JP4486284B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4486284B2
JP4486284B2 JP2001247579A JP2001247579A JP4486284B2 JP 4486284 B2 JP4486284 B2 JP 4486284B2 JP 2001247579 A JP2001247579 A JP 2001247579A JP 2001247579 A JP2001247579 A JP 2001247579A JP 4486284 B2 JP4486284 B2 JP 4486284B2
Authority
JP
Japan
Prior art keywords
safety
safety valve
secondary battery
safety valves
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001247579A
Other languages
Japanese (ja)
Other versions
JP2003059476A (en
Inventor
知雄 秋山
勉 橋本
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001247579A priority Critical patent/JP4486284B2/en
Publication of JP2003059476A publication Critical patent/JP2003059476A/en
Application granted granted Critical
Publication of JP4486284B2 publication Critical patent/JP4486284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、例えばリチウム二次電池などの非水電解質二次電池の外装缶に備える安全弁に工夫をすることにより、短絡事故時などにおける熱暴走反応を抑制して安全性を高めたものである。
【0002】
【従来の技術】
リチウム二次電池は、高電圧・高エネルギー密度を有し、且つ、貯蔵性能や低温動作性に優れるため、広く携帯用民生電気製品の電源として普及している。電子機器向けの小型で小容量のものにとどまらず、工場や病院などの非常電源設備や深夜電力貯蔵用電源、あるいは電気自動車の動力用電源としての可能性から、大型で大容量のリチウム2次電池の研究・開発が盛んに行われている。
【0003】
図2は大型の箱型のリチウム二次電池10を示すものである。図2において、1は電池の外装缶、2は正極、3は負極、4はセパレータ、5は正極端子、6は負極端子、7は破裂型の安全弁である。このリチウム二次電池10では、外装缶1内に可燃性の有機材料でなる電解液(図示省略)が充填されている。
【0004】
このようなリチウム二次電池10を用いて蓄電システムを構成する場合、図3に示すように、複数(本例では4個)のリチウム二次電池10をフレーム20に収納し、複数のリチウム二次電池10を直・並列接続してモジュール電池として使用されることが多い。
【0005】
このようなリチウム二次電池10では、内部短絡が発生すると短絡部分(正負極間)に大きな短絡電流が流れて発熱し、その熱による電池温度上昇により、正負極表面における電解液の分解発熱反応や電解液自体の発熱分解反応が加速され、電解液の気化や分解により、電池内部の圧力が急激に上昇するという、いわゆる熱暴走現象が発生する。このように内部圧力が急激に上昇すると外装缶1が破裂したり、外装缶1の破裂により電解液が周囲に飛散したり周辺機器を損傷させる恐れがある。
【0006】
そこで、このような外装缶1の破裂・飛散という最悪の事態を回避するため、通常リチウム2次電池は安全弁7を備えている。即ち、外装缶1内の圧力が上昇し、この圧力が所定以上になると、破裂型の安全弁7が破裂・破断して開状態となり、ガスを外部に放出して圧力開放を行うようにしている。なお、電解液を加熱してガスを発生させ電池内部圧力を上昇させる原因となる電池異常としては、内部短絡,外部短絡,過大電流入力,過大電圧入力,過昇温等がある。
【0007】
なお、図2の例では、4つの安全弁7が備えられており、この場合、4つの安全弁7は、内部圧力が所定圧力以上になったときに同時に破裂するような、同一の耐圧強度を持ったものとしている。
【0008】
【発明が解決しようとする課題】
ところで、内部圧力が高くなり安全弁7が開放すると、高温のガスが短絡部分から安全弁7に向かって流れ、電池温度が急激に上昇し、この熱上昇が熱暴走を更に加速させる恐れがある。
【0009】
即ち、耐圧強度が等しい4つの安全弁を備えたリチウム二次電池では、内部圧力が所定圧力を越えると、4つの安全弁が略同時に開放する。このため、短絡部分から第1の安全弁7に向かって高温のガスが流れ、同時に、短絡部分から第2〜第3の安全弁7に向かってそれぞれ高温のガスが流れる。このように、4つの経路に沿って、高温のガスが同時に流れ、高温ガスの流路周辺での熱暴走反応が誘起されるため、電池温度が急上昇する。
【0010】
このように、従来技術では、安全弁の開放に伴い高温ガスが流れると、ガス流路周辺の電池温度が急上昇するため、熱暴走が加速するという不具合があった。
【0011】
本発明は、上記従来技術に鑑み、安全弁を開放して高温ガスを外部に放出しても、電池温度の上昇を抑制して、熱暴走を阻止するようにした非水電解質二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、外装缶に耐圧強度の異なる複数の安全弁を備えた非水電解質二次電池であって、前記安全弁が破裂型であり、前記耐圧強度の異なる安全弁は前記外装缶の配置面において対角位置に配置されていることを特徴とする。
【0013】
また本発明の構成は、外装缶に破裂型の安全弁を備えた非水電解質二次電池において、前記安全弁は4個備えられていると共に、前記4個の安全弁のうちの2個の安全弁で組となった第1の安全弁群と、前記4個の安全弁のうちの残りの2個の安全弁で組となった第2の安全弁群との耐圧強度が異なっており、しかも、第1の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第1の対角位置に配置されており、第2の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第2の対角位置に配置されていることを特徴とする。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。
【0015】
図1は本発明の実施の形態にかかる安全弁10Aを示す。図1において、1は電池の外装缶、2は正極、3は負極、4はセパレータ、5は正極端子、6は負極端子である。このリチウム二次電池10Aでは、外装缶1内に可燃性の有機材料でなる電解液(図示省略)が充填されている。
【0016】
外装缶1の上面には破裂型の2組の安全弁群7a,7bを備えている。安全弁群7a,7bは、外装缶1の上面においてそれぞれ対角位置に配置されており、両安全弁群7a,7bの耐圧強度は異なっている。例えば、安全弁群7aの耐圧強度は3Kgf/cm2 であり、安全弁群7bの耐圧強度は5Kgf/cm2 である。
【0017】
このリチウム二次電池10Aにおいて内部短絡が発生し、内部圧力が上昇すると、まず先に第1の対角位置にある安全弁群7aが破裂開放し、その後、時間的に遅れて第2の対角位置にある安全弁群7bが破裂開放する。このため、高温のガスは、短絡部分から安全弁群7aに向かう第1の経路に沿って流れ、時間的に遅れて、短絡部分から安全弁群7bに向かう第2の経路に沿っても流れだす。
【0018】
このため、高温のガスは、最初は第1の経路に沿って流れ、その後、時間的に遅れて、第1の経路と第2の経路に別れて流れ第1の経路に沿うガス流れが減少する。このように、ガスの流れる経路が、時間的に移動していくため、高温ガスの移動による熱暴走反応の加速が抑制され、電池温度が急上昇することなく安全性を確保することができる。
【0019】
実験では、リチウム二次電池10,10Aを横置きして、それぞれの中央部に、直径が8mmの鉄製釘を貫通させて内部短絡を起こして、温度上昇の変化を観察した。この実験においては、図1のように耐圧強度の異なる2組の安全弁群7a,7bを設けたリチウム二次電池10Aは、図2のように耐圧強度の等しい4つの安全弁7を設けたリチウム二次電池10に比べて、温度上昇が低いことが確認できた。
【0020】
また、安全弁群7a,7bが外装缶1の上面において対角位置に配置されているため、リチウム二次電池10Aが横に置かれた場合(即ち外装缶1の上面が垂直面になるように置かれた場合)であっても、短絡事故が発生すると、安全弁群7a,7bのうち少なくとも一方(上側に位置する安全弁)からガスの放出ができるため、安全である。
【0021】
なお図1の例では、耐圧強度の異なる2組の安全弁群7a,7bを備えているが、耐圧強度の異なる3組以上の安全弁群を備えるようにしてもよい。
【0022】
【発明の効果】
以上、実施の形態と共に具体的に説明したように、本発明では、外装缶に耐圧強度の異なる複数の安全弁を備えた非水電解質二次電池であって、前記安全弁が破裂型であり、前記耐圧強度の異なる安全弁は前記外装缶の配置面において対角位置に配置されている構成とした。
このため、内部短絡が発生しても、高温のガスの流れ経路が変化していき、電池温度が急上昇することなく安全性が高まる。
【0023】
また本発明では、外装缶に破裂型の安全弁を備えた非水電解質二次電池において、前記安全弁は4個備えられていると共に、前記4個の安全弁のうちの2個の安全弁で組となった第1の安全弁群と、前記4個の安全弁のうちの残りの2個の安全弁で組となった第2の安全弁群との耐圧強度が異なっており、しかも、第1の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第1の対角位置に配置されており、第2の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第2の対角位置に配置されている構成とした。
このため、内部短絡が発生しても、高温のガスの流れ経路が変化していき、電池温度が急上昇することなく安全性が高まる。更に、電池を横置きしても、安全弁としての機能を確保することができる。
【0024】
また本発明をリチウム二次電池に適用することにより、リチウム二次電池の安全性を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかるリチウム二次電池を破断して示す構成図。
【図2】従来のリチウム二次電池を破断して示す構成図。
【図3】リチウム二次電池によるモジュール電池を示す斜視図。
【符号の説明】
1 外装缶
2 正極
3 負極
4 セパレータ
5 正極端子
6 負極端子
7 破裂型の安全弁
7a,7b 破裂型の安全弁群
10,10A リチウム二次電池
20 フレーム
[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, a safety valve provided in an outer can of a non-aqueous electrolyte secondary battery such as a lithium secondary battery is devised, thereby suppressing a thermal runaway reaction at the time of a short circuit accident or the like and improving safety. .
[0002]
[Prior art]
Lithium secondary batteries have high voltage and high energy density, and are excellent in storage performance and low-temperature operability, so that they are widely used as power sources for portable consumer electronic products. Not only small and small capacity for electronic devices, but also large power and large capacity lithium secondary due to the possibility of emergency power supply facilities such as factories and hospitals, power sources for late-night power storage, or power sources for electric vehicles. Batteries are actively researched and developed.
[0003]
FIG. 2 shows a large box-type lithium secondary battery 10. In FIG. 2, 1 is a battery outer can, 2 is a positive electrode, 3 is a negative electrode, 4 is a separator, 5 is a positive electrode terminal, 6 is a negative electrode terminal, and 7 is a rupture-type safety valve. In the lithium secondary battery 10, the outer can 1 is filled with an electrolyte solution (not shown) made of a combustible organic material.
[0004]
When a power storage system is configured using such lithium secondary batteries 10, as shown in FIG. 3, a plurality (four in this example) of lithium secondary batteries 10 are housed in a frame 20, and a plurality of lithium secondary batteries 10 are stored. The secondary battery 10 is often used as a module battery by connecting it in series or in parallel.
[0005]
In such a lithium secondary battery 10, when an internal short circuit occurs, a large short circuit current (between the positive and negative electrodes) flows and generates heat, and due to the rise in battery temperature due to the heat, decomposition heat generation reaction of the electrolyte solution on the positive and negative electrode surfaces In addition, an exothermic decomposition reaction of the electrolyte solution itself is accelerated, and a so-called thermal runaway phenomenon occurs in which the pressure inside the battery rapidly increases due to the evaporation or decomposition of the electrolyte solution. If the internal pressure rises rapidly in this way, the outer can 1 may rupture, the outer can 1 may rupture, and the electrolyte may scatter around and damage peripheral devices.
[0006]
Therefore, in order to avoid such a worst situation that the outer can 1 is ruptured and scattered, the lithium secondary battery is usually provided with a safety valve 7. That is, when the pressure in the outer can 1 rises and this pressure exceeds a predetermined value, the burstable safety valve 7 is ruptured and broken to open, and the gas is released to release the pressure. . Note that battery abnormalities that cause the electrolyte to heat and generate gas to increase the internal pressure of the battery include internal short circuits, external short circuits, excessive current input, excessive voltage input, excessive temperature rise, and the like.
[0007]
In the example of FIG. 2, four safety valves 7 are provided. In this case, the four safety valves 7 have the same pressure resistance strength so that they burst simultaneously when the internal pressure exceeds a predetermined pressure. It is assumed.
[0008]
[Problems to be solved by the invention]
By the way, when the internal pressure becomes high and the safety valve 7 is opened, high-temperature gas flows from the short-circuited portion toward the safety valve 7, the battery temperature rapidly increases, and this heat increase may further accelerate the thermal runaway.
[0009]
That is, in a lithium secondary battery provided with four safety valves having the same pressure resistance, when the internal pressure exceeds a predetermined pressure, the four safety valves are opened almost simultaneously. For this reason, high-temperature gas flows from the short-circuit portion toward the first safety valve 7, and at the same time, high-temperature gas flows from the short-circuit portion toward the second to third safety valves 7. In this way, high-temperature gas flows simultaneously along the four paths, and a thermal runaway reaction is induced around the flow path of the high-temperature gas, so that the battery temperature rapidly rises.
[0010]
As described above, in the conventional technology, when a high-temperature gas flows as the safety valve is opened, the battery temperature in the vicinity of the gas flow path rapidly increases, so that the thermal runaway is accelerated.
[0011]
In view of the above prior art, the present invention provides a non-aqueous electrolyte secondary battery that prevents a thermal runaway by suppressing a rise in battery temperature even when a safety valve is opened and high temperature gas is released to the outside. The purpose is to do.
[0012]
[Means for Solving the Problems]
Configuration of the present invention for solving the aforementioned problems is a non-aqueous electrolyte secondary battery provided with a plurality of safety valves having different compression strength in the outer can, the safety valve is a burst type, different safety valve of the pressure resistance is the It arrange | positions in the diagonal position in the arrangement | positioning surface of an exterior can .
[0013]
Further, according to the configuration of the present invention, in the non-aqueous electrolyte secondary battery provided with a rupture-type safety valve in an outer can, four safety valves are provided, and two of the four safety valves are assembled. The first safety valve group is different from the first safety valve group and the second safety valve group formed by the remaining two safety valves of the four safety valves, and the first safety valve group These two safety valves are arranged at the first diagonal position on the arrangement surface of the outer can, and the two safety valves constituting the second safety valve group are equal in pressure resistance strength. These two safety valves have the same pressure-resistant strength, and are arranged at a second diagonal position on the arrangement surface of the outer can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0015]
FIG. 1 shows a safety valve 10A according to an embodiment of the present invention. In FIG. 1, 1 is a battery outer can, 2 is a positive electrode, 3 is a negative electrode, 4 is a separator, 5 is a positive electrode terminal, and 6 is a negative electrode terminal. In this lithium secondary battery 10A, the outer can 1 is filled with an electrolyte solution (not shown) made of a combustible organic material.
[0016]
On the upper surface of the outer can 1, two burst type safety valve groups 7 a and 7 b are provided. The safety valve groups 7a and 7b are arranged at diagonal positions on the upper surface of the outer can 1, and the pressure resistance strengths of the safety valve groups 7a and 7b are different. For example, the pressure resistance of the safety valve group 7a is 3 kgf / cm 2 , and the pressure strength of the safety valve group 7b is 5 kgf / cm 2 .
[0017]
When an internal short circuit occurs in the lithium secondary battery 10A and the internal pressure rises, the safety valve group 7a at the first diagonal position first bursts and opens, and then the second diagonal is delayed with time. The safety valve group 7b in the position is burst open. Therefore, the high-temperature gas flows along the first path from the short-circuited part toward the safety valve group 7a, and also flows along the second path from the short-circuited part toward the safety valve group 7b with a time delay.
[0018]
For this reason, the hot gas first flows along the first path, and then flows in a time-delayed manner and flows separately into the first path and the second path, and the gas flow along the first path decreases. To do. Thus, since the gas flow path moves with time, the acceleration of the thermal runaway reaction due to the movement of the high-temperature gas is suppressed, and safety can be ensured without the battery temperature rapidly rising.
[0019]
In the experiment, the lithium secondary batteries 10 and 10A were placed horizontally, an iron nail having a diameter of 8 mm was penetrated through each central portion, an internal short circuit was caused, and changes in temperature were observed. In this experiment, the lithium secondary battery 10A provided with two sets of safety valve groups 7a and 7b having different pressure resistances as shown in FIG. 1 is a lithium secondary battery 10A provided with four safety valves 7 having the same pressure resistance strength as shown in FIG. It was confirmed that the temperature rise was lower than that of the secondary battery 10.
[0020]
Further, since the safety valve groups 7a and 7b are arranged diagonally on the upper surface of the outer can 1, the lithium secondary battery 10A is placed sideways (that is, the upper surface of the outer can 1 is a vertical surface). Even when a short circuit accident occurs, it is safe because gas can be released from at least one of the safety valve groups 7a and 7b (the safety valve located on the upper side).
[0021]
In the example of FIG. 1, two sets of safety valve groups 7a and 7b having different pressure strengths are provided, but three or more sets of safety valve groups having different pressure strengths may be provided.
[0022]
【The invention's effect】
As has been specifically described in conjunction with the embodiments, the present invention provides a nonaqueous electrolyte secondary battery provided with a plurality of safety valves having different compression strength in the outer can, the safety valve is a burst type, wherein The safety valves having different pressure strengths were arranged at diagonal positions on the arrangement surface of the outer can .
For this reason, even if an internal short circuit occurs, the flow path of the high-temperature gas changes, and the safety is improved without the battery temperature rapidly increasing.
[0023]
According to the present invention, in the non-aqueous electrolyte secondary battery provided with a rupture-type safety valve in an outer can, four safety valves are provided, and two safety valves of the four safety valves are combined. The first safety valve group and the second safety valve group formed by the remaining two safety valves of the four safety valves are different in pressure resistance strength, and constitute the first safety valve group The two safety valves have the same pressure resistance strength, and these two safety valves are arranged at the first diagonal position on the arrangement surface of the outer can, and the pressure resistance of the two safety valves constituting the second safety valve group The two safety valves having the same strength are arranged at the second diagonal position on the arrangement surface of the outer can.
For this reason, even if an internal short circuit occurs, the flow path of the high-temperature gas changes, and the safety is improved without the battery temperature rapidly increasing. Furthermore, the function as a safety valve can be secured even when the battery is placed horizontally.
[0024]
Moreover, the safety | security of a lithium secondary battery can be improved by applying this invention to a lithium secondary battery.
[Brief description of the drawings]
FIG. 1 is a structural view showing a lithium secondary battery according to an embodiment of the present invention in a cutaway manner.
FIG. 2 is a configuration diagram showing a conventional lithium secondary battery in a broken view.
FIG. 3 is a perspective view showing a module battery using a lithium secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exterior can 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode terminal 6 Negative electrode terminal 7 Burst type safety valve 7a, 7b Burst type safety valve group 10, 10A Lithium secondary battery 20 Frame

Claims (2)

外装缶に耐圧強度の異なる複数の安全弁を備えた非水電解質二次電池であって
前記安全弁が破裂型であり、前記耐圧強度の異なる安全弁は前記外装缶の配置面において対角位置に配置されていることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery provided with a plurality of safety valves having different compression strength in the outer can,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the safety valve is a bursting type, and the safety valves having different pressure strengths are arranged at diagonal positions on the arrangement surface of the outer can .
外装缶に破裂型の安全弁を備えた非水電解質二次電池において、
前記安全弁は4個備えられていると共に、前記4個の安全弁のうちの2個の安全弁で組となった第1の安全弁群と、前記4個の安全弁のうちの残りの2個の安全弁で組となった第2の安全弁群との耐圧強度が異なっており、
しかも、第1の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第1の対角位置に配置されており、
第2の安全弁群を構成する2個の安全弁の耐圧強度は等しくこの2個の安全弁は、前記外装缶の配置面において第2の対角位置に配置されていることを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery with a bursting safety valve on the outer can,
Four safety valves are provided, and a first safety valve group formed by two safety valves of the four safety valves and a remaining two safety valves of the four safety valves. The pressure resistance strength of the second safety valve group is different,
Moreover, the two safety valves constituting the first safety valve group have the same pressure resistance strength, and these two safety valves are arranged at the first diagonal position on the arrangement surface of the outer can,
The non-aqueous electrolyte is characterized in that the two safety valves constituting the second safety valve group have the same pressure resistance strength, and the two safety valves are arranged at the second diagonal position on the arrangement surface of the outer can. Secondary battery.
JP2001247579A 2001-08-17 2001-08-17 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4486284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247579A JP4486284B2 (en) 2001-08-17 2001-08-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247579A JP4486284B2 (en) 2001-08-17 2001-08-17 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003059476A JP2003059476A (en) 2003-02-28
JP4486284B2 true JP4486284B2 (en) 2010-06-23

Family

ID=19076893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247579A Expired - Fee Related JP4486284B2 (en) 2001-08-17 2001-08-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4486284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903866A (en) * 2011-07-25 2013-01-30 湘潭银河新能源有限公司 Lithium ion battery
US11876244B2 (en) 2020-04-20 2024-01-16 Toyota Jidosha Kabushiki Kaisha Power storage cell and power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903866A (en) * 2011-07-25 2013-01-30 湘潭银河新能源有限公司 Lithium ion battery
CN102903866B (en) * 2011-07-25 2015-04-22 湘潭银河新能源有限公司 Lithium ion battery
US11876244B2 (en) 2020-04-20 2024-01-16 Toyota Jidosha Kabushiki Kaisha Power storage cell and power storage device

Also Published As

Publication number Publication date
JP2003059476A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
CN110199406B (en) Battery system
JP7368486B2 (en) Battery module and battery pack
CN103931019B (en) Improve the battery module of safety and include the set of cells of this battery module
KR100686844B1 (en) Secondary battery with ptc device
KR102072098B1 (en) Secondary battery, battery module and battery pack with improved safety
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
US20110091749A1 (en) Battery Pack
US11046206B2 (en) Battery module with short-circuit unit, and battery pack and vehicle including the same
JP6824288B2 (en) Cylindrical rechargeable battery module
JP5776005B2 (en) Sealed secondary battery
JP2014519153A (en) Battery pack and connecting bar applied to it
KR102250161B1 (en) Battery module with improved safety and Battery pack comprising the
JP2011526061A (en) Medium or large battery pack with improved safety
JP2020113361A (en) Power supply device, vehicle with the same, power storage device and separator for power supply device
US20150140390A1 (en) Apparatus for preventing overcharge of battery
JP2020513141A (en) Cylindrical secondary battery module and method for producing the same
JP2020509553A (en) Pouch type case for secondary battery that can discharge gas
KR20190042215A (en) Secondary Battery Pouch-Type Case Having Gas Discharge Port
JP2015510673A (en) Battery cell assembly with improved safety and battery module including the same
JP2013505553A (en) Secondary battery and manufacturing method thereof
JP6812056B2 (en) Battery cells with improved safety including heat-expandable tape and methods for manufacturing them
KR102308423B1 (en) Battery Cell Having a Top Cap on Which a Shape Memory Alloy Is Formed
JP4486284B2 (en) Nonaqueous electrolyte secondary battery
CN115152080A (en) Battery, device, preparation method of battery and preparation device
JP2015011920A (en) Power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees