JP4493480B2 - Capacity control valve of variable capacity swash plate compressor - Google Patents

Capacity control valve of variable capacity swash plate compressor Download PDF

Info

Publication number
JP4493480B2
JP4493480B2 JP2004342083A JP2004342083A JP4493480B2 JP 4493480 B2 JP4493480 B2 JP 4493480B2 JP 2004342083 A JP2004342083 A JP 2004342083A JP 2004342083 A JP2004342083 A JP 2004342083A JP 4493480 B2 JP4493480 B2 JP 4493480B2
Authority
JP
Japan
Prior art keywords
valve
chamber
hole
swash plate
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004342083A
Other languages
Japanese (ja)
Other versions
JP2006152861A (en
Inventor
幸彦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004342083A priority Critical patent/JP4493480B2/en
Priority to US11/281,469 priority patent/US20060120883A1/en
Publication of JP2006152861A publication Critical patent/JP2006152861A/en
Application granted granted Critical
Publication of JP4493480B2 publication Critical patent/JP4493480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Description

本発明は、可変容量斜板式圧縮機の容量制御弁に関するものである。 The present invention relates to a capacity control valve for a variable capacity swash plate compressor.

一方の端壁に弁軸挿通孔が形成され、周壁に入口孔が形成され、他方の端壁に弁孔が形成された筒状の弁室と、弁軸挿通孔に摺動可能に挿通された弁軸を有し弁室内で往復移動し弁孔を開閉する弁体と、弁体駆動手段とを備え、入口孔は吐出室に連通し、弁孔はクランク室に連通する可変容量斜板式圧縮機の容量制御弁が特許文献1に開示されている。
特開平9−268973
A valve shaft insertion hole is formed in one end wall, an inlet hole is formed in the peripheral wall, and a valve chamber is formed in the other end wall, and the valve shaft insertion hole is slidably inserted into the valve shaft insertion hole. A variable capacity swash plate type having a valve body having a valve shaft that reciprocates in the valve chamber to open and close the valve hole, and a valve body driving means, the inlet hole communicating with the discharge chamber, and the valve hole communicating with the crank chamber A capacity control valve of a compressor is disclosed in Patent Document 1.
JP-A-9-268973

文献1の容量制御弁には、入口孔から弁室に流入するガスに微量に含まれる圧縮機内部の微小異物や磨耗粉や外部冷凍回路側の微小異物等が弁軸挿通孔周壁と弁軸との間の隙間に侵入し、弁軸のスムーズな往復動が阻害され、容量制御機能が阻害される可能性があるという問題がある。
本発明は上記問題に鑑みてなされたものであり、一方の端壁に弁軸挿通孔が形成され、周壁に入口孔が形成され、他方の端壁に弁孔が形成された筒状の弁室と、弁軸挿通孔に摺動可能に挿通された弁軸を有し弁室内で往復移動し弁孔を開閉する弁体と、弁体駆動手段とを備え、入口孔は吐出室に連通し、弁孔はクランク室に連通する可変容量斜板式圧縮機の容量制御弁であって、弁軸挿通孔周壁と弁軸との間の隙間への異物の侵入が抑制された容量制御弁を提供することを目的とする。
In the capacity control valve of Document 1, minute foreign matter inside the compressor, abrasion powder, minute foreign matter on the external refrigeration circuit side, etc. contained in a minute amount in the gas flowing into the valve chamber from the inlet hole, the valve shaft insertion hole peripheral wall and the valve shaft In the gap between the two, the smooth reciprocation of the valve shaft is hindered, and the capacity control function may be hindered.
The present invention has been made in view of the above problems, and is a cylindrical valve in which a valve shaft insertion hole is formed in one end wall, an inlet hole is formed in a peripheral wall, and a valve hole is formed in the other end wall. A valve body that has a valve shaft that is slidably inserted into the valve shaft insertion hole and that reciprocates in the valve chamber to open and close the valve hole, and a valve body drive means. The inlet hole communicates with the discharge chamber. The valve hole is a capacity control valve of a variable capacity swash plate compressor that communicates with the crank chamber, and a capacity control valve that suppresses the entry of foreign matter into the gap between the valve shaft insertion hole peripheral wall and the valve shaft. The purpose is to provide.

上記課題を解決するために、本発明においては、一方の端壁に弁軸挿通孔が形成され、周壁に入口孔が形成され、他方の端壁に弁孔が形成された筒状の弁室と、弁軸挿通孔に摺動可能に挿通された弁軸を有し弁室内で往復移動し弁孔を開閉する弁体と、弁体駆動手段とを備え、入口孔は吐出室に連通し、弁孔はクランク室に連通する可変容量斜板式圧縮機の容量制御弁であって、弁室は弁軸挿通孔と同心で且つ弁軸挿通孔より大径の円筒形状に形成され、前記入口孔が弁室の中心軸線に対して直交方向に差し向けられ且つ弁室の中心軸線から径方向にオフセットして、入口孔の中心軸線を弁室内に延長した仮想線が弁軸と交わらないように配設されていることを特徴とする可変容量斜板式圧縮機の容量制御弁を提供する。 In order to solve the above problems, in the present invention, a cylindrical valve chamber in which a valve shaft insertion hole is formed in one end wall, an inlet hole is formed in a peripheral wall, and a valve hole is formed in the other end wall A valve body having a valve shaft slidably inserted into the valve shaft insertion hole and reciprocating in the valve chamber to open and close the valve hole, and a valve body drive means, and the inlet hole communicates with the discharge chamber The valve hole is a capacity control valve of a variable capacity swash plate compressor communicating with the crank chamber, and the valve chamber is formed in a cylindrical shape that is concentric with the valve shaft insertion hole and has a larger diameter than the valve shaft insertion hole. holes are directed in a direction perpendicular to the central axis of valve chamber, and offset from the central axis of valve chamber radially, imaginary line extending the central axis of inlet holes in the valve chamber does not intersect the valve shaft to provide a displacement control valve of a variable displacement swash plate type compressor according to claim which are arranged so as.

本発明に係る可変容量斜板式圧縮機の容量制御弁においては、弁室が弁軸挿通孔と同心で且つ弁軸挿通孔より大径の円筒形状に形成され、弁室入口孔が弁室の中心軸線に対して直交方向に差し向けられ且つ弁室の中心軸線から径方向にオフセットして、入口孔の中心軸線を弁室内に延長した仮想線が弁軸と交わらないように配設されているので、入口孔から弁室へ流入したガスは弁室内で旋回運動し、遠心力を受けた異物は弁室周壁方向へ移動する。弁軸挿通孔は弁室端壁の中心部に形成されるので、弁軸挿通孔近傍に異物が存在する可能性が低下する。この結果、弁軸挿通孔周壁と弁軸との間の隙間への異物の侵入が抑制される。
弁室が円筒形状を有することにより、弁室内での旋回流の発生が促進され、弁軸挿通孔周壁と弁軸との間の隙間への異物侵入の抑制が促進される。
In the displacement control valve of the variable displacement swash plate compressor according to the present invention, the valve chamber is formed concentrically with the valve shaft insertion hole and has a larger diameter than the valve shaft insertion hole, and the valve chamber inlet hole is formed in the valve chamber. An imaginary line that is directed perpendicular to the central axis and that is radially offset from the central axis of the valve chamber and extends the central axis of the inlet hole into the valve chamber is disposed so as not to intersect the valve shaft. Therefore, the gas flowing into the valve chamber from the inlet hole swirls in the valve chamber, and the foreign matter receiving the centrifugal force moves toward the valve chamber peripheral wall. Since the valve shaft insertion hole is formed at the center of the valve chamber end wall, the possibility that foreign matter exists near the valve shaft insertion hole is reduced. As a result, the entry of foreign matter into the gap between the valve shaft insertion hole peripheral wall and the valve shaft is suppressed.
When the valve chamber has a cylindrical shape, the generation of a swirling flow in the valve chamber is promoted, and the suppression of foreign matter intrusion into the gap between the valve shaft insertion hole peripheral wall and the valve shaft is promoted.

本発明の好ましい態様においては、弁室の周壁に、周方向に互いに間隔を隔てて複数の入口孔が形成されている。In a preferred embodiment of the present invention, a plurality of inlet holes are formed in the circumferential wall of the valve chamber at intervals in the circumferential direction.
弁室の周壁に、周方向に互いに間隔を隔てて複数の入口孔が形成されることにより、弁室内での旋回流の形成が促進され、弁軸挿通孔周壁と弁軸との間の隙間への異物侵入の抑制が促進される。A plurality of inlet holes are formed in the circumferential wall of the valve chamber at intervals in the circumferential direction, thereby facilitating the formation of a swirling flow in the valve chamber, and a gap between the circumferential wall of the valve shaft insertion hole and the valve shaft Suppression of foreign matter intrusion into the body is promoted.

本発明の好ましい態様においては、入口孔は弁室の周壁に対して接線方向へ差し向けられている。In a preferred embodiment of the present invention, the inlet hole is directed tangential to the peripheral wall of the valve chamber.
入口孔が弁室の周壁に対して接線方向へ差し向けられることにより、弁室内での旋回流の発生が促進され、弁軸挿通孔周壁と弁軸との間の隙間への異物侵入の抑制が促進される。As the inlet hole is directed tangentially to the peripheral wall of the valve chamber, the generation of a swirling flow in the valve chamber is promoted, and the entry of foreign matter into the gap between the peripheral wall of the valve shaft insertion hole and the valve shaft is suppressed. Is promoted.

本発明の好ましい態様においては、弁室は前記他方の端壁へ向けて凸の円錐台形状を有する。
弁室が前記他方の端壁へ向けて凸の円錐台形状を有することにより、弁孔開放時の入口孔から弁孔へのガスの流れがスムーズになる。この結果、異物の排出性能が向上する。
In a preferred aspect of the present invention, the valve chamber has a truncated cone shape that is convex toward the other end wall.
Since the valve chamber has a convex truncated cone shape toward the other end wall, the gas flow from the inlet hole to the valve hole when the valve hole is opened becomes smooth. As a result, foreign matter discharge performance is improved.

本発明の好ましい態様においては、弁軸挿通孔を取り囲む筒体が前記一方の端壁から前記他方の端壁へ向けて延在しており、筒体の先端は入口孔よりも前記他方の端壁側に位置している。
弁軸挿通孔を取り囲む筒体が前記一方の端壁から前記他方の端壁へ向けて延在し、筒体の先端が入口孔よりも前記他方の端壁側に位置することにより、入口孔から弁室へ流入したガスは、筒体と弁室周壁との間の円環状隙間を流れることになる。この結果、旋回流の形成が促進され、且つ旋回流が弁軸挿通孔に直接触れる可能性が低下し、弁軸挿通孔周壁と弁軸との間の隙間への異物侵入の抑制が促進される。
In a preferred aspect of the present invention, a cylinder surrounding the valve shaft insertion hole extends from the one end wall toward the other end wall, and the tip of the cylinder has the other end rather than the inlet hole. Located on the wall side.
The cylinder surrounding the valve shaft insertion hole extends from the one end wall toward the other end wall, and the tip of the cylinder is positioned closer to the other end wall than the inlet hole. The gas that has flowed into the valve chamber flows through an annular gap between the cylinder and the valve chamber peripheral wall. As a result, the formation of the swirling flow is promoted, and the possibility that the swirling flow directly touches the valve shaft insertion hole is reduced, and the suppression of foreign matter intrusion into the gap between the valve shaft insertion hole peripheral wall and the valve shaft is promoted. The

本発明に係る可変容量斜板式圧縮機の容量制御弁においては、弁室が弁軸挿通孔と同心で且つ弁軸挿通孔より大径の円筒形状に形成され、弁室入口孔が弁室の中心軸線に対して直交方向に差し向けられ且つ弁室の中心軸線から径方向にオフセットして、入口孔の中心軸線を弁室内に延長した仮想線が弁軸と交わらないように配設されているので、入口孔から弁室へ流入したガスは弁室内で旋回運動し、遠心力を受けた異物は弁室周壁方向へ移動する。弁軸挿通孔は弁室端壁の中心部に形成されるので、弁軸挿通孔近傍に異物が存在する可能性が低下する。この結果、弁軸挿通孔周壁と弁軸との間の隙間への異物の侵入が抑制される。
弁室が円筒形状を有することにより、弁室内での旋回流の発生が促進され、弁軸挿通孔周壁と弁軸との間の隙間への異物侵入の抑制が促進される。
In the displacement control valve of the variable displacement swash plate compressor according to the present invention, the valve chamber is formed concentrically with the valve shaft insertion hole and has a larger diameter than the valve shaft insertion hole, and the valve chamber inlet hole is formed in the valve chamber. An imaginary line that is directed perpendicular to the central axis and that is radially offset from the central axis of the valve chamber and extends the central axis of the inlet hole into the valve chamber is disposed so as not to intersect the valve shaft. Therefore, the gas flowing into the valve chamber from the inlet hole swirls in the valve chamber, and the foreign matter receiving the centrifugal force moves toward the valve chamber peripheral wall. Since the valve shaft insertion hole is formed at the center of the valve chamber end wall, the possibility that foreign matter exists near the valve shaft insertion hole is reduced. As a result, the entry of foreign matter into the gap between the valve shaft insertion hole peripheral wall and the valve shaft is suppressed.
When the valve chamber has a cylindrical shape, the generation of a swirling flow in the valve chamber is promoted, and the suppression of foreign matter intrusion into the gap between the valve shaft insertion hole peripheral wall and the valve shaft is promoted.

本発明の実施例に係る可変容量斜板式圧縮機の吐出容量制御弁を説明する。 A discharge capacity control valve of a variable capacity swash plate compressor according to an embodiment of the present invention will be described.

図1に示すように、可変容量型斜板式圧縮機Aは、主軸10と、主軸10に固定されたローター11と、傾角可変に主軸10に支持された斜板12とを備えている。斜板12は、斜板12の傾角変動を許容するリンク機構13を介してローター11に連結され、ローター11ひいては主軸10に同期して回転する。
斜板12の周縁部に摺接する一対のシュー14を介してピストン15が斜板12に係留されている。ピストン15は、シリンダブロック16に形成されたシリンダボア16aに挿入されている。
周方向に互いに間隔を隔てて、複数のピストン15が配設されている。
As shown in FIG. 1, the variable capacity swash plate compressor A includes a main shaft 10, a rotor 11 fixed to the main shaft 10, and a swash plate 12 supported on the main shaft 10 so that the tilt angle is variable. The swash plate 12 is connected to the rotor 11 via a link mechanism 13 that allows the tilt angle of the swash plate 12 to vary, and rotates in synchronization with the rotor 11 and thus the main shaft 10.
A piston 15 is moored to the swash plate 12 via a pair of shoes 14 that are in sliding contact with the peripheral edge of the swash plate 12. The piston 15 is inserted into a cylinder bore 16 a formed in the cylinder block 16.
A plurality of pistons 15 are arranged at intervals in the circumferential direction.

主軸10、ローター11、斜板12を収容するクランク室17を、シリンダブロック16と協働して形成する皿状のフロントハウジング18が配設されている。主軸10は、フロントハウジング18を貫通して外部へ延びている。主軸10のフロントハウジング貫通部を密封する軸封部材19が配設されている。
主軸10の先端部に固定されたプーリー20が図示しないベルトを介して、図示しない車両エンジンに連結されている。
A dish-shaped front housing 18 is provided that forms a crank chamber 17 that accommodates the main shaft 10, the rotor 11, and the swash plate 12 in cooperation with the cylinder block 16. The main shaft 10 extends outside through the front housing 18. A shaft sealing member 19 for sealing the front housing penetrating portion of the main shaft 10 is disposed.
A pulley 20 fixed to the tip of the main shaft 10 is connected to a vehicle engine (not shown) via a belt (not shown).

吸入室21と吐出室22とを形成するシリンダヘッド23が配設されている。吸入室21は図示しない吸入ポートを介して、車載空調装置の図示しない蒸発器に接続している。吐出室22は図示しない吐出ポートを介して、車載空調装置の図示しない凝縮器に接続している。
シリンダブロック16とシリンダヘッド23との間にボア16aに連通する吸入孔と吐出孔とが形成された弁板24が配設されている。弁板24に吐出弁と吸入弁とが装着されている。
弁板24に形成されたオリフィス孔24aを介して、クランク室17と吸入室21とが連通している。
A cylinder head 23 that forms a suction chamber 21 and a discharge chamber 22 is disposed. The suction chamber 21 is connected to an evaporator (not shown) of the in-vehicle air conditioner via a suction port (not shown). The discharge chamber 22 is connected to a condenser (not shown) of the in-vehicle air conditioner via a discharge port (not shown).
A valve plate 24 having a suction hole and a discharge hole communicating with the bore 16a is disposed between the cylinder block 16 and the cylinder head 23. A discharge valve and a suction valve are mounted on the valve plate 24.
The crank chamber 17 and the suction chamber 21 communicate with each other through an orifice hole 24 a formed in the valve plate 24.

フロントハウジング18、シリンダブロック16、弁板24、シリンダヘッド23は、主軸10を中心とする円周に沿って互いに間隔を隔てて配設された複数の通しボルト25により一体に締結されている The front housing 18, the cylinder block 16, the valve plate 24, and the cylinder head 23 are integrally fastened by a plurality of through bolts 25 that are spaced apart from each other along a circumference around the main shaft 10.

吐出室22に隣接してシリンダヘッド23に形成された凹部26に、可変容量斜板式圧縮機Aの吐出容量を制御する容量制御弁Bが嵌合固定されている。
図2に示すように、容量制御弁Bは、感圧室201内に配設され、内部が真空にされてバネが配置され、吸入室21の内圧(以下吸入圧力と呼ぶ)を受圧する感圧部材として機能するベローズ202と、ベローズ202に一端が当接し弁ケーシング203に摺動可能に支持された感圧ロッド204と、感圧ロッド204と一体形成され、ベローズ202の伸縮に応じて弁孔203aを開閉し、吐出室22から連通路27、入口孔203b、弁室205、弁孔203a、出口孔203c、連通路28を経由してクランク室17に至る、吐出室22とクランク室17との間の連通路を開閉する弁体206と、弁体206の弁軸206aを摺動可能に支持する固定鉄心207と、弁軸206aの一端に一端が当接し、固定鉄心207の内部孔207aに中央部が非接触に挿通され、他端にプランジャー208が固定されたソレノイドロッド209と、プランジャー208を閉弁方向に付勢するバネ210と、プランジャー208外周部を摺動可能に支持し、ソレノイドハウジング211に固定された非磁性体のチューブ212と、チューブ212を取り巻いてソレノイドハウジング211に固定された電磁コイル213とを備えている。
A capacity control valve B for controlling the discharge capacity of the variable capacity swash plate compressor A is fitted and fixed in a recess 26 formed in the cylinder head 23 adjacent to the discharge chamber 22.
As shown in FIG. 2, the capacity control valve B is disposed in the pressure sensing chamber 201, the inside is evacuated, a spring is disposed, and a feeling of receiving the internal pressure of the suction chamber 21 (hereinafter referred to as suction pressure). A bellows 202 functioning as a pressure member, a pressure-sensitive rod 204 having one end abutting on the bellows 202 and slidably supported on the valve casing 203, and a pressure-sensitive rod 204 are integrally formed. The opening 203a is opened and closed, and the discharge chamber 22 and the crank chamber 17 reach from the discharge chamber 22 to the crank chamber 17 through the communication passage 27, the inlet hole 203b, the valve chamber 205, the valve hole 203a, the outlet hole 203c, and the communication passage 28. A valve body 206 that opens and closes the communication path between the valve body 206, a fixed iron core 207 that slidably supports the valve shaft 206 a of the valve body 206, and one end abutting against one end of the valve shaft 206 a, 207 A solenoid rod 209 having a central portion inserted in a non-contact manner and a plunger 208 fixed to the other end, a spring 210 for urging the plunger 208 in the valve closing direction, and an outer peripheral portion of the plunger 208 slidable. A non-magnetic tube 212 supported and fixed to the solenoid housing 211 and an electromagnetic coil 213 surrounding the tube 212 and fixed to the solenoid housing 211 are provided.

図2、3(a)に示すように、弁室205は円筒形状に形成され、一方の端壁を形成する固定鉄心207に弁軸206aが摺動可能に挿通される弁軸挿通孔207bが形成され、周壁に入口孔203bが形成され、他方の端壁に弁孔203aが形成されている。入口孔203bは連通路27を介して吐出室22に連通し、弁孔203aは出口孔203cと連通路28とを介してクランク室17に連通している。弁軸挿通孔207b、弁孔203aは弁室205の中心軸線Xと同心に延在している。弁体206は弁室205内で中心軸線Xの延在方向に往復移動して弁孔203aを開閉する。
図2、3(a)に示すように、入口孔203bは弁室205の中心軸線Xに対して直交方向に差し向けられ且つ弁室205の中心軸線Xから径方向にオフセットして配設されている。
As shown in FIGS. 2 and 3 (a), the valve chamber 205 is formed in a cylindrical shape, and a valve shaft insertion hole 207b through which the valve shaft 206a is slidably inserted into a fixed iron core 207 forming one end wall. The inlet hole 203b is formed in the peripheral wall, and the valve hole 203a is formed in the other end wall. The inlet hole 203 b communicates with the discharge chamber 22 through the communication passage 27, and the valve hole 203 a communicates with the crank chamber 17 through the outlet hole 203 c and the communication passage 28. The valve shaft insertion hole 207 b and the valve hole 203 a extend concentrically with the central axis X of the valve chamber 205. The valve body 206 reciprocates in the extending direction of the central axis X in the valve chamber 205 to open and close the valve hole 203a.
As shown in FIGS. 2 and 3 (a), the inlet hole 203 b is oriented in a direction orthogonal to the central axis X of the valve chamber 205 and is offset from the central axis X of the valve chamber 205 in the radial direction. ing.

ベローズ202は下端をベローズガイド214によって支持され、ベローズガイド214は感圧室201の下端を形成する圧力設定部材215により摺動可能に支持されている。圧力設定部材215とベローズガイド214の間にはベローズ202を開弁方向へ付勢するバネ216が配設されている。圧力設定部材215の感圧室201周壁への圧入量が調整されて、容量制御弁Bの制御特性が調整される。 The bellows 202 is supported at its lower end by a bellows guide 214, and the bellows guide 214 is slidably supported by a pressure setting member 215 that forms the lower end of the pressure sensitive chamber 201. Between the pressure setting member 215 and the bellows guide 214, a spring 216 for biasing the bellows 202 in the valve opening direction is disposed. The amount of press-fitting of the pressure setting member 215 into the peripheral wall of the pressure-sensitive chamber 201 is adjusted, and the control characteristic of the capacity control valve B is adjusted.

感圧室201は、導圧通路203dにより、固定鉄心207の内部孔207aに連通している。従って、固定鉄心の内部孔207aに対峙する弁軸206aの一端、固定鉄心207、プランジャー208、バネ210は吸入圧力を受圧している。
吐出圧力による閉弁方向の付勢力が弁体206に作用するのを防止するために、弁軸206aの断面積は弁孔203aの面積より僅かに大きく設定されている。
弁室205側から弁軸206aと弁軸挿通孔207b周壁との間の隙間を介して固定鉄心の内部孔207aに向けて冷媒の漏れが発生するが、微小流量であり、導圧通路203dと感圧室201とを介して吸入室21へ排出されるので、固定鉄心の内部孔207aの圧力には影響しない。
電磁コイル213で発生する電磁力は、プランジャー208とソレノイドロッド209とを介して弁軸206aの一端に作用し、弁体206を閉弁方向に付勢する。
The pressure sensing chamber 201 communicates with the internal hole 207a of the fixed iron core 207 through the pressure guiding passage 203d. Accordingly, the one end of the valve shaft 206a facing the inner hole 207a of the fixed iron core, the fixed iron core 207, the plunger 208, and the spring 210 receive the suction pressure.
In order to prevent the biasing force in the valve closing direction due to the discharge pressure from acting on the valve body 206, the sectional area of the valve shaft 206a is set slightly larger than the area of the valve hole 203a.
The refrigerant leaks from the valve chamber 205 side to the inner hole 207a of the fixed iron core through a gap between the valve shaft 206a and the peripheral wall of the valve shaft insertion hole 207b. Since it is discharged to the suction chamber 21 via the pressure sensitive chamber 201, it does not affect the pressure of the internal hole 207a of the fixed iron core.
The electromagnetic force generated by the electromagnetic coil 213 acts on one end of the valve shaft 206a via the plunger 208 and the solenoid rod 209, and urges the valve body 206 in the valve closing direction.

吐出容量制御弁Bにおいては、吸入室21の内圧(以下吸入圧と呼ぶ)が所定値以下であると、ベローズ202が伸長し、電磁コイル213が発生する電磁力に抗して弁体206を開弁方向へ押し、弁孔203aを開放する。吐出室22の内圧(以下吐出圧と呼ぶ)がクランク室17に導入されクランク室の内圧(以下クランク室圧と呼ぶ)が上昇し、斜板12の傾角が減少し、圧縮機Aの吐出容量が減少する。この結果、外部冷凍回路内の冷媒ガス循環量が減少し、吸入圧が上昇する。吸入圧が所定値を超えると、ベローズ202が縮小し、電磁コイル213が発生する電磁力が弁体206を閉弁方向へ押し、弁孔203aを閉鎖する。この結果、吐出圧のクランク室17への導入が停止される。クランク室内の冷媒ガスが、オリフィス孔24aを介して吸入室21へ流出するのに伴ってクランク室圧が低下し、斜板12の傾角が増加し、圧縮機Aの吐出容量が増加する。この結果、外部冷凍回路内の冷媒ガス循環量が増加し、吸入圧が下降する。弁孔203aの開閉が繰り返されて、吸入圧が所定値に維持され、車両空調の快適性が維持される。
電磁コイル213への通電量により一義的に、ベローズ202と感圧ロッド204と弁体206とにより形成される内部制御弁の作動点が決定される。
In the discharge capacity control valve B, when the internal pressure of the suction chamber 21 (hereinafter referred to as suction pressure) is equal to or lower than a predetermined value, the bellows 202 extends and the valve body 206 is resisted against the electromagnetic force generated by the electromagnetic coil 213. Push in the valve opening direction to open the valve hole 203a. The internal pressure of the discharge chamber 22 (hereinafter referred to as discharge pressure) is introduced into the crank chamber 17 and the internal pressure of the crank chamber (hereinafter referred to as crank chamber pressure) increases, the inclination angle of the swash plate 12 decreases, and the discharge capacity of the compressor A Decrease. As a result, the refrigerant gas circulation amount in the external refrigeration circuit decreases, and the suction pressure increases. When the suction pressure exceeds a predetermined value, the bellows 202 contracts, the electromagnetic force generated by the electromagnetic coil 213 pushes the valve body 206 in the valve closing direction, and closes the valve hole 203a. As a result, the introduction of the discharge pressure into the crank chamber 17 is stopped. As the refrigerant gas in the crank chamber flows into the suction chamber 21 through the orifice hole 24a, the crank chamber pressure decreases, the inclination angle of the swash plate 12 increases, and the discharge capacity of the compressor A increases. As a result, the amount of refrigerant gas circulating in the external refrigeration circuit increases and the suction pressure decreases. Opening and closing of the valve hole 203a is repeated, the suction pressure is maintained at a predetermined value, and the comfort of the vehicle air conditioning is maintained.
The operating point of the internal control valve formed by the bellows 202, the pressure sensitive rod 204, and the valve body 206 is uniquely determined by the energization amount to the electromagnetic coil 213.

容量制御弁Bにおいては、入口孔203bが弁室205の中心軸線Xに対して直交方向に差し向けられ且つ弁室205の中心軸線Xから径方向にオフセットして配設されているので、入口孔203bから弁室205へ流入した冷媒ガスは、図3(a)に矢印で示すように、弁室205内で旋回運動する。冷媒ガスに微量に含まれる圧縮機内部の微小異物や磨耗粉や外部冷凍回路側の微小異物は、遠心力を受けて弁室205の周壁方向へ移動する。弁軸挿通孔207bは弁室端壁の中心部に形成されるので、弁軸挿通孔207b近傍に異物が存在する可能性が低下し、弁軸挿通孔207b周壁と弁軸206aとの間の隙間への異物の侵入が抑制される。
弁室205は円筒形状なので、冷媒ガス旋回流の形成が促進され、弁軸挿通孔207b周壁と弁軸206aとの間の隙間への異物侵入の抑制が促進される。
In the capacity control valve B, the inlet hole 203b is directed in a direction orthogonal to the central axis X of the valve chamber 205 and is offset from the central axis X of the valve chamber 205 in the radial direction. The refrigerant gas that has flowed into the valve chamber 205 from the hole 203b rotates in the valve chamber 205 as indicated by an arrow in FIG. The minute foreign matter inside the compressor, the abrasion powder, and the minute foreign matter on the external refrigeration circuit side contained in a minute amount in the refrigerant gas are moved toward the peripheral wall of the valve chamber 205 under the centrifugal force. Since the valve shaft insertion hole 207b is formed at the center of the end wall of the valve chamber, the possibility that foreign matter exists in the vicinity of the valve shaft insertion hole 207b decreases, and the valve shaft insertion hole 207b has a peripheral wall between the valve shaft 206a and the valve shaft 206a. Intrusion of foreign matter into the gap is suppressed.
Since the valve chamber 205 has a cylindrical shape, the formation of a swirling flow of the refrigerant gas is promoted, and the suppression of foreign matter intrusion into the gap between the valve shaft insertion hole 207b and the valve shaft 206a is promoted.

図3(b)に示すように、入口孔203bを、弁室205の周壁に対して接線方向へ差し向けても良い。入口孔203bが弁室205の周壁に対して接線方向へ差し向けられることにより、弁室205内での冷媒ガス旋回流の発生が促進され、弁軸挿通孔207b周壁と弁軸206aとの間の隙間への異物侵入の抑制が促進される。 As shown in FIG. 3B, the inlet hole 203 b may be directed tangential to the peripheral wall of the valve chamber 205. Since the inlet hole 203b is directed tangentially to the peripheral wall of the valve chamber 205, the generation of the refrigerant gas swirling flow in the valve chamber 205 is promoted, and the gap between the peripheral wall of the valve shaft insertion hole 207b and the valve shaft 206a is promoted. Suppression of entry of foreign matter into the gap is promoted.

図3(a)に示すように一対の入口孔203bを形成するのに代えて、図3(c)に示すように、単独の入口孔203bを形成しても良く、周方向に互いに間隔を隔てて3個以上の入口孔203bを形成しても良い。
周方向に互いに間隔を隔てて複数の入口孔203bを形成することにより、弁室205内での冷媒ガス旋回流の発生が促進され、弁軸挿通孔207b周壁と弁軸206aとの間の隙間への異物侵入の抑制が促進される。
Instead of forming a pair of inlet holes 203b as shown in FIG. 3 (a), a single inlet hole 203b may be formed as shown in FIG. 3 (c), and spaced apart from each other in the circumferential direction. Three or more inlet holes 203b may be formed apart.
By forming a plurality of inlet holes 203b spaced apart from each other in the circumferential direction, the generation of a swirling flow of refrigerant gas in the valve chamber 205 is promoted, and a gap between the peripheral wall of the valve shaft insertion hole 207b and the valve shaft 206a. Suppression of foreign matter intrusion into the body is promoted.

図4に示すように、弁室205を、弁孔203aが形成された端壁へ向けて凸の円錐台形状に形成しても良い。弁孔203a開放時の入口孔203bから弁孔203aへの冷媒ガスの流れがスムーズになり、異物の排出性能が向上する。 As shown in FIG. 4, the valve chamber 205 may be formed in a convex truncated cone shape toward the end wall where the valve hole 203a is formed. When the valve hole 203a is opened, the refrigerant gas flows smoothly from the inlet hole 203b to the valve hole 203a, and foreign matter discharge performance is improved.

図5、6に示すように、弁室205の一方の端壁を形成する固定鉄心207の端部から、弁軸挿通孔207bを取り囲む筒体207cを、弁孔203aが形成された弁室205の他方の端壁へ向けて延在させ、筒体207cの先端を入口孔203bよりも前記他方の端壁側に位置させても良い。
弁軸挿通孔207bを取り囲む筒体207cが、弁室205の一方の端壁を形成する固定鉄心207の端部から、弁孔203aが形成された弁室205の他方の端壁へ向けて延在し、筒体207cの先端が入口孔203bよりも前記他方の端壁側に位置することにより、入口孔203bから弁室205へ流入した冷媒ガスは、筒体207cと弁室205周壁との間の円環状隙間を流れることになる。この結果、旋回流の形成が促進され、且つ旋回流が弁軸挿通孔207bに直接触れる可能性が低下し、弁軸挿通孔207b周壁と弁軸206aとの間の隙間への異物侵入の抑制が促進される。
As shown in FIGS. 5 and 6, a cylindrical body 207c that surrounds the valve shaft insertion hole 207b from the end of the fixed iron core 207 that forms one end wall of the valve chamber 205 is connected to the valve chamber 205 in which the valve hole 203a is formed. The other end wall may be extended toward the other end wall, and the tip of the cylinder 207c may be positioned closer to the other end wall than the inlet hole 203b.
A cylindrical body 207c surrounding the valve shaft insertion hole 207b extends from the end of the fixed iron core 207 forming one end wall of the valve chamber 205 toward the other end wall of the valve chamber 205 in which the valve hole 203a is formed. Since the tip of the cylinder 207c is located on the other end wall side of the inlet hole 203b, the refrigerant gas that has flowed into the valve chamber 205 from the inlet hole 203b flows between the cylinder 207c and the peripheral wall of the valve chamber 205. It will flow through the annular gap between them. As a result, the formation of the swirling flow is promoted, and the possibility that the swirling flow directly touches the valve shaft insertion hole 207b is reduced, and the entry of foreign matter into the gap between the peripheral wall of the valve shaft insertion hole 207b and the valve shaft 206a is suppressed. Is promoted.

本発明は、可変容量斜板式圧縮機の容量制御弁に広く利用可能である。 The present invention can be widely used for a capacity control valve of a variable capacity swash plate compressor.

本発明の実施例に係る容量制御弁を備える可変容量斜板式圧縮機の断面図である。It is sectional drawing of a variable capacity | capacitance swash plate type compressor provided with the capacity | capacitance control valve based on the Example of this invention. 本発明の実施例に係る容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve which concerns on the Example of this invention. 図2のIII−III矢視図である。It is the III-III arrow line view of FIG. 本発明の他の実施例に係るに係る容量制御弁の部分断面図である。It is a fragmentary sectional view of the capacity control valve concerning other examples of the present invention. 本発明の他の実施例に係る容量制御弁の部分断面図である。It is a fragmentary sectional view of the capacity control valve concerning other examples of the present invention. 図5のVI−VI矢視図である。It is VI-VI arrow line view of FIG.

符号の説明Explanation of symbols

A 可変容量斜板式圧縮機
B 容量制御弁
X 弁室の中心軸線
21 吸入室
22 吐出室
202 ベローズ
203a 弁孔
203b 入口孔
203c 出口孔
205 弁室
206 弁体
206a 弁軸
207b 弁軸挿通孔
213 電磁コイル
A Variable displacement swash plate compressor B Capacity control valve X Central axis 21 of valve chamber Suction chamber 22 Discharge chamber 202 Bellows 203a Valve hole 203b Inlet hole 203c Outlet hole 205 Valve chamber 206 Valve body 206a Valve shaft 207b Valve shaft insertion hole 213 Electromagnetic coil

Claims (5)

一方の端壁に弁軸挿通孔が形成され、周壁に入口孔が形成され、他方の端壁に弁孔が形成された筒状の弁室と、弁軸挿通孔に摺動可能に挿通された弁軸を有し弁室内で往復移動し弁孔を開閉する弁体と、弁体駆動手段とを備え、入口孔は吐出室に連通し、弁孔はクランク室に連通する可変容量斜板式圧縮機の容量制御弁であって、弁室は弁軸挿通孔と同心で且つ弁軸挿通孔より大径の円筒形状に形成され、前記入口孔が弁室の中心軸線に対して直交方向に差し向けられ且つ弁室の中心軸線から径方向にオフセットして、入口孔の中心軸線を弁室内に延長した仮想線が弁軸と交わらないように配設されていることを特徴とする可変容量斜板式圧縮機の容量制御弁。 A valve shaft insertion hole is formed in one end wall, an inlet hole is formed in the peripheral wall, and a valve chamber is formed in the other end wall, and the valve shaft insertion hole is slidably inserted into the valve shaft insertion hole. A variable capacity swash plate type having a valve body having a valve shaft that reciprocates in the valve chamber to open and close the valve hole, and a valve body driving means, the inlet hole communicating with the discharge chamber, and the valve hole communicating with the crank chamber A capacity control valve for a compressor, wherein the valve chamber is formed in a cylindrical shape concentric with the valve shaft insertion hole and larger in diameter than the valve shaft insertion hole, and the inlet hole is orthogonal to the central axis of the valve chamber. variable that directed are, and offset from the central axis of the valve chamber in the radial direction, a virtual line obtained by extending the central axis of the inlet port in the valve chamber, characterized in that it is arranged so as not to intersect the valve shaft Capacity control valve for capacity swash plate compressor. 弁室の周壁に、周方向に互いに間隔を隔てて複数の入口孔が形成されていることを特徴とする請求項1に記載の可変容量斜板式圧縮機の容量制御弁。 2. The capacity control valve for a variable capacity swash plate compressor according to claim 1, wherein a plurality of inlet holes are formed in the circumferential wall of the valve chamber at intervals in the circumferential direction. 入口孔は弁室の周壁に対して接線方向へ差し向けられていることを特徴とする請求項1又は2に記載の可変容量斜板式圧縮機の容量制御弁。 3. The capacity control valve for a variable capacity swash plate compressor according to claim 1, wherein the inlet hole is directed tangential to the peripheral wall of the valve chamber. 弁室は前記他方の端壁へ向けて凸の円錐台形状を有することを特徴とする請求項1乃至3の何れか1項に記載の可変容量斜板式圧縮機の容量制御弁。 The capacity control valve for a variable capacity swash plate compressor according to any one of claims 1 to 3 , wherein the valve chamber has a frustoconical shape convex toward the other end wall. 弁軸挿通孔を取り囲む筒体が前記一方の端壁から前記他方の端壁へ向けて延在しており、筒体の先端は入口孔よりも前記他方の端壁側に位置していることを特徴とする請求項1乃至4の何れか1項に記載の可変容量斜板式圧縮機の容量制御弁。 A cylinder surrounding the valve shaft insertion hole extends from the one end wall toward the other end wall, and the tip of the cylinder is positioned on the other end wall side of the inlet hole. The capacity control valve for a variable capacity swash plate compressor according to any one of claims 1 to 4 , wherein
JP2004342083A 2004-11-26 2004-11-26 Capacity control valve of variable capacity swash plate compressor Expired - Fee Related JP4493480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004342083A JP4493480B2 (en) 2004-11-26 2004-11-26 Capacity control valve of variable capacity swash plate compressor
US11/281,469 US20060120883A1 (en) 2004-11-26 2005-11-18 Displacement control valve of a variable displacement swash plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342083A JP4493480B2 (en) 2004-11-26 2004-11-26 Capacity control valve of variable capacity swash plate compressor

Publications (2)

Publication Number Publication Date
JP2006152861A JP2006152861A (en) 2006-06-15
JP4493480B2 true JP4493480B2 (en) 2010-06-30

Family

ID=36574425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342083A Expired - Fee Related JP4493480B2 (en) 2004-11-26 2004-11-26 Capacity control valve of variable capacity swash plate compressor

Country Status (2)

Country Link
US (1) US20060120883A1 (en)
JP (1) JP4493480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071029B2 (en) * 2007-10-11 2012-11-14 株式会社アドヴィックス Fluid control valve
US20160053755A1 (en) * 2013-03-22 2016-02-25 Sanden Holdings Corporation Control Valve And Variable Capacity Compressor Provided With Said Control Valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712279A (en) * 1993-06-25 1995-01-17 Sekisui Chem Co Ltd Universal joint draining line
JP2000304150A (en) * 1994-06-17 2000-11-02 Mitsubishi Electric Corp Motor-driven flow rate control valve
JP2003148338A (en) * 2001-11-07 2003-05-21 Zexel Valeo Climate Control Corp Control valve for variable displacement compressor
JP2003301773A (en) * 2002-04-09 2003-10-24 Sanden Corp Displacement control valve of variable displacement compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469869A (en) * 1987-09-10 1989-03-15 Nippon Brown Coal Liquefaction Valve for slurry
JP3088536B2 (en) * 1991-12-26 2000-09-18 サンデン株式会社 Variable displacement oscillating compressor
JP4399994B2 (en) * 2000-11-17 2010-01-20 株式会社豊田自動織機 Variable capacity compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712279A (en) * 1993-06-25 1995-01-17 Sekisui Chem Co Ltd Universal joint draining line
JP2000304150A (en) * 1994-06-17 2000-11-02 Mitsubishi Electric Corp Motor-driven flow rate control valve
JP2003148338A (en) * 2001-11-07 2003-05-21 Zexel Valeo Climate Control Corp Control valve for variable displacement compressor
JP2003301773A (en) * 2002-04-09 2003-10-24 Sanden Corp Displacement control valve of variable displacement compressor

Also Published As

Publication number Publication date
US20060120883A1 (en) 2006-06-08
JP2006152861A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
EP1918583B1 (en) Suction throttle valve of a compressor
JPWO2018124156A1 (en) Capacity control valve
JP4429931B2 (en) Opening adjustment valve
EP1602828A2 (en) Control valve for variable displacement compressor
EP1959137B1 (en) Suction throttle valve for variable displacement type compressor
KR20060049566A (en) Control valve for variable displacement compressor
JP2010139031A (en) Check valve
KR100726752B1 (en) Displacement control valve for clutchless type variable displacement compressor
JP2018066291A (en) Control valve of variable capacity compressor
JP4493480B2 (en) Capacity control valve of variable capacity swash plate compressor
JP4333047B2 (en) Control valve for variable capacity compressor
JP2004218610A (en) Compressor
EP2975266B1 (en) Control valve for variable displacement compressor
JP2002147349A (en) Control device of variable displacement type compressor
JP2006125292A (en) Control valve for variable displacement compressor
JP4607047B2 (en) Variable displacement compressor discharge capacity control valve
JP6469994B2 (en) Compressor
JP2005023847A (en) Compressor
JP4663579B2 (en) Volume control valve for variable capacity compressor
EP3604806B1 (en) Capacity control valve
JP6871810B2 (en) Variable capacitance compressor control valve
JP5584476B2 (en) Compressor
WO2010143346A1 (en) Variable capacity compressor
JP2018066290A (en) Compressor
EP2963294B1 (en) Control valve for variable displacement compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees