JP4485676B2 - Satellite receiver for multipath signal monitoring - Google Patents

Satellite receiver for multipath signal monitoring Download PDF

Info

Publication number
JP4485676B2
JP4485676B2 JP2000350482A JP2000350482A JP4485676B2 JP 4485676 B2 JP4485676 B2 JP 4485676B2 JP 2000350482 A JP2000350482 A JP 2000350482A JP 2000350482 A JP2000350482 A JP 2000350482A JP 4485676 B2 JP4485676 B2 JP 4485676B2
Authority
JP
Japan
Prior art keywords
multipath
satellite
correlation processing
receiver
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000350482A
Other languages
Japanese (ja)
Other versions
JP2002156439A (en
Inventor
寧 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2000350482A priority Critical patent/JP4485676B2/en
Publication of JP2002156439A publication Critical patent/JP2002156439A/en
Application granted granted Critical
Publication of JP4485676B2 publication Critical patent/JP4485676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GPS(Global Positioning System)に代表されるGNSS(Global Navigation Satellite System)等、地球上の受信機が地球周回軌道上にある測位衛星から衛星信号を受信して測位を行うシステムに関する。本発明は、より詳細には、測位衛星から受信機までの衛星信号伝搬経路が複数生じる現象即ちマルチパスの発生を監視し又はその程度(マルチパス誤差)を計測若しくは評価する際に使用されるマルチパス信号監視用衛星受信機に関する。
【0002】
【従来の技術】
GNSSにおける測位精度の劣化原因として、一つには、衛星信号が障害物により反射されること等によるマルチパスがある。マルチパスが生じると、直接波に対する遅延波の干渉によって受信衛星信号の品質、ひいてはその受信衛星信号に基づく測位の精度が劣化する。また、マルチパスの現れ方は、衛星信号を受信するためのアンテナの位置(障害物との位置関係)等を含め、受信環境により異なる。
【0003】
そのため、マルチパスの発生を監視しまたマルチパス誤差を計測・評価するためのハードウエア・ソフトウエアが、従来から開発されている。例えばNovAtel社のサイト(http://www.novatel.ca/)は、MAT(Multipath Assesment Tool)と称するソフトウエアを公表している。このソフトウエアはパーソナルコンピュータベースで実行可能なソフトウエアであり、マルチパス評価用遅延ロックループ(MEDLL:Multipath Estimating Delay Lock Loop)受信機を搭載したマルチパスメータの出力を処理することによって、マルチパスの発生有無・程度を示す情報(マルチパスの電力、位相、遅延等)を、マルチパスの発生に関連した情報(測位衛星の仰角・方位角、衛星信号のC/No等)と共に、使用者に提供する。
【0004】
MEDLL受信機に代表される従来のマルチパス信号監視用衛星受信機は、いずれも、相関波形の乱れからマルチパスの有無・度合いを検出するという発想に基づいている。ここでいう相関波形とは、受信衛星信号の拡散位相(受信した衛星信号に係る拡散コードの位相)と逆拡散コードの位相との差を横軸、受信衛星信号と逆拡散コードとの相関値を縦軸にとって表した波形であり、理想的には、相関ピーク近傍では図3(1)(a)に示す三角形の波形となる。図3中「○」で表されている点は相関ピークであり、受信衛星信号に対する逆拡散コードの位相差が0であるときに、このように相関値がピークとなる。当該位相差が0からずれると相関値はそのピークよりも低くなる。更に、衛星信号の伝搬経路に関しマルチパスが生じている場合には、この波形に歪が生ずる。
【0005】
そこで、従来のマルチパス信号監視用衛星受信機では、その相互位相差が異なる多数通りの逆拡散コードを発生させ、それら一つ一つと受信衛星信号との相関値を求めることにより、多数のサンプルポイント(位相)において相関値を求めるようにしている。それらの逆拡散コードを用いて相関ピーク近傍の三角形を捕捉しそれら多数のサンプルポイントについての相関値から相関波形を推定できるよう、発生させる多数通りの逆拡散コードの相互の位相差は十分小さくする。例えば、マルチパス信号監視用衛星受信機における多数通りの逆拡散コードの相互位相差は、通常受信機におけるEとLとの位相差pに比べ、十分小さくする。ここでいう通常受信機とは、マルチパス監視に特化したものではなく測位用に用いられる受信機である。測位用の受信機では、図3(1)(a)に示すように、E,L等の逆拡散コードを用いて相関ピークを正確に捕捉・追尾する各種の手法が、採用されており、通常は、進み(Early)位相の逆拡散コードEに対する遅れ(Late)位相の逆拡散コードLとの位相差pが1チップ程度又はそれより小さく設定される。
【0006】
マルチパス信号監視用衛星受信機では、このように小さな位相間隔を有する多数通りの逆拡散コードそれぞれと受信衛星信号との相関値を求める。相関値を検出するポイントの個数が十分多ければ、求められた相関値「●」を結ぶことによって、図3(1)(b)に示す如き波形が得られる。この相関波形が相関ピーク近傍において理想的な三角形に対し歪んでいることを検出することにより、マルチパスの有無を判定できる。また、どの程度歪んでいるかを検出・評価することにより、マルチパス誤差の度合いを知ることかできる。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の手法を実施するには、図3(1)(b)中に「●」で示すように、多数のポイントで相関値をサンプルしなければならない。多数のサンプルポイントにおける相関値を比較的短時間で得るべく多数の相関器を並列的に動作させることとすると、多数の相関器が必要になるため受信機が高価格化・肥大する。本発明は、このような問題点を解決することを課題としてなされたものであり、多数のポイントについて相関値を検出する必要がなく、従って低価格・簡素な構成を有するマルチパス信号監視用衛星受信機を提供することを、その目的の一つとしている。
【0008】
【課題を解決するための手段】
このような目的を達成するために、本発明は、(1)地球周回軌道上にある測位衛星にてスペクトル拡散され送信された衛星信号を、地球上の受信機が受信及びスペクトル逆拡散し、それを通じて得られる情報に基づき当該受信機の位置を求めるシステムにて、測位衛星から受信機までの衛星信号伝搬におけるマルチパスの発生を監視し又はその程度を計測若しくは評価する際に使用されるマルチパス信号監視用衛星受信機であって、(2)衛星信号を受信する受信手段と、所定の逆拡散コードとの相関処理によって衛星信号をスペクトル逆拡散する相関処理手段とを備えるマルチパス信号監視用衛星受信機において、(3)組の逆拡散コードを相関処理に用い、上記衛星信号に基づく測位用情報を出力するマルチパス非抑圧方式相関処理手段と、上記マルチパス非抑圧方式相関処理手段によって用いられる一組の逆拡散コードの位相差よりも位相差が小さい他の一組の逆拡散コードを用い、上記衛星信号に基づく測位用情報を出力するマルチパス抑圧方式相関処理手段とを、上記相関処理手段として備え、(4)更に、上記マルチパス非抑圧方式相関処理手段が出力する測位用情報と、上記マルチパス抑圧方式相関処理手段が出力する測位用情報との差異に応じた差異情報を求める差異検出手段と、当該差異情報に基づく情報をマルチパスに関する監視、計測又は評価の結果を示す情報として出力する手段を備えることを特徴とする。
【0009】
本発明における基本的な着想の一つは、相関値を多数の点について検出し相関波形を求めその相関波形の歪を検出するという従来の発想から、相関値を比較的少数の点について検出しその結果得られる相関値同士を比較するという発想、特にマルチパスの影響を比較的強く受けていると見られる相関値とそうでない相関値との比較によりマルチパスの影響を検出するという発想への転換にある。本発明においては、上述の如く、マルチパス非抑圧方式相関処理手段及びマルチパス抑圧方式相関処理手段という複数種類の相関処理手段を設けることによって、この基本的着想を実現している。
【0010】
ここに、マルチパス非抑圧方式相関処理手段による相関処理を通じて得られる情報(例えばコード位相、コード擬似距離、キャリア擬似距離に対するコード擬似距離の差分等)の系列をy1(t)、それに現れているマルチパスの影響をβ1(t)とする。同様に、マルチパス抑圧方式相関処理手段による相関処理を通じて得られる情報の系列をy2(t)、それに現れているマルチパスの影響をβ2(t)と表すこととする。このとき、y1(t)及びy2(t)は、
【数1】
y1(t)=α(t)+β1(t)
y2(t)=α(t)+β2(t)
と表すことができる。これらの式中、α(t)はマルチパスが生じていないときに得られるべき情報系列即ち“真値”であり、両方式に共通の項であるから、これを消去すると、
【数2】
y1(t)−y2(t)=β1(t)−β2(t)
なる式が得られる。
【0011】
この式の右辺は、マルチパス非抑圧方式相関処理手段によって得られる情報系列中に含まれるマルチパスの影響分と、マルチパス抑圧方式相関処理手段によって得られる情報系列中に含まれるマルチパスの影響分との差を、表している。他方、マルチパス非抑圧方式相関処理手段にて相関処理に使用している一組の逆拡散コードは、例えば図3(2)(a)中に示すE,Lのようにその位相差p1が比較的大きいものであり、マルチパス抑圧方式相関処理手段にて相関処理に使用している一組の逆拡散コードは、例えば図3(2)(b)中に示すE,Lのようにその位相差p2が比較的小さいものである(即ちp1>p2)。更に、当業界にて知られているように、マルチパスにより生じる相関波形の歪の影響は、相関処理に使用する逆拡散コードの相互位相差が小さいほど、相関処理により得られる情報系列中に現れにくい。
【0012】
従って、両相関処理手段から得られる情報系列を相互比較する処理によって得られる情報、例えば上掲の式の左辺y1(t)−y2(t)は、マルチパスの影響分に(間接的にであれ)対応づけることが可能な情報である。即ち、両相関処理手段から得られる情報系列を相互比較する処理によって、マルチパスの有無の検出、マルチパス誤差の定量的検出・評価等を、実現することができる。相関値をサンプルするポイントが減った分、図3(1)(b)に示す従来技術と比べ相関器の個数を減らすことができるため、本発明に係る受信機は、低価格化・簡素化の点で優れたものになる。また、マルチパス非抑圧方式相関処理手段及びマルチパス抑圧方式相関処理手段を、共通の相関処理手段の時分割使用により実現することもでき、そのようにした場合には更に相関器の個数を減らすことができる。
【0013】
また、発明者の知見によれば、マルチパス誤差が顕在化しやすいのは測位衛星の仰角が比較的低い場合である。そこで、本発明の好ましい実施形態においては、各可視衛星にその仰角が低い順に順位を付与し、付与した順位に従い各可視衛星を上記受信及び相関処理に供する観測衛星指示手段を、設ける。ここでいう可視衛星とは、測位衛星のうちマルチパス信号監視用衛星受信機から見通せる位置にある衛星である。また、仰角は、各測位衛星の軌道を示す情報、マルチパス信号監視用衛星受信機の位置を示す情報及び現在の時刻を示す情報に基づき導出することができる。このように仰角が低いものを優先的に受信及び相関処理の対象とすることにより、比較的短時間でマルチパスの影響を検出、計測及び評価することができる。マルチパスの影響を短時間で検出等できるため、受信機内の各回路に対する電源供給の停止或いはクロック停止・周波数低下等による間欠動作を実施でき、受信機における消費電力低減という効果を得ることができる。
【0014】
また、使用者から測定スケジュール(どの測位衛星から順に受信及び相関処理の対象とするか等に関する設定情報)を与え、それに応じてマルチパス監視・計測等を実行する形態を以て、本発明を実施することもできる。この手法も、マルチパス監視・計測等に要する時間の短縮に寄与するものであり、間欠動作ひいては受信機消費電力低減という効果を得ることができる。
【0015】
なお、図3(2)の例では各相関処理手段にてそれぞれE,Lという2個の逆拡散コードを使用しているが、これは説明上の例に過ぎない。本発明を実施する際には、3個以上の逆拡散コードを一組として使用してもよい。各相関処理手段にて使用される各逆拡散コードの内容については特に述べなかったが、マルチパス非抑圧方式相関処理手段及びそれと対をなすマルチパス抑圧方式相関処理手段は同一の測位衛星から送信された衛星信号を処理する手段であるから、それらにおいて使用する逆拡散コードの系列の内容は(位相が異なるのみで)全て同一である。
【0016】
更に、以上の説明は測位衛星1個分の処理に関する説明であったが、本発明は測位衛星を複数個同時に捕捉しマルチパスに関する監視、計測等を実行する受信機として実施するのが好ましい。そのような受信機として本発明を実施する場合、マルチパス非抑圧方式相関処理手段及びマルチパス抑圧方式相関処理手段を複数対設け、各対毎にその対で処理すべき衛星信号の送信元に対応した系列内容の逆拡散コードを用いる。
【0017】
更に、通常の即ち測位用の受信機では、まずE,Lの位相差を広めに設定した状態で測位衛星からの受信衛星信号の拡散コードを捕捉し、一旦捕捉に成功した後はE,Lの位相差を狭めて精度よい追尾を図るという手法が、従来から採用されている。本発明が、同時に又は相前後して両相関処理手段から得られる情報に基づきマルチパス監視等を実行するものであり、受信衛星信号の捕捉から追尾への移行に際する位相差の可変制御に該当するものではないこと、即ち通常の受信機における従来の動作とは性質が異なることに留意されたい。また、通常の受信機では、測位衛星の仰角に応じて捕捉・追尾の対象とすべき測位衛星を決めるという処理が採用されることがある。他方で、本発明の好ましい実施形態でも測位衛星の仰角に応じて測定順を決めている。しかし、通常の受信機における選択順が測位精度維持確保等の目的から高仰角順であるのに対し、本発明の好ましい実施形態におけるそれはマルチパス影響度把握の目的から低仰角順であり、両者がその目的及び手順の双方において相違している点に留意されたい。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施形態に関し図面に基づき説明する。なお、図3(2)に示す符号については以下の説明においても使用する。
【0019】
図1に、本発明の一実施形態に係るマルチパス信号監視用衛星受信機10の構成を示す。この図に示すマルチパス信号監視用衛星受信機10は、衛星受信アンテナ12により測位衛星から受信した衛星信号をスペクトル逆拡散し、航法データを復調する信号処理装置14を備えている。信号処理装置14は、図2に示すように、2n個の相関処理ユニット14−ij(i=1,2,…n;j=a,b;n=自然数)を備えている。これらのうち相関処理ユニット14−iaは、図3(2)(a)に示した方式即ちマルチパス非抑圧方式に従い相関処理を行うユニットであり、相関処理ユニット14−ibは図3(2)(b)に示した方式即ちマルチパス抑圧に従い相関処理を行うユニットである。また、相関処理ユニット14−iaと相関処理ユニット14−ibは対をなしており、双方ともに同一の測位衛星が割り当てられる。なお、図2においては、マルチパス非抑圧方式に係るユニットとマルチパス抑圧方式に係るユニットとを別体のユニットとして描いたが、実際には、これらのユニットは単一のユニットの時分割共用によって実現することもできる。
【0020】
信号処理装置14は、観測衛星指示装置16から観測衛星指示データV2を受け取ると、その観測衛星指示データV2に含まれる最大n個の衛星番号のうち1個目の衛星番号n1を相関処理ユニット14−1jに、2個目の衛星番号n2を14−2jに、というように、各相関処理ユニット14−ijに測位衛星を割り当てる。各相関処理ユニット14−ijは、自らに割り当てられた測位衛星に対応するデータ系列である逆拡散コードを少なくとも進み位相(E)と遅れ位相(L)の2通り発生させる。各相関処理ユニット14−ijは、図示しないが、E,Lの逆拡散コードを発生させるコード発生器に加え、E及びLの逆拡散コードの位相を逐次変化させる制御部材と、それらの逆拡散コードと受信衛星信号との相関値を検出するための相関器(群)とを内蔵している。各相関処理ユニット14−ijは、逆拡散コードの位相を逐次変化させつつE,Lの各逆拡散コードと受信衛星信号との相関値を検出することによって、相関ピークが現れる拡散位相即ち三角形(山又は谷)の位置をコード位相として検出する。このとき、受信衛星信号はスペクトル逆拡散され、航法データを復調可能な状態となる。図3(2)に示されているのは、E,Lの逆拡散コードが相関ピーク位相同期しコード位相が検出されている状態である。なお、各相関処理ユニット14−ijの内部構成の詳細については、当業界の常識に従い適宜設計し得るものであるから、ここではその詳細な説明を省略する。
【0021】
マルチパス非抑圧方式に従い相関処理を実行する相関処理ユニット14−iaと、マルチパス抑圧方式に従い相関処理を実行する相関処理ユニット14−ibとの相違は、図3(2)(a)及び(b)の比較から明らかなように、E,Lの逆拡散コード間の位相差が互いに異なり、前者における位相差p1が後者における位相差p2よりも大きいことである。一般に、E,Lの逆拡散コード間の位相差が大きいほどマルチパスの影響即ち相関波形の歪が顕在化しやすいため、相関処理ユニット14−iaにおけるコード位相同期制御の結果得られるコード位相には、相関処理ユニット14−ibにおけるコード位相同期制御の結果得られるコード位相に比べ、マルチパスの影響が顕著に現れる。信号処理装置14は、相関処理ユニット14−iaにて得られる情報例えばコード位相を観測データV3として観測データ処理装置18に供給し、相関処理ユニット14−ibにて得られる情報例えばコード位相を観測データV4として観測データ処理装置18に供給する。
【0022】
観測データ処理装置18は、これらの観測データV3及びV4を測位衛星毎に比較することによって、測位衛星毎にマルチパスの影響を計測或いは推定する。例えば、観測データV3及びV4がキャリア位相(受信衛星信号中のキャリア成分の位相。各相関処理ユニット内の局部発振器の発振位相制御を通じて得られる)及びコード位相を含んでいるならば、観測データ処理装置18は、キャリア位相に基づき求めた各測位衛星までの擬似距離に対するコード位相から求めた擬似距離のゆらぎを、マルチパスの影響度を示す情報Mとして入出力装置20に供給する。入出力装置20は、例えば、表示機能を備えたユーザー端末装置22に対するインタフェースであり、観測データ処理装置18から供給される影響度情報Mと、観測衛星指示装置16から供給される観測衛星データV6とを組み合わせ、出力データV7としてユーザー端末装置22に供給する。
【0023】
なお、観測衛星データV6は測位衛星の仰角、方位角、C/No等を示すデータ、即ちマルチパスの発生に関連するデータを含むデータである。この観測衛星データV6を得る等のために、信号処理装置14内の各相関処理ユニット14−ijは、スペクトル逆拡散した受信衛星信号から航法データを復調し、その航法データに含まれるデータのうち各測位衛星の軌道(暦)を示すデータを取りだし、取り出したデータを受信信号強度等の情報と共に復調データV1として観測衛星指示装置16に供給する。観測衛星指示装置16は、この復調データV1と、図示しないクロック等から得られる現在時刻情報と、後に説明するように使用者から随時与えられ又は初期設定される現在位置情報とに基づき、観測衛星データV6を導出する。観測衛星データV6は、各可視衛星について、或いは少なくとも現にマルチパス影響度検出に供されている可視衛星について、それぞれ作成される。
【0024】
また、観測衛星指示データV2は、使用者から与えられる測定スケジュールに従って各可視衛星が処理に供されるよう、又は低仰角順に処理に供されるよう、観測衛星指示装置16にて作成され信号処理装置14に供給される。
【0025】
例えば、使用者がユーザー端末装置22を操作して、(1)マルチパス影響度測定に供すべき測位衛星の衛星番号、(2)マルチパス信号監視用衛星受信機10の(概略)現在位置、(3)マルチパス影響度の測定を行う時刻等の情報を含む設定データV8を入力すると、この設定データV8は入出力装置20により設定データV5として観測衛星指示装置16に供給される。設定データV8に含まれる情報のうち、衛星番号及び測定時刻は測定スケジュールを与える情報であるから、観測衛星指示装置16は、これらの情報に従い観測衛星指示データV2を発生させ、測定時刻の到来に応じて信号処理装置14に供給する。なお、受信機位置は前掲の通り復調データV1に基づく観測衛星データV6の生成や、次に述べる低仰角順選択の際の観測衛星指示データV2発生処理に使用される。また、信号処理装置14にて又はその出力に基づき図示しない部材が測位演算を実行している場合には、受信機位置については使用者入力に代えて当該測位演算の結果を援用できる。
【0026】
使用者がユーザー端末装置22の操作による設定データV8の入力を行っていない場合や、使用者により入力された設定データV8が測定スケジュールに関する情報を含んでいない場合には、観測衛星指示装置16は測定時刻における各可視衛星の仰角を求め、求めた仰角が低い可視衛星から順にマルチパス影響度の測定及びそのための受信・相関処理が実行されるよう、観測衛星指示データV2を発生させる。任意の測定時刻においてどの測位衛星が可視衛星であるのか、またその可視衛星の仰角が何度かについては、復調データV1中の軌道(暦)データ、マルチパス信号監視用衛星受信機10の(概略)位置、並びに測定時刻から、判別及び導出することができる。また、それらの情報のうち軌道(暦)データについては予め記憶若しくは収集済のものを利用でき、受信機(概略)位置については使用者が以前に若しくは最近設定データV8として入力したもの又は測位により得られたものを利用できる。測定時刻については、使用者が以前に測定スケジュールとして入力した時刻とするか、初期設定によって定められている時刻とする。ここに、マルチパスの影響はその仰角が比較的低い可視衛星の方が顕在化しやすいとみられる。そこで、観測衛星指示装置16は、測定時刻が到来したとき、一般に複数存在する可視衛星の中で比較的その仰角が低いものから順に測定及びそのための受信・相関処理に供されるよう、観測衛星指示データV2を発生させて信号処理装置14に供給する。
【0027】
なお、情報Mとしては、擬似距離のゆらぎに代えて、測位誤差を導出するようにしてもよい。例えば、観測データ処理装置18にて、マルチパス非抑圧方式に係る観測データV3に基づき測位演算を行う一方で、マルチパス抑圧方式に係る観測データV4に基づく測位演算も行い、両測位演算の結果を比較した結果(例えば位置の相違)を情報Mとする。これにより、使用者は、マルチパスによる測位精度の劣化量の推定値を知ることができる。また、観測衛星指示装置16による又はこれを介した衛星の推定をやめ、全ての可視衛星又は測位衛星を観測対象としてもよい。その場合でも、ユーザ端末装置22からの出力(表示)の対象をいくつかの衛星にしぼることは可能である。
【0028】
このように、本実施形態によれば、測位衛星1個当たりの相関値サンプルポイントを減らすことができ、従って信号処理装置14内の各相関処理ユニット14−ijを構成する相関器の個数を減らすこと等が可能であるため、信号処理装置14ひいてはマルチパス信号監視用衛星受信機10の構成を簡素化し、低価格化することができる。また、低仰角の測位衛星から順に処理に供するようにした場合には比較的早期にマルチパス誤差を検出及び評価することが可能になるため、信号処理装置14側の動作時間が短時間で済み、従って間欠動作でも足りることとなるから、電源電力の消費を抑えることができる。また、ユーザ端末装置22から入力される測定スケジュールに従い処理を行う場合も同様に、間欠的な動作でかまわないため、電源電力の消費を抑えることができる。総じて言えば、本実施形態に係るマルチパス信号監視用衛星受信機10は、その構成が小型、簡素、低価格及び省電力であり、マルチパス誤差の検出等の精度も比較的高いことから、マルチパスの影響度を考慮してアンテナの位置を最適化する等の用途に、好適に使用することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るマルチパス信号監視用衛星受信機の機能構成を示すブロック図である。
【図2】 本実施形態における信号処理装置の機能構成を示すブロック図である。
【図3】 従来技術の問題点及び本発明の原理を示す図であり、特に図3(1)(a)は通常の即ち測位用の受信機におけるE,Lの位相差と衛星捕捉時における相関ピークとの関係を示す図であり、図3(1)(b)は従来技術に係るマルチパス信号監視用受信機における相関値サンプルポイントの関係を示す図であり、図3(2)(a)は本発明におけるマルチパス非抑圧方式に係るE,Lの位相差と衛星捕捉時における相関ピークとの関係を示す図であり、図3(2)(b)は本発明におけるマルチパス抑圧方式に係るE,Lの位相差と衛星捕捉時における相関ピークとの関係を示す図である。
【符号の説明】
10 マルチパス信号監視用衛星受信機、12 衛星受信アンテナ、14 信号処理装置、14−1a,14−1b,14−2a,14−2b,…14−na,14−nb 相関処理ユニット、16 観測衛星指示装置、18 観測データ処理装置、20 入出力装置、22 ユーザ端末装置、E 進み位相の逆拡散コード、L 遅れ位相の逆拡散コード、p1,p2 EとLの位相差。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system in which a receiver on the earth receives a satellite signal from a positioning satellite in orbit around the earth and performs positioning such as a GNSS (Global Navigation Satellite System) represented by GPS (Global Positioning System). More specifically, the present invention is used to monitor the occurrence of multiple satellite signal propagation paths from a positioning satellite to a receiver, that is, the occurrence of multipath, or to measure or evaluate the extent (multipath error). The present invention relates to a satellite receiver for multipath signal monitoring.
[0002]
[Prior art]
One of the causes of the degradation of positioning accuracy in GNSS is multipath due to reflection of satellite signals by obstacles. When multipath occurs, the quality of the received satellite signal, and consequently the accuracy of positioning based on the received satellite signal, deteriorates due to interference of the delayed wave with the direct wave. In addition, the appearance of multipath varies depending on the reception environment, including the position of the antenna for receiving satellite signals (positional relationship with the obstacle) and the like.
[0003]
For this reason, hardware and software for monitoring the occurrence of multipath and for measuring and evaluating multipath errors have been developed. For example, the NovAtel website (http://www.novatel.ca/) publishes software called MAT (Multipath Assessment Tool). This software is a software that can be executed on a personal computer base. By processing the output of a multipath meter equipped with a multipath evaluation delay lock loop (MEDLL) receiver, Information indicating the presence / absence / degree of occurrence (multipath power, phase, delay, etc.) and information related to the occurrence of multipath (elevation angle / azimuth of positioning satellite, C / No of satellite signal, etc.) To provide.
[0004]
All the conventional multipath signal monitoring satellite receivers typified by the MEDLL receiver are based on the idea of detecting the presence / absence / degree of multipath from the disturbance of the correlation waveform. The correlation waveform here refers to the difference between the spread phase of the received satellite signal (the phase of the spread code associated with the received satellite signal) and the phase of the despread code, and the correlation value between the received satellite signal and the despread code. Is a waveform represented by the vertical axis, and ideally a triangular waveform shown in FIGS. 3A and 3A near the correlation peak. A point represented by “◯” in FIG. 3 is a correlation peak, and when the phase difference of the despread code with respect to the received satellite signal is 0, the correlation value becomes a peak in this way. When the phase difference deviates from 0, the correlation value becomes lower than the peak. Further, when a multipath occurs in the propagation path of the satellite signal, the waveform is distorted.
[0005]
Therefore, in a conventional multipath signal monitoring satellite receiver, a large number of samples are generated by generating a number of despread codes having different mutual phase differences and obtaining a correlation value between each of them and the received satellite signal. The correlation value is obtained at the point (phase). The phase difference between the multiple despreading codes to be generated is sufficiently small so that the triangles near the correlation peak can be captured using these despreading codes and the correlation waveform can be estimated from the correlation values for these multiple sample points. . For example, the mutual phase difference of many types of despreading codes in a multipath signal monitoring satellite receiver is made sufficiently smaller than the phase difference p between E and L in a normal receiver. The normal receiver here is not a receiver specialized for multipath monitoring but a receiver used for positioning. In the receiver for positioning, as shown in FIG. 3 (1) (a), various methods for accurately capturing and tracking the correlation peak using despreading codes such as E and L are adopted. Normally, the phase difference p between the late phase despread code L and the late phase despread code L is set to about 1 chip or less.
[0006]
In the multipath signal monitoring satellite receiver, the correlation value between each of the various despread codes having such a small phase interval and the received satellite signal is obtained. If the number of points at which the correlation value is detected is sufficiently large, a waveform as shown in FIGS. 3A and 3B is obtained by connecting the obtained correlation values “●”. By detecting that this correlation waveform is distorted with respect to an ideal triangle in the vicinity of the correlation peak, the presence or absence of multipath can be determined. Further, the degree of multipath error can be known by detecting and evaluating how much the distortion has occurred.
[0007]
[Problems to be solved by the invention]
However, in order to implement the conventional method, the correlation values must be sampled at a large number of points, as indicated by “●” in FIGS. If a large number of correlators are operated in parallel in order to obtain correlation values at a large number of sample points in a relatively short time, a large number of correlators are required, resulting in an increase in the price and enlargement of the receiver. The present invention has been made to solve such problems, and it is not necessary to detect correlation values for a large number of points. Therefore, a multipath signal monitoring satellite having a low cost and a simple configuration. One of the purposes is to provide a receiver.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides (1) a satellite signal that is spread and transmitted by a positioning satellite in orbit around the earth, and a receiver on the earth receives and despreads the spectrum. A system used to determine the position of the receiver based on the information obtained through it and to monitor the occurrence of multipath in satellite signal propagation from the positioning satellite to the receiver, or to measure or evaluate the degree of the multipath. A multipath signal monitoring satellite receiver for path signal monitoring, comprising: (2) receiving means for receiving a satellite signal; and correlation processing means for spectrum despreading the satellite signal by correlation processing with a predetermined despreading code. Satellite receiver (3) one Using a set of despreading codes for correlation processing , Output positioning information based on the satellite signal Multipath non-suppression correlation processing means; More than the phase difference of a set of despread codes used by the multipath non-suppression correlation processing means. Phase difference Is small Use another set of despreading codes , Output positioning information based on the satellite signal Multipath suppression method correlation processing means As the above correlation processing means (4) In addition, the above Multipath non-suppression correlation processing means And positioning information output by Multipath suppression method correlation processing means Difference detection means for obtaining difference information according to the difference from the positioning information output by the, and based on the difference information Means is provided for outputting information as information indicating a result of monitoring, measurement, or evaluation regarding multipath.
[0009]
One of the basic ideas in the present invention is to detect correlation values at a relatively small number of points from the conventional idea of detecting correlation values at a number of points and obtaining a correlation waveform to detect distortion of the correlation waveform. The idea of comparing the correlation values obtained as a result, especially the idea of detecting the effect of multipath by comparing the correlation value that seems to be relatively strongly affected by multipath and the correlation value that is not so In conversion. In the present invention, as described above, this basic idea is realized by providing a plurality of types of correlation processing means such as a multipath non-suppression scheme correlation processing means and a multipath suppression scheme correlation processing means.
[0010]
Here, a sequence of information (for example, code phase, code pseudorange, difference of code pseudorange with respect to carrier pseudorange, etc.) obtained through correlation processing by the multipath non-suppression type correlation processing means appears in y1 (t). Let β1 (t) be the multipath effect. Similarly, a series of information obtained through the correlation processing by the multipath suppression method correlation processing means is expressed as y2 (t), and the influence of the multipath appearing in it is expressed as β2 (t). At this time, y1 (t) and y2 (t) are
[Expression 1]
y1 (t) = α (t) + β1 (t)
y2 (t) = α (t) + β2 (t)
It can be expressed as. In these equations, α (t) is an information sequence to be obtained when multipath does not occur, that is, a “true value”, and is a term common to both equations.
[Expression 2]
y1 (t) −y2 (t) = β1 (t) −β2 (t)
The following formula is obtained.
[0011]
The right side of this equation shows the influence of the multipath included in the information sequence obtained by the multipath non-suppression scheme correlation processing means and the influence of the multipath included in the information sequence obtained by the multipath suppression scheme correlation processing means. It represents the difference from the minute. On the other hand, a set of despreading codes used for correlation processing by the multipath non-suppression type correlation processing means has a phase difference p1 such as E and L shown in FIG. 3 (2) (a). A pair of despreading codes which are relatively large and are used for correlation processing by the multipath suppression type correlation processing means are, for example, E and L shown in FIGS. 3 (2) and 3 (b). The phase difference p2 is relatively small (that is, p1> p2). Further, as is known in the art, the influence of the distortion of the correlation waveform caused by multipath is such that the smaller the cross-phase difference of the despread code used for correlation processing, the more the information sequence obtained by correlation processing becomes. Hard to appear.
[0012]
Therefore, the information obtained by the process of mutually comparing the information series obtained from both correlation processing means, for example, the left side y1 (t) -y2 (t) of the above-mentioned formula is not (indirectly) That is information that can be matched. That is, detection of the presence or absence of multipath, quantitative detection / evaluation of multipath error, and the like can be realized by processing of comparing information sequences obtained from both correlation processing means. Since the number of correlation samples is reduced, the number of correlators can be reduced as compared with the prior art shown in FIGS. 3 (1) and 3 (b). Therefore, the receiver according to the present invention is reduced in price and simplified. It will be excellent in terms of. Further, the multipath non-suppression type correlation processing means and the multipath suppression type correlation processing means can be realized by using time sharing of the common correlation processing means, and in such a case, the number of correlators is further reduced. be able to.
[0013]
Further, according to the inventor's knowledge, the multipath error is likely to become apparent when the elevation angle of the positioning satellite is relatively low. Therefore, in a preferred embodiment of the present invention, there is provided observation satellite instruction means for assigning ranks to the respective visible satellites in ascending order of elevation angle, and subjecting each visible satellite to the reception and correlation processing according to the assigned rank. The visible satellite here is a satellite in a position that can be seen from a satellite receiver for monitoring multipath signals among positioning satellites. Further, the elevation angle can be derived based on information indicating the orbit of each positioning satellite, information indicating the position of the multipath signal monitoring satellite receiver, and information indicating the current time. As described above, by preferentially selecting a low elevation angle as a target of reception and correlation processing, it is possible to detect, measure, and evaluate the influence of multipath in a relatively short time. Since the influence of multipath can be detected in a short time, intermittent operation by stopping power supply to each circuit in the receiver or stopping the clock, lowering the frequency, etc. can be performed, and the effect of reducing power consumption in the receiver can be obtained. .
[0014]
Further, the present invention is implemented by giving a measurement schedule (setting information regarding which positioning satellites are sequentially received and correlated) from the user, and executing multipath monitoring / measurement or the like accordingly. You can also. This method also contributes to shortening the time required for multipath monitoring / measurement and the like, and can achieve the effect of intermittent operation and consequently reduction in power consumption of the receiver.
[0015]
In the example of FIG. 3 (2), two despreading codes E and L are used in each correlation processing means, but this is only an illustrative example. In practicing the present invention, three or more despread codes may be used as a set. Although the contents of each despreading code used in each correlation processing means were not particularly described, the multipath non-suppression type correlation processing means and the multipath suppression type correlation processing means paired therewith are transmitted from the same positioning satellite. Therefore, the contents of the despread code sequences used in them are all the same (only in phase).
[0016]
Furthermore, although the above explanation was about the processing for one positioning satellite, the present invention is preferably implemented as a receiver that simultaneously captures a plurality of positioning satellites and executes monitoring, measurement, etc. regarding multipaths. When the present invention is implemented as such a receiver, a plurality of pairs of multipath non-suppression scheme correlation processing means and multipath suppression scheme correlation processing means are provided, and each pair serves as a source of a satellite signal to be processed by that pair. Use despreading code with corresponding sequence contents.
[0017]
Further, in a normal or positioning receiver, first, a spread code of a received satellite signal from a positioning satellite is captured in a state where the phase difference between E and L is set wide, and once successfully captured, E, L Conventionally, a method of narrowing the phase difference between the two and achieving accurate tracking has been adopted. The present invention performs multipath monitoring or the like based on information obtained from both correlation processing means at the same time or before and after, and for variable control of the phase difference during the transition from acquisition to tracking of received satellite signals. Note that this is not the case, i.e. different in nature from the conventional operation in a normal receiver. In addition, a normal receiver may employ a process of determining a positioning satellite to be captured and tracked according to the elevation angle of the positioning satellite. On the other hand, in the preferred embodiment of the present invention, the measurement order is determined according to the elevation angle of the positioning satellite. However, while the order of selection in a normal receiver is the order of high elevation for the purpose of ensuring positioning accuracy, etc., in the preferred embodiment of the present invention it is the order of low elevation for the purpose of grasping the multipath effect level. Note that is different in both its purpose and procedure.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that the reference numerals shown in FIG. 3B are also used in the following description.
[0019]
FIG. 1 shows a configuration of a multipath signal monitoring satellite receiver 10 according to an embodiment of the present invention. The multipath signal monitoring satellite receiver 10 shown in this figure includes a signal processing device 14 that despreads the spectrum of a satellite signal received from a positioning satellite by a satellite receiving antenna 12 and demodulates navigation data. As shown in FIG. 2, the signal processing device 14 includes 2n correlation processing units 14-ij (i = 1, 2,... N; j = a, b; n = natural number). Among these, the correlation processing unit 14-ia is a unit that performs correlation processing according to the method shown in FIG. 3 (2) (a), that is, the multipath non-suppression method, and the correlation processing unit 14-ib is shown in FIG. 3 (2). This is a unit that performs correlation processing according to the method shown in (b), that is, multipath suppression. Further, the correlation processing unit 14-ia and the correlation processing unit 14-ib make a pair, and the same positioning satellite is assigned to both. In FIG. 2, the unit related to the multipath non-suppression method and the unit related to the multipath suppression method are drawn as separate units. However, in actuality, these units are shared by time division of a single unit. Can also be realized.
[0020]
When the signal processing device 14 receives the observation satellite instruction data V2 from the observation satellite instruction device 16, the correlation processing unit 14 determines the first satellite number n1 among the maximum n satellite numbers included in the observation satellite instruction data V2. A positioning satellite is assigned to each correlation processing unit 14-ij, such as -1j, the second satellite number n2 to 14-2j, and so on. Each correlation processing unit 14-ij generates at least two types of despreading codes, that is, a lead phase (E) and a lagging phase (L), which are data series corresponding to the positioning satellite assigned to the correlation processing unit 14-ij. Although not shown, each correlation processing unit 14-ij includes a control unit that sequentially changes the phases of the E and L despreading codes, and a despreading unit in addition to a code generator that generates E and L despreading codes. A correlator (group) for detecting a correlation value between the code and the received satellite signal is incorporated. Each correlation processing unit 14-ij detects the correlation value between each of the E and L despread codes and the received satellite signal while sequentially changing the phase of the despread code, thereby spreading the phase where the correlation peak appears, that is, the triangle ( The position of the peak or valley is detected as the code phase. At this time, the received satellite signal is spectrally despread and the navigation data can be demodulated. FIG. 3 (2) shows a state in which the E and L despread codes are synchronized with the correlation peak phase and the code phase is detected. Note that the details of the internal configuration of each correlation processing unit 14-ij can be appropriately designed in accordance with common sense in the industry, and thus detailed description thereof is omitted here.
[0021]
The difference between the correlation processing unit 14-ia that executes correlation processing according to the multipath non-suppression method and the correlation processing unit 14-ib that executes correlation processing according to the multipath suppression method is as shown in FIGS. As apparent from the comparison of b), the phase difference between the despread codes of E and L is different from each other, and the phase difference p1 in the former is larger than the phase difference p2 in the latter. In general, the larger the phase difference between the E and L despread codes, the more easily the influence of multipath, that is, the distortion of the correlation waveform, becomes apparent. Therefore, the code phase obtained as a result of the code phase synchronization control in the correlation processing unit 14-ia As compared with the code phase obtained as a result of the code phase synchronization control in the correlation processing unit 14-ib, the influence of multipath appears significantly. The signal processing device 14 supplies the information obtained by the correlation processing unit 14-ia, for example, the code phase to the observation data processing device 18 as the observation data V3, and observes the information obtained by the correlation processing unit 14-ib, for example, the code phase. The data V4 is supplied to the observation data processing device 18.
[0022]
The observation data processing device 18 measures or estimates the influence of multipath for each positioning satellite by comparing these observation data V3 and V4 for each positioning satellite. For example, if the observation data V3 and V4 include the carrier phase (the phase of the carrier component in the received satellite signal, obtained through the oscillation phase control of the local oscillator in each correlation processing unit) and the code phase, the observation data processing The device 18 supplies the fluctuation of the pseudo distance obtained from the code phase with respect to the pseudo distance to each positioning satellite obtained based on the carrier phase to the input / output device 20 as information M indicating the degree of multipath influence. The input / output device 20 is, for example, an interface to the user terminal device 22 having a display function, and the influence degree information M supplied from the observation data processing device 18 and the observation satellite data V6 supplied from the observation satellite instruction device 16. Are supplied to the user terminal device 22 as output data V7.
[0023]
The observation satellite data V6 is data including data indicating the elevation angle, azimuth angle, C / No, etc. of the positioning satellite, that is, data related to the occurrence of multipath. In order to obtain the observation satellite data V6, each correlation processing unit 14-ij in the signal processing device 14 demodulates the navigation data from the received satellite signal subjected to spectrum despreading, and among the data included in the navigation data Data indicating the orbit (calendar) of each positioning satellite is extracted, and the extracted data is supplied to the observation satellite instruction device 16 as demodulated data V1 together with information such as received signal strength. The observation satellite instruction device 16 is based on the demodulated data V1, current time information obtained from a clock (not shown), and current position information given or initialized from time to time by a user as will be described later. Data V6 is derived. The observation satellite data V6 is created for each visible satellite, or at least for a visible satellite that is currently used for multipath influence detection.
[0024]
The observation satellite instruction data V2 is generated by the observation satellite instruction device 16 so that each visible satellite is subjected to processing according to the measurement schedule given by the user, or is processed in order of low elevation angle, and is subjected to signal processing. Supplied to the device 14.
[0025]
For example, when the user operates the user terminal device 22, (1) the satellite number of the positioning satellite to be used for the multipath influence measurement, (2) the (schematic) current position of the satellite receiver 10 for monitoring the multipath signal, (3) When setting data V8 including information such as the time when the multipath influence degree is measured is input, the setting data V8 is supplied to the observation satellite instruction device 16 as setting data V5 by the input / output device 20. Of the information included in the setting data V8, the satellite number and the measurement time are information that gives a measurement schedule. Therefore, the observation satellite instruction device 16 generates the observation satellite instruction data V2 in accordance with these pieces of information, and the measurement time arrives. Accordingly, the signal is supplied to the signal processing device 14. The receiver position is used for generation of observation satellite data V6 based on demodulated data V1 as described above, and processing for generating observation satellite instruction data V2 when selecting a low elevation order described below. Moreover, when the member which is not shown in figure performs the positioning calculation in the signal processing apparatus 14 or based on the output, it can replace with a user input about the receiver position, and can use the result of the said positioning calculation.
[0026]
When the user does not input the setting data V8 by operating the user terminal device 22, or when the setting data V8 input by the user does not include information on the measurement schedule, the observation satellite instruction device 16 The elevation angle of each visible satellite at the measurement time is obtained, and observation satellite instruction data V2 is generated so that the measurement of the multipath influence and the reception / correlation processing for the measurement are executed in order from the visible satellite having the lowest elevation angle. Which positioning satellite is a visible satellite at an arbitrary measurement time and how many times the elevation angle of the visible satellite is determined by the orbit (calendar) data in the demodulated data V1, the satellite receiver 10 for monitoring multipath signals ( Outline) It can be determined and derived from the position and the measurement time. Of these pieces of information, orbital (calendar) data can be stored or collected in advance, and the receiver (outline) position can be used by the user previously or recently input as setting data V8 or by positioning. You can use what you get. The measurement time is the time previously input by the user as the measurement schedule or the time determined by the initial setting. Here, it seems that the effects of multipath are more apparent in visible satellites with relatively low elevation angles. Therefore, the observation satellite indicating device 16 is generally used for measurement and reception / correlation processing in order from a relatively low elevation angle among a plurality of visible satellites when the measurement time arrives. The instruction data V2 is generated and supplied to the signal processing device 14.
[0027]
As the information M, a positioning error may be derived instead of the pseudo distance fluctuation. For example, the observation data processing device 18 performs the positioning calculation based on the observation data V3 related to the multipath non-suppression method, and also performs the positioning calculation based on the observation data V4 related to the multipath suppression method. A result of comparing (for example, position difference) is defined as information M. Thereby, the user can know the estimated value of the degradation amount of the positioning accuracy due to multipath. Further, the estimation of the satellites by or through the observation satellite instruction device 16 may be stopped, and all visible satellites or positioning satellites may be set as observation targets. Even in that case, it is possible to narrow down the target of output (display) from the user terminal device 22 to several satellites.
[0028]
Thus, according to the present embodiment, the correlation value sample points per positioning satellite can be reduced, and therefore the number of correlators constituting each correlation processing unit 14-ij in the signal processing device 14 is reduced. Therefore, the configuration of the signal processing device 14 and thus the multipath signal monitoring satellite receiver 10 can be simplified and the cost can be reduced. In addition, when processing is performed in order from a positioning satellite with a low elevation angle, multipath errors can be detected and evaluated relatively early, so that the operation time on the signal processing device 14 side can be shortened. Therefore, since intermittent operation is sufficient, power consumption can be suppressed. Similarly, when processing is performed in accordance with a measurement schedule input from the user terminal device 22, since intermittent operation may be performed, power consumption can be suppressed. Generally speaking, the multipath signal monitoring satellite receiver 10 according to the present embodiment is small in size, simple, low cost and power-saving, and has a relatively high accuracy in detecting a multipath error. It can be suitably used for applications such as optimizing the antenna position in consideration of the multipath influence.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a functional configuration of a multipath signal monitoring satellite receiver according to an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a functional configuration of a signal processing device according to the present embodiment.
FIG. 3 is a diagram showing the problems of the prior art and the principle of the present invention. In particular, FIG. 3 (1) (a) shows the phase difference between E and L in a normal or positioning receiver and the time of satellite acquisition. FIGS. 3 (1) and 3 (b) are diagrams illustrating the relationship between correlation value sample points in the multipath signal monitoring receiver according to the related art, and FIG. FIG. 3A is a diagram showing the relationship between the phase difference between E and L and the correlation peak at the time of satellite acquisition according to the multipath non-suppression method in the present invention, and FIGS. 3B and 3B are multipath suppression in the present invention. It is a figure which shows the relationship between the phase difference of E and L which concerns on a system, and the correlation peak at the time of satellite acquisition.
[Explanation of symbols]
10 satellite receivers for multipath signal monitoring, 12 satellite receiving antennas, 14 signal processing devices, 14-1a, 14-1b, 14-2a, 14-2b, ... 14-na, 14-nb correlation processing units, 16 observations Satellite indication device, 18 observation data processing device, 20 input / output device, 22 user terminal device, E despreading code of leading phase, L despreading code of lagging phase, p1, p2 E and L phase difference.

Claims (3)

地球周回軌道上にある測位衛星にてスペクトル拡散され送信された衛星信号を、地球上の受信機が受信及びスペクトル逆拡散し、それを通じて得られる情報に基づき当該受信機の位置を求めるシステムにて、測位衛星から受信機までの衛星信号伝搬におけるマルチパスの発生を監視し又はその程度を計測若しくは評価する際に使用されるマルチパス信号監視用衛星受信機であって、
衛星信号を受信する受信手段と、所定の逆拡散コードとの相関処理によって衛星信号をスペクトル逆拡散する相関処理手段とを備えるマルチパス信号監視用衛星受信機において、
組の逆拡散コードを相関処理に用い、上記衛星信号に基づく測位用情報を出力するマルチパス非抑圧方式相関処理手段と、上記マルチパス非抑圧方式相関処理手段によって用いられる一組の逆拡散コードの位相差よりも位相差が小さい他の一組の逆拡散コードを用い、上記衛星信号に基づく測位用情報を出力するマルチパス抑圧方式相関処理手段とを、上記相関処理手段として備え、
更に、上記マルチパス非抑圧方式相関処理手段が出力する測位用情報と、上記マルチパス抑圧方式相関処理手段が出力する測位用情報との差異に応じた差異情報を求める差異検出手段と、
当該差異情報に基づく情報をマルチパスに関する監視、計測又は評価の結果を示す情報として出力する手段と、
を備えることを特徴とするマルチパス信号監視用衛星受信機。
A system in which a receiver on the earth receives and despreads the spectrum of a satellite signal that has been spectrum-spread and transmitted by a positioning satellite in orbit around the earth, and determines the position of the receiver based on information obtained through it. A satellite receiver for monitoring multipath signals used for monitoring the occurrence of multipath in satellite signal propagation from a positioning satellite to a receiver or measuring or evaluating the degree thereof,
In a satellite receiver for multipath signal monitoring, comprising: receiving means for receiving satellite signals; and correlation processing means for spectrally despreading satellite signals by correlation processing with a predetermined despreading code;
A set of despreading codes used for correlation processing, and a multipath non-suppression type correlation processing means for outputting positioning information based on the satellite signal, and a set of despreading used by the multipath non-suppression type correlation processing means. using despreading codes phase difference is smaller again another set than the phase difference of the code, and a multi-path suppression correlation processing means for outputting positioning information based on the satellite signal, comprising the above-described correlation processing means,
Further, a difference detecting means for obtaining the positioning information output from the multipath non Suppression correlation processing unit, the difference information corresponding to the difference between the positioning information output from the multipath Suppression correlation processing means,
Means for outputting information based on the difference information as information indicating a result of monitoring, measurement, or evaluation regarding multipath ;
A satellite receiver for multipath signal monitoring, comprising:
請求項1記載のマルチパス信号監視用衛星受信機において、The satellite receiver for multipath signal monitoring according to claim 1,
上記相関処理手段から出力される測位用情報は、The positioning information output from the correlation processing means is
キャリア位相及びコード位相を示す情報を含み、Including information indicating carrier phase and code phase;
各差異検出手段は、Each difference detection means
上記マルチパス非抑圧方式相関処理手段から出力された測位用情報及び上記マルチパス抑圧方式相関処理手段から出力された測位用情報のそれぞれに対応する擬似距離情報を求め、  Finding pseudorange information corresponding to each of the positioning information output from the multipath non-suppression scheme correlation processing means and the positioning information output from the multipath suppression scheme correlation processing means,
擬似距離情報の差異を上記差異情報として求めることを特徴とするマルチパス信号監視用衛星受信機。A satellite receiver for monitoring a multipath signal, characterized in that a difference in pseudorange information is obtained as the difference information.
請求項1記載のマルチパス信号監視用衛星受信機において、The satellite receiver for multipath signal monitoring according to claim 1,
上記マルチパス非抑圧方式相関処理手段から出力された測位用情報に基づいて上記受信機の位置情報を求めると共に、上記マルチパス抑圧方式相関処理手段から出力された測位用情報に基づいて上記受信機の位置情報を求める測位手段を備え、The position information of the receiver is obtained based on the positioning information output from the multipath non-suppression scheme correlation processing means, and the receiver is determined based on the positioning information output from the multipath suppression scheme correlation processing means. Equipped with a positioning means for obtaining position information of
上記差異検出手段は、The difference detection means is
各相関処理手段に対応して求められた位置情報の差異を上記差異情報として求めることを特徴とするマルチパス信号監視用衛星受信機。A satellite receiver for monitoring a multipath signal, characterized in that a difference in position information obtained corresponding to each correlation processing means is obtained as the difference information.
JP2000350482A 2000-11-17 2000-11-17 Satellite receiver for multipath signal monitoring Expired - Fee Related JP4485676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350482A JP4485676B2 (en) 2000-11-17 2000-11-17 Satellite receiver for multipath signal monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350482A JP4485676B2 (en) 2000-11-17 2000-11-17 Satellite receiver for multipath signal monitoring

Publications (2)

Publication Number Publication Date
JP2002156439A JP2002156439A (en) 2002-05-31
JP4485676B2 true JP4485676B2 (en) 2010-06-23

Family

ID=18823705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350482A Expired - Fee Related JP4485676B2 (en) 2000-11-17 2000-11-17 Satellite receiver for multipath signal monitoring

Country Status (1)

Country Link
JP (1) JP4485676B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0418766D0 (en) * 2004-08-23 2004-09-22 Koninkl Philips Electronics Nv A computer programmed with gps signal processing programs
JP5125493B2 (en) * 2007-12-26 2013-01-23 セイコーエプソン株式会社 Multipath signal determination method, program, and multipath signal determination apparatus
JP5607606B2 (en) * 2009-02-27 2014-10-15 古野電気株式会社 Multipath detection apparatus and GNSS reception apparatus
US8233516B2 (en) * 2009-06-24 2012-07-31 Qualcomm Incorporated Wideband correlation mode switching methods and apparatuses
JP5347942B2 (en) * 2009-12-17 2013-11-20 トヨタ自動車株式会社 GNSS receiving apparatus and method
JP5423530B2 (en) * 2010-03-29 2014-02-19 トヨタ自動車株式会社 GNSS receiver and positioning method
JP2011220740A (en) 2010-04-06 2011-11-04 Toyota Motor Corp Gnss receiving device and positioning method
JP2011247637A (en) * 2010-05-24 2011-12-08 Furuno Electric Co Ltd Receiver, demodulation method and program
US9768793B2 (en) * 2015-12-17 2017-09-19 Analog Devices Global Adaptive digital quantization noise cancellation filters for mash ADCs
CN113708827B (en) * 2021-09-14 2022-07-22 四川安迪科技实业有限公司 Power balance planning method for return link of MF-TDMA satellite communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183979A (en) * 1997-09-05 1999-03-26 Kenwood Corp Navigation system, position measuring system and positioning method
JP2000101480A (en) * 1998-09-17 2000-04-07 Siemens Ag Method and device for minimizing autocorrelation errors in demodulation of spread spectrum signal under multipath propagation
JP2000312163A (en) * 1999-04-27 2000-11-07 Furuno Electric Co Ltd Detector for phase of pseudo-noise code

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895599B1 (en) * 1996-04-25 2002-08-07 Sirf Technology, Inc. Spread spectrum receiver with multi-bit correlator
JP3231624B2 (en) * 1996-05-17 2001-11-26 松下電器産業株式会社 GPS receiver
US5901183A (en) * 1996-09-25 1999-05-04 Magellan Corporation Signal correlation technique for a receiver of a spread spectrum signal including a pseudo-random noise code that reduces errors when a multipath signal is present

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183979A (en) * 1997-09-05 1999-03-26 Kenwood Corp Navigation system, position measuring system and positioning method
JP2000101480A (en) * 1998-09-17 2000-04-07 Siemens Ag Method and device for minimizing autocorrelation errors in demodulation of spread spectrum signal under multipath propagation
JP2000312163A (en) * 1999-04-27 2000-11-07 Furuno Electric Co Ltd Detector for phase of pseudo-noise code

Also Published As

Publication number Publication date
JP2002156439A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP3964681B2 (en) Signal detector and method employing a coherent accumulation system that correlates non-uniform and discrete sample segments
US8395543B2 (en) Method and apparatus for mitigating multipath effects at a satellite signal receiver using a sequential estimation filter
JP4646901B2 (en) Apparatus and method for performing pulse waveform measurement
JP5442902B2 (en) Radio positioning receiver and method for acquiring satellite signals in a radio positioning receiver
KR101443955B1 (en) Multiple correlation processing in code space search
KR20050054917A (en) Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
EP2793050B1 (en) Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal
GB2447981A (en) Time delay measurement for global navigation satellite system receivers
JP4485676B2 (en) Satellite receiver for multipath signal monitoring
JP3969275B2 (en) Wireless position measuring method and apparatus
EP2793051B1 (en) Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal
JP2007520100A (en) GPS receiver using differential correlation
Balaei et al. Cross correlation impacts and observations in GNSS receivers
JP2013053972A (en) Signal capture method, communication signal reception method, gnss signal reception method, signal capture program, communication signal reception program, gnss signal reception program, signal capture device, communication signal reception device, gnss signal reception device, and mobile terminal
US8462833B2 (en) Method for acquiring satellite signal and satellite signal receiving device
US8378886B2 (en) Signal processing techniques for improving the sensitivity of GPS receivers
JP2005265476A (en) Satellite navigation device
US9236903B2 (en) Multi-path detection
Xie et al. Improved correlator peak selection for GNSS receivers in urban canyons
Zhu et al. Operational considerations for C/A code tracking errors due to cross correlation
MacLean Weak GPS signal detection in animal tracking
JP2014041025A (en) Multi-path estimation device, multi-path detection device, gnss receiver, multi-path estimation method, information terminal appliance and multi-path estimation program
York et al. Detailed Signal Analysis Without a Dish: A GPS IIF L5 Signal Case Study
Yang Frequency-domain receiver for modernization GPS signals via full-band multi-code processing
Zhang et al. Simulation and analysis acquisition of gps c/a code signals in gps system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees