JP4486776B2 - Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof - Google Patents

Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof Download PDF

Info

Publication number
JP4486776B2
JP4486776B2 JP2002293809A JP2002293809A JP4486776B2 JP 4486776 B2 JP4486776 B2 JP 4486776B2 JP 2002293809 A JP2002293809 A JP 2002293809A JP 2002293809 A JP2002293809 A JP 2002293809A JP 4486776 B2 JP4486776 B2 JP 4486776B2
Authority
JP
Japan
Prior art keywords
resonant
ring
photon
photon absorption
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002293809A
Other languages
Japanese (ja)
Other versions
JP2004123668A (en
Inventor
裕雄 滝沢
雅温 秋葉
武晴 谷
純 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002293809A priority Critical patent/JP4486776B2/en
Priority to US10/679,446 priority patent/US20040131969A1/en
Publication of JP2004123668A publication Critical patent/JP2004123668A/en
Application granted granted Critical
Publication of JP4486776B2 publication Critical patent/JP4486776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Quinoline Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Indole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非線形光学効果を発現する材料に関し、特に非共鳴2光子吸収断面積が大きく、非共鳴2光子吸収により生成した励起状態からの発光効率の大きな有機非線形光学材料及び該材料を用いた、非共鳴2光子吸収誘起方法または非共鳴2光子発光発生方法に関するものである。
【0002】
【従来の技術】
一般に、非線形光学効果とは、印加する光電場の2乗、3乗あるいはそれ以上に比例する非線型な光学応答のことであり、印加する光電場の2乗に比例する2次の非線形光学効果としては、第二高調波発生(SHG),光整流、フォトリフラクティブ効果、ポッケルス効果、パラメトリック増幅、パラメトリック発振、光和周波混合、光差周波混合などが知られている。また印加する光電場の3乗に比例する3次の非線形光学効果としては第三高調波発生(THG)、光カー効果、自己誘起屈折率変化、2光子吸収などが挙げられる。
【0003】
これらの非線形光学効果を示す非線形光学材料としてはこれまでに多数の無機材料が見い出されてきた。ところが無機物においては、所望の非線形光学特性や、素子製造のために必要な諸物性を最適化するためのいわゆる分子設計が困難であることから実用するのは非常に困難であった。一方、有機化合物は分子設計により所望の非線形光学特性の最適化が可能であるのみならず、その他の諸物性のコントロールも可能であるため、実用の可能性が高く、有望な非線形光学材料として注目を集めている。
【0004】
近年、有機化合物の非線形光学特性の中でも3次の非線形光学効果が注目されており、その中でも特に、非共鳴2光子吸収および非共鳴2光子発光が注目を集めている。2光子吸収とは、化合物が2つの光子を同時に吸収して励起される現象であり、化合物の(線形)吸収帯が存在しないエネルギー領域で2光子の吸収が起こる場合を非共鳴2光子吸収という。また、非共鳴2光子発光とは、非共鳴2光子吸収により生成した励起分子が、その励起状態の輻射失活過程において発する発光をいう。なお、以下の記述において特に明記しなくても2光子吸収および2光子発光とは非共鳴2光子吸収および非共鳴2光子発光を指す。
【0005】
ところで、非共鳴2光子吸収の効率は印加する光電場の2乗に比例する(2光子吸収の2乗特性)。このため、2次元平面にレーザーを照射した場合においては、レーザースポットの中心部の電界強度の高い位置のみで2光子の吸収が起こり、周辺部の電界強度の弱い部分では2光子の吸収は全く起こらない。一方、3次元空間においては、レーザー光をレンズで集光した焦点の電界強度の大きな領域でのみ2光子吸収が起こり、焦点から外れた領域では電界強度が弱いために2光子吸収が全く起こらない。印加された光電場の強度に比例してすべての位置で励起が起こる線形吸収に比べて、非共鳴2光子吸収では、この2乗特性に由来して空間内部の1点のみで励起が起こるため、空間分解能が著しく向上する。通常、非共鳴2光子吸収を誘起する場合には、化合物の(線形)吸収帯が存在する波長領域よりも長波でかつ吸収の存在しない、近赤外領域の短パルスレーザーを用いることが多い。化合物の(線形)吸収帯が存在しない、いわゆる透明領域の近赤外光を用いるため、励起光が吸収や散乱を受けずに試料内部まで到達でき、非共鳴2光子吸収の2乗特性のために試料内部の1点を極めて高い空間分解能で励起できるため、非共鳴2光子吸収および非共鳴2光子発光は生体組織の2光子造影や2光子フォトダイナミックセラピー(PDT)などの応用面で期待されている。また、非共鳴2光子吸収、2光子発光を用いると、入射した光子のエネルギーよりも高いエネルギーの光子を取り出せるため、波長変換デバイスという観点からアップコンバージョンレージングに関する研究も報告されている。
【0006】
効率良く2光子発光やアップコンバージョンレージングを示す有機化合物として、いわゆるスチルバゾリウム誘導体が知られている(非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5、非特許文献6、及び非特許文献7参照)。また、ある特定の構造を有するスチルバゾリウム化合物の2光子発光を用いた種々の応用例は特許文献1に記載されている。
【0007】
【非特許文献1】
He,G.S.et al.,Appl.Phys.Lett.1995,67,3703
【非特許文献2】
He,G.S.et al.,Appl.Phys.Lett.1995,67,2433
【非特許文献3】
He,G.S.et al.,Appl.Phys.Lett.1996,68,3549
【非特許文献4】
He,G.S.et al.,J.Appl.Phys.1997,81,2529
【非特許文献5】
Prasad,P.N. et al.,Nonlinear Optics1999,21,39
【非特許文献6】
Ren,Y.et al.,J.Mater.Chem.2000,10,2025
【非特許文献7】
Zhou、G.et al.,Jpn.J.Appl.Phys.2001,40,1250
【特許文献1】
国際公開(WO)97/09043号パンフレット
【0008】
非共鳴2光子発光を利用して生体組織の造影、フォトダイナミックセラピー、アップコンバージョンレージング等の応用を行う場合、用いる有機化合物の2光子吸収効率(2光子吸収断面積)および2光子吸収により生じた励起状態からの発光効率は高いことが必要である。同一の有機化合物を用いて2倍の2光子発光強度を得るためには、2光子吸収の2乗特性のために4倍の励起光強度が必要になる。ところが、過度に強いレーザー光を照射すると、例えば生体組織の光損傷を招いたり、また2光子発光色素そのものが光劣化を起こしてしまう可能性が高くなるため望ましくない。従って、弱い励起光強度で強い2光子発光を得るためには、効率よく2光子吸収を行い2光子発光を発する有機化合物の開発が必要である。スチルバゾリウム誘導体の2光子発光効率は、実際的な使用に対しては未だ充分な性能を満たしていない。
【0009】
【発明が解決しようとする課題】
上に述べたように、非共鳴2光子吸収および非共鳴2光子発光を利用すると、極めて高い空間分解能を特徴とする種々の応用が可能であるが、現時点で利用可能な2光子発光化合物では、2光子吸収能が低く、また2光子発光効率も悪いため、2光子吸収および2光子発光を誘起する励起光源としては非常に高出力のレーザーが必要である。
【0010】
本発明の目的は、効率良く2光子を吸収する有機材料、すなわち2光子吸収断面積の大きな有機材料を提供すること、および発光強度の大きな2光子発光を示す有機材料を提供することである。別の目的は該有機材料を用いて、好適な、非共鳴2光子吸収誘起方法または非共鳴2光子発光発生方法を提供することである。
【0011】
【課題を解決するための手段】
本発明の発明者らの鋭意検討の結果、本発明の上記目的は、下記の手段により達成された。
(1) 非共鳴2光子吸収を行うことを特徴とする下記一般式(1)で表される化合物を含む非共鳴2光子吸収材料
一般式(1)
【0012】
【化2】

Figure 0004486776
【0013】
式中、R、Rはそれぞれ独立に、水素原子またはアルキル基を表し、カルボニル炭素原子に隣接する2つの炭素原子上のR とR 互いに連結してカルボニル炭素原子と共にシクロペンタン環を形成する。nおよびmはそれぞれ独立に1〜3の整数を表し、nおよびmが2以上の場合、複数個のRおよびRは同一でもそれぞれ異なってもよい。R、Rはそれぞれ独立に炭素原子数1〜6の無置換アルキル基または炭素原子数1〜4スルホアルキル基を表し、Z、Zはそれぞれ独立に、インドレニン環、アザインドレニン環、ピラゾリン環、ベンゾチアゾール環、チアゾール環、チアゾリン環、ベンゾオキサゾール環、チアジアゾール環またはキノリン環のいずれかを形成する原子群を表す。
(2) 一般式(1)にてZ、Zで形成される環が、インドレニン環、アザインドレニン環のいずれかで表されることを特徴とする(1)記載の非共鳴2光子吸収材料。
(3) 一般式(1)で表される化合物が、一般式(2)で表されることを特徴とする(1)記載の非共鳴2光子吸収材料。
一般式(2)
【0014】
【化3】
Figure 0004486776
【0015】
式中、R、R、R、R、n、mは一般式(1)と同義である。R11、R12、R13、R14はそれぞれ独立にアルキル基またはアリール基を表す。X11、X12はそれぞれ独立に=N−または=CR17−を表し、R17は水素原子または置換基を表す。R15、R16はそれぞれ独立に置換基を表し、a1、a2はそれぞれ独立に0〜3の整数を表す。なお、a1、a2が2以上の時R15、R16は同じでも異なっても良く、互いに連結して環を形成しても良い。
) 一般式(2)にてa1、a2がそれぞれ独立に0または1であることを特徴とする(3)に記載の非共鳴2光子吸収材料
) 一般式(2)にてR11、R12、R13、R14がそれぞれ独立にアルキル基であることを特徴とする(3)または(4)のいずれかに記載の非共鳴2光子吸収材料。
) 一般式(2)にてR11、R12、R13、R14がいずれもメチル基であることを特徴とする()記載の非共鳴2光子吸収材料。
) (1)〜()のいずれかに記載の一般式(1)または(2)の構造を有する化合物を含むことを特徴とする2光子発光材料
) (1)〜()のいずれかに記載の一般式(1)または(2)で表される化合物に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起する2光子吸収の誘起方法。
) (1)〜()のいずれかに記載の一般式(1)または(2)で表される化合物に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起し、生成した励起状態から発光を発生させる非共鳴2光子発光発生方法。
【0016】
【発明の実施の形態】
本発明は非共鳴2光子吸収を行うことを特徴とする前記一般式(1)で表される化合物を含む非共鳴2光子吸収材料、前記一般式(1)で表される化合物を含む非共鳴2光子発光材料、前記一般式(1)で表される化合物に該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して2光子吸収を誘起することを特徴とする非共鳴2光子吸収誘起方法及び前記一般式(1)で表される化合物に該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起し、発光を発生させることを特徴とする非共鳴2光子発光発生方法に関するものであるが、その他の事項についても参考のため記載した。
以下に、下記一般式(1)で表される本発明の化合物について詳しく説明する。
なお、本発明において、特定の部分を「基」と称した場合には、特に断りの無い限りは、一種以上の(可能な最多数までの)置換基で置換されていても、置換されていなくても良いことを意味する。例えば、「アルキル基」とは置換または無置換のアルキル基を意味する。また、本発明における化合物に使用できる置換基は、置換の有無にかかわらず、どのような置換基でも良い。
また、本発明において、特定の部分を「環」と称した場合、あるいは「基」に「環」が含まれる場合は、特に断りの無い限りは単環でも縮環でも良く、置換されていても置換されていなくても良い。
例えば、「アリール基」はフェニル基でもナフチル基でも良く、置換フェニル基でも良い。
【0017】
一般式(1)において、R1、R2、R3、R4、R5、R6はそれぞれ独立に、水素原子または置換基を表し、置換基として好ましくは、アルキル基(好ましくは炭素原子数(以下C数という)1〜20、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、n−ペンチル、ベンジル、3−スルホプロピル、4−スルホブチル、カルボキシメチル、5−カルボキシペンチル)、アルケニル基(好ましくはC数2〜20、例えば、ビニル、アリル)、シクロアルキル基(好ましくはC数3〜20、例えばシクロペンチル、シクロヘキシル)、アリール基(好ましくはC数6〜20、例えば、フェニル、2−クロロフェニル、4−メトキシフェニル、3−メチルフェニル、1−ナフチル)、ヘテロ環基(好ましくはC数1〜20、例えば、ピリジル、チエニル、フリル、チアゾリル、イミダゾリル、ピラゾリル、ピロリジノ、ピペリジノ、モルホリノ)である。
1、R2、R3、R4、R5、R6としてより好ましくは水素原子またはアルキル基である。
1、R2、R3、R4、R5、R6のうちのいくつかが互いに結合して環を形成してもよい。特に、R1とR3が結合して環を形成することが好ましく、その際カルボニル炭素原子と共に形成する環が6員環、5員環または4員環であることが好ましく、5員環または4員環であることがより好ましく、5員環であることが最も好ましい。
1とR3が結合して6員環、5員環または4員環を形成し、R2、R4、R5、R6 がいずれも水素原子である場合が好ましい。R1とR3が結合して環を形成しない場合はR1、R2、R3、R4、R5、R6 がいずれも水素原子であることが好ましい。
【0018】
一般式(1)において、nおよびmはそれぞれ独立に1〜4の整数を表し、好ましくは1〜3の整数を表す。なお、nおよびmが2以上の場合、複数個のR1、R2、R3およびR4は同一でもそれぞれ異なってもよい。
【0019】
7、R8はそれぞれ独立に水素原子、アルキル基、アルケニル基、アリール基、またはヘテロ環基を表し(好ましい例はR1〜R6と同じ)、好ましくはアルキル基を表し、より好ましくは無置換アルキル基、またはスルホ基もしくはカルボキシル基が置換したアルキル基を表し、さらに好ましくはC数1〜6の無置換アルキル基またはC数1〜4のスルホアルキル基を表す。
【0020】
1、Z2はそれぞれ独立に5または6員環を形成する原子群を表す。形成されるヘテロ環として好ましくは、インドレニン環、アザインドレニン環、ピラゾリン環、ベンゾチアゾール環、チアゾール環、チアゾリン環、ベンゾオキサゾール環、オキサゾール環、オキサゾリン環、ベンゾイミダゾール環、イミダゾール環、チアジアゾール環、キノリン環、ピリジン環であり、より好ましくはインドレニン環、アザインドレニン環、ピラゾリン環、ベンゾチアゾール環、チアゾール環、チアゾリン環、チアジアゾール環、キノリン環であり、特に好ましくは、インドレニン環、アザインドレニン環である。
【0021】
1、Z2により形成されるヘテロ環は置換基を有しても良く、置換基として好ましくは、アルキル基(好ましくは炭素原子数(以下C数という)1〜20、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、n−ペンチル、ベンジル、3−スルホプロピル、4−スルホブチル、カルボキシメチル、5−カルボキシペンチル)、アルケニル基(好ましくはC数2〜20、例えば、ビニル、アリル)、シクロアルキル基(好ましくはC数3〜20、例えばシクロペンチル、シクロヘキシル)、アリール基(好ましくはC数6〜20、例えば、フェニル、2−クロロフェニル、4−メトキシフェニル、3−メチルフェニル、1−ナフチル)、ヘテロ環基(好ましくはC数1〜20、例えば、ピリジル、チエニル、フリル、チアゾリル、イミダゾリル、ピラゾリル、ピロリジノ、ピペリジノ、モルホリノ)、アルキニル基(好ましくはC数2〜20、例えば、エチニル、2−メチルエチニル、2−フェニルエチニル)、ハロゲン原子(例えば、F、Cl、Br、I)、アミノ基(好ましくはC数1〜20、例えば、ジメチルアミノ、ジエチルアミノ、ジブチルアミノ)、シアノ基、ヒドロキシル基、カルボキシル基、スルホ基、アシル基(好ましくはC数1〜20、例えば、アセチル、ベンゾイル、サリチロイル、ピバロイル)、アルコキシ基(好ましくはC数1〜20、例えば、メトキシ、ブトキシ、シクロヘキシルオキシ)、アリールオキシ基(好ましくはC数6〜26、例えば、フェノキシ、1−ナフトキシ)、アルキルチオ基(好ましくはC数1〜20、例えば、メチルチオ、エチルチオ)、アリールチオ基(好ましくはC数6〜20、例えば、フェニルチオ、4−クロロフェニルチオ)、アルキルスルホニル基(好ましくはC数1〜20、例えば、メタンスルホニル、ブタンスルホニル)、アリールスルホニル基(好ましくはC数6〜20、例えば、ベンゼンスルホニル、パラトルエンンスルホニル)、カルバモイル基(好ましくはC数1〜20、例えば、N、N−ジメチルカルバモイル、N−フェニルカルバモイル)、アシルアミノ基(好ましくはC数1〜20、例えばアセチルアミノ、ベンゾイルアミノ)、イミノ基(好ましくはC数2〜20、例えばフタルイミノ)、アシルオキシ基(好ましくはC数1〜20、例えばアセチルオキシ、ベンゾイルオキシ)、またはアルコキシカルボニル基(好ましくはC数2〜20、例えば、メトキシカルボニル、フェノキシカルボニル)であり、より好ましくは、アルキル基、アリール基、ヘテロ環基、ハロゲン原子、カルボキシル基(その塩も含む)、スルホ基(その塩も含む)、アルコキシ基、カルバモイル基、またはアルコキシカルボニル基である。
【0022】
一般式(1)で表される化合物は、より好ましくは一般式(2)で表される。式中、R1、R2、R3、R4、R5、R6、R7、R8、n、mは一般式(1)と同義である。
【0023】
11、R12、R13、R14はそれぞれ独立にアルキル基またはアリール基を表し(好ましい例はR1〜R6と同じ)、好ましくはアルキル基を表し、より好ましくは無置換アルキル基(好ましくはエチル基、またはメチル基)を表し、さらに好ましくはメチル基を表す。
【0024】
11、X12はそれぞれ独立に=N−または=CR17−を表し、R17は水素原子または置換基(好ましい例はZ1、Z2により形成されるヘテロ環上の置換基の例と同じ)を表し、より好ましくはR17は水素原子である。
【0025】
15、R16はそれぞれ独立に置換基(好ましい例はZ1、Z2により形成されるヘテロ環上の置換基の例と同じ)を表す。
a1、a2はそれぞれ独立に0〜3の整数を表し、より好ましくは0または1を表す。
なお、a1、a2が2以上の時、R15、R16は同じでも異なっても良く、互いに連結して環を形成しても良く、形成する環としてはベンゼン環が好ましい。
a1、a2が共に1であり、R15、R16 が共に水素原子、カルボキシル基、またはスルホ基である場合が好ましい。
【0026】
以下に、本発明で用いられる、一般式(1)または(2)で表される2光子吸収化合物および2光子発光化合物の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
【0027】
【化4】
Figure 0004486776
【0028】
【化5】
Figure 0004486776
【0029】
【化6】
Figure 0004486776
【0030】
【化7】
Figure 0004486776
【0031】
【実施例】
以下に、本発明の具体的な実施例について実験結果を基に説明する。
【0032】
[実施例1]
[D−1の合成]
【0033】
本発明の化合物D−1は以下の方法により合成することができる。
また、他の本発明の化合物についてもD−1の合成法や、Tetrahedron.Lett., 42,6129,(2001)に記載の方法等に準じて合成することができる。
ただし、本発明の化合物の合成法はこれに限定されるわけではない。
【0034】
【化8】
Figure 0004486776
【0035】
4級塩1 14.3g(40mmol)を水50mlに溶解し、水酸化ナトリウム1.6g(40mmol)を加えて室温にて30分攪拌した。酢酸エチルで3回抽出し、硫酸マグネシウムで乾燥後濃縮し、メチレンベース2のオイル9.2g(収率100%)を得た。
【0036】
ジメチルアミノアクロレイン3 3.97g (40mmol)をアセトニトリル50mlに溶解し、0℃に冷却しながらオキシ塩化リン6.75g(44mmol)を滴下し、0℃にて10分間攪拌した。続いてメチレンベース2 9.2gのアセトニトリル溶液を滴下し、35℃にて4時間攪拌した。氷水100ml に注いだ後、16g の水酸化ナトリウムを加え、10分間還流した。冷却後、酢酸エチルで3回抽出し、硫酸マグネシウムで乾燥後濃縮した。シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル:ヘキサン=1:10→1:3)で精製し、アルデヒド4のオイル4.4g(収率39%)を得た。
【0037】
シクロペンタノン0.126g(1.5mmol)、アルデヒド4 0.85g(3mmol)を脱水メタノール30mlに溶解し、暗所にて窒素雰囲気下還流した。均一になった後、ナトリウムメトキシド28%メタノール溶液0.69g (3.6mmol )を加え、さらに6時間還流した。冷却後析出した結晶をろ別しメタノールにて洗浄し、D−1の深緑色結晶0.50g (収率54% )を得た。なお構造はNMRスペクトル、MSスペクトル、元素分析にて確認した。
【0038】
[実施例2]
[2光子吸収断面積の評価方法]
本発明の化合物の2光子吸収断面積の評価は、M. A. Albota et al., Appl. Opt. 1998, 37,7352.記載の方法を参考に行った。2光子吸収断面積測定用の光源には、Ti:sapphire パルスレーザー(パルス幅:100fs 、繰り返し:80MHz 、平均出力:1W、ピークパワー:100kW )を用い、700nmから1000nmの波長範囲で2光子吸収断面積を測定した。また、基準物質としてローダミンBおよびフルオレセインを測定し、得られた測定値をC. Xu et al., J. Opt. Soc. Am. B 1996, 13, 481.に記載のローダミンB およびフルオレセインの2光子吸収断面積の値を用いて補正することで、各化合物の2光子吸収断面積を得た。2光子吸収測定用の試料には、1×10-3の濃度でクロロホルムに化合物を溶かした溶液を用いた。
【0039】
本発明の化合物の2光子吸収断面積を上記方法にて測定し、得られた結果をGM単位で表1に示した(1GM = 1×10-50 cm4 s / photon)。なお、表中に示した値は測定波長範囲内での2光子吸収断面積の最大値である。
【0040】
下記に示した構造を有する比較化合物1および比較化合物2の2光子吸収断面積を上記の方法で測定し、結果を表1に示した。
【0041】
【化9】
Figure 0004486776
【0042】
【表1】
Figure 0004486776
【0043】
表1に示したように、従来の材料をはるかに陵駕する良好な特性が得られた
【0044】
[実施例3]
[2光子発光強度の評価方法]
本発明の化合物をクロロホルムに溶解させ、Nd:YAGレーザーの1064nmのレーザーパルスを照射して得られる発光スペクトルを測定し、得られた発光スペクトルの面積から非共鳴2光子発光強度を求めた。
【0045】
試料1:本発明に係る前期化合物D−10.31gを50mLのクロロホルムに溶解させて1×10-2Mの溶液を調製した。
【0046】
比較試料1:強い2光子発光を発する化合物として国際公開(WO)9709043号に記載の化合物(下記化合物)0.59gを100mLのアセトニトリルに溶解させて1×10-2Mの溶液を調製した。
【0047】
【化10】
Figure 0004486776
【0048】
試料1、試料2および比較試料1に、それぞれNd:YAGレーザーの1064nmのレーザーパルスを同条件で照射し、非共鳴2光子発光スペクトルを測定した。得られた発光スペクトルの面積(非共鳴2光子発光強度)を、比較試料1の値を1としたときの相対比で表2に示した。
【0049】
【表2】
Figure 0004486776
【0050】
表2に示したように、従来の材料をはるかに陵駕する良好な特性が得られた。
【0051】
【発明の効果】
本発明の化合物を用いることで、従来よりもはるかに強い非共鳴2光子吸収及び2光子発光を示す非共鳴2光子吸収発光材料を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material that exhibits a nonlinear optical effect, and particularly uses an organic nonlinear optical material having a large non-resonant two-photon absorption cross-section and a large emission efficiency from an excited state generated by non-resonant two-photon absorption, and the material. The present invention relates to a non-resonant two-photon absorption induction method or a non-resonant two-photon emission generation method.
[0002]
[Prior art]
In general, the nonlinear optical effect is a non-linear optical response proportional to the square of the applied photoelectric field, the third power or more, and a second-order nonlinear optical effect proportional to the square of the applied photoelectric field. For example, second harmonic generation (SHG), optical rectification, photorefractive effect, Pockels effect, parametric amplification, parametric oscillation, optical sum frequency mixing, optical difference frequency mixing, and the like are known. The third-order nonlinear optical effect proportional to the cube of the applied photoelectric field includes third harmonic generation (THG), optical Kerr effect, self-induced refractive index change, two-photon absorption, and the like.
[0003]
Many inorganic materials have been found so far as nonlinear optical materials exhibiting these nonlinear optical effects. However, inorganic materials are very difficult to put into practical use because so-called molecular design for optimizing desired nonlinear optical characteristics and various physical properties necessary for device fabrication is difficult. On the other hand, organic compounds can be optimized not only for the desired nonlinear optical properties by molecular design, but also for other physical properties, so they are highly practical and attract attention as promising nonlinear optical materials. Collecting.
[0004]
In recent years, the third-order nonlinear optical effect has attracted attention among the nonlinear optical characteristics of organic compounds, and among these, non-resonant two-photon absorption and non-resonant two-photon emission have attracted attention. Two-photon absorption is a phenomenon in which a compound is excited by simultaneously absorbing two photons, and the case where two-photon absorption occurs in an energy region where there is no (linear) absorption band of the compound is called non-resonant two-photon absorption. . In addition, non-resonant two-photon emission refers to light emitted by an excited molecule generated by non-resonant two-photon absorption in the process of radiation deactivation in its excited state. In the following description, two-photon absorption and two-photon emission refer to non-resonant two-photon absorption and non-resonant two-photon emission, unless otherwise specified.
[0005]
By the way, the efficiency of non-resonant two-photon absorption is proportional to the square of the applied photoelectric field (square characteristic of two-photon absorption). For this reason, when a two-dimensional plane is irradiated with a laser, two-photon absorption occurs only at a position where the electric field strength is high in the central portion of the laser spot, and two-photon absorption is completely absent in a portion where the electric field strength is weak in the peripheral portion. Does not happen. On the other hand, in the three-dimensional space, two-photon absorption occurs only in the region where the electric field strength at the focal point where the laser light is collected by the lens is large, and no two-photon absorption occurs in the region outside the focal point because the electric field strength is weak. . Compared with linear absorption where excitation occurs at all positions in proportion to the intensity of the applied photoelectric field, non-resonant two-photon absorption results in excitation at only one point inside the space due to this square characteristic. , The spatial resolution is significantly improved. Usually, when inducing non-resonant two-photon absorption, a short-pulse laser in the near-infrared region, which is longer than the wavelength region in which the (linear) absorption band of the compound exists and does not have absorption, is often used. Because so-called transparent near-infrared light that does not have a (linear) absorption band of the compound is used, excitation light can reach the inside of the sample without being absorbed or scattered, and because of the square characteristic of non-resonant two-photon absorption In addition, since one point inside the sample can be excited with extremely high spatial resolution, non-resonant two-photon absorption and non-resonant two-photon emission are expected in applications such as two-photon contrast and two-photon photodynamic therapy (PDT) of biological tissues. ing. In addition, when non-resonant two-photon absorption and two-photon emission are used, a photon with an energy higher than the energy of the incident photon can be extracted. Therefore, research on upconversion lasing has been reported from the viewpoint of a wavelength conversion device.
[0006]
A so-called stilbazolium derivative is known as an organic compound that efficiently exhibits two-photon emission and upconversion lasing (Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, Non-Patent Document 5, Non-Patent Document 5, (See Patent Literature 6 and Non-Patent Literature 7). Various application examples using two-photon emission of a stilbazolium compound having a specific structure are described in Patent Document 1.
[0007]
[Non-Patent Document 1]
He, G.G. S. et al. , Appl. Phys. Lett. 1995, 67, 3703
[Non-Patent Document 2]
He, G.G. S. et al. , Appl. Phys. Lett. 1995, 67, 2433
[Non-Patent Document 3]
He, G.G. S. et al. , Appl. Phys. Lett. 1996, 68, 3549
[Non-Patent Document 4]
He, G.G. S. et al. , J .; Appl. Phys. 1997, 81, 2529
[Non-Patent Document 5]
Prasad, P.A. N. et al. , Nonlinear Optics 1999, 21, 39
[Non-Patent Document 6]
Ren, Y. et al. et al. , J .; Mater. Chem. 2000, 10, 2025
[Non-Patent Document 7]
Zhou, G .; et al. , Jpn. J. et al. Appl. Phys. 2001, 40, 1250
[Patent Document 1]
International Publication (WO) No. 97/09043 Pamphlet [0008]
When non-resonant two-photon emission is used for imaging of biological tissue, photodynamic therapy, up-conversion lasing, etc., it is caused by the two-photon absorption efficiency (two-photon absorption cross section) and two-photon absorption of the organic compound used. The luminous efficiency from the excited state needs to be high. In order to obtain the doubled two-photon emission intensity using the same organic compound, the excitation light intensity of four times is required due to the square characteristic of the two-photon absorption. However, excessively intense laser light irradiation is not desirable because, for example, there is a high possibility that the biological tissue will be damaged by light, or that the two-photon luminescent dye itself will be deteriorated by light. Therefore, in order to obtain strong two-photon emission with weak excitation light intensity, it is necessary to develop an organic compound that efficiently absorbs two-photons and emits two-photon emission. The two-photon emission efficiency of the stilbazolium derivative does not yet satisfy sufficient performance for practical use.
[0009]
[Problems to be solved by the invention]
As described above, non-resonant two-photon absorption and non-resonant two-photon emission can be used for various applications characterized by extremely high spatial resolution. Since the two-photon absorption ability is low and the two-photon emission efficiency is poor, a very high-power laser is required as an excitation light source for inducing two-photon absorption and two-photon emission.
[0010]
An object of the present invention is to provide an organic material that efficiently absorbs two photons, that is, an organic material having a large two-photon absorption cross-section, and an organic material that exhibits two-photon emission with a large emission intensity. Another object is to provide a suitable non-resonant two-photon absorption inducing method or non-resonant two-photon emission generating method using the organic material.
[0011]
[Means for Solving the Problems]
As a result of intensive studies by the inventors of the present invention, the above object of the present invention has been achieved by the following means.
(1) A non -resonant two-photon absorption material containing a compound represented by the following general formula (1), which performs non-resonant two-photon absorption .
General formula (1)
[0012]
[Chemical formula 2]
Figure 0004486776
[0013]
Wherein, R 1, R 3 each independently represent a hydrogen atom or an alkyl group, a cyclopentane ring with R 1 and R 3 are linked to the carbonyl carbon atoms together on the two carbon atoms adjacent to the carbonyl carbon atom Form. n and m each independently represent an integer of 1 to 3, and when n and m are 2 or more, a plurality of R 1 and R 3 may be the same or different. R 7 and R 8 each independently represents an unsubstituted alkyl group having 1 to 6 carbon atoms or a sulfoalkyl group having 1 to 4 carbon atoms, and Z 1 and Z 2 are each independently an indolenine ring or azaindolenine. A group of atoms forming any of a ring, a pyrazoline ring, a benzothiazole ring, a thiazole ring, a thiazoline ring, a benzoxazole ring, a thiadiazole ring, or a quinoline ring.
(2) The non-resonant 2 according to (1), wherein the ring formed by Z 1 and Z 2 in the general formula (1) is represented by either an indolenine ring or an azaindolenine ring Photon absorbing material.
(3) The non-resonant two-photon absorption material according to (1), wherein the compound represented by the general formula (1) is represented by the general formula (2).
General formula (2)
[0014]
[Chemical 3]
Figure 0004486776
[0015]
In the formula, R 1 , R 3 , R 7 , R 8 , n, and m have the same meaning as in the general formula (1). R 11 , R 12 , R 13 and R 14 each independently represents an alkyl group or an aryl group. X 11 and X 12 each independently represent ═N— or ═CR 17 —, and R 17 represents a hydrogen atom or a substituent. R 15 and R 16 each independently represent a substituent, and a1 and a2 each independently represent an integer of 0 to 3. Incidentally, a1, a2 is 2 or more when R 15, R 16 may be the same or different, may form a ring.
( 4 ) The non-resonant two-photon absorption material according to (3) , wherein a1 and a2 are each independently 0 or 1 in the general formula (2).
( 5 ) The non-resonant 2 according to any one of (3) and (4) , wherein R 11 , R 12 , R 13 , and R 14 are each independently an alkyl group in the general formula (2) Photon absorbing material.
( 6 ) The non-resonant two-photon absorption material according to ( 5 ), wherein R 11 , R 12 , R 13 , and R 14 are all methyl groups in the general formula (2) .
( 7 ) A two-photon light-emitting material comprising a compound having the structure of the general formula (1) or (2) according to any one of (1) to ( 6 ).
( 8 ) The compound represented by the general formula (1) or (2) according to any one of (1) to ( 6 ) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound. A method for inducing two-photon absorption that induces non-resonant two-photon absorption.
( 9 ) The compound represented by the general formula (1) or (2) according to any one of (1) to ( 6 ) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound. A non-resonant two-photon emission generation method that induces non-resonant two-photon absorption and generates light emission from a generated excited state.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention performs non-resonant two-photon absorption, a non-resonant two-photon absorption material containing the compound represented by the general formula (1), and a non-resonant containing the compound represented by the general formula (1) Non-resonant two-photon, characterized in that two-photon emission material, wherein the compound represented by the general formula (1) is irradiated with laser light having a wavelength longer than the linear absorption band of the compound to induce two-photon absorption An absorption inducing method and a compound represented by the general formula (1) are irradiated with laser light having a wavelength longer than the linear absorption band of the compound to induce non-resonant two-photon absorption, thereby generating light emission. The non-resonant two-photon emission generation method described above is described for reference.
Hereinafter, the compound of the present invention represented by the following general formula (1) will be described in detail.
In the present invention, when a specific moiety is referred to as a “group”, unless otherwise specified, it may be substituted with one or more (up to the maximum possible) substituents. It means that it is not necessary. For example, “alkyl group” means a substituted or unsubstituted alkyl group. Moreover, the substituent which can be used for the compound in the present invention may be any substituent regardless of the presence or absence of substitution.
In the present invention, when a specific moiety is referred to as “ring”, or when “group” includes “ring”, it may be monocyclic or condensed unless otherwise specified. May not be substituted.
For example, the “aryl group” may be a phenyl group, a naphthyl group, or a substituted phenyl group.
[0017]
In the general formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent, and the substituent is preferably an alkyl group (preferably a carbon atom). Number (hereinafter referred to as C number) 1-20, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl, benzyl, 3-sulfopropyl, 4-sulfobutyl, carboxymethyl, 5-carboxypentyl) An alkenyl group (preferably C 2-20, such as vinyl, allyl), a cycloalkyl group (preferably C 3-20, such as cyclopentyl, cyclohexyl), an aryl group (preferably C 6-20, eg, Phenyl, 2-chlorophenyl, 4-methoxyphenyl, 3-methylphenyl, 1-naphthyl), a heterocyclic group (preferably having 1 to 20 carbon atoms, eg And pyridyl, thienyl, furyl, thiazolyl, imidazolyl, pyrazolyl, pyrrolidino, piperidino, morpholino).
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are more preferably a hydrogen atom or an alkyl group.
Some of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be bonded to each other to form a ring. In particular, R 1 and R 3 are preferably bonded to form a ring, and the ring formed together with the carbonyl carbon atom is preferably a 6-membered ring, 5-membered ring or 4-membered ring, and a 5-membered ring or A 4-membered ring is more preferable, and a 5-membered ring is most preferable.
R 1 and R 3 are preferably bonded to form a 6-membered ring, 5-membered ring or 4-membered ring, and R 2 , R 4 , R 5 and R 6 are all hydrogen atoms. When R 1 and R 3 are not bonded to form a ring, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are all preferably hydrogen atoms.
[0018]
In General formula (1), n and m represent the integer of 1-4 each independently, Preferably the integer of 1-3 is represented. When n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 may be the same or different.
[0019]
R 7 and R 8 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, or a heterocyclic group (preferred examples are the same as R 1 to R 6 ), preferably an alkyl group, more preferably It represents an unsubstituted alkyl group, or an alkyl group substituted with a sulfo group or a carboxyl group, and more preferably an unsubstituted alkyl group having 1 to 6 carbon atoms or a sulfoalkyl group having 1 to 4 carbon atoms.
[0020]
Z 1 and Z 2 each independently represents an atomic group forming a 5- or 6-membered ring. The heterocycle formed is preferably an indolenine ring, azaindolenine ring, pyrazoline ring, benzothiazole ring, thiazole ring, thiazoline ring, benzoxazole ring, oxazole ring, oxazoline ring, benzimidazole ring, imidazole ring, thiadiazole ring Quinoline ring, pyridine ring, more preferably indolenine ring, azaindolenine ring, pyrazoline ring, benzothiazole ring, thiazole ring, thiazoline ring, thiadiazole ring, quinoline ring, particularly preferably indolenine ring, It is an azaindolenine ring.
[0021]
The heterocyclic ring formed by Z 1 and Z 2 may have a substituent, and the substituent is preferably an alkyl group (preferably having 1 to 20 carbon atoms (hereinafter referred to as C number), for example, methyl, ethyl , N-propyl, isopropyl, n-butyl, n-pentyl, benzyl, 3-sulfopropyl, 4-sulfobutyl, carboxymethyl, 5-carboxypentyl), an alkenyl group (preferably having a C number of 2 to 20, for example, vinyl, Allyl), a cycloalkyl group (preferably having 3 to 20 carbon atoms, such as cyclopentyl, cyclohexyl), an aryl group (preferably having 6 to 20 carbon atoms, such as phenyl, 2-chlorophenyl, 4-methoxyphenyl, 3-methylphenyl, 1-naphthyl), a heterocyclic group (preferably having 1 to 20 carbon atoms, such as pyridyl, thienyl, furyl, thiazolyl, Imidazolyl, pyrazolyl, pyrrolidino, piperidino, morpholino), alkynyl group (preferably having 2 to 20 carbon atoms, for example, ethynyl, 2-methylethynyl, 2-phenylethynyl), halogen atom (for example, F, Cl, Br, I) An amino group (preferably having a C number of 1 to 20, such as dimethylamino, diethylamino, dibutylamino), a cyano group, a hydroxyl group, a carboxyl group, a sulfo group, or an acyl group (preferably having a C number of 1 to 20, such as acetyl, Benzoyl, salicyloyl, pivaloyl), alkoxy group (preferably C 1-20, such as methoxy, butoxy, cyclohexyloxy), aryloxy group (preferably C 6-26, eg, phenoxy, 1-naphthoxy), alkylthio A group (preferably C 1-20, eg Thio, ethylthio), an arylthio group (preferably having 6 to 20 carbon atoms, such as phenylthio, 4-chlorophenylthio), an alkylsulfonyl group (preferably having 1 to 20 carbon atoms, such as methanesulfonyl, butanesulfonyl), an arylsulfonyl group (Preferably C number 6-20, for example, benzenesulfonyl, paratoluenesulfonyl), carbamoyl group (preferably C number 1-20, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl), acylamino group (preferably Is a C 1-20, for example acetylamino, benzoylamino), an imino group (preferably a C 2-20, such as phthalimino), an acyloxy group (preferably a C1-20, such as acetyloxy, benzoyloxy), or Alkoxycarbonyl group (preferred Is a C 2-20, for example, methoxycarbonyl, phenoxycarbonyl), more preferably an alkyl group, aryl group, heterocyclic group, halogen atom, carboxyl group (including salts thereof), sulfo group (including salts thereof). Including), an alkoxy group, a carbamoyl group, or an alkoxycarbonyl group.
[0022]
The compound represented by the general formula (1) is more preferably represented by the general formula (2). In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , n, and m are as defined in the general formula (1).
[0023]
R 11 , R 12 , R 13 and R 14 each independently represents an alkyl group or an aryl group (preferred examples are the same as R 1 to R 6 ), preferably an alkyl group, more preferably an unsubstituted alkyl group ( Preferably, it represents an ethyl group or a methyl group, and more preferably represents a methyl group.
[0024]
X 11 and X 12 each independently represent ═N— or ═CR 17 —, and R 17 represents a hydrogen atom or a substituent (preferred examples include substituents on the heterocyclic ring formed by Z 1 and Z 2. The same), more preferably R 17 is a hydrogen atom.
[0025]
R 15 and R 16 each independently represent a substituent (preferred examples are the same as those of the substituent on the heterocycle formed by Z 1 and Z 2 ).
a1 and a2 each independently represent an integer of 0 to 3, more preferably 0 or 1.
Incidentally, when a1, a2 is 2 or more, R 15, R 16 may be the same or different and may be linked to each other to form a ring, the benzene ring is preferably a ring formed.
a1, a2 are both 1, when R 15, R 16 are both hydrogen atom, a carboxyl group or a sulfo group, are preferable.
[0026]
Hereinafter, preferred specific examples of the two-photon absorption compound and the two-photon light-emitting compound represented by the general formula (1) or (2) used in the present invention will be given, but the present invention is not limited thereto. .
[0027]
[Formula 4]
Figure 0004486776
[0028]
[Chemical formula 5]
Figure 0004486776
[0029]
[Chemical 6]
Figure 0004486776
[0030]
[Chemical 7]
Figure 0004486776
[0031]
【Example】
Hereinafter, specific embodiments of the present invention will be described based on experimental results.
[0032]
[Example 1]
[Synthesis of D-1]
[0033]
Compound D-1 of the present invention can be synthesized by the following method.
Further, other compounds of the present invention can be synthesized according to the synthesis method of D-1, the method described in Tetrahedron. Lett., 42, 6129, (2001), or the like.
However, the synthesis method of the compound of the present invention is not limited to this.
[0034]
[Chemical 8]
Figure 0004486776
[0035]
Quaternary salt 1 14.3 g (40 mmol) was dissolved in 50 ml of water, 1.6 g (40 mmol) of sodium hydroxide was added, and the mixture was stirred at room temperature for 30 minutes. Extraction three times with ethyl acetate, drying over magnesium sulfate and concentration yielded 9.2 g of methylene base 2 oil (yield 100%).
[0036]
3.97 g (40 mmol) of dimethylaminoacrolein 3 was dissolved in 50 ml of acetonitrile, and 6.75 g (44 mmol) of phosphorus oxychloride was added dropwise while cooling to 0 ° C., followed by stirring at 0 ° C. for 10 minutes. Subsequently, 9.2 g of acetonitrile solution of methylene base 2 was added dropwise and stirred at 35 ° C. for 4 hours. After pouring into 100 ml of ice water, 16 g of sodium hydroxide was added and refluxed for 10 minutes. After cooling, the mixture was extracted 3 times with ethyl acetate, dried over magnesium sulfate and concentrated. Purification by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 → 1: 3) gave 4.4 g of aldehyde 4 oil (yield 39%).
[0037]
Cyclopentanone 0.126 g (1.5 mmol) and aldehyde 4 0.85 g (3 mmol) were dissolved in 30 ml of dehydrated methanol and refluxed in a dark place under a nitrogen atmosphere. After homogenization, 0.69 g (3.6 mmol) of 28% sodium methoxide methanol solution was added, and the mixture was further refluxed for 6 hours. After cooling, the precipitated crystals were separated by filtration and washed with methanol to obtain 0.50 g (yield 54%) of D-1 dark green crystals. The structure was confirmed by NMR spectrum, MS spectrum and elemental analysis.
[0038]
[Example 2]
[Method for evaluating two-photon absorption cross section]
The evaluation of the two-photon absorption cross section of the compound of the present invention was performed with reference to the method described in MA Albota et al., Appl. Opt. 1998, 37, 7352. Ti: sapphire pulse laser (pulse width: 100 fs, repetition rate: 80 MHz, average output: 1 W, peak power: 100 kW) is used as a light source for measuring the two-photon absorption cross section, and two-photon absorption is performed in the wavelength range from 700 nm to 1000 nm. The cross-sectional area was measured. In addition, rhodamine B and fluorescein were measured as reference substances, and the obtained measured values were calculated as 2 of rhodamine B and fluorescein described in C. Xu et al., J. Opt. Soc. Am. B 1996, 13, 481. The two-photon absorption cross section of each compound was obtained by correcting using the value of the photon absorption cross section. As a sample for two-photon absorption measurement, a solution in which a compound was dissolved in chloroform at a concentration of 1 × 10 −3 was used.
[0039]
The two-photon absorption cross section of the compound of the present invention was measured by the above method, and the obtained results are shown in Table 1 in terms of GM (1GM = 1 × 10 −50 cm 4 s / photon). The value shown in the table is the maximum value of the two-photon absorption cross section within the measurement wavelength range.
[0040]
The two-photon absorption cross sections of Comparative Compound 1 and Comparative Compound 2 having the structures shown below were measured by the above method, and the results are shown in Table 1.
[0041]
[Chemical 9]
Figure 0004486776
[0042]
[Table 1]
Figure 0004486776
[0043]
As shown in Table 1, good characteristics far surpassing conventional materials were obtained.
[Example 3]
[Evaluation method of two-photon emission intensity]
The emission spectrum obtained by dissolving the compound of the present invention in chloroform and irradiating a laser pulse of 1064 nm of Nd: YAG laser was measured, and the nonresonant two-photon emission intensity was determined from the area of the obtained emission spectrum.
[0045]
Sample 1: A solution of 1 × 10 −2 M was prepared by dissolving 10.31 g of the compound D of the present invention in 50 mL of chloroform.
[0046]
Comparative sample 1: As a compound emitting strong two-photon emission, 0.59 g of a compound described in International Publication (WO) 997043 (the following compound) was dissolved in 100 mL of acetonitrile to prepare a 1 × 10 −2 M solution.
[0047]
[Chemical Formula 10]
Figure 0004486776
[0048]
Sample 1, Sample 2 and Comparative Sample 1 were each irradiated with a 1064 nm laser pulse of an Nd: YAG laser under the same conditions, and a non-resonant two-photon emission spectrum was measured. The area of the obtained emission spectrum (nonresonant two-photon emission intensity) is shown in Table 2 as a relative ratio when the value of Comparative Sample 1 is 1.
[0049]
[Table 2]
Figure 0004486776
[0050]
As shown in Table 2, good characteristics far surpassing conventional materials were obtained.
[0051]
【The invention's effect】
By using the compound of the present invention, a non-resonant two-photon absorption luminescent material exhibiting much stronger non-resonant two-photon absorption and two-photon emission than before can be obtained.

Claims (4)

非共鳴2光子吸収を行うことを特徴とする下記一般式(1)で表される化合物を含む非共鳴2光子吸収材料。
一般式(1)
Figure 0004486776
式中、R、Rはそれぞれ独立に、水素原子またはアルキル基を表し、カルボニル炭素原子に隣接する2つの炭素原子上のR とR 互いに連結してカルボニル炭素原子と共にシクロペンタン環を形成する。nおよびmはそれぞれ独立に1〜3の整数を表し、nおよびmが2以上の場合、複数個のR、およびRは同一でもそれぞれ異なってもよい。R、Rはそれぞれ独立に炭素原子数1〜6の無置換アルキル基または炭素原子数1〜4スルホアルキル基を表し、Z、Zはそれぞれ独立に、インドレニン環、アザインドレニン環、ピラゾリン環、ベンゾチアゾール環、チアゾール環、チアゾリン環、ベンゾオキサゾール環、チアジアゾール環またはキノリン環のいずれかを形成する原子群を表す。
A non-resonant two-photon absorption material containing a compound represented by the following general formula (1), which performs non-resonant two-photon absorption.
General formula (1)
Figure 0004486776
Wherein, R 1, R 3 each independently represent a hydrogen atom or an alkyl group, a cyclopentane ring with R 1 and R 3 are linked to the carbonyl carbon atoms together on the two carbon atoms adjacent to the carbonyl carbon atom Form. n and m each independently represent an integer of 1 to 3, and when n and m are 2 or more, a plurality of R 1 and R 3 may be the same or different. R 7 and R 8 each independently represents an unsubstituted alkyl group having 1 to 6 carbon atoms or a sulfoalkyl group having 1 to 4 carbon atoms, and Z 1 and Z 2 are each independently an indolenine ring or azaindolenine. A group of atoms forming any of a ring, a pyrazoline ring, a benzothiazole ring, a thiazole ring, a thiazoline ring, a benzoxazole ring, a thiadiazole ring, or a quinoline ring.
請求項1に記載の一般式(1)で表される化合物を含むことを特徴とする2光子発光材料。A two-photon luminescent material comprising the compound represented by the general formula (1) according to claim 1. 請求項1に記載の一般式(1)で表される化合物に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して2光子吸収を誘起することを特徴とする非共鳴2光子吸収誘起方法。Non-resonant 2 characterized in that two-photon absorption is induced by irradiating the compound represented by the general formula (1) according to claim 1 with laser light having a wavelength longer than the linear absorption band of the compound. Photon absorption induction method. 請求項1に記載の一般式(1)で表される化合物に、該化合物の有する線形吸収帯よりも長波長のレーザー光を照射して非共鳴2光子吸収を誘起し、発光を発生させることを特徴とする非共鳴2光子発光発生方法。The compound represented by the general formula (1) according to claim 1 is irradiated with laser light having a wavelength longer than the linear absorption band of the compound to induce non-resonant two-photon absorption, thereby generating light emission. A non-resonant two-photon emission generation method characterized by the above.
JP2002293809A 2002-10-07 2002-10-07 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof Expired - Lifetime JP4486776B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002293809A JP4486776B2 (en) 2002-10-07 2002-10-07 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof
US10/679,446 US20040131969A1 (en) 2002-10-07 2003-10-07 Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, method for inducing absorption of non-resonant two-photons and method for generating emission of non-resonant two-photons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293809A JP4486776B2 (en) 2002-10-07 2002-10-07 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof

Publications (2)

Publication Number Publication Date
JP2004123668A JP2004123668A (en) 2004-04-22
JP4486776B2 true JP4486776B2 (en) 2010-06-23

Family

ID=32284611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293809A Expired - Lifetime JP4486776B2 (en) 2002-10-07 2002-10-07 Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof

Country Status (1)

Country Link
JP (1) JP4486776B2 (en)

Also Published As

Publication number Publication date
JP2004123668A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
Luo et al. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes
Zheng et al. Synthesis and properties of substituted (p-aminostyryl)-1-(3-sulfooxypropyl) pyridinium inner salts as a new class of two-photon pumped lasing dyes
Zadeh et al. Chromophoric materials derived from a natural azulene: Syntheses, halochromism and one-photon and two-photon microlithography
WO2019153789A1 (en) Photo-activated aggregation-induced emission probe having in situ generation capabilities, preparation thereof and application thereof
Yılmaz et al. The effect of charge transfer on the ultrafast and two-photon absorption properties of newly synthesized boron-dipyrromethene compounds
Patil et al. Crystal growth and characterization of second-and third-order nonlinear optical chalcone derivative:(2E)-3-(5-bromo-2-thienyl)-1-(4-nitrophenyl) prop-2-en-1-one
EP2503389A2 (en) Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, and method for inducing absorption or generating emission of non-resonant two photon by using the material.
Fahmy et al. Laser induced fluorescence, photo-physical parameters and photo-stability of new fluorescein derivatives
JP4244124B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method
Tian et al. Two novel two-photon polymerization initiators with extensive application prospects
JP4486776B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereof
JP2009108249A (en) Intramolecular energy transfer material
JP2004224746A (en) Method for carrying out two-photon fluorescent labeling and two-photon absorption compound
Yasin et al. Meso-Zn (ii) porphyrins of tailored functional groups for intensifying the photoacoustic signal
JP4074824B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby
JP2004126441A (en) Non-resonance two-photon absorption compound, non-resonance two-photon emission compound, and non-resonance two-photon absorption induction method and light emission generating method by non-resonance two photon absorption
US20040131969A1 (en) Non-resonant two-photon absorbing material, non-resonant two-photon emitting material, method for inducing absorption of non-resonant two-photons and method for generating emission of non-resonant two-photons
JP2004250545A (en) Nonresonant two-photon absorption material and nonresonant two-photon luminescent material, methods for inducing nonresonant two-photon absorption and luminescence using the materials, and methine compound
JP4115308B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, and non-resonant two-photon absorption induction method and light emission generation method thereby
JP4317727B2 (en) Two-photon absorption material, non-resonant two-photon absorption induction method and light emission generation method therefor, and photon absorption optical recording material using the two-photon absorption three-dimensional volume display and two-photon absorption optical modeling composition
JP2004279674A (en) Nonresonant two-photon absorbing material, and induction method of nonresonant two-photon absorption using the same
JP5130514B2 (en) Two-photon absorption compound
JP4414719B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light emitting material, non-resonant two-photon absorption inducing method using the same, and light emission generating method
JP4299985B2 (en) Two-photon polymerizable composition and photopolymerization method thereof
JP2004224864A (en) Compound capable of absorbing non-resonant two photons, compound capable of emitting non-resonant two photons, and method for inducing absorption of non-resonant two photons and method for producing emission by using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Ref document number: 4486776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term