JP4491742B2 - Interacting monoplane hyperboloid structure by cylinder - Google Patents

Interacting monoplane hyperboloid structure by cylinder Download PDF

Info

Publication number
JP4491742B2
JP4491742B2 JP2006114992A JP2006114992A JP4491742B2 JP 4491742 B2 JP4491742 B2 JP 4491742B2 JP 2006114992 A JP2006114992 A JP 2006114992A JP 2006114992 A JP2006114992 A JP 2006114992A JP 4491742 B2 JP4491742 B2 JP 4491742B2
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
radius
leaf hyperboloid
hyperboloid structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006114992A
Other languages
Japanese (ja)
Other versions
JP2007255692A (en
Inventor
俊治 村井
Original Assignee
俊治 村井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊治 村井 filed Critical 俊治 村井
Priority to JP2006114992A priority Critical patent/JP4491742B2/en
Publication of JP2007255692A publication Critical patent/JP2007255692A/en
Application granted granted Critical
Publication of JP4491742B2 publication Critical patent/JP4491742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Jib Cranes (AREA)

Description

本発明は、円柱部材が互いに接して形成される一葉双曲面体構造に関するものである。The present invention relates to a one-leaf hyperboloid structure in which cylindrical members are formed in contact with each other.

円柱は、同一断面積を有する角材に比較して、力学的に強い部材であることが知られている。しかし、円柱は、円柱同士の結合あるいは他部材との結合が、角材に比べて難度が高いことから重量物を支持する支持台の部材として使われることは比較的少なかった。円柱は、鉛直柱として使用された例は数多くあるが、斜めに使用した斜柱として使用されることは少なかった。It is known that a cylinder is a member that is mechanically stronger than a square member having the same cross-sectional area. However, the cylinder is relatively rarely used as a member of a support base for supporting a heavy object because the connection between the cylinders or the connection with other members is more difficult than the square member. Although there are many examples of the cylinder used as a vertical column, it was rarely used as an oblique column used obliquely.

支持台の多くは、鉛直柱と水平桁の組み合わせで作成されることが多かった。鉛直柱と水平桁の結合は、木材の場合、木組みやネジ、クギにより、鉄材の場合、ボルトや溶接により固定され、施工されてきた。しかし、鉛直住と水平桁からなる矩形状の構造体は静定構造ではなく、静定構造にするには筋交いやトラスなど斜めの補強材を必要とする。最小の部材を以って静定構造を形成するには、柱を斜めにして、三角状の構造を形成することが望ましい。Many of the support bases were often made of a combination of vertical columns and horizontal girders. The connection between a vertical column and a horizontal girder has been fixed and constructed by a wooden frame, screws and nails in the case of wood, and by bolts or welding in the case of iron. However, a rectangular structure composed of vertical dwellings and horizontal girders is not a static structure, and an oblique reinforcing material such as braces or trusses is required for a static structure. In order to form a static structure with the minimum number of members, it is desirable to form a triangular structure by tilting the pillars.

支持台を支える柱を斜めにした斜柱は、仏寺の鐘つき堂に数少ない例はあるが、全体の構造は水平梁で固定されている。神戸のマリンタワーは、斜めに配置した鉄柱を円弧状に並べた一葉双曲面体構造だが、全体構造は水平方向の桟材で固定されている。同様の一葉双曲面体構造として、直線状の籐を多数本斜めに配置して、横材で固定した丸椅子がある。いずれも斜めの柱と水平方向の部材の組み合わせで静定構造を形成している。There are only a few examples of the tilted pillars that support the support stand, but the whole structure is fixed with horizontal beams. The marine tower in Kobe has a single-leaf hyperboloid structure in which steel columns arranged diagonally are arranged in an arc, but the entire structure is fixed with horizontal bars. As a similar one-leaf hyperboloid structure, there is a round chair in which a large number of linear rattans are diagonally arranged and fixed with cross members. In both cases, a static structure is formed by a combination of diagonal columns and horizontal members.

太さのない線を円または楕円に沿って一定の勾配を保って動かしたとき得られる構造は、一葉双曲面として知られる。一葉双曲面は、線分で構成できることから線織面としても知られる(参考文献:小林昭七著:曲線と曲面の微分幾何学(改訂版):裳華房2002年3月20日、第30版)。数式で表すと下記のようになる。
/a+y/b−z/c=1
本発明の場合、z=0において、円になる一葉双曲面体構造を扱うので、a=b=r´(半径)である。図1は、一葉双曲面の概念を示す図である。この場合の線織面を形成する直線の傾斜角θは、上に示した数式と関連付けると、次の式で表される。
θ=arctan(c/r´)
The structure obtained when a line with no thickness is moved along a circle or ellipse with a constant gradient is known as a single leaf hyperboloid. The Ichiyo hyperboloid is also known as a ruled surface because it can be composed of line segments (reference: Shobayashi Kobayashi: differential geometry of curves and curved surfaces (revised version): 裳 華 房 March 20, 2002, No. 1 30 edition). When expressed in mathematical formulas,
x 2 / a 2 + y 2 / b 2 -z 2 / c 2 = 1
In the case of the present invention, since a single leaf hyperboloid structure that becomes a circle is handled at z = 0, a = b = r ′ (radius). FIG. 1 is a diagram showing the concept of a single leaf hyperboloid. In this case, the inclination angle θ of the straight line forming the ruled surface is expressed by the following equation when associated with the above equation.
θ = arctan (c / r ′)

一葉双曲面体構造は、円柱部材を切削せずに、斜めに配置して静定構造を形成できる可能性がある。このような構造は、3本の円柱を斜めに立てかけ、集合部を縄で結び、ウインチや滑車などを吊り下げる支持台があり、昔から使用されてきた。これと同様の構造は、野球のバット3本を斜めに組み合わせ、互いに交錯する部分を紐で結び、その上にボールを置く飾りに見られる。これをよく観察すれば、3本の円柱がz=0の断面において、ことごとく接している一葉双曲面体構造であることが分かる。The one-leaf hyperboloid structure may be able to form a static structure by obliquely arranging the cylindrical member without cutting. Such a structure has been used for a long time, with a support base that leans three cylinders diagonally, connects the gathering portions with ropes, and suspends winches, pulleys, and the like. A structure similar to this can be seen in an ornament in which three baseball bats are combined diagonally, the crossing portions are tied together with a string, and a ball is placed on it. If this is observed closely, it will be understood that the three cylinders have a one-leaf hyperboloid structure where they are in contact with each other in the cross section of z = 0.

3本の円柱を斜めに組み合わせて、集合部を縛ることにより一葉双曲面体構造を形成する手段は、なんらの工作を施さなくて済むきわめて優れた手段であるにもかかわらず、4本以上の複数本の円柱を同様の手段で一葉双曲面体構造を形成して、支持台を製作した例はなかった。その理由は、4本以上の円柱を等しい傾斜角で斜めに配置して、互いに接するような一葉双曲面体構造を形成するには、本発明で明らかにするように、特殊な幾何学的条件を満足させる手段と、それを維持する手段を必要とし、3本組みに比較して、はるかに難易度が高いからである。本発明においては、円柱が互いに接して一葉双曲面を構成する構造を、互接一葉双曲面体構造と呼ぶ。The means for forming a one-leaf hyperboloid structure by obliquely combining three cylinders and constraining the gathering portion is an excellent means that does not require any work. There was no example in which a support base was manufactured by forming a single-leaf hyperboloid structure using a plurality of cylinders by the same means. The reason for this is that, in order to form a one-leaf hyperboloid structure in which four or more cylinders are arranged obliquely at an equal inclination angle so as to be in contact with each other, a special geometric condition is used, as will be clarified in the present invention. This is because it requires a means for satisfying and a means for maintaining it, and it is much more difficult than the triple set. In the present invention, a structure in which the cylinders are in contact with each other to form a one-leaf hyperboloid is called a mutual one-leaf hyperboloid structure.

発明が解決しようとする課題Problems to be solved by the invention

4本以上の等しい太さの円柱を斜めに配置して静定状態の一葉双曲面体構造を形成する場合、円柱が互いに接した状態で、互接一葉双曲面体構造を形成することができる。本発明におい複数の円柱が互いに接して集合する部分を、本発明においては、接合部と呼ぶことにする。接合部は、[0005]で示した数式において、z=0に対応する断面である。接合部において円柱が傾斜角を持って互いに接する場合、円柱の水平断面は楕円となり、該楕円はある一定の円に内接円または外接円に沿って互いに接することになる。[0004]に述べた神戸のマリンタワーおよび籐椅子は一葉双曲面体構造を形成するが、斜めに配置された部材は互いに接しておらず、本発明で着目する幾何学的条件は満足していない。When four or more cylinders of equal thickness are arranged obliquely to form a one-leaf hyperboloid structure in a static state, the one-leaf hyperboloid structure can be formed in a state where the cylinders are in contact with each other. . In the present invention, a portion where a plurality of cylinders are brought into contact with each other is referred to as a joint portion in the present invention. The joint portion is a cross section corresponding to z = 0 in the mathematical formula indicated by [0005]. When the cylinders are in contact with each other at an angle of inclination at the joint, the horizontal cross section of the cylinders is an ellipse, and the ellipse is in contact with a certain circle along an inscribed circle or circumscribed circle. [0004] The Kobe Marine Tower and rattan chair described in [0004] form a one-leaf hyperboloid structure, but the diagonally arranged members are not in contact with each other, and the geometrical conditions noted in the present invention are not satisfied. .

本発明の第一の課題は、Nを4以上の整数とするN本数の半径rの円柱で構成される一葉双曲面体構造であって、該一葉双曲面体構造の接合部に円柱を集合せしめた時に、N、r、θの値によって、一義的に算出される半径r1の内接円及び半径r2の外接円の円周に沿って、隣り合う円柱がことごとく互いに接する一葉双曲面構造を形成することを特徴とする構造において、N、r、θ、r1、r2の関係を定める算出式、すなわち幾何学的条件を明らかにすることである。図2は、半径rの断面を有する円柱による互接一葉双曲面体構造の概念を示す図であって、N=6の場合の互接一葉双曲面体構造を上からみた図を示している。図3は、z=0におけるxy投影面において、斜めに貫通する複数の円柱が楕円の断面形状をなして互いに接している状態を示している。図3において、r1は内接円の半径、r2は外接円の半径をあらわす。A first problem of the present invention is a one-leaf hyperboloid structure composed of N cylinders with a radius r, where N is an integer equal to or greater than 4, and the cylinders are assembled at the junction of the one-leaf hyperboloid structure. A one-leaf hyperboloid structure in which adjacent cylinders are in contact with each other along the circumference of an inscribed circle with a radius r1 and a circumscribed circle with a radius r2 that are uniquely calculated according to the values of N, r, and θ. In the structure characterized by forming, the calculation formula that defines the relationship among N, r, θ, r1, and r2, that is, the geometric condition is clarified. FIG. 2 is a diagram showing the concept of an interconnected single leaf hyperboloid structure using a cylinder having a cross section of radius r, and shows a top view of the interconnected monoleaf hyperboloid structure when N = 6. . FIG. 3 shows a state where a plurality of obliquely penetrating cylinders are in contact with each other with an elliptical cross-sectional shape on the xy projection plane at z = 0. In FIG. 3, r1 represents the radius of the inscribed circle, and r2 represents the radius of the circumscribed circle.

本発明の第二の課題は、前記の互接一葉双曲面体構造が分解せずに静定状態を維持する手段を考案することである。本発明においては、後述するように、接合部において、内接円柱、内接正多角柱及び外接円環を利用して互接一葉双曲面体構造が分解することを防ぐ手段を考案した。A second object of the present invention is to devise a means for maintaining a static state without disassembling the above-mentioned mutual one-leaf hyperboloid structure. In the present invention, as will be described later, means has been devised for preventing the disjoint one-leaf hyperboloid structure from being decomposed at the joint using an inscribed cylinder, an inscribed regular polygonal cylinder, and a circumscribed ring.

本発明の第三の課題は、本発明によって形成される互接一葉双曲面体構造の利用形態を考案することである。本発明においては、実施例に示されるように、花立て台、テーブル、椅子、監視台、多角錐屋根骨組み等に利用できることが明らかにされた。The third object of the present invention is to devise a form of utilization of an interconnected one-leaf hyperboloid structure formed by the present invention. In the present invention, as shown in the examples, it has been clarified that the present invention can be used for a flower stand, a table, a chair, a monitoring table, a polygonal pyramid roof frame, and the like.

課題を解決するための手段Means for solving the problem

Nを4以上の整数とするN本数の半径rの円柱で構成される一葉双曲面体構造であって、一定の円周上に等間隔に配置されたN本の円柱が与えられた傾斜角θを以って一葉双曲面体構造の接合部に集合せしめた時に、N、r、θの値によって、一義的に算出される内接円(半径r1)及び外接円(半径r2)の円周に沿って、隣り合う円柱がことごとく互いに接し、互接一葉双曲面体構造を形成することを特徴とする構造において、N、r、θ、r1、r2の関係を定める算出式は、次の式で表される。下記の式は、z=0の断面において、傾斜角θを有する円柱の楕円断面が互いに接する条件を誘導することによって、発明者が開発したものである(図3参照)。
r1=r(p−1)
r2=r(p+1)
ここで、pは、次の式で算出される。
p={1+(tanφ・sinθ)}1/2/(tanφ・sinθ)
ここで、φは、次の式で与えられる。
φ=180°/N
上記の幾何学的条件を満足する接合部の位置は任意でよく、円柱の先端部であっても、中間位置であっても良い。円柱の長さは必ずしも同一でなくても、前記幾何学的条件を満足する集合部が存在すれば、互接一葉双曲面体構造を部分的に形成できる。該互接一葉双曲面体構造を支持体として使用する場合には、それぞれ等しい長さの円柱で構成されることが望ましい。
Inclined angle with a single-leaf hyperboloid structure composed of N cylinders with a radius r, where N is an integer greater than or equal to 4, and N cylinders arranged at equal intervals on a certain circumference Circles of an inscribed circle (radius r1) and a circumscribed circle (radius r2) that are uniquely calculated according to the values of N, r, and θ when assembled at the junction of the one-leaf hyperboloid structure with θ. In a structure characterized in that all adjacent cylinders are in contact with each other along the circumference to form an adjacent one-leaf hyperboloid structure, a calculation formula for determining the relationship among N, r, θ, r1, and r2 is as follows: It is expressed by a formula. The following formula was developed by the inventor by inducing a condition in which elliptical cross sections of cylinders having an inclination angle θ are in contact with each other in a cross section of z = 0 (see FIG. 3).
r1 = r (p-1)
r2 = r (p + 1)
Here, p is calculated by the following equation.
p = {1+ (tan φ · sin θ) 2 } 1/2 / (tan φ · sin θ)
Here, φ is given by the following equation.
φ = 180 ° / N
The position of the joint that satisfies the above geometric condition may be arbitrary, and may be the tip of a cylinder or an intermediate position. Even if the lengths of the cylinders are not necessarily the same, if there is an aggregate portion that satisfies the geometrical condition, it is possible to partially form an interconnected one-leaf hyperboloid structure. In the case of using the one-leaf hyperboloid structure as a support, it is desirable that the structure is composed of cylinders of equal length.

円柱の半径r、本数Nおよび内接円半径r1または外接円r2が与えられている場合、互接一葉双曲面体構造の幾何学条件を満足する円柱の傾斜角θは、下記の式で与えられる。
p=(r1/r)+1 または p=(r2/r)−1
θ=arcsin{ 1/(( p−1)1/2・tanφ)}
When the radius r, the number N of cylinders, and the inscribed circle radius r1 or circumscribed circle r2 are given, the inclination angle θ of the cylinder that satisfies the geometrical condition of the connected one-leaf hyperboloid structure is given by the following equation: It is done.
p = (r1 / r) +1 or p = (r2 / r) -1
θ = arcsin {1 / ((p 2 −1) 1/2 · tan φ)}

前記幾何学的条件を満足する互接一葉双曲面体構造を、z軸を鉛直に維持して分解しないように維持する手段は、外接円を円柱と一体化して固定する方法が考えられる。円柱が分解する時中心から離れる方向に移動することから、外接円を拘束することが合理的な固定方法となる。本発明の実施例においては、外接円の直径を有する円環の中で円柱が互いに接するように互接一葉双曲面体構造を形成する手段が考案され、その実現性が確認された。図4に示すように円環及び円柱にボルト穴を開け、回転自由な状態で結合し、ねじり回転を与えながら互接一葉双曲面構造を形成できる。外接円環の代わりに、外接正多角環を使用しても同様の効果が得られる。この場合、外接正多角環の形状は、該内接円の半径が、外接円r2に等しくなるように定めればよい。As a means for maintaining the mutual one-leaf hyperboloid structure satisfying the geometrical condition so as not to be decomposed while maintaining the z-axis vertically, a method of fixing the circumscribed circle integrally with the cylinder may be considered. Since the cylinder moves away from the center when it is disassembled, restraining the circumscribed circle is a reasonable fixing method. In the embodiment of the present invention, a means for forming an interconnected one-leaf hyperboloid structure so that the cylinders are in contact with each other in an annulus having a diameter of a circumscribed circle was devised, and its feasibility was confirmed. As shown in FIG. 4, it is possible to form a one-leaf hyperboloid structure while making a bolt hole in an annulus and a cylinder, coupling them in a freely rotating state, and applying torsional rotation. The same effect can be obtained by using a circumscribed regular polygonal ring instead of the circumscribed circle. In this case, the shape of the circumscribed regular polygon ring may be determined so that the radius of the inscribed circle is equal to the circumscribed circle r2.

円柱にボルト穴を開けずに互接一葉双曲面体構造を形成する場合、円柱がばらばらにならないように、内接円柱を配置し、外接円環と一緒にして、ねじり回転を与えながら少しずつ傾斜角度を動かせしめると、容易に互接一葉双曲面体構造が形成される。内接円柱の代わりに内接正多角柱を利用することも可能である。外接円環の代わりに紐、鎖等を利用して、接合部の円柱束を結合する手段が考えられ、実施例で本手段が有効であることが確認された。When forming an interconnected one-lobe hyperboloid structure without drilling bolt holes in the cylinder, place the inscribed cylinder so that the cylinder does not fall apart, and along with the circumscribed ring, give torsional rotation little by little When the inclination angle is moved, the one-leaf hyperboloid structure is easily formed. It is also possible to use an inscribed regular polygonal cylinder instead of the inscribed cylinder. Means for joining the cylindrical bundles of the joints by using strings, chains or the like instead of the circumscribed ring can be considered, and it was confirmed that this means is effective in the examples.

外接円環または外接正多角環を利用せずに、内接円柱または内接正多角柱のみを利用する手段も可能である。図5に示すように、内接正多角柱の壁面に、等間隔にN本のボルトを固定し、N本の円柱に開けられたボルト穴を利用して、円柱を内接円柱と結合し、円柱が互いに接するまで円柱を傾斜させることにより、互接一葉双曲面体構造を形成できる。安全のために、接合部の外側を紐等で拘束することが望ましい。A means that uses only an inscribed cylinder or an inscribed regular polygonal cylinder without using a circumscribed ring or a circumscribed regular polygon ring is also possible. As shown in FIG. 5, N bolts are fixed at equal intervals on the wall of the inscribed regular polygonal column, and the cylinder is connected to the inscribed cylinder using the bolt holes opened in the N cylinders. By tilting the cylinders until the cylinders are in contact with each other, an interdigitated one-leaf hyperboloid structure can be formed. For safety, it is desirable to restrain the outside of the joint with a string or the like.

前記の手段で固定された互接一葉双曲面体構造においては、円柱の自重による重力方向の荷重により平衡状態を維持するのであり、円柱に上方向の力が加えられると、平衡状態は崩れ、分解する。分解を防ぐ手段は、1)傾斜角を固定する、2)円柱の末端が動かないように固定する、3)ねじり回転が生じないように固定する、の三つの手段が考えられる。本発明の実施例において、頂部に支持板を設置する手段と組み合わせて、分解を防ぐ手段を考案した。In the one-leaf hyperboloid structure fixed by the above means, the equilibrium state is maintained by the load in the gravitational direction due to the weight of the cylinder, and when an upward force is applied to the cylinder, the equilibrium state collapses, Decompose. There are three possible means for preventing the decomposition: 1) fixing the inclination angle, 2) fixing the end of the cylinder so as not to move, and 3) fixing the cylinder so as not to cause torsional rotation. In the embodiment of the present invention, a means for preventing decomposition was devised in combination with a means for installing a support plate on the top.

互接一葉双曲面体構造を空中に持ち上げても分解しない手段の一つとして、図6に示すように、接合部の上下に球をそれぞれ配置し、中心を貫通させて引っ張るようにして、二つの球の距離を固定する手段を発明した。本手段は、分解を防ぐ有効な手段であることが実施例で明らかにされた。As one means for preventing the disjoint one-leaf hyperboloid structure from being disassembled even when it is lifted in the air, as shown in FIG. Invented a means to fix the distance of two spheres. It was made clear in the Examples that this means is an effective means for preventing decomposition.

互接一葉双曲面体構造の頂部に天板を乗せて固定するには、傾斜角θに応じて円柱を(45°−θ/2)の角度で斜め切断して、斜めの円柱を「くの字」状に接合し、円柱末端が天板に直角になるように工夫し、ネジやクギ等で固定する方法が考えられる。図7に示すように円柱の末端を斜め切りして、180度回転させて接合させ、天板と接する円柱部分を直角になるようにして天板と結合させれば、工作は容易になることが実施例で明らかになった。In order to mount and fix the top plate on the top of the one-piece hyperbolic surface structure, the cylinder is obliquely cut at an angle of (45 ° −θ / 2) according to the inclination angle θ, and the oblique cylinder is cut. It is conceivable to join them in the shape of a "letter", devise so that the end of the cylinder is perpendicular to the top plate, and fix it with screws, nails, etc. As shown in FIG. 7, if the end of the cylinder is cut obliquely, rotated by 180 degrees and joined, and the cylinder portion in contact with the top board is connected to the top board at a right angle, the work can be facilitated. It became clear in the examples.

本発明においては、図8に示すように、円形の支持板2枚に、正N多角形の頂点をなす箇所に、円柱の直径より大きな円穴を開け、該円穴に円柱をことごとく貫通させ、2枚の円板をねじりながら回転を与えると、互接一葉双曲面体構造を形成できることを発見した。円穴直径dは、円柱の半径r、傾斜角θ及び円板の厚みtを与えると次の式で与えられる(図9参照)。
d=t/tanθ+2r/sinθ
In the present invention, as shown in FIG. 8, a circular hole larger than the diameter of the cylinder is formed in two circular support plates at the apex of the regular N polygon, and the entire cylinder is penetrated through the circular hole. It was discovered that if two disks are rotated while being twisted, an interconnected one-leaf hyperboloid structure can be formed. The diameter d of the circular hole is given by the following equation when the radius r of the cylinder, the inclination angle θ, and the thickness t of the disk are given (see FIG. 9).
d = t / tan θ + 2r / sin θ

2枚の円板に開けられた円穴に、円柱が貫通した形で形成された互接一葉双曲面体構造が分解しないように固定するには、貫通部において円板と円柱を固定するか、または2枚の円板の距離を固定すればよい。In order to fix the mutual one-leaf hyperboloid structure formed in the shape of the cylinder penetrating into the circular hole opened in the two discs, it is necessary to fix the disc and the cylinder at the penetrating portion. Or the distance between the two disks may be fixed.

本発明においては、正N多角形の頂点に相当する箇所に円穴を開けた円板一枚と、外接円環の組み合わせで、互接一葉双曲体構造を形成することができることを発見した。この構造はきわめて安定性があり、分解しないことが判明した。In the present invention, it has been discovered that a one-piece hyperbolic structure can be formed by a combination of one disc having a circular hole at a position corresponding to the vertex of a regular N polygon and a circumscribed ring. . This structure was found to be very stable and not decompose.

実施例は、円柱部材として木製丸棒4本から8本を利用し、接合部の外接円固定部材として、金属製円環、紐、木製の外接正多角環、内接円固定用に木製丸棒および木製の正多角柱を使用した。天板には、木製および厚紙を利用した。分解防止用の球は、木製およびプラスチック製を利用した。天板を固定する部材として接着剤および金属製金具を使用した。互接一葉双曲面体構造を構成する円柱部材の本数として、4本、5本、6本および8本の4種類を使用した。In the embodiment, four to eight wooden round bars are used as cylindrical members, and metal circles, strings, wooden circumscribed regular polygonal rings, and wooden circles for fixing inscribed circles are used as circumscribed circle fixing members for joints. Bars and wooden regular polygonal columns were used. Wooden and cardboard were used for the top board. The ball for preventing decomposition was made of wood or plastic. An adhesive and metal fittings were used as members for fixing the top plate. Four types of four, five, six and eight were used as the number of cylindrical members constituting the one-piece hyperbolic surface structure.

実施例は下記に示す5つの事例を実施し、いずれも本発明に記述された互接一葉双曲面体構造の理論およびその維持手段が正しいことを確認し、さらに実行可能性を確かめた。In the examples, the following five cases were carried out, all of which confirmed that the theory of the interconnected one-leaf hyperboloid structure described in the present invention and its maintenance means were correct, and further confirmed the feasibility.

実施例1:模型実験:円柱として長さ20cm、直径6mmの木製丸棒を4本、5本、6本および8本と変化させ、金属性の外接円環の内接直径をそれぞれ16mm、20mm、20mmおよび25mmに対応させた場合、計算どおりの傾斜角を有し、かつ丸棒が互いに接した一葉双曲面体構造を形成することを確認した。上記の組み合わせで形成された互接一葉双曲面体構造の丸棒の傾斜角は、[0013]で示した理論式で求められた傾斜角と同じ角を有しており、以下のとおりであった。
4本の丸棒:外接円直径16mm:傾斜角=48.6°
5本の丸棒:外接円直径20mm:傾斜角=39.9°
6本の丸棒:外接円直径20mm:傾斜角=54.6°
8本の丸棒:外接円直径25mm:傾斜角=53.3°
接合部をほぼ中央に設置した場合であっても、接合部の位置を動かした場合であっても、鉛直に維持すれば、丸棒の重みで互接一葉双曲面体構造は静定状態で安定することが確かめられた。
Example 1: Model experiment: 20 cm long and 6 mm diameter wooden round bars as cylinders were changed to 4, 5, 6, and 8, and the inscribed diameters of the metallic circumscribed ring were 16 mm and 20 mm, respectively. , 20 mm and 25 mm, it was confirmed that a single-leaf hyperboloid structure having a calculated inclination angle and in which round bars were in contact with each other was formed. The inclination angle of the round bar of the one-leaf hyperboloid structure formed by the above combination has the same angle as the inclination angle obtained by the theoretical formula shown in [0013], and is as follows. It was.
Four round bars: circumscribed circle diameter 16 mm: inclination angle = 48.6 °
Five round bars: circumscribed circle diameter 20 mm: inclination angle = 39.9 °
Six round bars: circumscribed circle diameter 20 mm: inclination angle = 54.6 °
8 round bars: circumscribed circle diameter 25 mm: inclination angle = 53.3 °
Even if the joint is installed almost in the center, or even if the position of the joint is moved, as long as the joint is kept vertical, the weight of the round bar makes the one-leaf hyperboloid structure static. It was confirmed that it was stable.

実施例2:花立て台・長さ45cm、直径20mmの木製丸棒5本、内接円直径64mmの金属性円環1個、直径24cm、厚み10mmの木製円板1枚、ストッパー用の直径30mmの木製球形ボール(穴つき)2個、距離固定用直径10mmの木製丸棒1本を用いて、天板つきの花立て台の作成を実施した。この場合の丸棒の傾斜角は、理論式どおりの43.6°であった。2個の球形ボールは、接合部の上下に置き、直径10mmの円穴をあけ、木製丸棒を貫通させ球形ボールを引っ張るように固定し、更に天板と結合させることによって、互接一葉双曲面体構造が分解しないようにできた。天板の裏側には、正五角形の高さのある枠を取り付け、丸棒が重みで末端部が広がらないようにストッパーとした。これにより安定した花立台が完成した。Example 2: Flower stand, 45 cm in length, 5 wooden round bars with a diameter of 20 mm, 1 metal ring with an inscribed circle diameter of 64 mm, 1 wooden disc with a diameter of 24 cm and a thickness of 10 mm, diameter for stopper Using two 30 mm wooden spherical balls (with holes) and one wooden round bar with a fixed diameter of 10 mm, a flower stand with a top plate was created. In this case, the inclination angle of the round bar was 43.6 ° as in the theoretical formula. Two spherical balls are placed on the top and bottom of the joint, drilled with a circular hole with a diameter of 10 mm, fixed by pulling the spherical ball through a wooden round bar, and then joined to the top plate to connect each other. The curved body structure was prevented from being decomposed. A frame with a regular pentagonal height was attached to the back side of the top plate, and a stopper was used to prevent the end from spreading due to the weight of the round bar. As a result, a stable flower stand was completed.

実施例3:支持台:長さ90cm、直径30mmの木製丸棒4本、直径30cm、厚み15mmの木製円板2枚を用いて、[0020]の式で計算される、傾斜角θ=75°に対応する円穴の直径35mmを、木製円板の、縁円に近いところに等間隔で4個あけ、それぞれの円穴に4本の丸棒を貫通させ、2枚の円板をねじるようにして回転させることによって、本発明で開発した、接合部で丸棒がことごとく接する互接一葉双曲面体構造が形成できたことを確認した。2枚の天板を貫通する丸棒の末端部の長さは可変にすることができるが、2枚の天板の上下方向の距離は一定に保たれる。2枚の天板は支持台として使用可能である。円柱部材の長さや直径を調節すれば、分解可能な作業台や海水浴場の監視台などに利用可能である。Example 3: Support base: Inclination angle θ = 75 calculated by the formula [0020] using four wooden round bars with a length of 90 cm and a diameter of 30 mm, and two wooden disks with a diameter of 30 cm and a thickness of 15 mm. 4 holes of 35mm in diameter corresponding to ° are drilled at equal intervals near the edge circle of a wooden disc, and 4 discs are passed through each disc hole and 2 discs are twisted. By rotating in this way, it was confirmed that an interconnected one-leaf hyperboloid structure developed by the present invention in which round bars are in contact with each other at the joint could be formed. The length of the end portion of the round bar penetrating the two top plates can be made variable, but the vertical distance between the two top plates is kept constant. The two top plates can be used as a support base. By adjusting the length and diameter of the cylindrical member, it can be used for a work table that can be disassembled, a monitoring table for a beach, and the like.

実施例4:椅子:長さ46cm、直径30mmの木製丸棒4本、直径30cm、厚み15mmの木製円板1枚、ナイロン紐、ネジを利用して、[0019]の図7で示したように末端部を傾斜角が70°に対応するように5cmのところで斜め切断し、「くの字」に曲がった状態の丸棒を作成し、円板裏側の4隅に水平方向に回転可能な状態でネジで結合し、接合部で丸棒がことごとく接するようにナイロン紐で縛ることによって、本発明の幾何条件に適合した互接一葉双曲面体構造が形成できることを確認した。この場合の外接円直径は、73.8mmであった。Example 4: Chair: As shown in FIG. 7 of [0019] using four wooden round bars with a length of 46 cm and a diameter of 30 mm, a wooden disc with a diameter of 30 cm and a thickness of 15 mm, a nylon string, and a screw. The end part is obliquely cut at 5 cm so that the inclination angle corresponds to 70 °, and a round bar bent in a “shape” is created, and can be rotated horizontally at the four corners on the back side of the disk. It was confirmed that an interconnected one-leaf hyperboloid structure conforming to the geometric condition of the present invention can be formed by connecting with a screw in a state and binding with a nylon string so that the round bars are in contact with each other at the joint. The circumscribed circle diameter in this case was 73.8 mm.

実施例5:多角錐屋根骨組み:長さ180cm、直径80mmの丸太6本、外接円固定用に内接円直径385mmの金属製円環(自転車のハブ)1個(理論式における外接円の半径r2は192.5mm)、直径8mmの太さの金属製ボルト6本を用いて、金属製円環に60°毎に6個の直径8mmの円穴をあけ、丸太の先端部150mmのところにそれぞれ直径8mmの円穴を貫通させ、金属製円環の内側に等間隔にボルトで丸太を結合し、丸太の末端部を少しずつ広げるようにして、本発明で開発した互接一葉双曲面体構造を形成した。本発明で開発した理論式によれば、傾斜角は31.6°であるが、実施例での傾斜角と一致した。全体の形状は、六角堂の屋根の骨組みの形状をしており、多角錐屋根の骨組みに利用可能と判断された。上記実施例で形成された骨組みの上に75kgの体重の人間が乗っても、びくともしないだけの耐力があることが実体験された。Example 5: Polygonal pyramid roof frame: 6 logs with a length of 180 cm and a diameter of 80 mm, one metal ring (bicycle hub) with an inscribed circle diameter of 385 mm for fixing the circumscribed circle (radius of the circumscribed circle in the theoretical formula) r2 is 192.5mm), using six metal bolts with a diameter of 8mm, drill six circular holes with a diameter of 8mm every 60 ° in the metal ring, and at the tip of the log 150mm An interconnected one-leaf hyperboloid developed by the present invention by passing through a circular hole with a diameter of 8 mm, connecting the logs with bolts at equal intervals inside the metal annulus, and widening the ends of the logs little by little. A structure was formed. According to the theoretical formula developed in the present invention, the tilt angle is 31.6 °, which is consistent with the tilt angle in the example. The overall shape is that of a hexagonal roof, and it was judged that it could be used for a polygonal pyramid roof. It was actually experienced that even if a human with a weight of 75 kg rides on the frame formed in the above-described embodiment, it has a strength that does not frighten.

発明の効果The invention's effect

本発明によって得られる効果は下記のとおりである。
1)与えられた円柱の半径、本数および傾斜角を与え、本発明で開発された理論式で算出される内接円半径あるいは外接円半径を接合部において固定すれば、円柱部材がことごとく接して静定状態をなす堅固な互接一葉双曲面体構造を形成することができる。本手段は、円柱に切削などの工作をしないで支持台を形成できる優れた工法といえる。
2)上記互接一葉双曲面体構造は、結果として、最少の数の円柱部材をもって容易に堅固な静定状態の支持体を構成することができる。
3)上記互接一葉双曲面体構造の傾斜角を固定する、円柱の末端が動かないように固定する、またはねじり回転が生じないように固定することによって、該互接一葉双曲面体構造が分解しないように維持でき、さまざまな支持体を作成することができる。
4)花立て台、テーブル、椅子、監視台、多角錐屋根骨組みなどの構造に応用できる。
5)力学の教育に利用することができる。
The effects obtained by the present invention are as follows.
1) Given the radius, number and inclination angle of a given cylinder, and fixing the inscribed circle radius or circumscribed circle radius calculated by the theoretical formula developed in the present invention at the joint, the cylinder members are in contact with each other. It is possible to form a solid, one-leaf hyperboloid structure that is in a static state. This means can be said to be an excellent method for forming a support base on a cylinder without performing a work such as cutting.
2) As a result, the above-mentioned interleaved one-leaf hyperboloid structure can easily form a rigid support body with a minimum number of cylindrical members.
3) By fixing the inclination angle of the above-mentioned mutual one-leaf hyperboloid structure, fixing the end of the cylinder so as not to move, or fixing it so as not to cause torsional rotation, It can be maintained without disassembly and various supports can be made.
4) Applicable to structures such as flower stands, tables, chairs, monitoring tables, and polygonal pyramid roof frames.
5) Can be used for mechanics education.

一葉双曲面の概念を示す図Diagram showing the concept of a single leaf hyperboloid 円柱による互接一葉双曲面体の概念を示す図(N=6の場合)The figure which shows the concept of the mutual one-leaf hyperboloid by a cylinder (in the case of N = 6) z=0の断面において円柱が互いに接している状態を示す図(N=6の場合)The figure which shows the state which the cylinder contact | connects in the cross section of z = 0 (in the case of N = 6) 外接円環と円柱をボルトで結合して互接一葉双曲面体構造を維持する手段Means for maintaining circumscribed one-leaf hyperboloid structure by connecting the circumscribed ring and cylinder with bolts 内接正多角柱を利用して互接一葉双曲面体構造を維持する手段Means for maintaining an interconnected monoplane hyperboloid structure using an inscribed regular polygonal cylinder 球を利用した互接一葉双曲面体構造の固定方法Method for fixing mutually connected monoplane hyperboloid structures using spheres 円柱の斜め切断による天板との接合方法Joining method with top plate by oblique cutting of cylinder 2枚の円板を利用した互接一葉双曲面体構造の形成方法Method for forming an interconnected single leaf hyperboloid structure using two discs 傾斜角θ、円穴直径d、円板厚みtの関係を説明する図The figure explaining the relationship between the inclination angle θ, the circular hole diameter d, and the disc thickness t

符号の説明Explanation of symbols

x: x軸座標
y: y軸座標
z: z軸座標
r´: 半径
θ: 傾斜角
r: 円柱の半径
r1: 内接円の半径
r2: 外接円の半径
d: 円穴の直径
t: 板厚
x: x-axis coordinate y: y-axis coordinate z: z-axis coordinate r ′: radius θ: inclination angle r: radius of the cylinder r1: radius of the inscribed circle r2: radius of the circumscribed circle d: diameter of the circular hole t: plate Thickness

Claims (2)

Nを4以上の整数とするN本数の半径rの円柱で構成される一葉双曲面体構造であって、一定の円周上に等間隔に配置されたN本の円柱を一定の傾斜角θを以って一葉双曲面構造の接合部に集合せしめた時に、N、r、θの値によって、一義的に算出される半径r1の内接円及び半径r2の外接円の円周に沿って、隣り合う円柱がことごとく互いに接することを特徴とする構造A single-leaf hyperboloid structure composed of N cylinders with a radius r, where N is an integer equal to or greater than 4, and N cylinders arranged at regular intervals on a constant circumference have a constant inclination angle θ Along the circumference of the inscribed circle of radius r1 and the circumscribed circle of radius r2, which are uniquely calculated according to the values of N, r, and θ. , A structure characterized in that all adjacent cylinders touch each other Nが4以上の整数とするN本数の半径rの円柱で構成される一葉双曲面体構造であって、一定の円周上に等間隔に配置されたN本の円柱を一定の傾斜角θを以って一葉双曲面体構造の接合部に集合せしめた時に、N、r、θの値によって、一義的に算出される半径r1の内接円及び半径r2の外接円の円周に沿って、隣り合う円柱がことごとく互いに接することを特徴とする構造において、該構造を分解しないように維持する手段A single-leaf hyperboloid structure composed of N cylinders with a radius r, where N is an integer equal to or greater than 4, and N cylinders arranged at regular intervals on a constant circumference are connected to a constant inclination angle θ. Along the circumferences of the inscribed circle of radius r1 and the circumscribed circle of radius r2 that are uniquely calculated by the values of N, r, and θ. In the structure characterized in that all adjacent cylinders are in contact with each other, means for maintaining the structure so as not to be decomposed
JP2006114992A 2006-03-23 2006-03-23 Interacting monoplane hyperboloid structure by cylinder Expired - Fee Related JP4491742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114992A JP4491742B2 (en) 2006-03-23 2006-03-23 Interacting monoplane hyperboloid structure by cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114992A JP4491742B2 (en) 2006-03-23 2006-03-23 Interacting monoplane hyperboloid structure by cylinder

Publications (2)

Publication Number Publication Date
JP2007255692A JP2007255692A (en) 2007-10-04
JP4491742B2 true JP4491742B2 (en) 2010-06-30

Family

ID=38630133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114992A Expired - Fee Related JP4491742B2 (en) 2006-03-23 2006-03-23 Interacting monoplane hyperboloid structure by cylinder

Country Status (1)

Country Link
JP (1) JP4491742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376409A (en) * 2020-12-04 2021-02-19 张家港保税区金港建设工程质量检测有限公司 Composite reinforced pier with circular single-column pier sleeved with horn-shaped straight-line curved-surface column and construction method thereof

Also Published As

Publication number Publication date
JP2007255692A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US20200248445A1 (en) Earthquake resistant JOINT
AU2008348861B2 (en) Vertical frame intended for the construction of a frame stanchion, a supporting frame and/or a supporting frame tower
US4122646A (en) Equilateral derrick structure
US7992353B2 (en) Space frame hub joint
US9611597B2 (en) Access structure integration assembly and integrated access systems and methods of using the same
US8820011B1 (en) Stage floor assembly and method of making the same
JPH03502221A (en) Module space frame earthquake resistant structure
KR20190075948A (en) BI-AXIAL Gusset plates and heat assemblies for moments resisting beam-column joints
JP4491742B2 (en) Interacting monoplane hyperboloid structure by cylinder
US4156997A (en) Light weight tension-compression equilibrium structures
JP5709150B1 (en) Assembled scaffold
JP6241967B2 (en) Access structure integrated assembly and integrated access system and method of using the same
JP2008185173A (en) Pipe joint and structure using the same
US4534672A (en) Hub for geodesic dome construction
US11022251B1 (en) Modular rigging system using hexagonal support pieces
JP7163071B2 (en) bouldering wall
JP4707143B2 (en) X-shaped joint
JP2007291731A (en) Domy building
CN109322396B (en) Device for reinforcing and protecting wood structure beam column joints
EP0214108A1 (en) Lattice covering structure
JP6984286B2 (en) Structure
JP4431806B2 (en) Regular tetrahedron or regular hexahedron joining apparatus and structure using the same
JP2017048501A (en) Diagonal column frame
JP5922736B2 (en) Connecting reinforcement structure for wooden buildings
JP4936777B2 (en) Domed building

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees