using a sand mold or the like, and more specifically, a feeder for nonferrous metal casting used in an apparatus for casting nonferrous metals such as aluminum, zinc, and magnesium. It relates to a hot water apparatus.

押湯技術は、引け巣を原理的に防止して良品歩留を高位確保する手段として欠かせないものであるが、一方では、鋳造後に切除される押湯部にまで鋳造コストが掛かってしまうという不利もあった。
特許文献1及び2に記載の発明は、細身の非金属系耐火材製の筒状の押湯収容部を配して押湯部を構成するとともに、押湯収容部の外周側に誘導コイル(誘導子)を配して押湯収容部内の溶湯自体を直接誘導加熱する内部加熱手法により押湯収容部内の溶湯の安定温度保持を可能にして、細身ながら押湯機能が果たされるようにした技術に関するものである。
The feeder technology is indispensable as a means to prevent shrinkage in principle and to secure a high yield of good products, but on the other hand, it costs casting costs even to the feeder part cut off after casting. There was also a disadvantage.
In the inventions described in Patent Documents 1 and 2, a cylindrical hot-water feeder housing portion made of a thin non-metallic refractory material is arranged to form the hot-water feeder portion, and an induction coil ( A technology that allows the molten metal in the hot water container to be maintained at a stable temperature by an internal heating method that directly heats the molten metal in the hot water container with an inductor), so that the hot water function is fulfilled while being slim. It is about.

この技術においては、上記押湯収容部は非金属系耐火物製であって、金属材料を使用したものではなく、周壁が磁束透過性であることから、押湯収容部内の溶湯自体の誘導加熱は、押湯収容部による磁束の遮断を受けることなしに実施できる。また、上記押湯収容部の材質は、鋳鉄などの1500℃クラスの高温の溶湯に溶損なしに十分耐久する。銅系や,アルミニウム系,亜鉛系といった非鉄金属の、1000℃クラス,数100℃クラスの溶湯にも無論耐久する。   In this technique, the hot metal container is made of a non-metallic refractory and does not use a metal material, and the peripheral wall is magnetic flux permeable. Can be implemented without receiving interruption of magnetic flux by the feeder housing portion. In addition, the material of the above-described feeder housing portion is sufficiently durable without melting damage to a high-temperature molten metal of 1500 ° C. class such as cast iron. Of course, it can withstand 1000 ° C class and several 100 ° C class non-ferrous metals such as copper, aluminum and zinc.

即ち、上記特許文献記載の押湯技術には、鋳造金属の材質に関する制約はない。なお、上記特許文献では、耐火物製押湯収容部として、二重構造にしたものや逆V字形の抜きテーパを設けたもの、或いは、導電性(但し、金属よりは何桁も小さい)を有する黒鉛系耐火物製のもの、が開示されている。また、溶湯温度の制御手法として、押湯の頂面の温度を放射温度計で計測し、これを給電系にフィードバックする手法も開示されている。   That is, there is no restriction | limiting regarding the material of a cast metal in the feeder technique described in the said patent document. In the above-mentioned patent documents, as the refractory hot water container housing portion, a double structure, a reverse V-shaped punch taper, or conductivity (however, several orders of magnitude smaller than metal) are used. A graphite-based refractory product is disclosed. Further, as a method for controlling the molten metal temperature, a method is also disclosed in which the temperature of the top surface of the molten metal is measured with a radiation thermometer and this is fed back to the power feeding system.

特開平9−314310号公報JP 9-314310 A 特開平11−33678号公報JP-A-11-33678

このような従来の非鉄金属鋳造用押湯装置では、押湯の量および除去工数を桁違いに削減して(例えば300kg→9kg)、鋳込み作業に大幅なコストダウンと環境改善をもたらしたが、アルミニウム系等の非鉄金属鋳造部材の利用拡大に伴って、更なる改善が求められている。すなわち、被鋳造金属が鋳鉄や銅合金などの、溶湯の電気抵抗(体積固有抵抗)が大きくて誘導電流によるジュール発熱の大きいものである場合は、押湯溶湯の直接誘導加熱が効率良く行えるので、高周波通電の無駄が少なくて、高周波電源や,高周波出力水冷ケーブル,冷却水循環装置などからなる給電系が比較的小型で安価なもので足りるのに対し、被鋳造金属がアルミニウム合金などの溶湯の電気抵抗が小さい非鉄金属の場合は、上記と逆の理由で、押湯溶湯の直接誘導加熱が効率良く行えないので、給電系に大型のものを使わざるを得ない。   In such a conventional non-ferrous metal casting feeder, the amount and removal man-hours of the feeder are reduced by an order of magnitude (for example, 300 kg → 9 kg), resulting in a significant cost reduction and environmental improvement in the casting operation. With the expansion of the use of non-ferrous metal cast members such as aluminum, further improvements are required. In other words, when the metal to be cast has a large electric resistance (volume specific resistance) such as cast iron or copper alloy and a large Joule heat generation due to induction current, direct induction heating of the molten metal can be performed efficiently. However, there is little waste of high-frequency energization, and a relatively small and inexpensive power supply system consisting of a high-frequency power source, high-frequency output water-cooled cable, and cooling water circulation device is sufficient, whereas the cast metal is made of molten metal such as an aluminum alloy. In the case of a non-ferrous metal having a small electric resistance, direct induction heating of the molten metal cannot be efficiently performed for the reverse reason, and a large power supply system must be used.

そこで、非鉄金属の押湯を、制御応答性に優れた誘導加熱を利用して且つ効率良く加熱できるような改良技術が求められ、そのような技術として、例えば、筒状の押湯収容部に鉄系金属を採用してこれを誘導加熱し、その熱を内部の押湯に伝達させるといった間接誘導加熱が思い浮かぶ。
しかしながら、このような伝熱利用の間接誘導加熱は、押湯頂面温度を放射温度計にて計測してフィードバックするといったフィードバック式の溶湯温度制御手法と相性が悪い。何故なら、上下に変位する押湯頂面の温度を、細身の筒状の押湯収容部の中空を通して、押湯より高温の押湯収容部と紛れることなく正確に測定するのは、原理的に難しいからである。
Therefore, an improved technique is required that can efficiently heat the non-ferrous metal feeder using induction heating with excellent control response. Indirect induction heating comes to mind, such as adopting an iron-based metal and inductively heating it to transfer the heat to the internal feeder.
However, such indirect induction heating using heat transfer is incompatible with a feedback-type molten metal temperature control method in which the top surface temperature of the hot metal is measured with a radiation thermometer and fed back. This is because it is theoretically possible to accurately measure the temperature of the top surface of the hot water that is displaced up and down without being confused with the hot water container that is hotter than the hot water through the hollow of the slender cylindrical hot water container. Because it is difficult.

そこで、被鋳造金属が非鉄金属であっても鉄系のときと同様に小型で安価な給電系で押湯の誘導加熱を行える手法として、伝熱利用の間接誘導加熱であっても、押湯温度そのものを測定しなくても済むようなオープン制御方式、たとえば磁気変態点(A点)を利用した溶湯温度制御手法が考えられる。即ち、押湯収容部を構成する強磁性金属(鋼材等)として、磁気変態点が制御目標温度になる組成に調製されたものを用いることで、押湯収容部の目標温度以上への昇温を抑制するという手法である。 Therefore, as a technique for performing induction heating of the feeder with a small and inexpensive power supply system, even when the cast metal is a non-ferrous metal, even with indirect induction heating using heat transfer, An open control method in which the temperature itself does not need to be measured, for example, a molten metal temperature control method using a magnetic transformation point (A 2 point) is conceivable. That is, as a ferromagnetic metal (steel material, etc.) constituting the feeder housing part, a material whose magnetic transformation point is adjusted to a control target temperature is used, so that the temperature rises to a target temperature or higher. It is a technique of suppressing the above.

しかしながら、鋳造対象の非鉄金属は多岐に亘り、それ伴って押湯の溶湯温度の適正値も一つには定まらない。このため、磁気変態点に基づいて押湯温度をオープン制御するには、磁気変態点が少しずつ異なるように組成を変えた他種類の鋼材等を準備しなくてはならなくなる。ところが、そのような所望組成の鋼材等は、一部を除いて大半のものが市販性・流通性の無い特注品になることから、学術的には利用可能であっても、実用にするには、コストが掛かりすぎる。即ち、単純に磁気変態点利用の押湯温度オープン制御手法を採用したのでは、間接誘導加熱のコストメリットが損なわれてしまうのである。
そこで、被鋳造金属が非鉄金属であっても鉄系のときと同様に小型で安価な給電系で押湯の誘導加熱を行えるよう、筒状の押湯収容部および誘導子を伝熱式のものにするとともに、伝熱利用の間接誘導加熱のコストメリットを生かし且つ押湯温度制御を的確に行える技術の提供が課題となる。
However, there are a wide variety of non-ferrous metals to be cast, and accordingly, an appropriate value of the molten metal temperature of the hot metal is not determined. For this reason, in order to open-control the hot metal temperature based on the magnetic transformation point, it is necessary to prepare other types of steel materials and the like whose composition is changed so that the magnetic transformation point is gradually different. However, most of the steel materials with such a desired composition, except for some, are custom-made products that are not commercially available / distributable. Is too expensive. That is, if the hot water temperature open control method using the magnetic transformation point is simply adopted, the cost merit of indirect induction heating is lost.
Therefore, even if the metal to be cast is a non-ferrous metal, the cylindrical feeder unit and the inductor are connected to the heat transfer type so that induction heating of the feeder can be performed with a small and inexpensive power supply system as in the case of iron type. In addition to providing the technology, it is necessary to provide a technology that can take advantage of the cost merit of indirect induction heating using heat transfer and accurately control the hot water temperature.

本発明の非鉄金属鋳造用押湯装置(当初請求項1)は、このような課題を解決するために創案されたものであり、鋳型に連通して立設されて被鋳造金属の溶湯を湯面位自在に収容する筒状の押湯収容部と、この押湯収容部内の溶湯に入熱するための溶湯加熱機構とを備えた非鉄金属鋳造用押湯装置において、前記押湯収容部が、強磁性金属製の母筒体の内周面に非金属系耐火材製の伝熱調整層を付設した複合筒体を配して構成され、前記溶湯加熱機構が、前記複合筒体の外周側に配され前記母筒体を誘導加熱する誘導子とこの誘導子に高周波通電する給電系とを具備した母筒体誘導加熱機構からなる、ことを特徴とする。
ここで、強磁性金属としては、コストと入手性において最も有利な鉄系金属が好適であるが、ニッケル(磁気変態点≒360℃)系やコバルト(磁気変態点≒1130℃)系、即ち、他の鉄族元素系金属も必要に応じて利用できる。
The hot water feeder for non-ferrous metal casting according to the present invention (initial claim 1) has been devised to solve such a problem, and is erected in communication with a mold to melt a molten metal of a cast metal. In a non-ferrous metal casting hot-water device comprising a cylindrical hot-water container accommodating portion that can be freely positioned and a molten metal heating mechanism for inputting heat into the molten metal in the hot-water container portion, A composite cylindrical body provided with a heat transfer adjusting layer made of a non-metallic refractory material is arranged on the inner peripheral surface of the ferromagnetic metal mother cylinder, and the molten metal heating mechanism is arranged on the outer periphery of the composite cylindrical body. It is characterized by comprising a mother cylinder induction heating mechanism provided with an inductor arranged on the side for induction heating of the mother cylinder and a power feeding system for applying high frequency current to the inductor.
Here, as the ferromagnetic metal, an iron-based metal that is most advantageous in terms of cost and availability is preferable, but a nickel (magnetic transformation point≈360 ° C.) system or a cobalt (magnetic transformation point≈1130 ° C.) system, that is, Other iron group element-based metals can be used as needed.

また、本発明の非鉄金属鋳造用押湯装置(当初請求項2)は、上記の当初請求項1記載の非鉄金属鋳造用押湯装置であって更に、前記伝熱調整層は、この層を貫通する方向の伝熱における温度降下が50〜250℃となるように材質と厚さが設定されたものである、ことを特徴とする。
さらに、本発明の非鉄金属鋳造用押湯装置(当初請求項3)は、上記の当初請求項1,2記載の非鉄金属鋳造用押湯装置であって更に、前記伝熱調整層は、非金属系耐火材の繊維または粉粒体を主成分とする耐火性厚膜塗料を塗工したものである、ことを特徴とする。
Further, a feeder for casting non-ferrous metal according to the present invention (initial claim 2) is the feeder for casting non-ferrous metal according to claim 1 described above, and the heat transfer adjusting layer further comprises this layer. The material and thickness are set so that the temperature drop in heat transfer in the penetrating direction is 50 to 250 ° C.
Furthermore, a feeder for casting nonferrous metal according to the present invention (initial claim 3) is the feeder for casting nonferrous metal according to the first and second claims, wherein the heat transfer adjusting layer is non- It is characterized by being coated with a refractory thick film paint mainly composed of metal-based refractory material fibers or particles.

また、本発明の非鉄金属鋳造用押湯装置(当初請求項4)は、上記の当初請求項1〜3記載の非鉄金属鋳造用押湯装置であって更に、前記伝熱調整層の厚さを2〜20mmとした、ことを特徴とする。
また、本発明の非鉄金属鋳造用押湯装置(当初請求項5)は、上記の当初請求項1〜4記載の非鉄金属鋳造用押湯装置であって更に、前記誘導子の冷却手段は、この誘導子と前記複合筒体との間に断熱層を介在させて前記複合筒体から断熱した構成の下での放冷又は送風冷却である、ことを特徴とする。
また、本発明の非鉄金属鋳造用押湯装置(当初請求項6)は、上記の当初請求項1〜5記載の非鉄金属鋳造用押湯装置であって更に、前記押湯収容部には、押湯収容部一箇所について、前記複合筒体の複数本が密集形態で林立配備されている、ことを特徴とする。
Further, a feeder for casting non-ferrous metal according to the present invention (initial claim 4) is the feeder for casting non-ferrous metal according to claims 1 to 3, further comprising a thickness of the heat transfer adjusting layer. Is set to 2 to 20 mm.
Further, the feeder for casting non-ferrous metal of the present invention (initial claim 5) is the feeder for casting non-ferrous metal according to the first to fourth aspects of the present invention, and the cooling means for the inductor further comprises: It is characterized by cooling or blowing cooling under a configuration in which a heat insulating layer is interposed between the inductor and the composite cylinder to insulate from the composite cylinder.
Further, the feeder for casting non-ferrous metal according to the present invention (initial claim 6) is the feeder for casting non-ferrous metal according to the above-mentioned initial claims 1-5, and further, A plurality of the composite cylinders are densely arranged in a forested area at one place of the hot water storage part.

また、本発明の非鉄金属鋳造用押湯装置(当初請求項7)は、上記の当初請求項6記載の非鉄金属鋳造用押湯装置であって更に、前記誘導子は、前記複数本の複合筒体を包括的に取囲む形態で巻成されている、ことを特徴とする。
また、本発明の非鉄金属鋳造用押湯装置(当初請求項8)は、上記の当初請求項1〜7記載の非鉄金属鋳造用押湯装置であって更に、前記誘導子は、前記押湯収容部の下端に亘る一部区間が加熱対象外区間となる上下方向位置取りにて設置されている、ことを特徴とする。
また、本発明の非鉄金属鋳造用押湯装置(当初請求項9)は、上記の当初請求項1〜8記載の非鉄金属鋳造用押湯装置であって更に、前記誘導子の上下方向位置取りを可変とすることで前記加熱対象外区間の区間長さが調整可能となっている、ことを特徴とする。
A non-ferrous metal casting feeder according to the present invention (initial claim 7) is the non-ferrous metal casting feeder according to the above-mentioned initial claim 6, and the inductor is composed of the plurality of composites. It is wound in a form that comprehensively surrounds the cylinder.
Further, a feeder for casting non-ferrous metal according to the present invention (initial claim 8) is the feeder for casting non-ferrous metal according to claims 1 to 7 above, and the inductor further comprises the feeder. A partial section extending over the lower end of the housing portion is installed at a position in the vertical direction that is a non-heating target section.
A feeder for casting non-ferrous metal according to the present invention (initial claim 9) is the feeder for casting non-ferrous metal according to claims 1 to 8, wherein the inductor is further positioned in the vertical direction. It is possible to adjust the section length of the non-heating target section by making the variable.

このような本発明の非鉄金属鋳造用押湯装置(当初請求項1)にあっては、押湯収容部を複合筒体で構成してそのうちの強磁性金属製の母筒体を外周側配置の誘導子にて誘導加熱することでジュール発熱させ、その熱を伝熱調整層を介して内部の溶湯に伝熱させるようにしたことにより、強磁性金属の効率良く誘導加熱される特性によって、被鋳造金属が非鉄金属であっても鉄系のときと同様に小型で安価な給電系で押湯部における発熱レベルが高位に確保されるというメリットが得られる。また、それに加えて、母筒体の内周面に、内部の溶湯との間に介在させる形で、非金属系耐火材製の伝熱調整層を付設したことにより、押湯収容部の内部の溶湯が具える熱抵抗に、伝熱調整層のもたらす熱抵抗が直列に付加された形の伝熱系が構成されたことになる。   In such a feeder for casting non-ferrous metal according to the present invention (initial claim 1), the feeder housing portion is composed of a composite cylinder, and the ferromagnetic metal mother cylinder is disposed on the outer peripheral side. By inductive heating with the inductor of Joule heat generation, and by transferring the heat to the melt inside through the heat transfer adjustment layer, by the property of the induction heating of the ferromagnetic metal efficiently, Even if the metal to be cast is a non-ferrous metal, it is possible to obtain a merit that a heat generation level in the feeder section is secured at a high level with a small and inexpensive power feeding system as in the case of iron. In addition, a heat transfer adjusting layer made of a non-metallic refractory material is provided on the inner peripheral surface of the mother cylinder so as to be interposed between the inner molten metal and the interior of the feeder housing part. Thus, a heat transfer system is formed in which the heat resistance provided by the heat transfer adjustment layer is added in series to the heat resistance of the molten metal.

そして、溶湯の熱抵抗が金属本来の高熱伝導率と対流による熱移動とによって十分小であるのに対して、伝熱調整層の熱抵抗は、非金属系耐火材本来の低熱伝導率(金属と比べて1〜2桁小さい)により、この伝熱調整層が数100μmといった薄層でない限りは、溶湯の熱抵抗に比べて遙かに大である。その結果、発熱源である母筒体は、受熱体である溶湯に対して定熱流発熱源として機能する状態となる。これは、母筒体から溶湯に至る間の温度降下を伝熱調整層の熱抵抗に応じた一定値に維持できる状態であることを意味している。更に言い換えれば、溶湯の温度変化の初動と母筒体の温度変化の初動とが一定の温度差で連動することになるから、母筒体の温度が一定に保たれれば溶湯の温度も一定に保たれるということである。   The heat resistance of the molten metal is sufficiently small due to the high heat conductivity inherent to the metal and the heat transfer due to convection, whereas the heat resistance of the heat transfer adjustment layer is the low heat conductivity inherent to the nonmetallic refractory (metal As long as this heat transfer adjustment layer is not a thin layer of several hundred μm, it is much larger than the thermal resistance of the molten metal. As a result, the mother cylinder that is a heat generation source is in a state of functioning as a constant heat flow heat generation source for the molten metal that is a heat receiving body. This means that the temperature drop from the mother cylinder to the molten metal can be maintained at a constant value corresponding to the heat resistance of the heat transfer adjustment layer. In other words, since the initial movement of the temperature change of the molten metal and the initial movement of the temperature change of the mother cylinder are linked with a constant temperature difference, the temperature of the molten metal is constant if the temperature of the mother cylinder is kept constant. It is to be kept in.

即ち、制御しやすい母筒体温度を制御することで押湯収容部内溶湯の温度管理が行えることとなったのである。母筒体温度の制御手法としては、前記の磁気変態点(A点)を利用したオープン制御が推奨される。何故なら、本発明装置にあっては、従来のような、上記オープン制御のための磁気変態点のピンポイント設定は不要であり、安価に即入手できる普通鋼(磁気変態点≒780℃)、或いは、これに準ずるフェライト系やマルテンサイト系のステンレス鋼(磁気変態点は730〜600℃)などで母筒体を構成すれば、アルミニウム合金(押湯温度600〜650℃)や亜鉛合金(押湯温度450〜550℃)などの押湯温度のオープン制御管理が行えるからである。 That is, the temperature control of the molten metal in the feeder housing part can be performed by controlling the temperature of the mother cylinder which is easy to control. As a method for controlling the mother body temperature, open control using the magnetic transformation point (A 2 point) is recommended. This is because in the device of the present invention, the conventional pinpoint setting of the magnetic transformation point for the open control is not necessary, and ordinary steel (magnetic transformation point ≈ 780 ° C.) that can be readily obtained at a low cost, Alternatively, if the mother cylinder is made of ferritic or martensitic stainless steel (magnetic transformation point is 730 to 600 ° C.) or the like according to this, an aluminum alloy (feeding temperature 600 to 650 ° C.) or a zinc alloy (pressing This is because open control management of the hot water temperature such as the hot water temperature (450 to 550 ° C.) can be performed.

因みに、上記磁気変態点と押湯温度との温度差を補償するための伝熱調整層の熱抵抗値の調整は、材質と厚さを実験選定するなどして容易に行うことができる。なお、上記母筒体温度の制御が、母筒体温度測定データに基づくフィードバック制御であってもよいことは云うまでもない。要は、溶湯自体の温度ではなく制御の容易な母筒体の温度に基づいて溶湯の温度制御が行えればよいのである。
上述のように、この発明によれば、伝熱利用の間接誘導加熱のコストメリットを生かし且つ押湯温度制御をきめ細かく的確に行える非鉄金属鋳造用押湯装置を実現することができる。
Incidentally, the adjustment of the heat resistance value of the heat transfer adjustment layer for compensating for the temperature difference between the magnetic transformation point and the hot water temperature can be easily performed by experimentally selecting the material and thickness. Needless to say, the control of the mother cylinder temperature may be feedback control based on the mother cylinder temperature measurement data. In short, it is only necessary to control the temperature of the molten metal based on the temperature of the mother cylinder, which is easy to control, rather than the temperature of the molten metal itself.
As described above, according to the present invention, it is possible to realize a non-ferrous metal casting hot water supply device that can take advantage of the cost merit of indirect induction heating using heat transfer and finely control the hot water temperature.

また、本発明の非鉄金属鋳造用押湯装置(当初請求項2)にあっては、前記伝熱調整層の熱抵抗を、50℃という温度降下をもたらすレベル以上とすることで、前述の、母筒体が溶湯に対して定熱流発熱源として機能する状態を確実なものとし、一方では、上記熱抵抗を、250℃という温度降下をもたらすレベル以下とすることで、この温度降下に伴うエネルギーロスが過大とならずに済み、ひいては、給電系の大型化要請が再発するといった事態も避けられて、コストデメリット要因が排除される。   Moreover, in the hot water feeder for non-ferrous metal casting of the present invention (initial claim 2), the heat resistance of the heat transfer adjusting layer is set to be equal to or higher than a level that causes a temperature drop of 50 ° C., Ensuring that the mother cylinder functions as a constant heat flow heat source with respect to the molten metal, on the other hand, by making the thermal resistance below a level that causes a temperature drop of 250 ° C., the energy associated with this temperature drop It is possible to avoid an excessive loss and, in turn, a situation in which a request for enlargement of the power supply system is reoccurred, thereby eliminating a cost demerit factor.

さらに、本発明の非鉄金属鋳造用押湯装置(当初請求項3)にあっては、非金属系耐火材の繊維または粉粒体を塗工して伝熱調整層を作るようにしたことにより、伝熱調整層のその場施工や使用損耗後のその場除去とその場更新施工、更には、伝熱調整層に前記熱抵抗を所望値を以て具備させるための厚さ調整が極めて容易となる。   Furthermore, in the feeder for casting non-ferrous metal according to the present invention (initial claim 3), the heat transfer adjusting layer is formed by applying fibers or particles of non-metallic refractory material. In-situ construction of the heat transfer adjustment layer, in-situ removal after in-use wear and in-situ renewal construction, and further, thickness adjustment for providing the heat resistance with the desired value in the heat transfer adjustment layer becomes extremely easy. .

また、本発明の非鉄金属鋳造用押湯装置(当初請求項4)にあっては、伝熱調整層の厚さを2〜20mmとしたことにより、伝熱調整層による温度降下を、前記50〜250℃を満足する好適範囲に適中させることができる。
また、本発明の非鉄金属鋳造用押湯装置(当初請求項5)にあっては、誘導子の冷却手段を、主発熱源である前記母筒体からの断熱を併用した放冷又は送風冷却(扇風機などによる)としたことにより、煩雑でコストのかかる誘導子の水冷が、コストを要しない断熱処置等によって排除される。
Moreover, in the hot water feeder for nonferrous metal casting of the present invention (initial claim 4), the thickness of the heat transfer adjustment layer is set to 2 to 20 mm, so that the temperature drop due to the heat transfer adjustment layer is reduced to 50%. It can be made into a suitable range that satisfies ˜250 ° C.
In addition, in the feeder for casting non-ferrous metal according to the present invention (initial claim 5), the cooling means for the inductor is allowed to cool or blown in combination with heat insulation from the mother cylinder that is the main heat source. By adopting (by an electric fan or the like), complicated and costly water cooling of the inductor is eliminated by a heat insulating treatment that does not require cost.

また、本発明の非鉄金属鋳造用押湯装置(当初請求項6及び7)にあっては、前記押湯収容部を、押湯収容部一箇所につき複数本の複合筒体を配して構成して、各種複合筒体に係る押湯断面積を小さくできたことにより、大きい押湯断面積を要する鋳造などにおいて、凝固後の押湯部の切除が、小径の押湯部を順次切除すればよいこととなって能率よく行える。因に、非鉄金属の鋳造にあっては、例えば、アルミニウムの鋳造では特に大きい凝固収縮率に起因して引け巣が生じやすいために大きい押湯断面積を要するという事情があったり、或いは、鋼材に比べて軟質であるという弱点を補うための硬質炭化物微粒子の配合によって押湯部切除が難作業となっているという事情があるなど、押湯部の切除負荷の軽減は大きなコストメリットをもたらすことになる。   Further, in the hot water feeder for non-ferrous metal casting according to the present invention (initial claims 6 and 7), the hot water container is configured by arranging a plurality of composite cylinders at one place of the hot water container. In addition, by reducing the cross-sectional area of the feeders related to various composite cylinders, in the casting that requires a large feeder cross-sectional area, cutting of the feeder part after solidification is sequentially cut off the small-diameter feeder part. It can be done efficiently. By the way, in the casting of non-ferrous metal, for example, in the casting of aluminum, there is a circumstance that a large feeder cross section is required due to the tendency to shrinkage due to a particularly large solidification shrinkage rate, or steel material Reducing the excision of the feeder has great cost merit, such as the fact that it is difficult to remove the feeder due to the combination of hard carbide fine particles to compensate for the weakness of being soft compared to become.

また、押湯収容部の誘導加熱を、上記複数本を包括的に取囲む形態で巻成された誘導子によって行うようにしたことにより、複合筒体が複数本であるにも拘わらず、誘導子や給電系が一式で済むため、コスト増が少なくて済む。因に、複数本とはいえ密集配備されている複合筒体間には冷却条件差も生じにくく(誘導子との間に包括的に断熱層を介在させたケースにおいて特に然り)、各押湯収容部の母筒体はほぼ同じ均等となる。更には、後述するように、母筒体温度が磁気変態点利用オープン制御であるケースでは、上記均等性が一層精密に確保される。   In addition, induction heating of the feeder housing part is performed by an inductor wound in a form that comprehensively surrounds the plurality of pieces, so that induction is performed even though there are a plurality of composite cylinders. Since a set of the child and the power supply system is sufficient, the cost increase can be reduced. For this reason, a difference in cooling conditions is unlikely to occur between a plurality of densely arranged composite cylinders (especially in the case where a heat insulating layer is comprehensively interposed between inductors). The mother cylinder of the hot water storage section is substantially the same and equal. Furthermore, as will be described later, in the case where the mother body temperature is the open control using the magnetic transformation point, the above uniformity is ensured more precisely.

さらに、本発明の非鉄金属鋳造用押湯装置(当初請求項8及び9)にあっては、押湯収容部の下端に亘る一部区間を、誘導子の作用が及ばない非加熱区間としたことにより、この区間に、下端側に向けて温度が低くなって行く温度勾配が生じる。また、この区間は、伝熱調整層を貫通する定熱流伝熱路の下流域を占めることから、同じく定熱流伝熱路となっているうえ、無視できない区間長さを有することで伝熱方向の熱抵抗が一定しており、その結果、この区間の上方にある加熱区間の溶湯温度が本発明の基本構成技術(当初請求項1)によって一定に維持されれば、区間下端の溶湯温度もほぼ一定に維持される。   Furthermore, in the feeder for casting non-ferrous metal of the present invention (initial claims 8 and 9), a part of the section over the lower end of the feeder housing portion is a non-heated section where the effect of the inductor does not reach. Thus, a temperature gradient is generated in this section in which the temperature decreases toward the lower end side. In addition, since this section occupies the downstream area of the constant heat flow heat transfer path that penetrates the heat transfer control layer, it is also a constant heat flow heat transfer path and has a non-negligible section length. As a result, if the molten metal temperature in the heating section above this section is kept constant by the basic construction technique of the present invention (initial claim 1), the molten metal temperature at the lower end of the section is also It is maintained almost constant.

即ち、鋳造製品となる鋳型内溶湯に直に接している押湯部下端溶湯の高度の温度管理が可能となるものであり、鋳造製品の品質(形状品位,凝固組織など)の高位確保がもたらされる。
加えて、誘導子の上下方向位置取りを可変として非加熱区間の区間長さを調整可能としたことにより、上記温度差の随意選定による押湯部下端の溶湯温度の最適化が、実験検討を経るなどして実現されることとなる。
In other words, it is possible to control the temperature of the molten metal at the lower end of the hot metal part that is in direct contact with the molten metal in the mold, which is a cast product, and to ensure high quality of the cast product (shape quality, solidification structure, etc.). It is.
In addition, the length of the non-heating section can be adjusted by making the vertical positioning of the inductor variable, so that the optimization of the molten metal temperature at the lower end of the hot metal part by optional selection of the above temperature difference has been studied experimentally. It will be realized after a while.

本発明の非鉄金属鋳造用押湯装置の一実施形態について、その構成を、図面を引用して説明する。図1は、(a)が装置全体の外観斜視図、(b)が筒状の押湯収容部と誘導子との嵌合物の平面図、(c)はそのAA断面矢視図、(d)が高周波コイルのコイル線の横断面図である。   A configuration of an embodiment of a feeder for casting nonferrous metal according to the present invention will be described with reference to the drawings. 1A is an external perspective view of the entire apparatus, FIG. 1B is a plan view of a fitting object between a cylindrical feeder housing part and an inductor, and FIG. d) is a cross-sectional view of the coil wire of the high-frequency coil.

この非鉄金属鋳造用押湯装置10は(図1(a)参照)、筒状の押湯収容部20と溶湯加熱機構30+40とを具えたものである。押湯収容部20は、鋳型に連通して立設されて用いられ、その状態で被鋳造非鉄金属の溶湯を湯面位自在に収容する。また、再使用目的の抜き取りの容易化のため、下端側が太く上端側が細い逆V字形(テーパ付き)の筒体に形成されている。溶湯加熱機構30+40(母筒体誘導加熱機構)は、押湯収容部20内の溶湯への入熱を伝熱利用の間接誘導加熱で行うために、押湯収容部20を誘導加熱する誘導子30と、この誘導子30に高周波通電する給電系40とを具えている。   The non-ferrous metal casting feeder 10 (see FIG. 1A) includes a tubular feeder housing 20 and a molten metal heating mechanism 30 + 40. The hot-water container 20 is used while standing in communication with the mold, and in that state, the molten non-ferrous metal is accommodated in such a manner that the molten metal surface can be freely positioned. Further, in order to facilitate extraction for reuse, it is formed in an inverted V-shaped (tapered) cylindrical body having a thick lower end and a thin upper end. The molten metal heating mechanism 30 + 40 (master cylinder induction heating mechanism) is an inductor for induction heating the hot metal container 20 in order to perform heat input to the molten metal in the hot metal container 20 by indirect induction heating using heat transfer. 30 and a power feeding system 40 for energizing the inductor 30 with high frequency.

給電系40は(図1(a)参照)、冷却水循環装置43を組み合わせた高周波電源42と、これと誘導子30とを給電可能に繋ぐ高周波出力水冷ケーブル41とを具えており、誘導子30に1〜400kHz程度の周波数で高周波通電が行えるようになっている。高周波電源42の出力は、0.5〜5kW程度である。その出力制御は、温度フィードバックのないオープン制御となっている。   The power feeding system 40 (see FIG. 1A) includes a high frequency power source 42 that combines a cooling water circulation device 43 and a high frequency output water cooling cable 41 that connects the inductor 30 and the inductor 30 so that power can be fed. In addition, high-frequency energization can be performed at a frequency of about 1 to 400 kHz. The output of the high frequency power source 42 is about 0.5 to 5 kW. The output control is open control without temperature feedback.

誘導子30と筒状の押湯収容部20は(図1(b),(c)参照)、誘導加熱時に必要な嵌合状態を可能とするために、押湯収容部20の外径が誘導子30の内径より僅かに細く形成されており、押湯収容部20に誘導子30を被せて同心配置する。
押湯収容部20は、それ自体が複合筒体になっており、強磁性金属製の母筒体21が外周側に配され、非金属系耐火材製の伝熱調整層22が内周側に配されている。押湯収容部20のサイズは、非鉄金属の種類や鋳型サイズ等に応じて変わるので一概には言えないが、典型例を挙げれば、内径が20〜30mm、外径が30〜40mm、高さが200mm程度である。
The inductor 30 and the cylindrical hot water container 20 (see FIGS. 1B and 1C) have an outer diameter of the hot water container 20 in order to enable a necessary fitting state during induction heating. It is formed to be slightly thinner than the inner diameter of the inductor 30, and the feeder 30 is covered with the inductor 30 and arranged concentrically.
The hot water container 20 itself is a composite cylinder, a mother metal body 21 made of a ferromagnetic metal is arranged on the outer peripheral side, and a heat transfer adjustment layer 22 made of a nonmetallic refractory material is provided on the inner peripheral side. It is arranged in. The size of the hot-water container 20 varies depending on the type of non-ferrous metal, the mold size, etc., but it cannot be said unconditionally, but typical examples include an inner diameter of 20 to 30 mm, an outer diameter of 30 to 40 mm, and a height. Is about 200 mm.

伝熱調整層22は、非金属系耐火材の繊維または粉粒体を母筒体21の内周面に塗工して形成され、その厚さは2〜20mmの範囲に選定されている。非金属系耐火材は、塗工に適えば公知のもので良いが(例えば特許文献1,2のパイプ材料を参照)、厚膜化適性あるいは高温強度や被鋳造非鉄金属に対する耐久性も考慮すると、ガラス繊維を主成分とし、これをアルミナ−シリカ系バインダーで固結させるようにした耐火性塗料等が適している。なお、伝熱調整層22を、上記のような塗工形式によらずに、既成形筒体(耐火クロス製スリーブなど)を嵌装した構成としてもよい。この場合、母筒体との会合面に上記バインダー等を適用して母筒体との間の良好な伝熱を図るのがよい。   The heat transfer adjusting layer 22 is formed by applying non-metallic refractory material fibers or granular materials to the inner peripheral surface of the mother cylinder 21 and the thickness thereof is selected in the range of 2 to 20 mm. The non-metallic refractory material may be known as long as it is suitable for coating (see, for example, the pipe materials in Patent Documents 1 and 2), but considering the suitability for thickening, high-temperature strength, and durability against non-ferrous metal to be cast A fire-resistant paint having glass fiber as a main component and solidified with an alumina-silica binder is suitable. In addition, it is good also as a structure which fitted the preformed cylinder (sleeve made from a fireproof cloth, etc.) rather than the above coating formats. In this case, it is preferable to achieve good heat transfer with the mother cylinder by applying the binder or the like to the meeting surface with the mother cylinder.

母筒体21は、強磁性金属をテーパ付き円筒状に加工形成したものであり、その肉厚は2〜20mm程度である。また、母筒体21を構成する強磁性金属には、被鋳造非鉄金属の融点よりも50〜250℃高い磁気変態点を有する鉄族元素系金属(鋼材等)のうちから、安価に市販されているものが選ばれ採用される。現時点で使い易い例としては、磁気変態点が約780℃の炭素鋼(普通鋼)や,約700℃の13Crステンレス鋼(例えばマルテンサイト系のSUS410),約630℃〜約600℃の18〜19Crステンレス鋼(例えばフェライト系のSUS430,SUS444)等が挙げられる。   The mother cylinder 21 is formed by processing a ferromagnetic metal into a tapered cylinder, and has a thickness of about 2 to 20 mm. The ferromagnetic metal constituting the mother cylinder 21 is commercially available at a low price from among iron group elemental metals (steel materials, etc.) having a magnetic transformation point 50 to 250 ° C. higher than the melting point of the non-ferrous metal to be cast. Is selected and adopted. Examples that are easy to use at present are carbon steel (ordinary steel) having a magnetic transformation point of about 780 ° C., 13Cr stainless steel (eg, martensitic SUS410) of about 700 ° C., 18 to about 630 ° C. to about 600 ° C. 19Cr stainless steel (for example, ferritic SUS430, SUS444) and the like.

母筒体21には、例えば被鋳造非鉄金属の所望溶融温度が600〜650℃の範囲にあるケース(アルミニウム合金類やマグネシウム合金類など)では、炭素鋼製(磁気変態点≒780℃)のものを用いた上で伝熱調整層を厚目(例えば10〜20mm)とし、或いは13Crステンレス製(磁気変態点≒700℃)のものを用いた上で伝熱調整層を薄目(例えば2〜10mm)とすればよい。同様に、所望溶湯温度が400〜500℃の範囲にあるケース(亜鉛合金類など)では、18〜19Crステンレス製(磁気変態点≒630〜600℃)の母筒体を用いればよい。所望溶湯温度が300℃以下のケース(錫,鉛系など)では、Ni系金属も母筒体材料として有用である。   For example, in the case where the desired melting temperature of the cast non-ferrous metal is in the range of 600 to 650 ° C. (aluminum alloy, magnesium alloy, etc.), the mother cylinder 21 is made of carbon steel (magnetic transformation point≈780 ° C.). The heat transfer adjustment layer is made thick (for example, 10 to 20 mm) after being used, or the heat transfer adjustment layer is made thin (for example, 2 to 20 mm) after using one made of 13Cr stainless steel (magnetic transformation point≈700 ° C.). 10 mm). Similarly, in a case where the desired molten metal temperature is in the range of 400 to 500 ° C. (such as zinc alloys), a mother cylinder made of 18 to 19 Cr stainless steel (magnetic transformation point≈630 to 600 ° C.) may be used. In cases where the desired molten metal temperature is 300 ° C. or lower (such as tin or lead), Ni-based metals are also useful as the parent cylinder material.

誘導子30は、高周波コイル33が主体であるが、それを格納して支持する耐火性のコイル支持部材31と、その内周面全域に張付けられた断熱材32も、具えている。コイル支持部材31は、ベークライト系樹脂材料等の堅い電気絶縁材で出来ているが、断熱材32は、例えば柔らかいケイ酸カルシウム繊維系のマット材等からなり、その厚さは、20mm前後で、伝熱調整層22よりも厚くなっている。断熱材32は母筒体21の外周面の方に略半量を振分けて張付られていてもよい。高周波コイル33には耐熱電線が用いられ、高周波コイル33は、螺旋・筒状に巻成され、その両通電端が高周波出力水冷ケーブル41に接続される。高周波コイル33の耐熱電線には(図1(d)参照)、例えば多数の銅細線34をポリイミドやガラス布等の耐熱被覆35で覆ったものが採用され、自然放熱に適うとともに上記巻成が容易に行えるようになっている。   The inductor 30 is mainly composed of a high-frequency coil 33, but also includes a fire-resistant coil support member 31 that stores and supports the coil 30, and a heat insulating material 32 that is attached to the entire inner peripheral surface of the inductor 30. The coil support member 31 is made of a hard electrical insulating material such as a bakelite-based resin material, but the heat insulating material 32 is made of, for example, a soft calcium silicate fiber-based mat material, and the thickness thereof is about 20 mm. It is thicker than the heat transfer adjustment layer 22. The heat insulating material 32 may be attached to the outer peripheral surface of the mother cylinder 21 by distributing approximately half of the heat insulating material 32. A heat-resistant electric wire is used for the high-frequency coil 33, and the high-frequency coil 33 is wound in a spiral / cylindrical shape, and both energization ends thereof are connected to the high-frequency output water-cooled cable 41. As the heat-resistant electric wire of the high-frequency coil 33 (see FIG. 1D), for example, a wire in which a large number of copper thin wires 34 are covered with a heat-resistant coating 35 such as polyimide or glass cloth is used. It can be easily done.

この実施形態の非鉄金属鋳造用押湯装置について、その使用態様及び動作を、図面を引用して説明する。図2は、(a)が鋳型50等の外観斜視図、(b)〜(f)が何れも鋳型50等の縦断面図であり、(a)及び(b)は、鋳型50に押湯収容部20を立設したところ、(c)は押湯収容部20に誘導子30を被せたところ、(d)は被鋳造非鉄金属60の溶湯を注入したところ、(e)は誘導子30を取り外したところ、(f)は押湯収容部20も取り外したところである。   About the hot-water supply apparatus for nonferrous metal casting of this embodiment, the use aspect and operation | movement are demonstrated referring drawings. 2A is an external perspective view of the mold 50 and the like, and FIGS. 2B to 5F are longitudinal sectional views of the mold 50 and the like. FIG. 2A and FIG. When the housing part 20 is erected, (c) is a case where the hot water container part 20 is covered with the inductor 30, (d) is a case where molten metal of the non-ferrous metal 60 to be cast is injected, and (e) is the inductor 30. When (f) is removed, (f) is a place where the hot water container 20 is also removed.

鋳型50は(図2(a),(b)参照)、例えば砂型の下型51と上型52とからなり、下型51の上に上型52を重ねて置くと、その内部に、鋳物形状を規定するキャビティ55が囲われるようになっている。上型52には、そのキャビティ55に連通する注入口54が形成されるとともに、押湯の必要なところ(通常はキャビティ55の上壁の一部)には、筒状の押湯収容部20の中空がキャビティ55に連通する状態で押湯収容部20が立設される。その押湯収容部立設部53は、上型52の他の部分より薄くするため、鋼線や耐火不織布で補強すると良い(例えば特許文献2参照)。鋳型材料には、シェルモールド砂など公知の非金属系耐火材が使用可能である(例えば特許文献1,2参照)。キャビティ55のサイズで決まる鋳物の重さは、1〜200kgが多いが、それ以外もあり、500〜1000kgといった大物も稀ではない。   The mold 50 (see FIGS. 2A and 2B) is composed of, for example, a lower mold 51 and an upper mold 52 of a sand mold. When the upper mold 52 is placed on the lower mold 51, a casting is formed inside the mold. A cavity 55 that defines the shape is enclosed. The upper mold 52 is formed with an injection port 54 communicating with the cavity 55, and at a place where a hot water is necessary (usually part of the upper wall of the cavity 55), the tubular hot water container 20. The hot water container 20 is erected in a state in which the hollow of this is communicated with the cavity 55. In order to make the hot water storage part standing part 53 thinner than the other part of the upper mold 52, it is preferable to reinforce it with a steel wire or a fireproof nonwoven fabric (see, for example, Patent Document 2). A known non-metallic refractory material such as shell mold sand can be used as the mold material (see, for example, Patent Documents 1 and 2). The weight of the casting determined by the size of the cavity 55 is 1 to 200 kg, but there are others, and a large one such as 500 to 1000 kg is not rare.

鋳型50の準備ができると、次に誘導子30をセットする(図2(c)参照)。誘導子30は、上から被せるようにして、筒状の押湯収容部20の外周側に配置する。また、誘導子30の高周波コイル33の両通電端には高周波出力水冷ケーブル41を接続して高周波電源42から高周波通電できるようにする。
そして(図2(d)参照)、鋳込みの準備ができたら、すなわち被鋳造非鉄金属60の溶湯が用意できたら、それを注入口54からキャビティ55へ流し込むとともに、給電系40を作動させる。
そうすると、筒状の押湯収容部20の中空にも被鋳造非鉄金属60即ち押湯の溶湯が入り込むとともに、高周波通電に伴って高周波コイル33が母筒体21を誘導加熱し、その熱が伝熱調整層22を介して中空内の押湯溶湯すなわち被鋳造非鉄金属60に伝達される。
When the mold 50 is ready, the inductor 30 is set (see FIG. 2C). The inductor 30 is disposed on the outer peripheral side of the tubular feeder housing portion 20 so as to be covered from above. Further, a high-frequency output water-cooled cable 41 is connected to both energization ends of the high-frequency coil 33 of the inductor 30 so that high-frequency power can be supplied from the high-frequency power source 42.
And (refer FIG.2 (d)), if the preparation for casting is completed, ie, if the molten metal of the nonferrous metal 60 to be cast will be prepared, it will be poured into the cavity 55 from the inlet 54, and the electric power feeding system 40 will be operated.
As a result, the non-ferrous metal 60 to be cast, that is, the molten metal of the hot metal, enters the hollow space of the cylindrical hot water container 20, and the high frequency coil 33 inductively heats the mother cylinder 21 with the high frequency current, and the heat is transferred. The heat is transferred to the molten metal in the hollow, that is, the non-ferrous metal to be cast 60 through the heat adjustment layer 22.

被鋳造非鉄金属60は、溶融時の体積固有抵抗の小さい非鉄金属であり、直接の誘導加熱には適さないが、母筒体21からの熱伝導によれば能率よく加熱される。その伝熱が適切になされるよう、予め被鋳造非鉄金属60の溶湯温度(融点より少し高温)に応じて、母筒体21の材質および厚さと伝熱調整層22の材質および厚さとが選定されているので、キャビティ55の被鋳造非鉄金属60が徐々に固化しても、筒状の押湯収容部20の中空内の被鋳造非鉄金属60は溶湯状態を維持し、キャビティ55の被鋳造非鉄金属60が固化に伴って収縮すると、それを補う押湯が押湯収容部20からキャビティ55へ供給される。   The non-ferrous metal 60 to be cast is a non-ferrous metal having a small volume resistivity at the time of melting and is not suitable for direct induction heating, but is efficiently heated by heat conduction from the mother cylinder 21. The material and thickness of the mother cylinder 21 and the material and thickness of the heat transfer adjustment layer 22 are selected in advance according to the molten metal temperature (slightly higher than the melting point) of the non-ferrous metal 60 to be cast so that the heat transfer is appropriately performed. Therefore, even if the non-ferrous metal 60 to be cast in the cavity 55 is gradually solidified, the non-ferrous metal 60 to be cast in the hollow of the tubular feeder housing portion 20 maintains the molten state, and the cast of the cavity 55 is cast. When the non-ferrous metal 60 shrinks as it solidifies, a hot water supply that compensates for it is supplied to the cavity 55 from the hot water storage portion 20.

被鋳造非鉄金属60の固化が進んで押湯供給の必要が無くなったら、誘導子30を抜き取り除去し(図2(e)参照)、更に放冷する。そして、十分に固化したら、押湯収容部20を、出来るだけ傷つけないよう留意しながら、やはり抜き取り除去し(図2(f)参照)、後は通常の鋳込み作業と同様、鋳型を外し、押湯や注入路の名残である不要な突起部を切断除去する。
取り外した誘導子30は当然再利用されるが、押湯収容部20も、損傷が無ければそのまま再利用し、断熱材32が部分的に欠落しているような場合は、そこだけ補修塗工を施し、断熱材32が全体的に破損しているような場合は、断熱材32を総て削ぎ落としてからコイル支持部材31の内周面全域に断熱材32を塗工しなおす。
When solidification of the non-ferrous metal 60 to be cast progresses and there is no need to supply hot water, the inductor 30 is extracted and removed (see FIG. 2 (e)) and further cooled. After solidifying sufficiently, the hot-water container 20 is removed and removed while taking care not to damage it as much as possible (see FIG. 2 (f)). Unnecessary protrusions, which are the remains of hot water and injection paths, are cut and removed.
The removed inductor 30 is reused as a matter of course, but the feeder housing part 20 is also reused as it is if it is not damaged, and if the heat insulating material 32 is partially missing, only that repair coating is applied. If the heat insulating material 32 is totally damaged, the heat insulating material 32 is scraped off, and then the heat insulating material 32 is applied over the entire inner peripheral surface of the coil support member 31.

こうして、少ない押湯でも引け巣の無い又は引け巣の少ない鋳込みが行われるが、その押湯を溶湯状態に加熱維持するための誘導加熱が、伝熱利用の間接加熱とオープン制御との組み合わせでも、被鋳造非鉄金属60に対して適切になされることは、前述の通りである。   In this way, casting with little shrinkage or no shrinkage is performed, but induction heating to maintain the molten metal in a molten state is also a combination of indirect heating using heat transfer and open control. As described above, what is appropriately performed on the non-ferrous metal 60 to be cast is performed.

このような場合、高周波コイル33への高周波通電がオープン制御であっても、母筒体21の温度が磁気変態点を上回ると母筒体21の発熱量が急減し、母筒体21の温度が磁気変態点を下回ると母筒体21の発熱量がやかに回復するので、母筒体21の温度はほぼ磁気変態点に保たれる。そして、伝熱調整層22における厚み方向の温度降下にほぼ比例する熱流が母筒体21から押湯へ伝達され、これが押湯からキャビティ55等へ逃げる熱量と釣り合って、押湯は概ね一定の溶融温度に維持される。また、母筒体21が誘導加熱に適した強磁性金属なので、高周波電源42は、最高出力が5kW程度のもので足りる。因に、従来のアルミニウムの直接誘導加熱では15kW程度の電源が必要であった。   In such a case, even if the high-frequency power supply to the high-frequency coil 33 is open control, if the temperature of the mother cylinder 21 exceeds the magnetic transformation point, the amount of heat generated by the mother cylinder 21 decreases rapidly, and the temperature of the mother cylinder 21 When the temperature falls below the magnetic transformation point, the amount of heat generated in the mother cylinder 21 recovers quickly, so that the temperature of the mother cylinder 21 is kept substantially at the magnetic transformation point. A heat flow that is substantially proportional to the temperature drop in the thickness direction in the heat transfer adjusting layer 22 is transmitted from the mother cylinder 21 to the feeder, and this is balanced with the amount of heat that escapes from the feeder to the cavity 55 and the like. Maintained at melting temperature. Moreover, since the mother cylinder 21 is a ferromagnetic metal suitable for induction heating, the high-frequency power source 42 may have a maximum output of about 5 kW. Incidentally, the conventional direct induction heating of aluminum requires a power source of about 15 kW.

本発明の非鉄金属鋳造用押湯装置の他の実施形態について、その構成を、図面を引用して説明する。図3は、(a),(b)何れも鋳型50への非鉄金属鋳造用押湯装置10の複数装着状態を模式的に示す斜視図であり、(a)は並列接続タイプ、(b)は直列接続タイプを示している。   The configuration of another embodiment of the feeder for casting nonferrous metal according to the present invention will be described with reference to the drawings. 3A and 3B are perspective views schematically showing a plurality of mounting states of the non-ferrous metal casting feeder 10 to the mold 50, where FIG. 3A is a parallel connection type, and FIG. Indicates a series connection type.

鋳型50が大きいときなど押湯を複数箇所に設ける必要があり(図示の例では四カ所)、その場合、押湯設置箇所それぞれに押湯収容部20を立設するとともに、各押湯収容部20に誘導子30を外嵌して、各誘導子30に高周波通電しなければならない。また、設置箇所によって押湯の冷め具合が異なるため、押湯の温度管理すなわち高周波の通電制御は独立に行わなければならない。そのため、従来の直接誘導加熱の手法では、押湯収容部20の数だけ、誘導子30ばかりか給電系40も更には放射温度計も揃えたうえで、並列接続し、独立制御せざるを得なかった。   It is necessary to provide hot water feeders at a plurality of locations such as when the mold 50 is large (in the illustrated example, four locations). Inductors 30 must be externally fitted to 20 and each inductor 30 must be energized with high frequency. In addition, since the degree of cooling of the feeder is different depending on the installation location, the temperature management of the feeder, that is, high-frequency energization control must be performed independently. Therefore, in the conventional direct induction heating method, the number of the feeders 20 is not limited to the number of inductors 30 but also the power feeding system 40 and the radiation thermometer are arranged in parallel, and must be connected in parallel and controlled independently. There wasn't.

これに対し、本発明の非鉄金属鋳造用押湯装置10を用いれば、伝熱利用の間接誘導加熱によって、給電系40が小型でも良くなるのにとどまらず、並列接続タイプでも直列接続タイプでも選択することができるので、可使性が広がる。
すなわち、並列接続タイプを選択したときは(図3(a)参照)、誘導子30それぞれに一台ずつ給電系40を接続する。このタイプは、小型の給電系40だけで作業したいときに適している。この場合でも、オープン制御なので、放射温度計が要らない。
On the other hand, if the feeder 10 for non-ferrous metal casting of the present invention is used, the power supply system 40 is not limited to a small size due to indirect induction heating using heat transfer, and it can be selected as a parallel connection type or a series connection type. Can be used, so the usability is expanded.
That is, when the parallel connection type is selected (see FIG. 3A), the power feeding system 40 is connected to each inductor 30 one by one. This type is suitable when working only with the small power supply system 40. Even in this case, since it is open control, a radiation thermometer is not required.

また、直列接続タイプを選択したときは(図3(b)参照)、各誘導子30を一巡状態で一繋ぎにし一台の給電系40に纏めて接続する。このタイプは、大型の給電系40で作業したいときに適している。この場合も、オープン制御が行われるので、放射温度計は不要であり、どの誘導子30にも同電流の通電がなされるが、母筒体の温度が磁気変態点を超えた押湯収容部20では母筒体インダクタンスが急減し、これに伴ってコイルインダクタンスがひいてはコイルの両端電圧が急減する結果、母筒体温度は磁気変態点近傍に維持されることとなり、加えて、押湯収容部20それぞれでの溶湯への熱流が、ひいては母筒体溶湯間の温度降下が一定であるため、溶湯温度はほぼ一定に保たれて、並列接続タイプ・独立制御タイプと同様、どの押湯も適切な溶湯状態を維持する。
なお、図示は割愛したが、並列接続タイプと直列接続タイプとの混用も可能である。
Further, when the series connection type is selected (see FIG. 3B), the inductors 30 are connected in a single circuit and connected together to one power supply system 40. This type is suitable when working with a large power supply system 40. Also in this case, since open control is performed, a radiation thermometer is not required, and the same current is applied to any inductor 30, but the feeder housing portion where the temperature of the mother cylinder exceeds the magnetic transformation point. In 20, the main cylinder inductance is suddenly reduced, and as a result, the coil inductance and the voltage across the coil are suddenly reduced. As a result, the master cylinder temperature is maintained in the vicinity of the magnetic transformation point. Since the heat flow to the molten metal at each of the 20 and the temperature drop between the molten metal in the master tube is constant, the molten metal temperature is kept almost constant, and any hot water is appropriate as with the parallel connection type and independent control type. Maintain a molten state.
Although illustration is omitted, the parallel connection type and the series connection type can be mixed.

本発明の非鉄金属鋳造用押湯装置の他の実施形態について、その構成を、図面を引用して説明する。図4は、鋳型50への非鉄金属鋳造用押湯装置10の複数装着状態を模式的に示す斜視図である。   The configuration of another embodiment of the feeder for casting nonferrous metal according to the present invention will be described with reference to the drawings. FIG. 4 is a perspective view schematically showing a plurality of mounting states of the hot metal apparatus 10 for casting non-ferrous metal to the mold 50.

この非鉄金属鋳造用押湯装置10は、押湯収容部20それぞれを4本の複合筒体23の分割したものである。すなわち、押湯収容部20には、押湯収容部20一箇所について、複合筒体23の複数本が密集形態で林立配備されている。
そして、誘導子30(図示したのは高周波コイル33のみ)は、各押湯収容部20毎に、4本の複合筒体23を包括的に取囲む形態で巻成されている。
誘導子30の接続は、直列接続タイプを図示したが、並列接続タイプでも良く、混用しても良い。
This non-ferrous metal casting feeder 10 is obtained by dividing each feeder assembly 20 into four composite cylinders 23. That is, a plurality of the composite cylinders 23 are arranged in a densely packed manner in the hot water storage unit 20 at one location of the hot water storage unit 20.
The inductor 30 (only the high-frequency coil 33 shown in the figure) is wound in a form that comprehensively surrounds the four composite cylinders 23 for each feeder housing portion 20.
The connection of the inductor 30 is illustrated as a series connection type, but may be a parallel connection type or a combination thereof.

この場合、押湯収容部20を、押湯収容部20一箇所につき複数本の複合筒体23を配して構成して、各種複合筒体に係る押湯断面積を小さくできたことにより、大きい押湯断面積を要する鋳造などにおいて、凝固後の押湯部の切除が、小径の押湯部を順次切除すればよいこととなって能率よく行える。
また、押湯収容部23の誘導加熱が、複数本を包括的に取囲む形態で巻成された高周波コイル33(誘導子)によって行われるので、複合筒体23が複数本であるにも拘わらず、誘導子30や給電系40が一式で済むため、コスト増が少なくて済む。
In this case, the hot water storage unit 20 is configured by arranging a plurality of composite cylinders 23 per one hot water storage unit 20, and the cross-sectional area of the hot water supply relating to various composite cylinders can be reduced. In casting or the like that requires a large feeder cross-sectional area, cutting of the feeder portion after solidification can be efficiently performed by sequentially removing the feeder portion having a small diameter.
Moreover, since the induction heating of the hot-water container 23 is performed by the high-frequency coil 33 (inductor) wound in a form that comprehensively surrounds a plurality of the hot-water containers 23, the composite cylinder 23 is in spite of the plurality. In addition, since the inductor 30 and the power supply system 40 are only one set, the cost increase is small.

本発明の非鉄金属鋳造用押湯装置の更に他の実施形態について、その構成を、図面を引用して説明する。図5は、鋳型50への非鉄金属鋳造用押湯装置10の複数装着状態を模式的に示す縦断面図である。   The structure of another embodiment of the feeder for casting nonferrous metal according to the present invention will be described with reference to the drawings. FIG. 5 is a vertical cross-sectional view schematically showing a plurality of mounting states of the hot metal apparatus 10 for casting non-ferrous metal to the mold 50.

この非鉄金属鋳造用押湯装置10は、誘導子30が押湯収容部20より短くできており、その誘導子30を押湯収容部20に嵌装するに先だって、コイル位置調整スペーサー70が押湯収容部20に嵌装されている。これにより、押湯収容部20の下端に亘る一部区間が加熱対象外区間となり、誘導子30は、そのような上下方向位置取りにて設置されるものとなる。
また、コイル位置調整スペーサー70の個数すなわち積み重ね段数を増減すれば、誘導子30の上下方向位置取りが可変されるので、上記加熱対象外区間の区間長さが調整可能なものとなっている。
In this non-ferrous metal casting feeder 10, the inductor 30 is shorter than the feeder housing 20, and the coil position adjustment spacer 70 is pushed by the coil 30 before the inductor 30 is fitted into the feeder housing 20. The hot water storage part 20 is fitted. Thereby, a partial section over the lower end of the hot water container 20 becomes a non-heating target section, and the inductor 30 is installed in such a vertical position.
Further, if the number of coil position adjusting spacers 70, that is, the number of stacked stages is increased or decreased, the vertical positioning of the inductor 30 can be varied, so that the section length of the non-heating target section can be adjusted.

本発明の非鉄金属鋳造用押湯装置10を試作し、それを用いて次の条件下で、アルミニウム鋳造品を製造した。
材質名: AC4A(比重2.7g/cm
製品重量: 500kg
押湯箇所: 4本の複合筒体23からなる押湯収容部20を5箇所に設けた
融点: 595℃(液相線595℃、固相線560℃)
押湯重量: 45kg
押湯外径: φ51mm
伝熱調整層厚さ: 20mm
筒体高さ: 400mm(鋳型内100mm、鋳型外300mm)
押湯引け量: 200mm(注湯直後の押湯高さ350mm、凝固後150mm)
金属筒体: 炭素鋼管(磁気変態点780℃)
高周波電源: 5kW/押湯箇所
周波数: 20kHz
投入電力: 昇温時5kW 変態後1kW
凝固時間: 120分
A feeder 10 for casting a nonferrous metal according to the present invention was made as a prototype, and an aluminum cast product was produced under the following conditions.
Material name: AC4A (specific gravity 2.7 g / cm 3 )
Product weight: 500kg
Feeding hotspot: Melting point provided with five hot water containing parts 20 composed of four composite cylinders 23: 595 ° C. (liquidus 595 ° C., solidus 560 ° C.)
Hot water weight: 45kg
Outer diameter of feeder: φ51mm
Heat transfer adjustment layer thickness: 20mm
Tube height: 400 mm (100 mm inside mold, 300 mm outside mold)
Hot water closing amount: 200 mm (high height 350 mm immediately after pouring, 150 mm after solidification)
Metal cylinder: Carbon steel pipe (magnetic transformation point 780 ° C)
High-frequency power supply: 5 kW / feeding water frequency: 20 kHz
Input power: 5 kW when temperature rises 1 kW after transformation
Coagulation time: 120 minutes

これに対し、従来の手法について、主な相違点を挙げると、次のようであった。
押湯直径: φ90mm(平均)
押湯数: 20箇所
押湯高さ: 約450mm(注湯後のさし湯分を含む)
押湯重量: 150kg
これらを比較すると、押湯量が150kgから45kgへと、1/3以下に減少している。
In contrast, the main differences between the conventional methods are as follows.
Presser diameter: φ90mm (average)
Number of hot water: 20 places Hot water height: Approximately 450mm (including the hot water after pouring)
Hot water weight: 150kg
When these are compared, the amount of hot water is reduced to 1/3 or less from 150 kg to 45 kg.

本発明の一実施形態について、非鉄金属鋳造用押湯装置の構造を示し、(a)が全体外観の斜視図、(b)が押湯収容部と誘導子との嵌合物の平面図、(c)はそのAA断面矢視図、(d)が高周波コイルのコイル線の横断面図である。About one embodiment of the present invention, it shows the structure of a feeder for casting non-ferrous metal, (a) is a perspective view of the overall appearance, (b) is a plan view of the fitting between the feeder housing portion and the inductor, (C) is the AA cross-sectional arrow figure, (d) is a cross-sectional view of the coil wire of a high frequency coil. 非鉄金属鋳造用押湯装置の使用態様を示し、(a)が鋳型等の外観斜視図、(b)〜(f)が何れも鋳型等の縦断面図である。The usage aspect of the hot water feeder for non-ferrous metal casting is shown, (a) is an external perspective view of a mold or the like, and (b) to (f) are all longitudinal sectional views of the mold or the like. 本発明の他の実施形態について、(a),(b)何れも鋳型への非鉄金属鋳造用押湯装置の装着状態を模式的に示す斜視図である。About other embodiment of this invention, (a), (b) is a perspective view which shows typically the mounting state of the hot-water supply apparatus for non-ferrous metal casting to a casting_mold | template. 本発明の他の実施形態について、鋳型への非鉄金属鋳造用押湯装置の装着状態を模式的に示す斜視図である。It is a perspective view which shows typically the mounting state of the hot water apparatus for nonferrous metal casting to a casting_mold | template about other embodiment of this invention. 本発明の他の実施形態について、鋳型への非鉄金属鋳造用押湯装置の装着状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the mounting state of the hot water apparatus for non-ferrous metal casting to the casting_mold | template about other embodiment of this invention.

符号の説明Explanation of symbols

10…非鉄金属鋳造用押湯装置、
20…筒状の押湯収容部(複合筒体)、
21…母筒体(強磁性金属製)、22…伝熱調整層(非金属系耐火材製)、
30…誘導子(母筒体誘導加熱機構、溶湯加熱機構)、
31…コイル支持部材、32…断熱材、
33…高周波コイル(耐熱電線)、34…銅細線、35…耐熱被覆、
40…給電系(母筒体誘導加熱機構、溶湯加熱機構)、
41…高周波出力水冷ケーブル、42…高周波電源、43…冷却水循環装置、
50…鋳型、
51…下型、52…上型、53…押湯収容部立設部、54…注入口、55…キャビティ、
60…被鋳造非鉄金属
10: Non-ferrous metal casting feeder
20 ... cylindrical hot water container (composite cylinder),
21 ... Mother cylinder (made of ferromagnetic metal), 22 ... Heat transfer adjustment layer (made of non-metallic refractory material),
30 ... Inductor (Master tube induction heating mechanism, molten metal heating mechanism),
31 ... Coil supporting member, 32 ... Insulating material,
33 ... high frequency coil (heat resistant wire), 34 ... copper fine wire, 35 ... heat resistant coating,
40 ... Power feeding system (mother cylinder induction heating mechanism, molten metal heating mechanism),
41 ... High frequency output water cooling cable, 42 ... High frequency power supply, 43 ... Cooling water circulation device,
50 ... mold,
51 ... Lower mold, 52 ... Upper mold, 53 ... Elevated hot water storage section standing part, 54 ... Inlet, 55 ... Cavity,
60 ... Casted non-ferrous metal

Claims (9)

鋳型に連通して立設されて被鋳造金属の溶湯を湯面位自在に収容する筒状の押湯収容部と、この押湯収容部内の溶湯に入熱するための溶湯加熱機構とを備えた非鉄金属鋳造用押湯装置において、前記押湯収容部が、強磁性金属製の母筒体の内周面に非金属系耐火材製の伝熱調整層を付設した複合筒体を配して構成され、前記溶湯加熱機構が、前記複合筒体の外周側に配され前記母筒体を誘導加熱する誘導子とこの誘導子に高周波通電する給電系とを具備した母筒体誘導加熱機構からなり、前記伝熱調整層は、この層を貫通する方向の伝熱における温度降下が50〜250℃となるように材質と厚さが設定されたものである、ことを特徴とする非鉄金属鋳造用押湯装置。 A cylindrical feeder containing a molten metal of a cast metal that is erected in communication with the mold and freely accommodates the molten metal surface, and a molten metal heating mechanism for inputting heat into the molten metal in the feeder containing part. In the non-ferrous metal casting feeder, the feeder housing portion is provided with a composite cylinder having a non-metallic refractory heat transfer adjustment layer provided on the inner peripheral surface of a ferromagnetic metal mother cylinder. And the molten metal heating mechanism is provided on the outer peripheral side of the composite cylinder, and includes an inductor for induction heating the mother cylinder and a power feeding system for applying high-frequency current to the inductor. Tona is, the heat transfer adjustment layer, non-ferrous, wherein the temperature drop in which is set the material and thickness such that 50 to 250 ° C., it in the direction of heat transfer through the layer Metal feeder for metal casting. 前記伝熱調整層の厚さを2〜20mmとした、ことを特徴とする請求項1記載の非鉄金属鋳造用押湯装置。 The hot water feeder for non-ferrous metal casting according to claim 1 , wherein the heat transfer adjusting layer has a thickness of 2 to 20 mm. 前記誘導子の冷却手段は、この誘導子と前記複合筒体との間に断熱層を介在させて前記複合筒体から断熱した構成の下での放冷又は送風冷却である、ことを特徴とする請求項1又は至請求項2に記載された非鉄金属鋳造用押湯装置。 The cooling means for the inductor is cooling or blowing cooling under a configuration in which a heat insulating layer is interposed between the inductor and the composite cylinder to insulate from the composite cylinder. The hot water feeder for non-ferrous metal casting described in claim 1 or solstice . 前記押湯収容部には、押湯収容部一箇所について、前記複合筒体の複数本が密集形態で林立配備されている、ことを特徴とする請求項1乃至請求項3の何れかに記載された非鉄金属鋳造用押湯装置。 Wherein the feeder head accommodating portion, the feeder housing portion one place, according to the plurality of the composite cylinder is bristled deployed in dense form, any of claims 1 to 3, characterized in that A non-ferrous metal casting feeder. 前記誘導子は、前記複数本の複合筒体を包括的に取囲む形態で巻成されている、ことを特徴とする請求項4記載の非鉄金属鋳造用押湯装置。 The hot water feeder for non-ferrous metal casting according to claim 4 , wherein the inductor is wound in a form that comprehensively surrounds the plurality of composite cylinders. 鋳型に連通して立設されて被鋳造金属の溶湯を湯面位自在に収容する筒状の押湯収容部と、この押湯収容部内の溶湯に入熱するための溶湯加熱機構とを備えた非鉄金属鋳造用押湯装置において、前記押湯収容部が、強磁性金属製の母筒体の内周面に非金属系耐火材製の伝熱調整層を付設した複合筒体を配して構成され、前記溶湯加熱機構が、前記複合筒体の外周側に配され前記母筒体を誘導加熱する誘導子とこの誘導子に高周波通電する給電系とを具備した母筒体誘導加熱機構からなり、前記伝熱調整層の厚さを2〜20mmとした、ことを特徴とする非鉄金属鋳造用押湯装置。 A cylindrical feeder containing a molten metal of a cast metal that is erected in communication with the mold and freely accommodates the molten metal surface, and a molten metal heating mechanism for inputting heat into the molten metal in the feeder containing part. In the non-ferrous metal casting feeder, the feeder housing portion is provided with a composite cylinder having a non-metallic refractory heat transfer adjustment layer provided on the inner peripheral surface of a ferromagnetic metal mother cylinder. And the molten metal heating mechanism is provided on the outer peripheral side of the composite cylinder, and includes an inductor for induction heating the mother cylinder and a power feeding system for applying high-frequency current to the inductor. Tona is, the heat transfer to the thickness of the heat control layer was 2 to 20 mm, nonferrous metal casting riser and wherein the. 鋳型に連通して立設されて被鋳造金属の溶湯を湯面位自在に収容する筒状の押湯収容部と、この押湯収容部内の溶湯に入熱するための溶湯加熱機構とを備えた非鉄金属鋳造用押湯装置において、前記押湯収容部が、強磁性金属製の母筒体の内周面に非金属系耐火材製の伝熱調整層を付設した複合筒体を配して構成され、前記溶湯加熱機構が、前記複合筒体の外周側に配され前記母筒体を誘導加熱する誘導子とこの誘導子に高周波通電する給電系とを具備した母筒体誘導加熱機構からなり、前記誘導子の冷却手段は、この誘導子と前記複合筒体との間に断熱層を介在させて前記複合筒体から断熱した構成の下での放冷又は送風冷却である、ことを特徴とする非鉄金属鋳造用押湯装置。 A cylindrical feeder containing a molten metal of a cast metal that is erected in communication with the mold and freely accommodates the molten metal surface, and a molten metal heating mechanism for inputting heat into the molten metal in the feeder containing part. In the non-ferrous metal casting feeder, the feeder housing portion is provided with a composite cylinder having a non-metallic refractory heat transfer adjustment layer provided on the inner peripheral surface of a ferromagnetic metal mother cylinder. And the molten metal heating mechanism is provided on the outer peripheral side of the composite cylinder, and includes an inductor for induction heating the mother cylinder and a power feeding system for applying high-frequency current to the inductor. Tona is, the cooling means of the inductor is a cooling or blast cooling under construction that is thermally insulated from the composite tubular body by interposing an insulating layer between the inductor the composite cylinder, A non-ferrous metal casting feeder. 鋳型に連通して立設されて被鋳造金属の溶湯を湯面位自在に収容する筒状の押湯収容部と、この押湯収容部内の溶湯に入熱するための溶湯加熱機構とを備えた非鉄金属鋳造用押湯装置において、前記押湯収容部が、強磁性金属製の母筒体の内周面に非金属系耐火材製の伝熱調整層を付設した複合筒体を配して構成され、前記溶湯加熱機構が、前記複合筒体の外周側に配され前記母筒体を誘導加熱する誘導子とこの誘導子に高周波通電する給電系とを具備した母筒体誘導加熱機構からなり、前記押湯収容部には、押湯収容部一箇所について、前記複合筒体の複数本が密集形態で林立配備されている、ことを特徴とする非鉄金属鋳造用押湯装置。 A cylindrical feeder containing a molten metal of a cast metal that is erected in communication with the mold and freely accommodates the molten metal surface, and a molten metal heating mechanism for inputting heat into the molten metal in the feeder containing part. In the non-ferrous metal casting feeder, the feeder housing portion is provided with a composite cylinder having a non-metallic refractory heat transfer adjustment layer provided on the inner peripheral surface of a ferromagnetic metal mother cylinder. And the molten metal heating mechanism is provided on the outer peripheral side of the composite cylinder, and includes an inductor for induction heating the mother cylinder and a power feeding system for applying high-frequency current to the inductor. Tona is, the feeder housing portion, for feeder housing portion one position, the plurality of composite cylinder is bristled deployed in dense form, nonferrous metal casting riser and wherein the. 前記誘導子は、前記複数本の複合筒体を包括的に取囲む形態で巻成されている、ことを特徴とする請求項8記載の非鉄金属鋳造用押湯装置。 The non-ferrous metal casting feeder according to claim 8 , wherein the inductor is wound in a form that comprehensively surrounds the plurality of composite cylinders.
JP2004151768A 2004-05-21 2004-05-21 Non-ferrous metal casting feeder Active JP4494868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151768A JP4494868B2 (en) 2004-05-21 2004-05-21 Non-ferrous metal casting feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151768A JP4494868B2 (en) 2004-05-21 2004-05-21 Non-ferrous metal casting feeder

Publications (2)

Publication Number Publication Date
JP2005329450A JP2005329450A (en) 2005-12-02
JP4494868B2 true JP4494868B2 (en) 2010-06-30

Family

ID=35484433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151768A Active JP4494868B2 (en) 2004-05-21 2004-05-21 Non-ferrous metal casting feeder

Country Status (1)

Country Link
JP (1) JP4494868B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459509B (en) * 2008-04-25 2011-05-11 Goodwin Plc An apparatus for casting and a method of casting
JP5309282B2 (en) * 2008-09-24 2013-10-09 第一高周波工業株式会社 Induction heating melting device
CN101979181B (en) * 2010-10-21 2013-04-10 施小建 Large-scale propeller riser resistance heating device
JP2013049082A (en) * 2011-08-31 2013-03-14 Honda Motor Co Ltd Apparatus and method for casting
CN103212675B (en) * 2013-05-03 2015-03-18 燕山大学 Steel ingot feeder head induction heating and electromagnetic stirring device
CN103273020B (en) * 2013-05-29 2016-01-20 辽宁科技大学 A kind of Electromagnetic Heating cap mouth device of static ingot
JP6316151B2 (en) * 2014-09-12 2018-04-25 本田技研工業株式会社 Casting method and apparatus, and cast product obtained thereby
CN117020195B (en) * 2023-10-10 2024-01-09 山东春秋新材料股份有限公司 Temperature monitoring management system for riser mold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233143A (en) * 1975-09-09 1977-03-14 Nippon Steel Corp Compressive molten bath method by industive heat way
JPS5884666A (en) * 1981-11-13 1983-05-20 Toshiba Corp Casting method
JP3080582B2 (en) * 1996-05-27 2000-08-28 ダイハツ金属工業株式会社 Metal casting method

Also Published As

Publication number Publication date
JP2005329450A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
US7388896B2 (en) Induction melter apparatus
JP4494868B2 (en) Non-ferrous metal casting feeder
CN107530770A (en) The control pin of heating
JP4585606B2 (en) Continuous casting method and nozzle heating device
JP5282814B2 (en) Method of reducing thermal shrinkage cracking in casting of nickel-base superalloy, method of preparing a product made of nickel-base superalloy, and method of manufacturing a high-pressure steam turbine casing
WO2018002001A1 (en) A method and apparatus for 3d printing of quartz glass
AU2008201549A1 (en) Channel electric inductor assembly
US20100032455A1 (en) Control pin and spout system for heating metal casting distribution spout configurations
JPH08506275A (en) Device for supplying molten metal, in particular cast iron, to a casting machine, and a casting device including the device
JP4695450B2 (en) Refractory test method and apparatus
JP5936543B2 (en) Control pin and spout system for heating molten metal supply spout structure
JP2007253230A (en) High-frequency induction heating device for die casting machine
JP4675194B2 (en) Hot water heater
JPS59137151A (en) Heat insulating method of riser
JP2006205179A (en) Continuous casting method of molten steel
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
JP4655301B2 (en) Metal melting and tapping equipment
JPH1043840A (en) Method for casting metallic strip and apparatus therefor
JP3941276B2 (en) Vacuum induction furnace
JP4499939B2 (en) Metal strip manufacturing apparatus and manufacturing method
JP3758353B2 (en) Continuous casting equipment
EP1354650B1 (en) Nozzle for die-casting apparatus
JPH09122902A (en) Method and device to induction-heat fire resistant molded part
JP3987374B2 (en) Metal melting heating device
CN108870965A (en) A kind of immersion electromagnetic induction holding furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Ref document number: 4494868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250