JP4483455B2 - Manufacturing method of circuit board for mounting semiconductor element - Google Patents

Manufacturing method of circuit board for mounting semiconductor element Download PDF

Info

Publication number
JP4483455B2
JP4483455B2 JP2004217937A JP2004217937A JP4483455B2 JP 4483455 B2 JP4483455 B2 JP 4483455B2 JP 2004217937 A JP2004217937 A JP 2004217937A JP 2004217937 A JP2004217937 A JP 2004217937A JP 4483455 B2 JP4483455 B2 JP 4483455B2
Authority
JP
Japan
Prior art keywords
semiconductor element
resin
circuit board
mounting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004217937A
Other languages
Japanese (ja)
Other versions
JP2006041132A (en
Inventor
伸宏 吉岡
直人 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004217937A priority Critical patent/JP4483455B2/en
Publication of JP2006041132A publication Critical patent/JP2006041132A/en
Application granted granted Critical
Publication of JP4483455B2 publication Critical patent/JP4483455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、携帯電話、家電製品、各種センサなどの部品である半導体素子実装用回路基板の製造方法に関するものである。   The present invention relates to a method of manufacturing a circuit board for mounting a semiconductor element, which is a component such as a mobile phone, a home appliance, and various sensors.

従来から、半導体素子実装用回路基板は、半導体素子との線膨張率の差を小さくするために、母材樹脂の中にフィラーを入れて製造することが一般的に行われている。ここで、フィラーの形状には球状のものと繊維状のものが存在するが、後者の方が熱膨張を抑制する効果が高いために、よく使用されている。   2. Description of the Related Art Conventionally, a circuit board for mounting a semiconductor element is generally manufactured by putting a filler in a base material resin in order to reduce a difference in coefficient of linear expansion from the semiconductor element. Here, there are spherical and fibrous fillers, and the latter is often used because it has a higher effect of suppressing thermal expansion.

ところが、ゲート位置を図12(a)に示す如く設定すると、繊維状フィラー25を母材樹脂に混入して使用する場合には、回路形成前の半導体素子実装用回路基板(以下、成形品16とする)において、繊維状フィラー25が成形用樹脂の流動方向(図12(a)において右上から左下に向かう方向)に配向しやすい。この場合、図12(b)に示す如く、図12(a)におけるE−E断面においては、繊維状フィラー25の断面方向が揃うこととなり、熱膨張を抑制する効果が低くなる。そのため、図12(c)に示す如く、実装時の熱負荷や使用時の温度変化などが半導体素子実装用回路基板26に加わると、この断面に沿った方向の実装接合部分が破断してしまう場合がある。   However, when the gate position is set as shown in FIG. 12A, when the fibrous filler 25 is mixed with the base resin and used, a circuit board for mounting a semiconductor element (hereinafter referred to as a molded product 16) before circuit formation is used. The fibrous filler 25 is easily oriented in the flow direction of the molding resin (the direction from the upper right to the lower left in FIG. 12A). In this case, as shown in FIG. 12B, in the EE cross section in FIG. 12A, the cross-sectional direction of the fibrous filler 25 is aligned, and the effect of suppressing thermal expansion is reduced. Therefore, as shown in FIG. 12C, when a thermal load at the time of mounting or a temperature change at the time of use is applied to the circuit board 26 for mounting the semiconductor element, the mounting joint portion in the direction along the cross section is broken. There is a case.

ところで、繊維状フィラーの配向を制御する技術としては、特開2001−81202号公報に開示されている技術や特開2001−106799号公報に開示されている技術がある。これらは導体回路用樹脂基板や高分子複合材料成形品の成形用樹脂に混入したポリベンザゾール短繊維やアラミド繊維の配向について、磁場を付加することで任意の一方向に配向させているが、いずれも前記導体回路用樹脂基板等の特定物性を改良する技術であり、かつ基板内のフィラーを所定の方向に揃えるためのものであり、半導体素子実装用回路基板に適用するための方法に関しては言及されていない。   By the way, as a technique for controlling the orientation of the fibrous filler, there are a technique disclosed in JP 2001-81202 A and a technique disclosed in JP 2001-106799 A. These are oriented in any one direction by adding a magnetic field for the orientation of polybenzazole short fibers and aramid fibers mixed in the resin resin for conductor circuits and the molding resin of the polymer composite material molded product. Both are techniques for improving specific physical properties such as the resin circuit board for conductor circuits, and for aligning the filler in the substrate in a predetermined direction. Regarding a method for applying to a circuit board for mounting semiconductor elements, Not mentioned.

特開2001−81202号公報JP 2001-81202 A 特開2001−106799号公報JP 2001-106799 A

本願発明は、上記背景技術に鑑みて発明されたものであり、その課題は、繊維状フィラーを使用する半導体素子実装用回路基板の製造方法において、繊維状フィラーの配向を制御して、実装時の熱負荷や使用時の温度変化などによって実装接合部分の破断のない半導体素子実装用回路基板の製造方法を提供することである。   The present invention has been invented in view of the above-described background art, and the problem is that in the method of manufacturing a circuit board for mounting a semiconductor element that uses a fibrous filler, the orientation of the fibrous filler is controlled and mounted. It is to provide a method for manufacturing a circuit board for mounting a semiconductor element in which a mounting joint portion is not broken due to a thermal load of the device or a temperature change during use.

上記課題を解決するために、本願発明は、磁性体である繊維状フィラーを含む成形用樹脂を金型内のキャビティに射出する樹脂射出工程と、少なくとも実装される半導体素子と重なりあう成形品の部分に対応するキャビティに対して、成形用樹脂の流動方向と交差する方向に磁場を付加する磁場付加工程と、キャビティの成形用樹脂を硬化させる樹脂硬化工程とを備えた半導体素子実装用回路基板の製造方法である。   In order to solve the above problems, the present invention provides a resin injection step of injecting a molding resin containing a fibrous filler that is a magnetic material into a cavity in a mold, and a molded product that overlaps at least a semiconductor element to be mounted. A circuit board for mounting a semiconductor element, comprising: a magnetic field application step for applying a magnetic field in a direction intersecting a flow direction of the molding resin to a cavity corresponding to the portion; and a resin curing step for curing the molding resin for the cavity. It is a manufacturing method.

本願発明によれば、半導体素子実装用回路基板において、成形用樹脂の流動方向と交差する方向にも磁性体である繊維状フィラーを配向させることができるので、流動方向と交差する方向においても実装時の熱負荷や使用時の温度変化などの熱履歴に強い基板を製造することができる。   According to the present invention, in the circuit board for mounting semiconductor elements, since the fibrous filler that is a magnetic material can be oriented in the direction intersecting with the flow direction of the molding resin, mounting is also performed in the direction intersecting with the flow direction. It is possible to manufacture a substrate that is resistant to heat history such as heat load during use and temperature change during use.

図1〜8は、本願の請求項1〜5すべてに対応した第一実施形態である半導体素子実装用回路基板の製造方法を示している。この実施形態の半導体素子実装用回路基板の製造方法は、図2及び図3に示す如く、磁性体である繊維状フィラーを含む成形用樹脂11を金型2内のキャビティ7に射出する樹脂射出工程、及び少なくとも実装される半導体素子と重なりあう成形品の部分に対応するキャビティに対して、成形用樹脂11の流動方向と交差する方向に磁場を付加する磁場付加工程と、図4に示す如く、キャビティの成形用樹脂11を硬化させる樹脂硬化工程とを備えている。   FIGS. 1-8 has shown the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment corresponding to all Claims 1-5 of this application. In the method of manufacturing a circuit board for mounting a semiconductor element according to this embodiment, as shown in FIGS. 2 and 3, resin injection for injecting a molding resin 11 containing a fibrous filler that is a magnetic material into a cavity 7 in a mold 2. 4 and a magnetic field adding step of applying a magnetic field in a direction intersecting the flow direction of the molding resin 11 to the cavity corresponding to the portion of the molded product that overlaps at least the semiconductor element to be mounted, and as shown in FIG. And a resin curing step of curing the cavity molding resin 11.

以下、この実施形態による半導体素子実装回路用基板の製造方法の第一実施形態を、成形用樹脂の製造方法、樹脂射出工程、磁場付加工程、樹脂硬化工程、その他の工程に分けて、より具体的詳細に説明する。   Hereinafter, the first embodiment of the method for manufacturing a substrate for a semiconductor element mounting circuit according to this embodiment is divided into a manufacturing method of a molding resin, a resin injection process, a magnetic field application process, a resin curing process, and other processes, and more specifically. This will be described in detail.

まず成形用樹脂の製造方法について説明する。磁性体である繊維状フィラーは、外径30μm、長さ250μmの鋳鉄を用い、その表面にディッピングによって膜厚が5〜15μm程度となるようにポリイミドをコーティングした。これをバレル状のものに入れ、回転させながら加熱することによって、磁性体である繊維状フィラー同士の固着を避けながら乾燥・硬化させた。これを母材樹脂であるポリフタルアミド(商品名;N1000、株式会社クラレ製)に50重量%混入し、加熱ロールで十分に混錬することで成形用樹脂を製造した。   First, a method for producing a molding resin will be described. The fibrous filler, which is a magnetic material, was cast iron having an outer diameter of 30 μm and a length of 250 μm, and its surface was coated with polyimide so that the film thickness was about 5 to 15 μm by dipping. This was put in a barrel shape and heated while rotating to dry and harden while avoiding sticking of fibrous fillers that are magnetic materials. This was mixed with polyphthalamide (trade name: N1000, manufactured by Kuraray Co., Ltd.), which is a base resin, and 50% by weight was mixed sufficiently with a heating roll to produce a molding resin.

ここで磁性体である繊維状フィラーの混入比率であるが、20〜70wt%の範囲内が好適である。この範囲を超えると所望の熱膨張を抑制する効果が得られなかったり、成形用樹脂の粘度が過大となり樹脂射出工程における生産性が低下する恐れがある。一方、この範囲を下回ると熱膨張を阻止する効果が十分に得られなくなる。   Here, the mixing ratio of the fibrous filler, which is a magnetic material, is preferably in the range of 20 to 70 wt%. If this range is exceeded, the effect of suppressing the desired thermal expansion may not be obtained, or the viscosity of the molding resin may be excessive and the productivity in the resin injection process may be reduced. On the other hand, below this range, the effect of preventing thermal expansion cannot be sufficiently obtained.

次に樹脂射出工程について説明する。これらは図2及び図3に示す如く、金型2に射出シリンダのノズル3を接触させ、樹脂温度330℃、金型温度140℃、射出速度50mm/sの条件で成形用樹脂11を射出することで実施した。ここで金型2であるが、これは図1に示す如く、非磁性体である高強度のアルミ合金を型材とする固定側金型5に中央部と外周部のヨークがキャビティに露出するように電磁石4を設けた後に、非磁性体である高強度のアルミ合金を型材とする可動側金型6と組み合わせることで、金型2を構成した。ここでゲート位置1は金型のキャビティの隅角部とした。   Next, the resin injection process will be described. 2 and 3, the nozzle 3 of the injection cylinder is brought into contact with the mold 2 and the molding resin 11 is injected under the conditions of a resin temperature of 330 ° C., a mold temperature of 140 ° C., and an injection speed of 50 mm / s. It was carried out. Here, the mold 2 is shown in FIG. 1. As shown in FIG. 1, the central and outer yokes are exposed to the cavity in the fixed mold 5 using a non-magnetic high-strength aluminum alloy as a mold material. After the electromagnet 4 was provided, the mold 2 was constructed by combining with a movable mold 6 using a non-magnetic high-strength aluminum alloy as a mold material. Here, the gate position 1 is the corner of the mold cavity.

また電磁石4は、図6に示す如く、焼入れ処理した炭素鋼を使用して、中央部がN極10、外周部がS極9となるように、コイル8の巻き方向と電流の流す方向を設定した。コイル8はコイル用に一般に使用されているマイカ入りの絶縁シートをヨークに巻いた上にエナメル銅線を巻きつけた。また図6(b)においてN極10とS極9との下方突出部の底面は略面一となるようにした。   In addition, as shown in FIG. 6, the electromagnet 4 is made of hardened carbon steel, and the winding direction of the coil 8 and the direction of current flow are set so that the central part is the N pole 10 and the outer peripheral part is the S pole 9. Set. The coil 8 was obtained by winding an enameled copper wire on a yoke with an insulating sheet containing mica generally used for the coil. In FIG. 6B, the bottom surfaces of the downward projecting portions of the N pole 10 and the S pole 9 are made substantially flush.

次に磁場付加工程について説明する。これらは図2及び図3に示す如く、射出と同時に、キャビティの略中心から放射状に磁場350A/mを付加することで実施した。このときの磁場は200〜500A/mの範囲が好適である。200A/mを下回ると十分に磁性体である繊維状フィラーを配向させることができず、500A/mを上回るとコイル2の発熱が不可避となる。なお図6(b)においてN極10とS極9との下方突出部の底面は略面一であるので、磁場はキャビティ全体に付加されることはなく、図7に示す如く、キャビティの突出部14を除く平面部分(ハッチ部)13にのみ放射状に付加される。   Next, the magnetic field application process will be described. As shown in FIGS. 2 and 3, these were performed by applying a magnetic field of 350 A / m radially from the approximate center of the cavity simultaneously with the injection. The magnetic field at this time is preferably in the range of 200 to 500 A / m. If it is less than 200 A / m, the fibrous filler that is a magnetic substance cannot be sufficiently oriented, and if it exceeds 500 A / m, heat generation of the coil 2 is inevitable. In FIG. 6B, the bottom surfaces of the downward projecting portions of the N pole 10 and the S pole 9 are substantially flush, so that the magnetic field is not applied to the entire cavity. Only the planar portion (hatched portion) 13 excluding the portion 14 is radially added.

次に樹脂硬化工程及びその他の工程について説明する。これは図4に示す如く、成形用樹脂11を冷却させることで実施した。成形用樹脂の硬化が完了すると、電磁石4への電流供給を止め、金型2を開き、エジェクタピン(図示せず)にて突き出すことによりゲート部17と一体となった状態で成形品16を離型した。その後、図5に示す如く、ゲート部17を切断し、所望の成形品16を得た。そして得られた成形品にレーザパターニング法、マスク露光法、2ショット法等の回路形成法を用いて、成形品の表面に回路形成して、半導体素子実装用回路基板を得た。そして、この回路基板に対し半導体素子をフリップチップ実装後、アンダーフィル樹脂を注入し硬化させることで半導体素子実装パッケージを得た。   Next, the resin curing step and other steps will be described. This was carried out by cooling the molding resin 11 as shown in FIG. When curing of the molding resin is completed, the current supply to the electromagnet 4 is stopped, the mold 2 is opened, and the molded product 16 is integrated with the gate portion 17 by protruding with an ejector pin (not shown). Released. Then, as shown in FIG. 5, the gate part 17 was cut | disconnected and the desired molded article 16 was obtained. Then, a circuit board was formed on the surface of the molded product using a circuit patterning method such as a laser patterning method, a mask exposure method, or a two-shot method, to obtain a circuit board for mounting a semiconductor element. And after flip-chip mounting a semiconductor element on this circuit board, an underfill resin was injected and cured to obtain a semiconductor element mounting package.

ここで成形用樹脂とは、磁性体である繊維状フィラーと母材樹脂を混錬したものであって、熱可塑性樹脂、熱硬化性樹脂のいずれも含む概念である。   Here, the molding resin is obtained by kneading a fibrous filler that is a magnetic material and a base material resin, and is a concept that includes both a thermoplastic resin and a thermosetting resin.

ここで実装される半導体素子21と重なりあう成形品の部分24とは、図9に示す如く、半導体素子21を実装した状態でその上部から成形品16を観察した場合に、半導体素子21によって隠される成形品16の、半導体素子21と対向する表面部分をいう。   The part 24 of the molded product that overlaps the semiconductor element 21 mounted here is hidden by the semiconductor element 21 when the molded product 16 is observed from the upper part in a state where the semiconductor element 21 is mounted as shown in FIG. This refers to the surface portion of the molded product 16 that faces the semiconductor element 21.

本第一実施形態によれば、半導体素子実装用回路基板において、成形用樹脂の流動方向と交差する方向にも磁性体である繊維状フィラーを配向させることができるので、流動方向と交差する方向においても実装時の熱負荷や使用時の温度変化などの熱履歴に強い基板を製造することができる。   According to the first embodiment, in the circuit board for mounting a semiconductor element, the fibrous filler that is a magnetic material can be oriented in the direction intersecting with the flow direction of the molding resin, and therefore the direction intersecting with the flow direction. In this case, it is possible to manufacture a substrate that is resistant to heat history such as heat load during mounting and temperature change during use.

また本第一実施形態によれば、図1に示す如く、樹脂射出工程において、ゲート位置1をキャビティの隅角部としたように、平板状金型のキャビティの外周部位から成形用樹脂を射出することにより、図3に示す如く、成形用樹脂11の流動方向が略平行になりやすいことから、これと直交する方向に磁場を付加することで容易に磁性体である繊維状フィラーの配向を抑制することができ、また通常の射出成形で実施される、いわゆる多数個取り(一の射出シリンダから複数の金型に成形用樹脂を射出することで複数個の成形品を得る成形方法)に適用できる点で好ましい。   Further, according to the first embodiment, as shown in FIG. 1, in the resin injection process, the molding resin is injected from the outer peripheral portion of the cavity of the flat plate mold so that the gate position 1 is the corner of the cavity. By doing so, as shown in FIG. 3, the flow direction of the molding resin 11 is likely to be substantially parallel. Therefore, the orientation of the fibrous filler that is a magnetic material can be easily achieved by applying a magnetic field in a direction perpendicular thereto. It can be suppressed, and can be controlled by ordinary injection molding, so-called multi-cavity (molding method to obtain a plurality of molded products by injecting molding resin from one injection cylinder to a plurality of molds) It is preferable in that it can be applied.

また本第一実施形態によれば、図7に示す如く、キャビティ全体ではなく、キャビティの突出部14を除く平面部分(ハッチ部)13にのみ磁場を付加したが、このように半導体素子が実装される面を含む平面にのみ磁場を付加する場合には、磁性体である繊維状フィラーの密度が磁場を付加された部位において高まるので、当該平面部分の強度が高くなり、実装後の接続信頼性を高める点で好適である。また、半導体素子の実装部でないキャビティの突出部14に磁性体である繊維状フィラーを充填する必要がなく、成形用樹脂への磁性体である繊維状フィラーの混入率を低減できるため、射出成形時の圧力を低くできる点でも好ましい。   Further, according to the first embodiment, as shown in FIG. 7, the magnetic field is applied only to the plane portion (hatch portion) 13 except for the protruding portion 14 of the cavity instead of the entire cavity. When the magnetic field is applied only to the plane including the surface to be processed, the density of the fibrous filler, which is a magnetic material, increases at the site where the magnetic field is applied, so that the strength of the plane portion increases and the connection reliability after mounting It is suitable in terms of enhancing the properties. In addition, it is not necessary to fill the protruding portion 14 of the cavity that is not the mounting portion of the semiconductor element with a fibrous filler that is a magnetic body, and the mixing rate of the fibrous filler that is a magnetic body into the molding resin can be reduced, so that injection molding is performed. It is also preferable in that the pressure at the time can be lowered.

また本第一実施形態の製造方法によれば、磁場付加工程において、図2に示す如く、磁場はキャビティの略中心から放射状に付加されているので、図8(a)に示す如く成形品16において、磁性体である繊維状フィラー18が成形用樹脂の流動方向(図8(a)において右上から左下に向かう方向)ではなく、成形品16の略中心から放射状に配向する。この場合、図8(b)に示す如く、図8(a)におけるD−D断面のような半導体素子と重なりあう成形品16の部分の中心を通るどの断面においても、磁性体である繊維状フィラー18の長手方向が断面内に揃うこととなり、熱膨張を抑制する効果が一層高くなる点で好適である。   Further, according to the manufacturing method of the first embodiment, in the magnetic field application step, as shown in FIG. 2, the magnetic field is applied radially from the approximate center of the cavity, so that the molded product 16 as shown in FIG. In FIG. 8, the fibrous filler 18 that is a magnetic material is oriented radially from the approximate center of the molded product 16, not in the flow direction of the molding resin (the direction from the upper right to the lower left in FIG. 8A). In this case, as shown in FIG. 8B, in any cross section passing through the center of the portion of the molded product 16 that overlaps the semiconductor element, such as the DD cross section in FIG. The longitudinal direction of the filler 18 is aligned in the cross section, which is preferable in that the effect of suppressing thermal expansion is further enhanced.

また本第一実施形態の製造方法によれば、磁性体である繊維状フィラーとして鉄系繊維状フィラーを用いているので、比較的低い磁場で配向させることができ、かつ原料のコストを低く抑えることができる点で、好適である。   Further, according to the manufacturing method of the first embodiment, since the iron-based fibrous filler is used as the fibrous filler that is a magnetic material, it can be oriented with a relatively low magnetic field, and the cost of the raw material can be kept low. This is preferable in that it can be performed.

また本願発明の第二実施形態を図11に示す。これは前記第一実施形態の樹脂射出工程において、射出シリンダのノズル3の直下に設置した振動方向変換体28を介して振動子29により振動を付加することで、振動と磁場を重畳して付加するものであり、その他については第一実施形態と同じである。これにより、磁性体である繊維状フィラーの配向が容易となり、磁場付加工程時に付加する磁場が小さくでき、製造装置の小型化が可能となる。   FIG. 11 shows a second embodiment of the present invention. In the resin injection process of the first embodiment, the vibration is applied by the vibrator 29 via the vibration direction changer 28 installed immediately below the nozzle 3 of the injection cylinder, so that the vibration and the magnetic field are superimposed and added. Others are the same as in the first embodiment. This facilitates the orientation of the fibrous filler that is a magnetic material, reduces the magnetic field applied during the magnetic field application step, and enables downsizing of the manufacturing apparatus.

なお以上の実施形態では、図2に示す如く、キャビティの略中心から放射状に磁場を付加したが、このように実装される半導体素子と重なり合う成形品の部分に対応するキャビティの略中心から放射状に磁場を付加することに限られず、成形用樹脂11の流動方向と交差する方向であれば、任意の磁場を付加することができる。例えば当該中心から同心円状に磁場を付加してもよく、また流動方向と略直交する方向に磁場を付加してもよい。   In the above embodiment, as shown in FIG. 2, a magnetic field is applied radially from the approximate center of the cavity. However, the magnetic field is applied radially from the approximate center of the cavity corresponding to the portion of the molded product that overlaps the semiconductor element mounted in this way. Any magnetic field can be applied as long as the direction intersects the flow direction of the molding resin 11 without being limited to the application of the magnetic field. For example, a magnetic field may be applied concentrically from the center, or a magnetic field may be applied in a direction substantially orthogonal to the flow direction.

さらに磁性体である繊維状フィラーを鋳鉄であるとしたが、鉄、鉄−けい素合金、鉄−アルミニウム合金、鉄−けい素−アルミニウム合金、ニッケル−鉄合金、コバルト−鉄合金、マンガン−亜鉛系フェライト、ニッケル−亜鉛系フェライト等を例示できる。また磁場に応答して配向するものであれば無機系材料に限られず、例えば、黒鉛化炭素繊維、ポリベンザゾール短繊維、アラミド短繊維等も使用可能である。   Furthermore, although the fibrous filler which is a magnetic body is cast iron, iron, iron-silicon alloy, iron-aluminum alloy, iron-silicon-aluminum alloy, nickel-iron alloy, cobalt-iron alloy, manganese-zinc Examples thereof include nickel ferrite and nickel-zinc ferrite. The material is not limited to an inorganic material as long as it is oriented in response to a magnetic field, and for example, graphitized carbon fiber, polybenzazole short fiber, aramid short fiber, and the like can be used.

また磁性体繊維状フィラーの寸法であるが、形状が繊維状であれば任意のものを使用でき、外形5〜200μm、長さ50〜800μmの範囲にあるものを例示できる。特に外径20〜50μm、長さ200〜300μmのものが、材料を旋盤上でびびり振動切削を行って、繊維状の切屑として容易に作製できるので好ましい。   Moreover, although it is a dimension of a magnetic body fibrous filler, if a shape is fibrous form, arbitrary things can be used and the thing in the range of 5-200 micrometers outer shape and 50-800 micrometers in length can be illustrated. In particular, those having an outer diameter of 20 to 50 μm and a length of 200 to 300 μm are preferable because the material can be easily produced as fibrous chips by chattering vibration cutting on a lathe.

また磁性体である繊維状フィラー表面にポリイミドをディッピングすることとしたが、表面を電気的に絶縁処理できるものであれば、ポリイミド以外にもポリパラキシリレン、エポキシなどの樹脂も使用可能である。この絶縁処理により成形品の導電性をより低減することができ、回路基板としての電気絶縁信頼性が向上することとなり好適である。またコーティング方法はディッピング以外にも塗布や蒸着重合等の定法を使用することができる。   In addition, although the polyimide is dipped on the surface of the fibrous filler that is a magnetic material, a resin such as polyparaxylylene and epoxy can be used in addition to polyimide as long as the surface can be electrically insulated. . This insulation treatment can further reduce the electrical conductivity of the molded product, and improves the electrical insulation reliability as a circuit board, which is preferable. In addition to dipping, a coating method such as coating or vapor deposition polymerization can be used.

また本第一実施形態では成形用の母材樹脂をポリフタルアミドとしたが、フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、ジアリルフタレート樹脂、ウレタン樹脂等の熱硬化性樹脂や、全芳香族ポリエステルに代表される液晶ポリマー、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルフィド、ポリイミド、ポリフッ化ビニリデン等の熱可塑性樹脂を例示できる。耐熱性、機械特性、成形性等の諸特性のバランスからポリフタルアミドが好ましく、磁場により分極しやすいという特性を持つことから配向制御が容易になる点で全方向族ポリエステルに代表される液晶ポリマー、ポリイミド、ポリフェニレンスルフィド、ポリフッ化ビニリデンが好適である。   In the first embodiment, the base resin for molding is polyphthalamide, but heat such as phenol resin, unsaturated polyester resin, epoxy resin, bismaleimide resin, benzocyclobutene resin, diallyl phthalate resin, urethane resin, etc. Examples thereof include thermoplastic resins such as curable resins, liquid crystal polymers typified by wholly aromatic polyesters, polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyimide, and polyvinylidene fluoride. Polyphthalamide is preferred from the balance of various properties such as heat resistance, mechanical properties, moldability, etc., and liquid crystal polymers typified by omnidirectional polyesters are easy to control orientation because they are easily polarized by a magnetic field. Polyimide, polyphenylene sulfide, and polyvinylidene fluoride are preferable.

さらに繊維状フィラーは単一の材料であることに限られず、複数種類、例えば磁性体である繊維状フィラーとガラス繊維のような非磁性体の繊維フィラーの混合物であってもよい。例えば鋳鉄及びこれと略同形状のガラス繊維を30体積%ずつ混入し、本第一実施形態に示す方法と同様の手続きにより、半導体素子実装用回路基板を製造する方法も本願発明の技術的思想に含まれる。   Furthermore, the fibrous filler is not limited to a single material, and may be a mixture of a plurality of types, for example, a fibrous filler that is a magnetic material and a non-magnetic fiber filler such as glass fiber. For example, a method of manufacturing a circuit board for mounting a semiconductor element by mixing 30% by volume of cast iron and glass fiber having substantially the same shape as this and manufacturing the circuit board for mounting a semiconductor element according to the same procedure as that of the first embodiment is also a technical idea of the present invention. include.

この場合、図10に示す如く、磁性体である繊維状フィラー18は、実装される半導体素子と重なりあう部分の略中心から放射状に配向し、非磁性体の繊維状フィラー(細線)27は、樹脂の流動方向(図10において右上から左下に向かう方向)に配向するようになり、全体として見ると、磁性体の繊維状フィラー18と非磁性体の繊維状フィラー(細線)27がクロスして配向するような形をとる。これによって繊維状フィラーを多方向に制御することが可能となり、好適である。   In this case, as shown in FIG. 10, the fibrous filler 18 that is a magnetic material is oriented radially from the approximate center of the portion that overlaps the semiconductor element to be mounted, and the non-magnetic fibrous filler (thin wire) 27 is The resin flows in the direction of flow (from the upper right to the lower left in FIG. 10). When viewed as a whole, the fibrous filler 18 of the magnetic material and the fibrous filler (thin wire) 27 of the nonmagnetic material cross. It takes a shape that is oriented. This makes it possible to control the fibrous filler in multiple directions, which is preferable.

本願発明の第一実施形態である半導体素子実装用回路基板の製造方法を示す図面であり、(a)はB−B断面図、(b)はA−A断面図をそれぞれ示している。It is drawing which shows the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment of this invention, (a) is BB sectional drawing, (b) has shown AA sectional drawing, respectively. 本願発明の第一実施形態である半導体素子実装用回路基板の製造方法を示す図面であり、(a)はB−B断面図、(b)はA−A断面図をそれぞれ示している。It is drawing which shows the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment of this invention, (a) is BB sectional drawing, (b) has shown AA sectional drawing, respectively. 本願発明の第一実施形態である半導体素子実装用回路基板の製造方法を示す図面であり、(a)はB−B断面図、(b)はA−A断面図をそれぞれ示している。It is drawing which shows the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment of this invention, (a) is BB sectional drawing, (b) has shown AA sectional drawing, respectively. 本願発明の第一実施形態である半導体素子実装用回路基板の製造方法を示す図面であり、(a)はB−B断面図、(b)はA−A断面図をそれぞれ示している。It is drawing which shows the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment of this invention, (a) is BB sectional drawing, (b) has shown AA sectional drawing, respectively. 本願発明の第一実施形態である成形品とゲート部の側面図。The side view of the molded product and gate part which are 1st embodiment of this invention. 本願発明の第一実施形態に用いる電磁石を示す図面であり、(a)は平面図、(b)は(a)のC−C断面図、をそれぞれ示している。It is drawing which shows the electromagnet used for 1st embodiment of this invention, (a) is a top view, (b) has each shown CC sectional drawing of (a). 本願発明の第一実施形態であるキャビティ内に磁化を付加した部分(ハッチ部)を示す図面であり、(a)はB−B断面図、(b)はA−A断面図、をそれぞれ示している。It is drawing which shows the part (hatch part) which added magnetization in the cavity which is 1st embodiment of this invention, (a) shows BB sectional drawing, (b) shows AA sectional drawing, respectively. ing. 本願発明の第一実施形態である半導体素子実装用回路基板の製造方法で得られた成形品又は半導体素子実装パッケージを示す図面であり、(a)は成形品の平面図、(b)は成形品のD−D断面図図、(c)は半導体素子実装パッケージのD−D断面図、をそれぞれ示している。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows the molded article or semiconductor element mounting package obtained with the manufacturing method of the circuit board for semiconductor element mounting which is 1st embodiment of this invention, (a) is a top view of a molded article, (b) is shaping | molding. DD sectional drawing of goods, (c) has each shown DD sectional drawing of the semiconductor element mounting package. 本願発明における「実装される半導体素子と重なり合う成形品の部分」の斜視図。The perspective view of "the part of the molded article which overlaps with the semiconductor element mounted" in this invention. 本願発明の第一実施形態である磁性体であるフィラーと非磁性体であるフィラーの混合させた場合の成形品の平面図。The top view of the molded product at the time of mixing the filler which is a magnetic body which is 1st embodiment of this invention, and the filler which is a nonmagnetic body. 本願発明の第二実施形態である半導体素子実装用回路基板の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the circuit board for semiconductor element mounting which is 2nd embodiment of this invention. 従来の発明の一実施形態である半導体素子実装用回路基板の製造方法で得られた成形品又は半導体素子実装パッケージを示す図面であり、(a)は成形品の平面図、(b)は成形品のE−E断面図図、(c)は半導体素子実装パッケージのE−E断面図、をそれぞれ示している。It is drawing which shows the molded article or semiconductor element mounting package obtained with the manufacturing method of the circuit board for semiconductor element mounting which is one Embodiment of the conventional invention, (a) is a top view of a molded article, (b) is molding EE sectional drawing of goods, (c) has each shown EE sectional drawing of a semiconductor element mounting package.

符号の説明Explanation of symbols

1 ゲート位置
2 金型
7 キャビティ
11 成形用樹脂
12 付加した磁場の方向を示す矢印
13 キャビティの突出部を除く平面部分(ハッチ部)
14 キャビティの突出部
15 成形用樹脂の流動方向を表す矢印
16 成形品
18 磁性体である繊維状フィラー
19 ゲート位置を示す矢印
20 はんだ
21 半導体素子
24 実装される半導体素子と重なり合う成形品の部分
25 繊維状フィラー
26 半導体素子実装用回路基板
27 非磁性体である繊維状フィラー(細線)
30 電気回路
31 半導体素子実装パッケージ
DESCRIPTION OF SYMBOLS 1 Gate position 2 Mold 7 Cavity 11 Molding resin 12 Arrow which shows the direction of the added magnetic field 13 Plane part (hatch part) except the protrusion part of a cavity
14 Cavity protrusion 15 Arrow 16 representing flow direction of resin for molding 16 Molded product 18 Fibrous filler 19 as magnetic material Arrow 20 indicating gate position Solder 21 Semiconductor element 24 Part 25 of molded product overlapping with semiconductor element to be mounted Fibrous filler 26 Circuit board 27 for mounting semiconductor elements Fibrous filler that is a non-magnetic material (thin wire)
30 Electrical Circuit 31 Semiconductor Device Mounting Package

Claims (5)

磁性体である繊維状フィラーを含む成形用樹脂を金型内のキャビティに射出する樹脂射出工程と、少なくとも実装される半導体素子と重なりあう成形品の部分に対応するキャビティに対して、成形用樹脂の流動方向と交差する方向に磁場を付加する磁場付加工程と、キャビティの成形用樹脂を硬化させる樹脂硬化工程とを備えた半導体素子実装用回路基板の製造方法。   Resin molding process for injecting molding resin containing fibrous filler, which is a magnetic material, into the cavity in the mold, and at least for the cavity corresponding to the part of the molded product that overlaps the semiconductor element to be mounted A method of manufacturing a circuit board for mounting a semiconductor element, comprising: a magnetic field applying step for applying a magnetic field in a direction crossing the flow direction of the resin; and a resin curing step for curing the resin for molding the cavity. 樹脂射出工程が、平板状金型内のキャビティの外周部位から成形用樹脂を射出するものであることを特徴とする請求項1に記載の半導体素子実装用回路基板の製造方法。   2. The method of manufacturing a circuit board for mounting a semiconductor element according to claim 1, wherein the resin injection step is a step of injecting a molding resin from an outer peripheral portion of the cavity in the flat plate mold. 磁場付加工程が、半導体素子が実装される面を含む平面に対してのみ磁場を付加することを特徴とする請求項1又は2のいずれか一つに記載の半導体素子実装用回路基板の製造方法。   3. The method of manufacturing a circuit board for mounting a semiconductor element according to claim 1, wherein the magnetic field applying step applies a magnetic field only to a plane including a surface on which the semiconductor element is mounted. . 磁場付加工程が、実装される半導体素子と重なりあう成形品の部分に対応するキャビティの略中心から、放射状に磁場を付加することを特徴とする請求項1〜3のいずれか一つに記載の半導体素子実装用回路基板の製造方法。   The magnetic field applying step adds a magnetic field radially from substantially the center of the cavity corresponding to the part of the molded product that overlaps the semiconductor element to be mounted. A method of manufacturing a circuit board for mounting a semiconductor element. 磁性体である繊維状フィラーが鉄系繊維状フィラーであることを特徴とする請求項1〜4のいずれか一つに記載の半導体素子実装用回路基板の製造方法。   The method for producing a circuit board for mounting a semiconductor element according to any one of claims 1 to 4, wherein the fibrous filler which is a magnetic substance is an iron-based fibrous filler.
JP2004217937A 2004-07-26 2004-07-26 Manufacturing method of circuit board for mounting semiconductor element Expired - Fee Related JP4483455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217937A JP4483455B2 (en) 2004-07-26 2004-07-26 Manufacturing method of circuit board for mounting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217937A JP4483455B2 (en) 2004-07-26 2004-07-26 Manufacturing method of circuit board for mounting semiconductor element

Publications (2)

Publication Number Publication Date
JP2006041132A JP2006041132A (en) 2006-02-09
JP4483455B2 true JP4483455B2 (en) 2010-06-16

Family

ID=35905814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217937A Expired - Fee Related JP4483455B2 (en) 2004-07-26 2004-07-26 Manufacturing method of circuit board for mounting semiconductor element

Country Status (1)

Country Link
JP (1) JP4483455B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877406B1 (en) 2007-04-06 2009-01-09 박지암 Semiconductor installed board and Manufacturing method
JP5353598B2 (en) * 2009-09-24 2013-11-27 豊田合成株式会社 Battery collector terminal sealing structure

Also Published As

Publication number Publication date
JP2006041132A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP6288531B2 (en) Core member, reactor, and manufacturing method of core member
CN101045858B (en) Insulator with high thermal conductivity and method for producing the same
US10256020B2 (en) Coil device
CN105247969B (en) For producing the semi-finished product and its manufacturing method of printed circuit board
US20190295760A1 (en) Inductive element and manufacturing method
CN104051145A (en) Inductor and method for manufacturing the same
CN101271741A (en) Anisotropic conductive film and adhesion method thereof
US20140132386A1 (en) Method for Producing a Coil and Electronic Device
CN102598168A (en) Flux concentrator and method of making a magnetic flux concentrator
JP2017037888A (en) Magnetic powder mold coil and method of manufacturing the same
JP6165115B2 (en) Soft magnetic composite material and magnetic core, reactor and reactor manufacturing method using the same
KR102064119B1 (en) Sheet type inductor
JP6795979B2 (en) Reactor
CN105684111B (en) The manufacture method and electronic component of electronic component
JP6340575B2 (en) Coil component, manufacturing method thereof, and coil electronic component
WO2013018755A1 (en) Coil part and method for manufacturing same
JP5593127B2 (en) Wire ring parts
JP4483455B2 (en) Manufacturing method of circuit board for mounting semiconductor element
Li et al. Multinozzle 3D printing of multilayer and thin flexible electronics
US11615913B2 (en) Coil molded article and reactor
JP6477262B2 (en) Coil parts
JP2016039331A (en) Soft magnetic composite material, manufacturing method thereof, magnetic core arranged by use of soft magnetic composite material, reactor, and manufacturing method of reactor
CN107295746A (en) Component carrier and its manufacture method
JP2013222741A (en) Reactor
US11037716B2 (en) Inductor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees