JP4493468B2 - Flameproofing furnace - Google Patents

Flameproofing furnace Download PDF

Info

Publication number
JP4493468B2
JP4493468B2 JP2004318641A JP2004318641A JP4493468B2 JP 4493468 B2 JP4493468 B2 JP 4493468B2 JP 2004318641 A JP2004318641 A JP 2004318641A JP 2004318641 A JP2004318641 A JP 2004318641A JP 4493468 B2 JP4493468 B2 JP 4493468B2
Authority
JP
Japan
Prior art keywords
hot air
flow path
heat treatment
treatment chamber
flameproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004318641A
Other languages
Japanese (ja)
Other versions
JP2006132005A (en
Inventor
正直 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2004318641A priority Critical patent/JP4493468B2/en
Publication of JP2006132005A publication Critical patent/JP2006132005A/en
Application granted granted Critical
Publication of JP4493468B2 publication Critical patent/JP4493468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は炭素繊維の前駆体である繊維を耐炎化する耐炎化処理炉、より詳しくは生産性に優れた炭素繊維の製造に適した前駆体繊維の耐炎化処理炉に関する。   The present invention relates to a flameproofing furnace for flameproofing a fiber that is a precursor of a carbon fiber, and more particularly to a flameproofing furnace for a precursor fiber suitable for producing a carbon fiber excellent in productivity.

炭素繊維の製造工程においては、前駆体繊維を耐炎化し、得られた耐炎化繊維を炭素化して炭素繊維とする。前駆体繊維を耐炎化する方法として、酸化雰囲気中で熱風を循環させ、この中に前駆体繊維を通過させる方法がある(例えば、特許文献1参照)。この耐炎化処理方法において、前駆体繊維は通常束ねられたストランドとして耐炎化炉に投入される。   In the carbon fiber manufacturing process, the precursor fiber is made flame resistant, and the obtained flame resistant fiber is carbonized to form carbon fiber. As a method for making the precursor fiber flame resistant, there is a method in which hot air is circulated in an oxidizing atmosphere and the precursor fiber is allowed to pass therethrough (see, for example, Patent Document 1). In this flameproofing method, the precursor fibers are usually fed into a flameproofing furnace as bundled strands.

図7は従来の耐炎化処理炉の一例を示す概略正面断面図である。図7中、112は耐炎化処理炉で、熱処理室114内には多数本のストランド116が水平に並んだストランド群(パス)を形成して走行している。このパスを形成しているストランド116は、熱処理室114の外部に配設された所定組の折返しローラー(不図示)によって折り返されて熱処理室114に繰り返し供給される。   FIG. 7 is a schematic front sectional view showing an example of a conventional flameproofing furnace. In FIG. 7, reference numeral 112 denotes a flameproofing furnace, which runs in a heat treatment chamber 114 while forming a strand group (path) in which a large number of strands 116 are horizontally arranged. The strand 116 forming this path is folded back by a predetermined set of folding rollers (not shown) disposed outside the heat treatment chamber 114 and repeatedly supplied to the heat treatment chamber 114.

上記パスに高温の酸化性気体を垂直方向に通過させることによって、ストランド116の酸化反応を促進すると共に、ストランド116の反応熱を除去し、耐炎化繊維を生産することが出来る。   By passing a high-temperature oxidizing gas through the path in the vertical direction, the oxidation reaction of the strands 116 can be promoted, and the reaction heat of the strands 116 can be removed to produce flame-resistant fibers.

熱処理室114は、その上方に上方流路(熱風吐出側流路)118が形成され、その下方に下方流路(熱風吸引側流路)120が形成されている。また、熱処理室114は、同室内を走行するストランド116の幅方向の片側に隔壁124を設けることにより、熱風循環路122が形成されている。   The heat treatment chamber 114 has an upper flow path (hot air discharge side flow path) 118 formed above it and a lower flow path (hot air suction side flow path) 120 formed below it. In addition, the heat treatment chamber 114 has a hot air circulation path 122 by providing a partition wall 124 on one side in the width direction of the strand 116 running in the same chamber.

熱処理室114の熱風循環路122と対向する側には、熱処理室114と炉外とを隔てる外壁126が形成されている。   An outer wall 126 that separates the heat treatment chamber 114 from the outside of the furnace is formed on the side of the heat treatment chamber 114 that faces the hot air circulation path 122.

熱風循環路122内にはヒーター128が備えられている。このヒーター128で加熱された熱風がファン等の熱風循環手段130により熱処理室114の上方流路118から熱処理室114内に送られ、ここで前記パスを形成して走行しているストランド116が耐炎化処理される。次いで熱風は下方流路120を通って熱風循環路122に戻り、これを通って前記ヒーター128で加熱されることを繰返す。   A heater 128 is provided in the hot air circulation path 122. The hot air heated by the heater 128 is sent from the upper flow path 118 of the heat treatment chamber 114 into the heat treatment chamber 114 by the hot air circulation means 130 such as a fan, where the strand 116 that forms the path and travels is flameproof. Is processed. Next, the hot air returns to the hot air circulation path 122 through the lower flow path 120 and is repeatedly heated by the heater 128 through the hot air circulation path 122.

耐炎化繊維の生産性を上げるために走行するストランド116の量を増やし、その幅を広げていくと、それに伴って熱処理室114の幅を広げることになる。   Increasing the amount of the strands 116 that are run to increase the productivity of the flame-resistant fiber and increasing the width thereof will increase the width of the heat treatment chamber 114 accordingly.

しかし、熱処理室114の幅が広くなると、上方流路118の幅も広くなり、上方流路118における隔壁124側と外壁126とでは、熱風温度、熱風風速の差が大きくなる。しかも、熱処理室114内における隔壁124側と外壁126とでは、パスの通気抵抗が加わり熱風温度、熱風風速の差は更に大きくなる。   However, as the width of the heat treatment chamber 114 increases, the width of the upper flow path 118 also increases, and the difference between the hot air temperature and the hot air wind speed increases between the partition wall 124 side and the outer wall 126 in the upper flow path 118. Moreover, on the partition 124 side and the outer wall 126 in the heat treatment chamber 114, the ventilation resistance of the path is added, and the difference between the hot air temperature and the hot air wind speed is further increased.

なお熱風は、これを循環させることによりストランドを加熱すると同時に除熱する役割も担っている。   The hot air also circulates this to heat the strands and simultaneously remove the heat.

そのため、熱処理室114の幅が3m以上と幅広の耐炎化処理炉112では、熱処理室114内におけるストランドの温度分布は不均一なものになる。その結果、ストランドの温度が低い部分では反応速度が低下し、生産性が落ちる問題がある。ストランドの温度が高い部分では蓄熱による繊維の切断が発生し、この切断した繊維が他のストランドの繊維に絡み合い、トラブルが増大する問題がある。
特開2001−288623号公報 (第2頁〜第3頁)
Therefore, the temperature distribution of the strands in the heat treatment chamber 114 is non-uniform in the flameproofing treatment furnace 112 having a wide width of the heat treatment chamber 114 of 3 m or more. As a result, there is a problem in that the reaction rate is lowered at a portion where the strand temperature is low, and the productivity is lowered. In the portion where the temperature of the strand is high, the fiber is cut by heat storage, and the cut fiber is entangled with the fiber of the other strand, which causes a problem of increasing trouble.
JP 2001-288623 A (pages 2 to 3)

本発明者は、上記問題を解決するために種々検討しているうちに、熱処理室の下方流路を隔壁側から外壁側にかけて仕切板で分割して複数の分割流路を形成した耐炎化処理炉を用い、熱処理室内における熱風の流速を制御して、熱処理室内を走行するストランドが均一な温度になるように熱風を供給することにより、耐炎化繊維の安定した生産ができることを知得し、本発明を完成するに到った。   While various studies have been made by the present inventor to solve the above problems, a flameproofing treatment in which a lower flow path of the heat treatment chamber is divided by a partition plate from the partition wall side to the outer wall side to form a plurality of divided flow paths. By using a furnace, controlling the flow rate of hot air in the heat treatment chamber and supplying hot air so that the strands running in the heat treatment chamber have a uniform temperature, it is known that stable production of flame resistant fibers can be achieved, The present invention has been completed.

従って、本発明の目的とするところは、上述した問題点を解決した耐炎化熱処理炉、より具体的には前駆体繊維ストランドの耐炎化処理を均一に行うことができ、品質を低下させることなく生産性を向上させうる耐炎化熱処理炉を提供することにある。   Therefore, the object of the present invention is to provide a flameproof heat treatment furnace that solves the above-mentioned problems, more specifically, flameproofing treatment of precursor fiber strands can be performed uniformly, without reducing the quality. An object of the present invention is to provide a flameproof heat treatment furnace capable of improving productivity.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 炉内を水平走行する前駆体繊維ストランドの垂直方向に熱風を送り前記ストランドを耐炎化する熱処理室と、熱処理室の上方に形成した上方流路と、熱処理室の下方に形成した下方流路と、前記上方流路及び下方流路を連通する熱風循環路とを有する耐炎化処理炉であって、前記下方流路及び上方流路の少なくとも一方が、熱処理室内の前記熱風循環路側から前記熱風循環路と対向する外壁側にかけて複数に分割された分割流路で構成され、これら分割流路により熱処理室内と熱風循環路とが連通してなる耐炎化処理炉。   [1] A heat treatment chamber in which hot air is sent in the vertical direction of the precursor fiber strand running horizontally in the furnace to make the strand flameproof, an upper flow path formed above the heat treatment chamber, and a lower portion formed below the heat treatment chamber A flameproof furnace having a flow path and a hot air circulation path communicating the upper flow path and the lower flow path, wherein at least one of the lower flow path and the upper flow path is from the hot air circulation path side in the heat treatment chamber A flameproofing treatment furnace comprising a divided flow path divided into a plurality of parts toward an outer wall facing the hot air circulation path, and the heat treatment chamber and the hot air circulation path communicated with each other through the divided flow paths.

〔2〕 分割流路が、それぞれ熱風風量調節用のダンパーを有する〔1〕に記載の耐炎化処理炉。   [2] The flameproofing treatment furnace according to [1], wherein each of the divided flow paths has a damper for adjusting the hot air flow rate.

〔3〕 分割流路が、それぞれ熱風風量調節用の通気性板材を有する〔1〕に記載の耐炎化処理炉。   [3] The flameproofing treatment furnace according to [1], wherein each of the divided flow paths has a breathable plate material for adjusting the amount of hot air.

〔4〕 熱処理室の外壁の外側に、上方流路及び下方流路を連通する熱風迂回路を有し、前記熱風迂回路が熱風風量調節用のダンパーを有する〔1〕に記載の耐炎化処理炉。   [4] The flameproofing treatment according to [1], including a hot air bypass route that communicates the upper flow path and the lower flow path outside the outer wall of the heat treatment chamber, and the hot air bypass path includes a damper for adjusting the amount of hot air flow. Furnace.

本発明の耐炎化処理炉は、前記のように構成したので、熱処理室内を走行するストランドの温度が均一になり、耐炎化繊維の安定した生産が出来る。   Since the flameproofing furnace of the present invention is configured as described above, the temperature of the strands running in the heat treatment chamber becomes uniform, and stable production of flameproofing fibers can be achieved.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明耐炎化処理炉における正面断面の一例を示す概略図である。   FIG. 1 is a schematic view showing an example of a front cross section in the flameproofing furnace of the present invention.

図1中、2は耐炎化処理炉で、熱処理室4内には多数本のストランド6が水平面(本紙面に垂直方向の面)に並んだストランド群(パス)を形成して走行している。このパスを形成しているストランド6は、熱処理室4の外部に配設された所定組の折返しローラー(不図示)によって折り返されて熱処理室4に繰り返し供給され、複数段のパスを形成している。   In FIG. 1, reference numeral 2 denotes a flameproofing treatment furnace, and a large number of strands 6 are formed in the heat treatment chamber 4 to form a strand group (pass) arranged in a horizontal plane (a plane perpendicular to the paper surface). . The strands 6 forming this path are folded back by a predetermined set of folding rollers (not shown) disposed outside the heat treatment chamber 4 and repeatedly supplied to the heat treatment chamber 4 to form a plurality of stages. Yes.

熱処理室4は、その上方に上方流路(熱風吐出側流路)8が形成され、その下方に下方流路(熱風吸引側流路)10が形成されている。また、熱処理室4は、同室内を走行するストランド6の幅方向の片側に熱風循環路12が形成されている。   In the heat treatment chamber 4, an upper flow path (hot air discharge side flow path) 8 is formed above, and a lower flow path (hot air suction side flow path) 10 is formed below. In the heat treatment chamber 4, a hot air circulation path 12 is formed on one side in the width direction of the strand 6 running in the same chamber.

熱処理室4の熱風循環路12側には、熱処理室4と熱風循環路12とを隔てる隔壁14が形成されている。熱処理室4の熱風循環路12の向かい側には、熱処理室4と炉外とを隔てる外壁16が形成されている。   On the hot air circulation path 12 side of the heat treatment chamber 4, a partition wall 14 that separates the heat treatment chamber 4 and the hot air circulation path 12 is formed. An outer wall 16 that separates the heat treatment chamber 4 and the outside of the furnace is formed on the opposite side of the heat treatment chamber 4 from the hot air circulation path 12.

熱風循環路12に備えられたヒーター18で加熱された熱風がファン等の熱風循環手段20により熱処理室4の上方流路8から熱処理室4内に送られ、ここで前記パスを形成して走行しているストランド6が耐炎化処理される。次いで熱風は下方流路10を通って熱風循環路12に戻り、これを通って前記ヒーター18で加熱されることを繰返す。   Hot air heated by the heater 18 provided in the hot air circulation path 12 is sent into the heat treatment chamber 4 from the upper flow path 8 of the heat treatment chamber 4 by the hot air circulation means 20 such as a fan, and travels by forming the path here. The strand 6 is flameproofed. Next, the hot air returns to the hot air circulation path 12 through the lower flow path 10 and is repeatedly heated by the heater 18 through this.

下方流路10は、鉛直方向部材22、水平方向部材24からなり断面L字形状をなす仕切板26で分割され、熱処理室4の隔壁14側熱風が通過する流路(a)28と熱処理室4の外壁16側熱風が通過する流路(b)30からなる2個の分割流路が形成されている。   The lower flow path 10 is divided by a partition plate 26 having a vertical member 22 and a horizontal member 24 and having an L-shaped cross section, and a flow path (a) 28 through which hot air from the partition wall 14 of the heat treatment chamber 4 passes and a heat treatment chamber. Two divided flow paths are formed, which are composed of flow paths (b) 30 through which the four outer wall 16 side hot air passes.

なお、仕切板26のストランド走行方向長さは、熱処理室4のストランド走行方向長さと等しく形成されている。   In addition, the strand running direction length of the partition plate 26 is formed to be equal to the strand running direction length of the heat treatment chamber 4.

上記構成の耐炎化処理炉2を用い、熱処理室4内における熱風の流速を制御して、熱処理室4内を走行するストランド6が均一な温度になるように熱風を供給することにより、耐炎化繊維の安定した生産ができる。   Using the flameproofing treatment furnace 2 configured as described above, the flow rate of hot air in the heat treatment chamber 4 is controlled, and the hot air is supplied so that the strands 6 running in the heat treatment chamber 4 have a uniform temperature, thereby making the flame resistant. Stable fiber production is possible.

なお、分割流路(a)28、分割流路(b)30における流路長さ、流路幅の調節、通気抵抗の調節などにより各流路における熱風風量を調節できるように、仕切板26は鉛直方向部材22、水平方向部材24を可動な構造とすることが好ましい。   It should be noted that the partition plate 26 can adjust the amount of hot air in each flow path by adjusting the flow path length, flow path width, flow resistance, and the like in the divided flow path (a) 28 and the divided flow path (b) 30. It is preferable that the vertical direction member 22 and the horizontal direction member 24 have a movable structure.

図2は本発明耐炎化処理炉における正面断面の他の例を示す概略図である。   FIG. 2 is a schematic view showing another example of a front cross section in the flameproofing treatment furnace of the present invention.

本例の耐炎化処理炉32においては、分割流路(a)28、分割流路(b)30には、それぞれ熱風風量調節用のダンパー34、36が設けられている。これにより通気抵抗を調節して各流路における熱風風量を調節できる。   In the flameproofing treatment furnace 32 of this example, dampers 34 and 36 for adjusting the hot air flow rate are provided in the divided flow path (a) 28 and the divided flow path (b) 30, respectively. Thereby, ventilation resistance can be adjusted and the amount of hot air in each flow path can be adjusted.

その他の構成は図1と同様であるので、同一箇所に同一参照符号を付してその説明を省略する。   Since other configurations are the same as those in FIG. 1, the same reference numerals are given to the same portions and the description thereof is omitted.

図3は本発明耐炎化処理炉における正面断面の更に他の例を示す概略図である。   FIG. 3 is a schematic view showing still another example of a front cross section in the flameproofing treatment furnace of the present invention.

本例の耐炎化処理炉42においては、分割流路(a)28、分割流路(b)30には、それぞれ熱風風量調節用の通気性板材44、46が設けられている。この通気性板材44、46としては開度が調節されたスリット板、網、パンチングプレートなどを用いることができる。これにより通気抵抗を調節して各流路における熱風風量を調節できる。   In the flameproofing treatment furnace 42 of this example, the divided flow path (a) 28 and the divided flow path (b) 30 are respectively provided with breathable plate materials 44 and 46 for adjusting the hot air flow rate. As the air-permeable plate members 44 and 46, slit plates, nets, punching plates or the like whose opening degree is adjusted can be used. Thereby, ventilation resistance can be adjusted and the amount of hot air in each flow path can be adjusted.

その他の構成は図1と同様であるので、同一箇所に同一参照符号を付してその説明を省略する。   Since the other configuration is the same as that of FIG.

図4は本発明耐炎化処理炉における正面断面のまた更に他の例を示す概略図である。   FIG. 4 is a schematic view showing still another example of a front cross section in the flameproofing furnace of the present invention.

本例の耐炎化処理炉52においては、熱処理室4の外壁16の外側に、上方流路8及び下方流路10を連通する熱風迂回路54が設けられている。この熱風迂回路54には、通過する熱風の風量調節用のダンパー56が設けられている。これにより熱処理室4内における外壁16側のストランド6の温度制御が容易になる。   In the flameproofing treatment furnace 52 of this example, a hot air bypass 54 that communicates the upper flow path 8 and the lower flow path 10 is provided outside the outer wall 16 of the heat treatment chamber 4. The hot air bypass circuit 54 is provided with a damper 56 for adjusting the amount of hot air passing therethrough. This facilitates temperature control of the strand 6 on the outer wall 16 side in the heat treatment chamber 4.

その他の構成は図1と同様であるので、同一箇所に同一参照符号を付してその説明を省略する。   Since the other configuration is the same as that of FIG.

なお、上記各例においては、下方流路を2分割したが、これに限られず、任意の複数、好ましくは2〜4個に分割しても良く、また更に上記例においては分割流路幅を均等にしたが、任意の比率の分割流路幅にしても良く、その他本発明の要旨を変更しない限り、適宜変形して差支えない。   In each of the above examples, the lower flow path is divided into two. However, the present invention is not limited to this, and may be divided into any plural number, preferably 2 to 4, and in the above example, the divided flow path width is further increased. Although it is made equal, the divided flow path width of an arbitrary ratio may be used, and other appropriate modifications may be made unless the gist of the present invention is changed.

下方流路を任意の複数に分割したのと同様に、上方流路も任意の複数に分割しても良い。即ち、本発明耐炎化処理炉は、下方流路及び上方流路の少なくとも一方を任意の複数に分割したものである。   Just as the lower flow path is divided into an arbitrary plurality, the upper flow path may be divided into an arbitrary plurality. That is, the flameproofing furnace of the present invention is obtained by dividing at least one of the lower flow path and the upper flow path into an arbitrary plurality.

図5は、図2の例の構成において下方流路ばかりでなく上方流路も2分割した耐炎化処理炉の一例を示す概略正面断面図である。   FIG. 5 is a schematic front sectional view showing an example of a flameproofing furnace in which not only the lower flow path but also the upper flow path is divided into two in the configuration of the example of FIG.

本例の耐炎化処理炉62において、上方流路は、鉛直方向部材64、水平方向部材66からなり断面Γ字形状をなす仕切板68で分割され、熱処理室4の隔壁14側に熱風を供給する流路(c)70と熱処理室4の外壁16側に熱風を供給する流路(d)72からなる2個の分割流路が形成されている。   In the flameproofing treatment furnace 62 of this example, the upper flow path is divided by a partition plate 68 having a vertical member 64 and a horizontal member 66 and having a Γ-shaped cross section, and hot air is supplied to the partition wall 14 side of the heat treatment chamber 4. Two divided flow paths are formed, which are a flow path (c) 70 and a flow path (d) 72 for supplying hot air to the outer wall 16 side of the heat treatment chamber 4.

なお、仕切板68のストランド走行方向長さも、仕切板26のストランド走行方向長さと同様に、熱処理室4のストランド走行方向長さと等しく形成されている。   In addition, the strand running direction length of the partition plate 68 is also formed to be equal to the strand running direction length of the heat treatment chamber 4, similarly to the strand running direction length of the partition plate 26.

分割流路(c)70、分割流路(d)72には、それぞれ熱風風量調節用のダンパー74、76が設けられている。これにより通気抵抗を調節して各流路における熱風風量を調節できる。   The divided flow path (c) 70 and the divided flow path (d) 72 are provided with dampers 74 and 76 for adjusting the hot air flow rate, respectively. Thereby, ventilation resistance can be adjusted and the amount of hot air in each flow path can be adjusted.

分割流路(c)70、分割流路(d)72の各分割流路に供給する熱風風量を調節し易くするため、熱風循環手段78は、熱風循環路12の中央部付近に設置することが好ましい。   In order to make it easy to adjust the amount of hot air supplied to each of the divided flow paths (c) 70 and 72 (d) 72, the hot air circulation means 78 is installed near the center of the hot air circulation path 12. Is preferred.

その他の構成は図1及び/又は2と同様であるので、同一箇所に同一参照符号を付してその説明を省略する。   Since other configurations are the same as those in FIGS. 1 and / or 2, the same portions are denoted by the same reference numerals, and the description thereof is omitted.

以下、本発明を実施例及び比較例により更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

実施例1
耐炎化繊維及び炭素繊維製造用原料の前駆体繊維について、図6に示す耐炎化炉を用いて加熱空気中耐炎化処理し、耐炎化繊維を得た。
Example 1
The flame resistant fiber and precursor fiber of the raw material for producing carbon fiber were subjected to a flame resistant treatment in heated air using a flame resistant furnace shown in FIG. 6 to obtain a flame resistant fiber.

図6は、図2の例の構成において下方流路を3分割した耐炎化処理炉の一例を示す概略正面断面図である。   FIG. 6 is a schematic front sectional view showing an example of a flameproofing furnace in which the lower flow path is divided into three in the configuration of the example of FIG.

本例の耐炎化処理炉82において、下方流路10は、鉛直方向部材84、水平方向部材86からなり断面L字形状をなす隔壁14側仕切板88と、鉛直方向部材90、水平方向部材92からなり断面L字形状をなす外壁16側仕切板94とで分割され、熱処理室4の隔壁14側熱風が通過する流路(e)96と、熱処理室4の外壁16側熱風が通過する流路(g)100と、それらの中間の流路(f)98とからなる3個の分割流路が形成されている。   In the flameproofing treatment furnace 82 of this example, the lower flow path 10 includes a partition wall 14 side partition plate 88 having a L-shaped cross section including a vertical member 84 and a horizontal member 86, a vertical member 90, and a horizontal member 92. And a flow path (e) 96 through which the partition wall 14 side hot air of the heat treatment chamber 4 passes, and a flow through which the heat flow of the outer wall 16 side of the heat treatment chamber 4 passes. Three divided flow paths are formed which are composed of the path (g) 100 and the intermediate flow path (f) 98 therebetween.

分割流路(e)96、分割流路(f)98、分割流路(g)100には、それぞれ熱風風量調節用のダンパー102、104、106が設けられている。各分割流路の幅は、隔壁14と鉛直方向部材84との間隔Xが1.4m、鉛直方向部材84と鉛直方向部材90との間隔Yが1.4m、鉛直方向部材90と外壁16との間隔Zが1.4mである。   The divided flow path (e) 96, the divided flow path (f) 98, and the divided flow path (g) 100 are provided with dampers 102, 104, and 106 for adjusting the hot air flow rate, respectively. The width of each divided flow path is such that the distance X between the partition wall 14 and the vertical member 84 is 1.4 m, the distance Y between the vertical member 84 and the vertical member 90 is 1.4 m, and the vertical member 90 and the outer wall 16 The distance Z is 1.4 m.

熱処理室4の縦、横、高さはそれぞれ12m、4.2m、1.6mである。折返しローラーによる折返し数は7パスである。このパスは水平面に並んだ400本のストランドから構成されており、このストランドは前駆体繊維が24000本束ねられて構成されている。   The length, width, and height of the heat treatment chamber 4 are 12 m, 4.2 m, and 1.6 m, respectively. The number of turns by the turn-back roller is 7 passes. This path is composed of 400 strands arranged in a horizontal plane, and this strand is composed of 24,000 precursor fibers bundled together.

その他の構成は図1と同様であるので、同一箇所に同一参照符号を付してその説明を省略する。   Since the other configuration is the same as that of FIG.

熱風循環手段20の吹出し口で温度250℃の熱風を循環させ、ダンパー102、104、106の開度を調節して、各分割流路における熱風風量を調節したところ、分割流路入口部単位断面積当りの風量(風速)で流路(e)96が1.2m/秒、流路(f)98が1.2m/秒、流路(g)100が1.2m/秒となり、ストランドの温度は、隔壁14側の地点Eで251℃、中央付近の地点Fで250℃、外壁16側の地点Gで250℃と均一な分布を示し、耐炎化繊維の安定した生産が出来た。   When hot air having a temperature of 250 ° C. is circulated at the outlet of the hot air circulation means 20 and the opening degree of the dampers 102, 104, 106 is adjusted to adjust the amount of hot air in each divided flow path, the unit flow rate at the divided flow path inlet section is determined. The flow rate per unit area (wind speed) is 1.2 m / second for the flow path (e) 96, 1.2 m / second for the flow path (f) 98, and 1.2 m / second for the flow path (g) 100. The temperature showed a uniform distribution of 251 ° C. at the point E on the partition wall 14 side, 250 ° C. at the point F near the center, and 250 ° C. at the point G on the outer wall 16 side, and stable production of flame resistant fibers was achieved.

比較例1
図7に示す従来の耐炎化炉を用いた以外は、実施例1と同様に耐炎化処理した。
Comparative Example 1
A flameproofing treatment was performed in the same manner as in Example 1 except that the conventional flameproofing furnace shown in FIG.

本例の耐炎化処理炉112において、下方流路120には、分割流路は形成されていないが、図6の分割流路(e)、分割流路(f)、分割流路(g)に相応する図7の部分における熱風風速は、それぞれ0.8m/秒、1.2m/秒、1.6m/秒で、ストランドの温度は、隔壁124側の地点Eで254℃、中央付近の地点Fで250℃、外壁116側の地点Gで248℃と不均一な分布を示し、隔壁124側近くでは繊維の切断が発生し、耐炎化繊維の生産は不安定であった。   In the flameproofing treatment furnace 112 of this example, the divided flow path is not formed in the lower flow path 120, but the divided flow path (e), the divided flow path (f), and the divided flow path (g) in FIG. 7 is 0.8 m / sec, 1.2 m / sec, and 1.6 m / sec, respectively, and the temperature of the strand is 254 ° C. at the point E on the partition wall 124 side. The distribution was uneven at 250 ° C. at the point F and 248 ° C. at the point G on the outer wall 116 side, the fiber was cut near the partition wall 124 side, and the production of the flameproof fiber was unstable.

本発明耐炎化処理炉における正面断面の一例を示す概略図である。It is the schematic which shows an example of the front cross section in this invention flameproofing processing furnace. 本発明耐炎化処理炉における正面断面の他の例を示す概略図である。It is the schematic which shows the other example of the front cross section in this invention flameproofing processing furnace. 本発明耐炎化処理炉における正面断面の更に他の例を示す概略図である。It is the schematic which shows the further another example of the front cross section in this invention flameproofing processing furnace. 本発明耐炎化処理炉における正面断面のまた更に他の例を示す概略図である。It is the schematic which shows the further another example of the front cross section in this invention flameproofing processing furnace. 下方流路及び上方流路を2分割した本発明耐炎化処理炉の一例を示す概略正面断面図である。It is a schematic front sectional view showing an example of the flameproofing furnace of the present invention in which a lower flow path and an upper flow path are divided into two. 下方流路を3分割した本発明耐炎化処理炉の一例を示す概略正面断面図である。It is a schematic front sectional drawing which shows an example of this invention flameproofing processing furnace which divided the downward flow path into three. 従来の耐炎化処理炉の一例を示す概略正面断面図である。It is a schematic front sectional view showing an example of a conventional flameproofing treatment furnace.

符号の説明Explanation of symbols

2、32、42、52、62、82、112 耐炎化処理炉
4、114 熱処理室
6、116 ストランド
8、118 上方流路
10、120 下方流路
12、122 熱風循環路
14、124 隔壁
16、126 外壁
18、128 ヒーター
20、78、130 熱風循環手段
22、64、84、90 鉛直方向部材
24、66、86、92 水平方向部材
26、68、88、94 仕切板
28 分割流路(a)
30 分割流路(b)
34、36、56、74、76、102、104、106 ダンパー
44、46 通気性板材
70 分割流路(c)
72 分割流路(d)
96 分割流路(e)
98 分割流路(f)
100 分割流路(g)
E、F、G ストランド温度の測定地点
X、Y、Z 分割流路の幅
2, 32, 42, 52, 62, 82, 112 Flameproofing furnace 4, 114 Heat treatment chamber 6, 116 Strand 8, 118 Upper flow path 10, 120 Lower flow path 12, 122 Hot air circulation path 14, 124 Bulkhead 16, 126 Outer wall 18, 128 Heater 20, 78, 130 Hot air circulation means 22, 64, 84, 90 Vertical member 24, 66, 86, 92 Horizontal member 26, 68, 88, 94 Partition plate 28 Split flow path (a)
30 division flow path (b)
34, 36, 56, 74, 76, 102, 104, 106 Damper 44, 46 Breathable plate material 70 Split flow path (c)
72 Divided flow path (d)
96 Divided flow path (e)
98 Divided flow path (f)
100 Divided flow path (g)
E, F, G Strand temperature measurement point X, Y, Z Width of split flow path

Claims (5)

炉内を水平走行する前駆体繊維ストランドの垂直方向に熱風を送り前記ストランドを耐炎化する熱処理室と、熱処理室の上方に形成した上方流路と、熱処理室の下方に形成した下方流路と、前記上方流路及び下方流路を連通する熱風循環路とを有する耐炎化処理炉であって、前記熱処理室の幅が3m以上であり、前記下方流路及び上方流路の少なくとも一方が、熱処理室内の前記熱風循環路側から前記熱風循環路と対向する外壁側にかけて、鉛直方向部材、水平方向部材からなり断面L字形状をなす仕切板で複数に分割された分割流路で構成され、これら分割流路により熱処理室内と熱風循環路と連通させることにより、熱処理室内を垂直方向に流れる熱風風量を各分割流路毎に調節する耐炎化処理炉。 A heat treatment chamber in which hot air is sent in the vertical direction of the precursor fiber strand running horizontally in the furnace to make the strand flameproof, an upper flow path formed above the heat treatment chamber, and a lower flow path formed below the heat treatment chamber; A flameproofing furnace having a hot air circulation path communicating with the upper flow path and the lower flow path, wherein the heat treatment chamber has a width of 3 m or more, and at least one of the lower flow path and the upper flow path is From the hot air circulation path side in the heat treatment chamber to the outer wall side facing the hot air circulation path, it is composed of divided flow paths divided into a plurality of partition plates having a L-shaped cross section consisting of vertical members and horizontal members , these by communicating the heat treatment chamber and the hot air circulation path by dividing flow path, oxidization treatment furnace adjust the hot air volume flowing through the heat treatment chamber in the vertical direction in each divided flow paths. 分割流路が、それぞれ熱風風量調節用のダンパーを有する請求項1に記載の耐炎化処理炉。 The flameproofing treatment furnace according to claim 1, wherein each of the divided flow paths has a damper for adjusting the amount of hot air. 分割流路が、それぞれ熱風風量調節用の通気性板材を有する請求項1に記載の耐炎化処理炉。 The flameproofing treatment furnace according to claim 1, wherein each of the divided flow paths has a breathable plate material for adjusting the amount of hot air. 熱処理室の外壁の外側に、上方流路及び下方流路を連通する熱風迂回路を有し、前記熱風迂回路が熱風風量調節用のダンパーを有する請求項1に記載の耐炎化処理炉。 2. The flameproofing treatment furnace according to claim 1, further comprising a hot air bypass that communicates the upper flow path and the lower flow path outside the outer wall of the heat treatment chamber, and the hot air bypass has a damper for adjusting the amount of hot air. 仕切板の鉛直方向部材、水平方向部材を可動に設け、流路幅を調節することにより各流路の熱風風量を調節する構造である請求項1に記載の耐炎化処理炉。The flameproofing treatment furnace according to claim 1, which has a structure in which a vertical member and a horizontal member of the partition plate are movably provided and the flow of hot air is adjusted by adjusting the flow channel width.
JP2004318641A 2004-11-02 2004-11-02 Flameproofing furnace Expired - Fee Related JP4493468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318641A JP4493468B2 (en) 2004-11-02 2004-11-02 Flameproofing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318641A JP4493468B2 (en) 2004-11-02 2004-11-02 Flameproofing furnace

Publications (2)

Publication Number Publication Date
JP2006132005A JP2006132005A (en) 2006-05-25
JP4493468B2 true JP4493468B2 (en) 2010-06-30

Family

ID=36725804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318641A Expired - Fee Related JP4493468B2 (en) 2004-11-02 2004-11-02 Flameproofing furnace

Country Status (1)

Country Link
JP (1) JP4493468B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205767B2 (en) * 2006-02-17 2013-06-05 東レ株式会社 Heat treatment furnace and carbon fiber manufacturing method
DE102006037703B4 (en) * 2006-08-11 2013-04-18 Eisenmann Ag Convection Oven
KR101076571B1 (en) 2009-12-31 2011-10-24 주식회사 효성 Flame Resisting Treatment Furnace For Precursors And Preparing Method Of Carbon Fiber Using The Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115125A (en) * 2000-10-05 2002-04-19 Toray Ind Inc Heat treatment oven and method for producing carbon fiber using the same
JP2003155629A (en) * 2001-11-20 2003-05-30 Toray Ind Inc Heat treatment apparatus for making carbon fiber flameproof and method for producing carbon fiber
JP2004115983A (en) * 2002-09-30 2004-04-15 Toho Tenax Co Ltd Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115125A (en) * 2000-10-05 2002-04-19 Toray Ind Inc Heat treatment oven and method for producing carbon fiber using the same
JP2003155629A (en) * 2001-11-20 2003-05-30 Toray Ind Inc Heat treatment apparatus for making carbon fiber flameproof and method for producing carbon fiber
JP2004115983A (en) * 2002-09-30 2004-04-15 Toho Tenax Co Ltd Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant

Also Published As

Publication number Publication date
JP2006132005A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP3868907B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
CN102782198B (en) Oxidation furnace
KR101604932B1 (en) Flame-retardant heat treatment furnace
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JP5037978B2 (en) Flameproof furnace and flameproofing method
JP2007247130A (en) Heat-treating furnace and method for producing carbon fiber
JP4493468B2 (en) Flameproofing furnace
EP0110557B1 (en) Apparatus for producing oxidized filaments
JP2006193863A (en) Flame resisting treatment furnace
JP2009242962A (en) Flameproofing apparatus and method for flameproofing precursor fiber bundle
JP2006057222A (en) Flame resisting treatment furnace and method for flame resisting treatment
JP2004115983A (en) Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant
JP4961256B2 (en) Flameproof heat treatment equipment
CN107429441A (en) Discharge nozzle plate for the fiber oxidation stove at center to end
JPH034832B2 (en)
JP5812205B2 (en) Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same
JPH10266023A (en) Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
JP4471779B2 (en) Flameproofing furnace
JP2006348463A (en) Flame resistant rendering heat treating device, and operation method for the device
JP4138368B2 (en) Flameproof heat treatment apparatus and flameproof heat treatment method
TW202035811A (en) Flame resistance heat treatment oven, flame-resistant fiber bundles, and method for manufacturing carbon-fiber bundles
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JP2015168897A (en) Method for manufacturing carbon fiber
JPH034834B2 (en)
JP4740098B2 (en) Carbon fiber production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees