JP4492896B2 - Microbial treatment method and apparatus for high concentration wastewater - Google Patents

Microbial treatment method and apparatus for high concentration wastewater Download PDF

Info

Publication number
JP4492896B2
JP4492896B2 JP2000142507A JP2000142507A JP4492896B2 JP 4492896 B2 JP4492896 B2 JP 4492896B2 JP 2000142507 A JP2000142507 A JP 2000142507A JP 2000142507 A JP2000142507 A JP 2000142507A JP 4492896 B2 JP4492896 B2 JP 4492896B2
Authority
JP
Japan
Prior art keywords
tank
treatment
treated
bod
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000142507A
Other languages
Japanese (ja)
Other versions
JP2001025782A (en
Inventor
賢三 永岡
外弘 丸山
Original Assignee
エンダイ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エンダイ産業株式会社 filed Critical エンダイ産業株式会社
Priority to JP2000142507A priority Critical patent/JP4492896B2/en
Publication of JP2001025782A publication Critical patent/JP2001025782A/en
Application granted granted Critical
Publication of JP4492896B2 publication Critical patent/JP4492896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for effectively treating waste water containing a high concentration BOD component or normal hexane extract components such as waste water from swinery or food industrial without pretreatment such as dilution or removal of the solid portion. SOLUTION: The waste water containing the BOD component or the normal hexane-extract component in high concentration is treated aerobically and weak anaerobically by being passed through a high speed sprinkling filter tank 4, in which a crushed article of liparite is filled, the sprinkling treated water is aerated in an activated sludge tank to be treated aerobically and further the activation treated water is supplied to the high speed sprinkling filter tank 4 to be circulated and treated. The circulation treatment is repeated further by plural stages at need to purify the waste water.

Description

【0001】
【発明の属する技術分野】
本発明は、BOD及びノルマルヘキサン抽出成分を高濃度に含む排水を、有効に微生物処理する方法及び装置に関するものである。更に、ほぼ完全に処理排水の脱色処理を行なう方法及び装置に関するものである。
【0002】
【従来の技術】
BOD及びノルマルヘキサン抽出成分(ノルヘキ成分)など有機(汚濁)物質を含んだ排水の殆どは、活性汚泥法、ラグーン法、回転円板法、散水濾床法などによって処理されている。これらは、いずれも微生物の酵素作用を利用して有機物を分解するものであり、処理できるBOD成分やノルヘキ成分の濃度に自ずと限界がある。例えば、活性汚泥法であればBOD成分が3000ppm を越えると処理できなくなる。通常は、3000ppm 以下ことに1000〜1500ppm 程度で処理する。従って、養豚排水や食品工業排水など、3000ppm を越え、1万或いは数万ppm にもなる超高濃度のBOD成分、或いは、500ppm を越え、3000〜1万ppm にもなる油分成分(ノルヘキ成分)を含む排水は、何れの処理方法においてもそのままの処理は不可能であり、何らかの前処理が必要になる。この前処理としては、処理可能なBOD濃度やノルヘキ濃度になるまで希釈したり、これらの汚濁有機物を凝集や加圧浮上などで除去することが一般的である。
【0003】
【発明が解決しようとする課題】
ところが、排水を希釈すると処理量が大幅に増加し、装置や施設面積の大型化を招く。また前処理での除去も付帯設備が必要になるし、除去した有機物の廃棄や焼却に手間やコストがかかる。また、高圧をかけるなど種々な方法も開発されているが、大量の排水を処理するには膨大なコストがかかる欠点がある。
【0004】
【課題を解決するための手段】
そこで本発明者は、養豚排水や食品工業排水など高濃度のBOD成分やノルヘキ成分を含む排水を、希釈したり有機物除去(固形分は除去する)などの前処理なしに、有効に処理する方法について模索研究を行ない、本発明を完成させたものである。
【0005】
本発明の骨子は、高速散水濾床法と活性汚泥法を組合せ、且つ高速散水濾床槽の濾材(微生物活着材)として石英粗面岩の破砕品を用いたものである。即ち、夾雑物(SS成分)を除いた排水を、石英粗面岩の破砕品を充填した高速散水濾床槽に通して好気的処理と弱い部分的な嫌気的処理を行ない、該散水処理水を活性汚泥槽で曝気して好気的処理を行ない、更にその活性処理水を高速散水濾床槽に供して循環処理するとともに、活性処理水の一部を他の活性汚泥槽に送液して他の高速散水濾床槽との間で循環処理してBOD成分・ノルヘキ成分の濃度を低減させ、この循環処理を必要に応じて更に複数段繰り返して排水の浄化を行なうようにしたものである。
【0006】
一般に、高速散水濾床法の場合、濾材1m3 当たりBOD容積負荷が1.5〜3Kgを越えると、閉塞が起こると言われている。また、活性汚泥法ではBOD容積負荷が0.3〜0.6Kgを越えると汚泥が沈降せず良好な処理は行われない。これに対し、本発明の場合、濾材1m3 当たりBOD容積負荷が1.5〜15Kg程度までの処理が可能である。これは、濾材の表面が微細なハニカム状で微生物の活着に優れ、微生物からこれを捕食する原生動物に至る多彩な生物相により有機物を有効に分解することによる。この工程では主として好気処理が行われるが、生物膜の下側では弱い嫌気処理も一部行なわれ、高分子物質の低分子化やBOD成分やノルヘキ成分の低減が行なわれる。そして、濾材を通過した排水は下側にある活性汚泥槽に落下し、この活性汚泥槽で好気的な微生物処理がされて更に有機物の酸化が進む。活性汚泥槽の排水は、一定量ずつ散水濾床槽へポンプアップされ、順次循環処理される。
【0007】
次に、活性汚泥槽内の排水の一部が、他の活性汚泥槽に送液されて、他の高速散水濾床槽との間で循環処理してBOD成分やノルヘキ成分の濃度を更に低減させる。従って、本発明の場合初めの活性汚泥槽でのBOD濃度やノルヘキ成分の濃度が高すぎて酸化処理が遅れても、何ら問題ない。そして、更に必要ならばこの循環処理を複数段繰り返えす。尚、各槽の容量や濾材の量は、処理する排水のBOD濃度・ノルヘキ成分濃度や排水量によって設計される。循環処理は、BOD濃度が1000ppm 乃至数千ppm 程度であれば、十数時間〜24時間程度でよいし、1万〜2万ppm 程度であれば3〜4日、6万ppm 程度の大根排水(廃棄処理する大根の絞り汁)や5〜8万ppm にもなる養豚排水であれば6〜8日の間循環処理する。この循環処理時間は、複数段(高速散水濾床槽と活性汚泥槽の組が複数)処理の場合は合計時間である。そして、通常は2段以上、BOD濃度が高ければ3〜4段処理を行なう。そして、処理に日数がかかれば、活性汚泥槽の容量はその分だけ大きくなるが、その容量は段数の合計であるから、1つの活性汚泥槽の容量は、希釈する場合に比べて非常に小さいものですむ利点がある。
【0008】
本発明で濾材に使用する石英粗面岩は、酸性火山岩の一種でシリカ分に富み、水に接すると微量の珪酸とマグネシウムを溶脱し、珪酸塩を形成する。また、ハニカム状に貫通した無数の空洞を有する多孔質材で大きな表面積を有し、微生物の棲み家としては理想的なものである。従って、この破砕品を濾材として充填した高速散水濾床槽の場合、濾材中で生物活性により食物連鎖が激しく起こり、BODやノルヘキ成分濃度が高い排水が投入されても、活着している特殊分解菌及びその場に応じて発生した生物が処理する。
【0009】
次に、本発明の微生物即ち、前記した特殊分解菌について説明する。一般に、処理に預かる微生物は自然発生的に増殖してくる微生物群に依存する。本発明の場合も同様であるが、更に、処理すべき排水で馴致した特定の微生物、殊に、バチルス属のズブチルス菌、シュードモナス属のスペシューズ菌、接合菌(Mucro sp Rhizopus sp)、子嚢菌(Aspergillus sp Penicillum sp)、不完全菌(Fusarium sp Geotricum sp Tricomoderma sp)等のバクテリアを組合せた菌群を、濾材に着床させ、また必要に応じて処理系に追加投入すると、処理能力はさらに増大する。ただ、一から馴致させると時間がかかるので、予め油分、澱粉質、タンパク質など、有機物の種類に応じて高度に分解能力を有する微生物群を培養しておき、処理すべき排水を分析してその含有成分に応じて微生物群を組合せ、この組み合わせた微生物群を濾材に着床させる。このようにすると、処理開始当初から良好な微生物処理が行なえることになる。
【0010】
続いて、本発明方法において、排水量や排水ののBOD成分濃度と、必要とされる各処理槽の容量について、説明する。例えば、固形分を除いたBOD成分やノルヘキ成分のの濃度が1万ppm の排水(日量100m3 )の場合、処理されようとするBOD・ノルヘキ成分量は、1000Kg/日となる。今、この処理を4日間で行なうとすると、排水量の合計は100×4=400m3 となる。これを3段の高速散水濾床槽と活性汚泥槽の組で処理する場合、各槽の容量は150m3 となる。また、高速散水濾床槽における濾材1m3 当たりのBOD負荷を10Kgとすると、濾材は1000÷10=100m3 必要となり、例えば第1の高速散水濾床槽に50m3 、第2と第3の高速散水濾床槽に30m3 ずつ充填すれば、よいことになる。濾材の量を増やせば、濾材1m3 当たりのBOD負荷を減らすことができ、よりゆとりのある処理が行えることになる。本発明の場合、濾材1m3 当たりのBOD負荷は1.5〜15Kg程度まで可能である。
【0011】
この濾材負荷は、処理水のBODの放流基準が高い(基準が甘い)場合には高くしてもよいが、放流基準が20〜30ppm と厳しい場合には負荷を大きくすることはできない。尚、当高速散水濾床槽での濾材1m3 当たりの散水量は、30m3 /日〜40m3 /日で循環することでキレートが出来上がる。高濃度排水の場合は、前段で濾材1m3 当たり50m3 /日の排水を循環させることにより、キレート化を促進させることができる。後段では、40m3 /日でよい。濾材1m3 当たり50m3 /日の排水を循環させる場合、100m3 /m3 ×50m3 /日÷24時間÷60分≒3.5m3 /分の量の排水をポンプアップすればよいことになる。
【0012】
もし、これと同じ濃度と量の排水を従来の活性汚泥法で処理する場合、1000ppm 処理とすると、10倍希釈が必要になる。そしてこれを2日間で処理するには、100m3 ×10×2=2000m3 の活性汚泥槽が必要になる。これに対し、本発明の場合は合計で400m3 (余分にみて450m3 )の活性汚泥槽で済み、大幅な設置面積の低減が実現できる。
【0013】
このように、本発明の生物処理方法によれば養豚排水や食品工業排水など高濃度のBOD成分やノルヘキ成分を含む排水を、従来に比べて短時間で且つ小型の装置で排水基準を満たす処理が可能になるが、唯一解決し難いのが着色の問題である。着色成分はフミン物質とか炭素化合物とか言われBODやCODの成分であるが、これらが排水基準の範囲内でも着色の程度がひどい場合がある。着色の程度は、処理済の排水を再度嫌気槽や弱嫌気槽に通すと薄くなるが、完全に脱色することはできない。活性炭を通せば完全な脱色も可能であるが、大幅なコスト増を招く。
【0014】
生物処理が行われた排水の着色については、以下のような実験結果が報じられている。即ち、畜舎排水中の有機物には、TOCは低いが色度が高い分子量3000以上の成分と色度は低いがTOCが高い分子量3000〜100の成分に2大別される。そして、生物処理(好気処理)では後者は分解できるが前者は分解し難い。そして、好気処理により前者の濃度は増えていないにもかかわらず、色度は増加する現象がみられた。これは、分子量3000以上の物質がアゾ基を持っており、好気的雰囲気中で発色の度合いを増したためと思われる(水処理技術、Vol.40 No.12 1999)。
【0015】
このことは、本発明者らの経験とも一致するものである。そして、前述の処理装置でも脱窒・還元槽(13)での処理で処理水の色度は低くなっている。しかし、まだコーヒー色が煎茶色程度にはなるが、無色とは程遠いものである。
【0016】
そこで本発明者等は、前述の処理を施した着色処理水の脱色について更に研究を続けた結果、電気分解の採用に思い至った。即ち、上記好気的生物処理では分解出来ない分子量3000の物質を電気分解で分離・分解しょうとした。ところが、これらの物質は非常に分離・分解できにくいため電圧を上げる必要があるが、そのため通常の電気分解に用いる金属では、白金も含めて温度の上昇がはげしく、使い辛いことが判明した。また、処理排水中には様々な金属や有機物質も残存しており、アルミニウムや鉄では腐食による消耗や汚れが激しく使いものにならないし、ステンレスでもクロムその他の金属の溶出があるので陽極には使用できない。白金の場合は、陽極でも陰極でもこれらの欠点はないが、高い電圧を掛けるので発熱が激しいうえ、コストが高くついて排水処理などにはとても使用できない。
【0017】
そこで、陽極にカーボンと鉄を焼結したカーボン鉄棒、陰極にステンレス棒を用いたところ、10〜20V、15〜25A(実験機)の電流を流しても、発熱は50℃程度であり、且つ電極からの溶出なども見られ無かった。また、過剰電流が流れることなくまた電気の消耗も少なくすむ上に、有機物質の分離・分解が確実に行えるため処理水は殆ど無色といってほど脱色が完全に行われた。尚、この電流値であると、白金では水温が70℃以上にもなる。しかも、従来電気分解で排水処理する場合には、通電性の向上やpH調整などの目的で薬品を注入することが行われているが、本発明の場合にはそれらのことは全く必要としてない。これは、電極や電圧その他の条件が排水処理に合致しているためと思われる。尚、実際の装置における電流値は、装置の容量にもよるが50〜1000Aにもなる。また、電気分解の処理時間は、排水の色が煎茶色程度の薄い場合で1時間程度、コーヒー色のように濃い場合は2時間程度で十分である。
【0018】
但し、電気分解を長時間行なうと、電極特に陰極に金属類の析出がみられる。このような場合、一般に電極の逆転を行なって、陰極に付着した金属を剥脱させる。ところが、白金その他の金属電極の場合は1時間以上の長時間逆転させても何ら問題はないが、前記カーボン鉄電極の場合は、電極の逆転を行なうとそのショックで焼結体の組織が破損し、ボロボロになる危険性かある。そこで、本発明では、この逆転を1〜5分程度の極く短時間行ない、これを1日に数回繰り返すようにする必要がある。尚、逆転時間が短いため陰極の清浄化が不十分な場合、超音波を掛けると清浄化が促進される。ところで、短時間とはいえ逆転によりステンレスが一時的に陽極になるが、その結果ステンレスからクロムなどの金属が溶出することがある。そこで、好ましくは、ステンレスの代わりにチタン或いはタンタルを用いるとよい。チタンの場合は比較的安価に得られるので、最も好ましいものである。
【0019】
このように、本発明の方法で生物処理した水を、更にカーボン鉄を陽極とし、ステンレス或いはチタン、タンタルを陰極とした電気分解処理すると、分子量3000以上の有機物の分離・分解が行われて脱色処理されるとともに、アンモニアが窒素ガス化しリンも燐酸化合物化して大部分が除去される。更に好ましいことには、電気分解時に発生する熱により処理液が50℃前後に加熱され、しかも処理が1〜2時間程度は続くのでウイルスやバクテリアの死滅処理が可能となるなど、多くの効果が得られるものである。本発明方法の電気分解が極めて脱色性に優れているのは、本発明の生物処理が通常の生物処理方法と比べて曝気時間が1/3程度と短い(約30日が約10日で済む)ために、分子量3000以上の物質の酸化による発色増加も少なくて済むとも思われる。
【0020】
【発明の実施の形態】
(実施の形態 1)
図1は、本発明方法に基づいて食品工場排水を処理する場合のフローチャートの一例を示す。この排水は、某蒲鉾工場の排水で、原水のBOD濃度は2000〜15000ppm (平均4500ppm )、ノルヘキ成分濃度は、1500〜25000ppm (平均6000ppm )で、排水日量は、45m3 /日である。脱窒・還元槽13を経て沈殿槽14に至り、放流される。
【0021】
河川放流の排水基準は、BODが120ppm 以下、ノルヘキ成分が30ppm 以下である。従って、この工場の排水基準式は、次のようになる。
BOD:45m3 /日×4500ppm ×0.003=202.5kg/BOD・日
油分 :45m3 /日×6000ppm ×0.003=270kg/油分・日
尚、本実施例では、最終処理したBODが30ppm 以下、ノルヘキ成分が5ppm 以下となった。
【0022】
即ち、202.5kg/BOD・日、270kg/油分・日を処理すれば、よいことになる。この処理を、図1に示す装置により行なった。図1において、原水槽1に溜まった工場排水は、スクリーン装置2で固液分離されて調整槽3に送られる。調整槽3から定量的に送液される排水は、高速散水濾床槽4と活性汚泥槽5を組み合わした第1の循環槽6、同じく高速散水濾床槽7と活性汚泥槽8を組み合わした第2の循環槽9、高速散水濾床槽10と活性汚泥槽11を組み合わした第3の循環槽12で順次処理される。処理水は、脱窒槽兼用還元槽13に送られ、更に沈殿槽14で汚泥と分離して処理水として河川に放流される。符号15は有効菌培養槽であり、ここに処理水と他の栄養源及び有効菌を投入して培養し、適宜各高速散水濾床槽に添加投入する。ここに有効菌とは、予め油分、澱粉質、タンパク質など、有機物の種類に応じて高度に分解能力を有する微生物群を培養しておき、処理すべき排水を分析してその含有成分に応じて微生物群を組合せたもので、微生物群として、着床シュードモナス属、バチルス属等のバクテリアを組合せた菌群である。このようにすると、処理開始当初から良好な微生物処理が行なえることになる。この菌群が、他の自然発生的な菌群ととともにバランスよく活性化すれば、この添加は停止してもよい。
【0023】
調整槽3の容量は1日10時間稼働として(処理は24時間連続で行なう)、45m3 /日×(24−10)÷24=26m3 。ここでも、曝気処理する。エア量は、水量1m3 当たり、3.5m3 /Hとする。一般的なエア量は、1.8〜2.2m3 /H程度であるが、本発明の場合高濃度排水であることによる。また、その時の水量を槽の75%とすると、26m3 ×0.75=19.5m3 必要である。必要なエア量は、19.5m3 ×3.5m3 /H≒0.14m3 /分となる。この調整槽3では、油分の分解は望めず、BODが約15〜20%低下する。BOD除去率を15%とすると、202.5kg/日×15%=172.2kg/日となる。
【0024】
第1と第2の循環槽6、9を形成する第1と第2の活性汚泥槽5、8の容量は、合計で2日滞留(接触)として、45m3 ×2日=90m3 、第3の活性汚泥槽の量は2/3日滞留として、45×2/3=30m3 である。各活性汚泥槽のエア量は、水量1m3 当たり前槽で2.5、後槽で1.8、平均で2m3 /Hとなる。従って、3つの槽で、(90m3 +30m3 )×2m3 ÷60分=4m3 /分となる。
【0025】
各高速散水濾床槽4、7、10に入れる濾材41の量は、河川放流のため、濾材負荷1m3 当たり5kg/m3 必要で、202.5kg/日÷5kg/m3 =40.5m3 を使用する。散水量は、濾材1m3 当たり40m3 /日とすると、40.5m3 ×40m3 /日≒1.125m3 /分となる。尚、濾材は拳大或いはその3倍程度の大きさの石英粗面岩の破砕品を用いた。符号42は散水管、符号43は、各活性汚泥槽5、8、11に配置した散気管である。
【0026】
循環槽での除去率は、第1の循環槽6で、BOD30%、ノルヘキ成分50%として、172.2kg/日×30%=120.5kg/BOD・日、270kg/日×50%=135kg/ノルヘキ成分・日となる。同じく、第2の循環槽9では除去率がBODで60%として、120.5kg/日×60%=48.2kg/日、ノルヘキ成分は85%として、135kg/日×85%=20.25kg/日となる。第3の循環槽12では除去率がBODで98%として、48.2kg/日×98%=0.96kg/日、ノルヘキ成分は99%として、20.25kg/日×99%=0.20kg/日となる。
【0027】
脱窒槽兼用還元槽13の容量は、滞留時間を3時間とすると、45m3 /日÷÷24÷3=5.6 m3 となる。幾分大きめとして6m3 とする。この槽のエア量は攪拌程度としてよい。この脱窒槽兼用還元槽13に於ける除去率は、BODで5%程度である。最終的に、本発明装置における処理の結果、BODは、0.96×0.5%=0.91kg/日となる。
【0028】
(実施の形態 2)
BODが6000〜2万ppm の養豚排水(10m3 /日)を、前記例と同様の装置を用いて処理した。本実施例では、第1段階として第1の循環槽6と第2の循環槽9で処理した水を沈殿槽14に蓄え、そのうわ水を更に第2段階として2つの循環槽で処理し、ついで脱窒・還元槽13、沈殿槽14をへて排水する。その結果、第2段階の循環槽処理後にはBODが1100〜1500になり、これを沈殿分離するとBODが15〜35と、そのままそのまま放流できる程度の綺麗な数値のものが得られた。
【0029】
(実施の形態 3)
実施例2で得られた処理排水を、図2及び図3で示す電気分解装置16で更に電解処理したところ、驚くべきことに、着色が殆どなく透明度の極めて高い処理水が得られた。しかも、この処理水のBOD能とは3〜5ppm であった。これは一般河川の水(数〜数十ppm )よりも綺麗なものである。尚、この電気分解装置16は実験室モデルであり、幅16cm、長さ100cm、深さ3cmのプラスチック製槽17の内部に、陽極として、直径2.5cm、長さ20cmのカーボン鉄棒18と陰極として同寸法のステンレス棒19を、図2のように交互に設置したものである。符号18aは陽極棒端子、19aは陰極用コード取付ネジ孔、20は絶縁用ゴム板である。各棒18・19は、約5mmの間隔をおいて下枠21と上枠22の設けた透孔に挿入支持されている。またプラスチック製槽17の内部下部には、曝気用エア噴出口23が、上部には排水24の流入口25と電気分解処理された排水26の流出口27が設けられている。また、処理条件は13〜18V、15〜25Aで、1時間程度循環処理した。
【0030】
【発明の効果】
以上詳述したように、本発明方法は、BODやノルヘキ成分を高濃度に含む排水を、石英粗面岩の破砕品を充填した高速散水濾床槽と活性汚泥槽の間で循環処理してこれら有機物質の濃度を低減させるものである。また、処理すべき排水で馴致したバクテリアの混合菌群を高速散水濾床槽の充填材に活着させるものである。
【0031】
従って、養豚排水や食品排水など、BOD容積負荷が高くなると閉塞が起きる高速散水濾床法や汚泥が沈降せず良好な処理は行われない活性汚泥法と比べてBOD容積負荷が桁違いに大きい排水でも、時間をかければ有機物の酸化が進み、高分子物質の低分子化やBOD成分やノルヘキ成分の低減が行なわれる。
【0032】
また、本発明装置は、原水槽と沈殿槽との間に、石英粗面岩の破砕品を充填した高速散水濾床槽と、該高速散水濾床槽の下方に配置され曝気装置を組み込んだ活性汚泥槽を一組とした処理槽を複数組配置したものである。従って、設置面積が少なくても有効な排水の処理をすることができる特徴がある。
【0033】
更に、本発明の電気分解処理を行なうと、電極の腐食などがないうえ発熱も少なく、且つ従来のように薬品注入などが全くいらずに、着色した生物処理水が殆ど無色当面にまで脱色されるとともに、BODや油分さらには窒素分や燐分も大幅に除去され、しかもウイルスやバクテリアがほぼ完全に死滅する効果が得られるなど、極めて有意義なものである。
【図面の簡単な説明】
【図1】本発明方法の一例を示すフローチャートである。
【図2】本発明の電気分解装置の一例を示す平面図である。
【図3】本発明の電気分解装置の一例を示す縦断面図である。
【符号の説明】
1 原水槽
2 スクリーン装置
3 調整槽
4 高速散水濾床槽
41 濾材
42 散水管
43 散気管
5 活性汚泥槽
6 第1の循環槽
7 高速散水濾床槽
8 活性汚泥槽
9 第2の循環槽
10 高速散水濾床槽
11 活性汚泥槽
12 第3の循環槽
13 脱窒・還元槽
14 沈殿槽
15 有効菌培養槽
16 電気分解装置
17 プラスチック製槽
18 カーボン鉄棒
18a 陽極棒端子
19 ステンレス棒
19a 陰極用コード取付ネジ孔
20 絶縁用ゴム板
21 下枠
22 上枠
23 曝気用エア噴出口
24 排水
25 流入口
26 電気分解処理された排水
27 流出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for effectively treating microorganisms containing wastewater containing BOD and normal hexane extract components at high concentrations. Furthermore, the present invention relates to a method and an apparatus for performing a decolorization treatment of treated wastewater almost completely.
[0002]
[Prior art]
Most of the wastewater containing organic (fouling) substances such as BOD and normal hexane extract components (normal hex components) are treated by the activated sludge method, lagoon method, rotating disk method, sprinkling filter bed method and the like. All of these decompose organic substances by utilizing the enzymatic action of microorganisms, and the concentration of BOD components and norhex components that can be treated is naturally limited. For example, in the case of the activated sludge method, the treatment cannot be performed when the BOD component exceeds 3000 ppm. Usually, it is processed at about 1000 to 1500 ppm at 3000 ppm or less. Therefore, such as swine sewage wastewater and food industry wastewater, the BOD component of super high concentration exceeding 3000ppm and 10,000 or tens of thousands ppm, or the oil component (norge component) exceeding 500ppm and 3000 to 10,000ppm. The wastewater containing can not be treated as it is in any treatment method, and some pretreatment is required. As this pretreatment, it is common to dilute to a treatable BOD concentration or norhex concentration, or to remove these polluted organic substances by agglomeration or pressurized flotation.
[0003]
[Problems to be solved by the invention]
However, when the wastewater is diluted, the amount of treatment increases greatly, resulting in an increase in the area of the apparatus and facility. Also, the removal in the pretreatment requires ancillary facilities, and it takes time and cost to discard or incinerate the removed organic matter. In addition, various methods such as applying high pressure have been developed. However, there is a disadvantage that it takes enormous costs to treat a large amount of waste water.
[0004]
[Means for Solving the Problems]
Therefore, the present inventor is a method for effectively treating wastewater containing high-concentration BOD components and norhexy components such as pig farm wastewater and food industry wastewater without pretreatment such as dilution or removal of organic substances (removing solids). The present invention has been completed through exploratory research.
[0005]
The gist of the present invention is a combination of a high-speed watering filter bed method and an activated sludge method, and a crushed quartz rough rock is used as a filter medium (microbe-adhering material) for a high-speed watering filter bed tank. That is, drainage from which impurities (SS component) are removed is passed through a high-speed sprinkling filter bed filled with crushed quartz rough rock to perform aerobic treatment and weak partial anaerobic treatment. Aerated water is aerated in an activated sludge tank, aerobic treatment is performed, and the activated treated water is circulated and supplied to a high-speed sprinkling filter bed tank, and a part of the activated treated water is sent to another activated sludge tank. Then, it is circulated between other high-speed sprinkling filter beds to reduce the concentration of BOD and norhex components, and this circulatory treatment is further repeated in multiple stages to purify wastewater as needed. It is.
[0006]
In general, in the case of the high-speed sprinkling filter bed method, it is said that clogging occurs when the BOD volumetric load per 1 m 3 of the filter medium exceeds 1.5 to 3 Kg. Further, in the activated sludge method, when the BOD volume load exceeds 0.3 to 0.6 kg, the sludge does not settle and good treatment cannot be performed. On the other hand, in the case of the present invention, the BOD volume load per 1 m 3 of the filter medium can be processed up to about 1.5 to 15 kg. This is because the surface of the filter medium is fine in the form of a honeycomb and excellent in microbial survival, and organic substances are effectively decomposed by various biota ranging from microorganisms to protozoa that prey on them. In this step, aerobic treatment is mainly performed, but a weak anaerobic treatment is also performed on the lower side of the biofilm, thereby reducing the molecular weight of the polymer substance and reducing the BOD component and the norhex component. And the waste water which passed the filter medium falls to the activated sludge tank in the lower side, an aerobic microorganism process is performed in this activated sludge tank, and the oxidation of organic substance advances further. The wastewater from the activated sludge tank is pumped up to the sprinkling filter bed by a certain amount and sequentially circulated.
[0007]
Next, a part of the wastewater in the activated sludge tank is sent to other activated sludge tanks and circulated between other high-speed watering filter beds to further reduce the concentration of BOD and norhex components. Let Therefore, in the case of the present invention, there is no problem even if the oxidation treatment is delayed because the BOD concentration or the concentration of the norhex component in the first activated sludge tank is too high. If necessary, this circulation process is repeated a plurality of stages. In addition, the capacity | capacitance of each tank and the quantity of a filter medium are designed by the BOD density | concentration of a wastewater to process, a norhex ingredient concentration, and the amount of drainage. The circulation treatment may be about 10 to 24 hours if the BOD concentration is about 1000 ppm to several thousand ppm, and if it is about 10,000 to 20,000 ppm, 3 to 4 days, about 60,000 ppm of radish drainage. If it is a wastewater from dairy juice (daikon radish to be disposed of) or 5-80,000 ppm, circulate for 6-8 days. This circulation processing time is the total time in the case of a multi-stage process (a plurality of sets of high-speed watering filter bed tanks and activated sludge tanks). In general, two or more stages are performed, and if the BOD concentration is high, three to four stages are performed. And if processing takes days, the capacity | capacitance of an activated sludge tank will become correspondingly large, but since the capacity | capacitance is the sum total of the number of stages, the capacity | capacitance of one activated sludge tank is very small compared with the case where it dilutes. There is an advantage of being a thing.
[0008]
The quartz rough rock used for the filter medium in the present invention is a kind of acidic volcanic rock, rich in silica, and when in contact with water, a small amount of silicic acid and magnesium are leached to form silicate. Moreover, it is a porous material having countless cavities penetrating in a honeycomb shape and has a large surface area, and is ideal as a microorganism savory house. Therefore, in the case of a high-speed sprinkling filter bed filled with this crushed product as a filter medium, the food chain is vigorously caused by biological activity in the filter medium, and even if wastewater with a high concentration of BOD or norhex component is introduced, the special decomposition that is alive The organisms generated according to the bacteria and the place are treated.
[0009]
Next, the microorganism of the present invention, that is, the above-described special degrading bacterium will be described. In general, the microorganisms deposited for treatment depend on the group of microorganisms that grow naturally. The same applies to the present invention, but in addition, certain microorganisms adapted to the waste water to be treated, in particular, Bacillus subtilis, Pseudomonas sp., Mucro sp Rhizopus sp, Ascomycetes (Aspergillus sp Penicillum sp), infectious bacteria (Fusarium sp Geotricum sp Tricomoderma sp) and other bacterial groups combined with the bacteria are deposited on the filter media and, if necessary, added to the treatment system. Increase. However, it takes time to adapt from scratch, so in advance cultivate a group of microorganisms with a high degradability according to the type of organic matter such as oil, starch, protein, etc., analyze the wastewater to be treated and analyze it The microbial groups are combined according to the contained components, and the combined microbial groups are deposited on the filter medium. In this way, good microbial treatment can be performed from the beginning of the treatment.
[0010]
Subsequently, in the method of the present invention, the amount of drainage, the concentration of BOD components in the drainage, and the required capacity of each treatment tank will be described. For example, in the case of wastewater with a concentration of 10,000 ppm of BOD component and norhex component excluding solid content (100 m 3 per day), the amount of BOD / norhex component to be treated is 1000 kg / day. If this process is performed in 4 days, the total amount of drainage is 100 × 4 = 400 m 3 . When this is treated with a set of three-stage high-speed sprinkling filter bed tank and activated sludge tank, the capacity of each tank is 150 m 3 . Further, if the BOD load per 1 m 3 of the filter medium in the high-speed sprinkling filter bed tank is 10 kg, the filter medium needs 1000 ÷ 10 = 100 m 3 , for example, 50 m 3 for the first high-speed sprinkling filter bed tank, It is good to fill the high-speed sprinkling filter tank with 30 m 3 at a time. If the amount of the filter medium is increased, the BOD load per 1 m 3 of the filter medium can be reduced, and more relaxed processing can be performed. In the case of the present invention, the BOD load per 1 m 3 of the filter medium can be up to about 1.5 to 15 kg.
[0011]
This filter medium load may be increased when the BOD discharge standard of the treated water is high (the standard is sweet), but the load cannot be increased when the discharge standard is as severe as 20 to 30 ppm. Incidentally, watering per filter medium 1 m 3 at our fast watering filter bed vessel, the chelating is completed by circulating 30 m 3 / day ~40m 3 / day. In the case of high-concentration wastewater, chelation can be promoted by circulating wastewater of 50 m 3 / day per 1 m 3 of filter medium in the previous stage. In the latter part, 40 m 3 / day is sufficient. When circulating the effluent of the filter medium 1 m 3 per 50 m 3 / day, to the drainage 100m 3 / m 3 × 50m 3 / day ÷ 24 hours ÷ 60 minutes ≒ 3.5 m 3 / min of the amount may be pumped up Become.
[0012]
If wastewater of the same concentration and amount is treated by the conventional activated sludge method, if it is treated at 1000 ppm, a 10-fold dilution is required. And this in treatment with 2-day activated sludge tank of 100m 3 × 10 × 2 = 2000m 3 is required. On the other hand, in the case of the present invention, a total activated sludge tank of 400 m 3 (450 m 3 in excess) is sufficient, and a significant reduction in installation area can be realized.
[0013]
Thus, according to the biological treatment method of the present invention, wastewater containing high-concentration BOD components and norheke components, such as swine wastewater and food industry wastewater, can be treated in a shorter time and with a smaller device to meet wastewater standards. The only problem that is difficult to solve is the problem of coloring. The coloring component is said to be a humic substance or a carbon compound and is a component of BOD or COD. However, there are cases where the degree of coloring is severe even within the range of the wastewater standard. The degree of coloring decreases when the treated wastewater is passed through an anaerobic tank or a weak anaerobic tank again, but cannot be completely decolorized. If activated carbon is used, complete decolorization is possible, but it causes a significant cost increase.
[0014]
The following experimental results have been reported for the coloration of wastewater that has undergone biological treatment. That is, the organic matter in the barn effluent is roughly divided into components having a molecular weight of 3000 or more with a low TOC but high chromaticity and components having a molecular weight of 3000 to 100 with a low chromaticity but high TOC. In the biological treatment (aerobic treatment), the latter can be decomposed, but the former is difficult to decompose. And although the former density | concentration did not increase by aerobic treatment, the phenomenon which chromaticity increased was seen. This is presumably because a substance having a molecular weight of 3000 or more has an azo group, and the degree of color development was increased in an aerobic atmosphere (water treatment technology, Vol. 40 No. 12 1999).
[0015]
This is consistent with our experience. And also in the above-mentioned processing apparatus, the chromaticity of treated water is low by the treatment in the denitrification / reduction tank (13). However, although the coffee color is still brownish, it is far from colorless.
[0016]
Accordingly, the present inventors have further studied on the decolorization of the colored treated water subjected to the above-mentioned treatment, and as a result, have come up with the adoption of electrolysis. That is, a substance having a molecular weight of 3000 that cannot be decomposed by the aerobic biological treatment was separated and decomposed by electrolysis. However, since these substances are very difficult to separate and decompose, it is necessary to increase the voltage. For this reason, it has been found that the metal used for ordinary electrolysis has a very high temperature including platinum and is difficult to use. In addition, various metals and organic substances remain in the treated waste water, and aluminum and iron are not worn out and dirty due to corrosion, and stainless steel can be used for the anode because chromium and other metals are eluted. Can not. In the case of platinum, neither the anode nor the cathode has these drawbacks, but a high voltage is applied, so the heat is intense and the cost is high, so it cannot be used for wastewater treatment.
[0017]
Therefore, when a carbon iron rod sintered with carbon and iron is used for the anode and a stainless steel rod is used for the cathode, even when a current of 10 to 20 V, 15 to 25 A (experimental machine) is passed, the heat generation is about 50 ° C., and There was no elution from the electrode. In addition, since no excessive current flows and consumption of electricity is reduced, and separation and decomposition of organic substances can be performed with certainty, the treated water is almost colorless and the decolorization is performed completely. In addition, when it is this electric current value, the water temperature will also be 70 degreeC or more in platinum. Moreover, in the case of wastewater treatment by conventional electrolysis, chemicals are injected for the purpose of improving the electrical conductivity and adjusting the pH, but in the case of the present invention they are not necessary at all. . This seems to be because the electrode, voltage and other conditions are consistent with the wastewater treatment. Note that the current value in an actual apparatus is 50 to 1000 A, depending on the capacity of the apparatus. The electrolysis treatment time is about 1 hour when the color of the drainage is light brown, and about 2 hours when the color is dark like coffee.
[0018]
However, when electrolysis is performed for a long time, metal deposits are observed on the electrode, particularly the cathode. In such a case, the electrode is generally reversed so that the metal adhering to the cathode is peeled off. However, in the case of platinum or other metal electrodes, there is no problem even if it is reversed for a long time of 1 hour or more, but in the case of the carbon iron electrode, when the electrode is reversed, the structure of the sintered body is damaged by the shock. However, there is a risk of becoming tattered. Therefore, in the present invention, it is necessary to perform this reversal for an extremely short time of about 1 to 5 minutes and to repeat this several times a day. If the cathode is not sufficiently cleaned because the reversal time is short, cleaning is promoted by applying ultrasonic waves. By the way, although it is a short time, stainless steel temporarily becomes an anode by reversal, and as a result, metals such as chromium may be eluted from the stainless steel. Therefore, it is preferable to use titanium or tantalum instead of stainless steel. Titanium is the most preferable because it can be obtained at a relatively low cost.
[0019]
As described above, when the water biologically treated by the method of the present invention is further electrolyzed with carbon iron as an anode and stainless steel or titanium or tantalum as a cathode, an organic substance having a molecular weight of 3000 or more is separated and decomposed and decolorized. Along with the treatment, ammonia is converted into nitrogen gas, and phosphorus is also converted into a phosphoric acid compound to remove most of it. More preferably, the treatment liquid is heated to around 50 ° C. by the heat generated during electrolysis, and the treatment lasts for about 1 to 2 hours, so that many effects such as the ability to kill viruses and bacteria are possible. It is obtained. The electrolysis of the method of the present invention is extremely excellent in decoloring properties. The biological treatment of the present invention has an aeration time as short as about 1/3 compared to a normal biological treatment method (about 30 days are about 10 days). Therefore, it is considered that an increase in color development due to oxidation of a substance having a molecular weight of 3000 or more is small.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 shows an example of a flowchart in the case of treating food factory effluent based on the method of the present invention. This wastewater is wastewater from a Sakai factory. The raw water has a BOD concentration of 2000 to 15000 ppm (average 4500 ppm), a norhexane component concentration of 1500 to 25000 ppm (average 6000 ppm), and a daily drainage amount of 45 m 3 / day. It passes through the denitrification / reduction tank 13 to the precipitation tank 14 and is discharged.
[0021]
The drainage standards for river discharge are BOD of 120 ppm or less and norhex component of 30 ppm or less. Therefore, the drainage standard formula of this factory is as follows.
BOD: 45 m 3 / day × 4500 ppm × 0.003 = 202.5 kg / BOD / day oil content: 45 m 3 / day × 6000 ppm × 0.003 = 270 kg / oil content / day, In this example, the final treated BOD was 30 ppm or less, norhex component was 5 ppm or less.
[0022]
That is, 202.5 kg / BOD · day, 270 kg / oil / day are processed. This process was performed by the apparatus shown in FIG. In FIG. 1, the factory wastewater collected in the raw water tank 1 is solid-liquid separated by the screen device 2 and sent to the adjustment tank 3. The waste water sent quantitatively from the adjustment tank 3 is a first circulation tank 6 that combines a high-speed watering filter bed tank 4 and an activated sludge tank 5, and also a high-speed watering filter bed tank 7 and an activated sludge tank 8. It processes sequentially in the 3rd circulation tank 12 which combined the 2nd circulation tank 9, the high-speed watering filter bed tank 10, and the activated sludge tank 11. FIG. The treated water is sent to the denitrification tank / reduction tank 13 and further separated from the sludge in the sedimentation tank 14 and discharged into the river as treated water. Reference numeral 15 denotes an effective bacteria culture tank, in which treated water, other nutrient sources, and effective bacteria are added and cultured, and added to each high-speed sprinkling filter bed as appropriate. Here, the effective bacteria means that a group of microorganisms having a high decomposability according to the type of organic matter such as oil, starch, protein, etc. is cultured in advance, the wastewater to be treated is analyzed, and the components contained therein are analyzed. It is a combination of microorganisms, and is a group of microorganisms combining bacteria such as the genus Pseudomonas and Bacillus as the microorganism group. In this way, good microbial treatment can be performed from the beginning of the treatment. If this fungal group is activated in a balanced manner with other naturally occurring fungal groups, this addition may be stopped.
[0023]
The capacity of the adjustment tank 3 is 10 hours a day (the treatment is performed continuously for 24 hours), 45 m 3 / day × (24−10) ÷ 24 = 26 m 3 . Again, aeration processing is performed. The amount of air is 3.5 m 3 / H per 1 m 3 of water. The general air amount is about 1.8 to 2.2 m 3 / H, but in the case of the present invention, it is due to the high concentration waste water. Further, if the amount of water at that time is 75% of the tank, 26 m 3 × 0.75 = 19.5 m 3 is required. The required amount of air is 19.5 m 3 × 3.5 m 3 /H≈0.14 m 3 / min. In the adjustment tank 3, the oil content cannot be decomposed, and the BOD is reduced by about 15 to 20%. If the BOD removal rate is 15%, then 202.5 kg / day × 15% = 172.2 kg / day.
[0024]
The capacity of the first and second activated sludge tanks 5 and 8 forming the first and second circulation tanks 6 and 9 is 45 m 3 × 2 days = 90 m 3 , as a total stay of 2 days (contact). The amount of the activated sludge tank 3 is 45 × 2/3 = 30 m 3 as 2 / 3-day retention. The amount of air in each activated sludge tank is 2.5 in the front tank, 1.8 in the rear tank, and 2 m 3 / H on average per 1 m 3 of water. Therefore, (90 m 3 +30 m 3 ) × 2 m 3 ÷ 60 minutes = 4 m 3 / min in three tanks.
[0025]
The amount of filter medium 41 to be put in each high-speed sprinkling filter bed tank 4, 7, 10 is 5 kg / m 3 per 1 m 3 of filter medium load for river discharge, 202.5 kg / day ÷ 5 kg / m 3 = 40.5 m Use 3 . When the amount of water sprayed is 40 m 3 / day per 1 m 3 of filter medium, 40.5 m 3 × 40 m 3 /day≈1.125 m 3 / min. In addition, the crushed product of the quartz rough surface rock of the size of fist size or about 3 times that was used for the filter medium. Reference numeral 42 is a water spray pipe, and reference numeral 43 is a diffuser pipe disposed in each activated sludge tank 5, 8, 11.
[0026]
The removal rate in the circulation tank is 172.2 kg / day × 30% = 120.5 kg / BOD · day, 270 kg / day × 50% = 135 kg as BOD 30% and norhex component 50% in the first circulation tank 6. / Nor hex ingredient / day. Similarly, in the second circulation tank 9, the removal rate is 60% in BOD, 120.5 kg / day × 60% = 48.2 kg / day, the norhex component is 85%, 135 kg / day × 85% = 2.25 kg. / Day. In the third circulation tank 12, the removal rate is 98% in BOD, 48.2 kg / day × 98% = 0.96 kg / day, the norhex component is 99%, and 20.25 kg / day × 99% = 0.20 kg. / Day.
[0027]
Capacity of denitrification combined reduction vessel 13, when 3 hours residence time, the 45 m 3 / day ÷÷ 24 ÷ 3 = 5.6 m 3 . Somewhat and 6m 3 as large. The amount of air in this tank may be about stirring. The removal rate in the denitrification tank / reduction tank 13 is about 5% in terms of BOD. Finally, as a result of the processing in the apparatus of the present invention, the BOD is 0.96 × 0.5% = 0.91 kg / day.
[0028]
(Embodiment 2)
Pig farm wastewater (10 m 3 / day) having a BOD of 6000 to 20,000 ppm was treated using the same apparatus as in the above example. In this embodiment, the water treated in the first circulation tank 6 and the second circulation tank 9 as the first stage is stored in the settling tank 14, and the wrinkled water is further treated in the two circulation tanks as the second stage. Next, the denitrification / reduction tank 13 and the precipitation tank 14 are drained. As a result, the BOD became 1100-1500 after the second-stage circulation tank treatment, and when this was precipitated and separated, a BOD of 15-35 was obtained, which had a beautiful numerical value that could be discharged as it was.
[0029]
(Embodiment 3)
When the treated wastewater obtained in Example 2 was further electrolytically treated with the electrolyzer 16 shown in FIGS. 2 and 3, surprisingly, treated water having almost no coloration and extremely high transparency was obtained. Moreover, the BOD ability of this treated water was 3 to 5 ppm. This is more beautiful than general river water (several to tens of ppm). The electrolysis apparatus 16 is a laboratory model, and a carbon iron rod 18 having a diameter of 2.5 cm and a length of 20 cm as an anode and a cathode inside a plastic tank 17 having a width of 16 cm, a length of 100 cm, and a depth of 3 cm. As shown in FIG. 2, stainless steel bars 19 having the same dimensions are alternately arranged. Reference numeral 18a denotes an anode rod terminal, 19a denotes a cathode cord mounting screw hole, and 20 denotes an insulating rubber plate. The rods 18 and 19 are inserted and supported in through holes provided in the lower frame 21 and the upper frame 22 with an interval of about 5 mm. Further, an aeration air outlet 23 is provided in the lower part of the plastic tank 17, and an inlet 25 of the drainage 24 and an outlet 27 of the electrolyzed drainage 26 are provided in the upper part. The processing conditions were 13 to 18 V, 15 to 25 A, and circulation processing was performed for about 1 hour.
[0030]
【The invention's effect】
As described in detail above, the method of the present invention circulates waste water containing BOD and norhex component at a high concentration between a high-speed watering filter bed filled with crushed quartz rough rock and an activated sludge tank. The concentration of these organic substances is reduced. In addition, the bacteria mixed with the wastewater to be treated is alive on the filler of the high-speed sprinkling filter.
[0031]
Therefore, the BOD volume load is orders of magnitude greater than the high-speed sprinkling filter bed method in which clogging occurs when the BOD volume load becomes high, such as pig farm wastewater and food wastewater, and the activated sludge method in which sludge does not settle and good treatment is not performed. Even in wastewater, the oxidation of organic matter proceeds with time, and the molecular weight of the polymer substance is reduced and the BOD component and the norhex component are reduced.
[0032]
In addition, the apparatus of the present invention incorporates a high-speed watering filter bed filled with a crushed quartz rough rock between the raw water tank and the settling tank, and an aeration apparatus disposed below the high-speed watering filter bed tank. A plurality of treatment tanks each including an activated sludge tank are arranged. Accordingly, there is a feature that the waste water can be effectively treated even if the installation area is small.
[0033]
Furthermore, when the electrolysis treatment of the present invention is carried out, there is no corrosion of the electrode and the heat generation is small, and there is no chemical injection as in the conventional case, and the colored biologically treated water is almost colorless and decolorized to the present time. In addition, BOD, oil, nitrogen and phosphorus are significantly removed, and the effect of almost completely killing viruses and bacteria is obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method of the present invention.
FIG. 2 is a plan view showing an example of the electrolysis apparatus of the present invention.
FIG. 3 is a longitudinal sectional view showing an example of the electrolysis apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Screen apparatus 3 Adjustment tank 4 High-speed sprinkling filter bed tank 41 Filter medium 42 Sprinkling pipe 43 Aeration pipe 5 Activated sludge tank 6 First circulation tank 7 High-speed sprinkling filter bed tank 8 Activated sludge tank 9 Second circulation tank 10 High-speed sprinkling filter bed 11 Activated sludge tank 12 Third circulation tank 13 Denitrification / reduction tank 14 Sedimentation tank 15 Effective bacteria culture tank 16 Electrolytic device 17 Plastic tank 18 Carbon iron bar 18a Anode bar terminal 19 Stainless bar 19a For cathode Cord mounting screw hole 20 Insulating rubber plate 21 Lower frame 22 Upper frame 23 Aeration air outlet 24 Drain 25 Inlet 26 Electrolyzed drain 27 Outlet

Claims (3)

BOD及びノルマルヘキサン抽出成分を高濃度に含む排水を、夾雑物を除いたのち濾材として石英粗面岩の破砕品を充填した高速散水濾床槽に通して好気的処理と弱嫌気的処理を行ない、該散水処理水を活性汚泥槽で曝気して好気的処理を行ない、更にその活性処理水を高速散水濾床槽に供して循環処理するとともに、活性処理水の一部を他の活性汚泥槽に送液して他の高速散水濾床槽との間で循環処理してBOD及びノルマルヘキサン抽出成分の濃度を低減させ、この循環処理を必要に応じて更に複数段繰り返して排水の浄化を行なうとともに、微生物処理した処理水を、カーボンと鉄を焼結したカーボン鉄棒を陽極とし、ステンレス、チタン或いはタンタル棒を陰極とした電気分解処理槽に投入して脱色処理をすることを特徴とする高濃度排水の微生物処理方法。 The wastewater containing BOD and normal hexane extract components at high concentration is passed through a high-speed sprinkling filter bed filled with crushed quartz rough rock as a filter medium after removing contaminants for aerobic treatment and weak anaerobic treatment. The aerated water is aerated in an activated sludge tank for aerobic treatment, and the activated treated water is circulated in a high-speed sprinkling filter bed, and a part of the activated treated water is subjected to other activities. Liquid is sent to the sludge tank and circulated between other high-speed sprinkling filter bed tanks to reduce the concentration of BOD and normal hexane extract components, and this circulation treatment is repeated in multiple stages as necessary to purify wastewater. The treatment water treated with microorganisms is subjected to decolorization treatment by introducing it into an electrolysis treatment tank using a carbon iron rod sintered with carbon and iron as an anode and stainless steel, titanium or tantalum rod as a cathode. Takano Microbial treatment method of waste water. 処理をすべき排水で馴致したシュードモナス属、バチルス属などのバクテリアを混合組み合わせた菌群を、その排水を処理する高速散水濾床槽の充填材に活着させ、必要に応じて、別途培養している菌群を、高速散水濾床槽に随時投入するものである、請求項1記載の高濃度排水の微生物処理方法。  Bacteria mixed with Pseudomonas spp. The microbial treatment method of high concentration waste water according to claim 1, wherein the fungus group is introduced into a high-speed sprinkling filter bed as needed. BOD及びノルマルヘキサン抽出成分を高濃度に含む排水を受け入れる原水槽、夾雑物を除いた原水を処理槽に定量送りする調整槽と、処理槽で処理した水を受け入れる沈殿槽との間に、石英粗面岩の破砕品を充填した高速散水濾床槽と、該高速散水濾床槽の下方に配置され曝気装置を組み込んだ活性汚泥槽を一組とした処理槽を複数組配置し、更に処理槽の次に嫌気脱窒槽を設け、更に、該嫌気脱窒槽の次に、カーボンと鉄を焼結したカーボン鉄棒を陽極とし、ステンレス、チタン或いはタンタル棒を陰極とした電気分解処理槽を設けたことを特徴とする高濃度排水の微生物処理装置。 Between the raw water tank that receives wastewater containing BOD and normal hexane extract components at high concentrations, the adjustment tank that quantitatively feeds the raw water excluding impurities to the treatment tank, and the precipitation tank that receives the water treated in the treatment tank, A plurality of treatment tanks, one set consisting of a high-speed sprinkling filter bed filled with crushed rough rocks, and an activated sludge tank installed under the high-speed sprinkling filter bed tank and incorporating an aeration device, are arranged for further processing. An anaerobic denitrification tank is provided next to the tank, and an electrolytic treatment tank is provided next to the anaerobic denitrification tank, with a carbon iron rod sintered with carbon and iron as an anode and a stainless steel, titanium or tantalum rod as a cathode. A microbial treatment apparatus for high-concentration wastewater.
JP2000142507A 1999-05-13 2000-05-15 Microbial treatment method and apparatus for high concentration wastewater Expired - Lifetime JP4492896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142507A JP4492896B2 (en) 1999-05-13 2000-05-15 Microbial treatment method and apparatus for high concentration wastewater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-133272 1999-05-13
JP13327299 1999-05-13
JP2000142507A JP4492896B2 (en) 1999-05-13 2000-05-15 Microbial treatment method and apparatus for high concentration wastewater

Publications (2)

Publication Number Publication Date
JP2001025782A JP2001025782A (en) 2001-01-30
JP4492896B2 true JP4492896B2 (en) 2010-06-30

Family

ID=26467667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142507A Expired - Lifetime JP4492896B2 (en) 1999-05-13 2000-05-15 Microbial treatment method and apparatus for high concentration wastewater

Country Status (1)

Country Link
JP (1) JP4492896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911437A (en) * 2018-09-10 2018-11-30 江苏澳洋生态园林股份有限公司 Underground sewage ecological purification and soil stabilizing apparatus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734504B2 (en) * 2001-03-13 2011-07-27 弘見 池知 Wastewater treatment by microorganisms
JP3930775B2 (en) * 2002-07-23 2007-06-13 カワナベ工業株式会社 Purification equipment for high concentration organic wastewater
CN1323038C (en) * 2005-12-09 2007-06-27 宁波德安城市生态技术集团有限公司 Biological reactor for treating sewage
JP5002151B2 (en) * 2005-12-14 2012-08-15 株式会社豊田中央研究所 Method and apparatus for treating wastewater containing ethylene glycol
JP4647553B2 (en) * 2006-06-23 2011-03-09 永和国土環境株式会社 Purification device
JP2010142708A (en) * 2008-12-17 2010-07-01 Tottori Prefecture Apparatus and method for purifying urine sewage
JP4536158B1 (en) * 2010-04-15 2010-09-01 三木理研工業株式会社 Colored wastewater treatment method and colored wastewater treatment apparatus used in the method
JP5084866B2 (en) * 2010-05-07 2012-11-28 東西化学産業株式会社 Organic wastewater treatment equipment
JP5286475B2 (en) * 2010-05-31 2013-09-11 有限会社尚コントリビューション High concentration wastewater treatment system
CN103964615A (en) * 2014-04-17 2014-08-06 浩溪机械(上海)有限公司 Environment-friendly full-automatic waste water oil-separation promotion integrated equipment
CN104609643A (en) * 2014-07-17 2015-05-13 刘洪宽 Energy-saving sewage treatment composite technology AMO process
CN105621818B (en) * 2016-03-25 2019-03-19 湖南湘牛环保实业有限公司 A kind of brewed processing method with boiling production waste water of betel nut
JP6834354B2 (en) * 2016-10-31 2021-02-24 王子ホールディングス株式会社 Water treatment equipment and management method of water treatment equipment
CN111423062A (en) * 2020-04-13 2020-07-17 中国水利水电科学研究院 Sewage purification system
CN112028405A (en) * 2020-09-04 2020-12-04 魏子晨 Novel green wastewater treatment process for factory
CN112591978B (en) * 2020-11-16 2022-03-08 广东石油化工学院 Advanced treatment method for wastewater generated in catalytic cracking catalyst production

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923453A (en) * 1972-06-28 1974-03-01
JPS5020562A (en) * 1973-06-25 1975-03-04
JPS526816B2 (en) * 1973-08-17 1977-02-25
JPS51127572A (en) * 1975-04-25 1976-11-06 Aisin Seiki Co Ltd Apparatus for biological oxidation of waste water
JPS52120550A (en) * 1976-04-05 1977-10-11 Hitachi Ltd Water treating apparatus
JPS5319668A (en) * 1976-08-04 1978-02-23 Masato Hara Treating of excrement of cattle and pig by using water sprinkled filtering bed comprising ceramic stones
JPS5426058A (en) * 1977-07-28 1979-02-27 Yoshiaki Nakamura Multiitank sprinkling filter method
JPS5431967A (en) * 1977-08-15 1979-03-09 Matsushita Electric Works Ltd Device of purifying waste water
JPS5681184A (en) * 1979-12-03 1981-07-02 Masato Hara Sewage purifying filter bed utilizing kokaseki
JPS5835997U (en) * 1981-08-31 1983-03-09 原 正登 Sewage treatment tank using anti-firestone
JPS59222294A (en) * 1983-05-30 1984-12-13 Nippon Kankyo Seibi:Kk Purification of lake water or river water using contact material
JPH0377696A (en) * 1989-08-18 1991-04-03 Bunji Kurosaki Treatment of high concentration-organic waste water
JPH05337493A (en) * 1992-06-10 1993-12-21 Matsushita Electric Ind Co Ltd Treatment of concentrated organic waste water containing solid
JP3150862B2 (en) * 1995-01-20 2001-03-26 株式会社荏原製作所 Method for treating wastewater containing n-hexane extract
JPH08281271A (en) * 1995-04-14 1996-10-29 Osaka Prefecture Treating device of waste dyeing water and treatment of the same
JP3220355B2 (en) * 1995-05-15 2001-10-22 オルガノ株式会社 Electrochemical treatment method for water to be treated
JPH10151493A (en) * 1996-11-22 1998-06-09 Hirai Kogyo Kk System for removing nitrogen and phosphorus in wastewater
JPH10277554A (en) * 1997-04-09 1998-10-20 Konica Corp Water treatment apparatus
JPH1142496A (en) * 1997-07-25 1999-02-16 Kl Trading:Kk Method and device for purifying contaminated waste water by microorganism
JP3314205B2 (en) * 1997-12-26 2002-08-12 株式会社オールマイティー High-concentration wastewater treatment apparatus and treatment method
JP2000263049A (en) * 1999-03-18 2000-09-26 Toto Kagaku Kogyo Kk Method and apparatus for cleaning barn effluent
JP2001029992A (en) * 1999-07-21 2001-02-06 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk Method and apparatus for treating polluted water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911437A (en) * 2018-09-10 2018-11-30 江苏澳洋生态园林股份有限公司 Underground sewage ecological purification and soil stabilizing apparatus
WO2020052210A1 (en) * 2018-09-10 2020-03-19 江苏澳洋生态园林股份有限公司 Subsurface sewage ecological purification and soil improvement device

Also Published As

Publication number Publication date
JP2001025782A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP4492896B2 (en) Microbial treatment method and apparatus for high concentration wastewater
JP2007021431A (en) Sludge treatment method
JP2005211879A (en) Biological treatment method for organic waste water
CN106977040A (en) The technique that slaughtering wastewater is handled using UCT
JP2002263684A (en) Method and device for treating waste water by microorganism
ES2157879T1 (en) PROCEDURE AND INSTALLATION FOR THE TREATMENT OF WASTEWATER PROCESSING OLEAGINOUS AND CEREAL FRUITS.
KR100298510B1 (en) wastewater treatment plant by high-speedly bio-degrading method for high-concentration organic wastewater
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
EP1531123A3 (en) Method and installation for the treatment of soil water from ships
CN110734199A (en) garlic processing wastewater treatment process
KR20020031118A (en) Treatment method for high concentrated organic wastewater
EP0999997B1 (en) Process for decoloring liquids
CN104193115A (en) Technology for treating slaughter wastewater by adopting biological filter
KR20170045707A (en) A treatment method of concentrated waste water oder using soilmicrobes population
JP2013184093A (en) Apparatus and method for biologically treating oil and fat-containing wastewater
JPH11277087A (en) Method and apparatus for treating organic wastewater
JP2001321772A (en) Electrolytic treatment method for biologically treated wastewater
KR950003545B1 (en) Treatment method and apparatus for waste water containning sugar
KR100433675B1 (en) Apparatus for disposing waste water and disposing method thereof
KR100817792B1 (en) Advanced swage and waste water treatment method and apparatus use of micro filter, and cultured bacillus species bacteria etc
CN109970282A (en) A kind of vegetable product high-salt sewage treatment process
CN205088063U (en) Handle high -concentration ammonia nitrogen organic waste water's equipment
CN1234626C (en) Process for comprehensively treating high-concentration water organic water
KR20190004168A (en) A waste water of stock raising disposal plant
KR100424068B1 (en) Apparatus for wastewater treatment from livestock farm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250