JP4482481B2 - Toner production method, two-component developer and image forming apparatus using the same - Google Patents

Toner production method, two-component developer and image forming apparatus using the same Download PDF

Info

Publication number
JP4482481B2
JP4482481B2 JP2005137639A JP2005137639A JP4482481B2 JP 4482481 B2 JP4482481 B2 JP 4482481B2 JP 2005137639 A JP2005137639 A JP 2005137639A JP 2005137639 A JP2005137639 A JP 2005137639A JP 4482481 B2 JP4482481 B2 JP 4482481B2
Authority
JP
Japan
Prior art keywords
particles
toner
resin
wax
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005137639A
Other languages
Japanese (ja)
Other versions
JP2006011385A (en
Inventor
安仁 湯浅
秀和 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005137639A priority Critical patent/JP4482481B2/en
Publication of JP2006011385A publication Critical patent/JP2006011385A/en
Application granted granted Critical
Publication of JP4482481B2 publication Critical patent/JP4482481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタ、カラーFAX及びこれらの複合機に用いられるトナーの製造方法、二成分現像剤及び画像形成装置に関するものである。   The present invention relates to a toner manufacturing method, a two-component developer, and an image forming apparatus used in a copying machine, a laser printer, plain paper FAX, a color PPC, a color laser printer, a color FAX, and a composite machine thereof.

近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、高速化、高画質化、メンテナンスフリーなどを実現する技術が求められている。そのため転写残の廃トナーをクリーニングせずに、現像において廃トナーを回収するクリーナーレスプロセスや、カラー画像の高速出力を可能とするタンデムカラープロセス、また定着時にオフセット防止のための定着オイルを使用せずとも高光沢性、高透光性を有する鮮明なカラー画像と非オフセット性を両立させるオイルレス定着が良メンテナンス性、低オゾン排気などの条件とともに要求されている。そしてこれらの機能は同時に両立させる必要があり、プロセスのみならずトナーの特性向上が重要なファクターである。   In recent years, the electrophotographic apparatus is shifting from the purpose of office use to personal use, and there is a demand for technology that realizes miniaturization, high speed, high image quality, maintenance-free operation, and the like. Therefore, use a cleaner-less process that collects waste toner during development without cleaning waste toner remaining after transfer, a tandem color process that enables high-speed output of color images, and fixing oil to prevent offset during fixing. Oilless fixing that achieves both a clear color image having high glossiness and high translucency and a non-offset property is required along with conditions such as good maintenance and low ozone exhaust. These functions need to be compatible at the same time, and not only the process but also the improvement in toner characteristics is an important factor.

カラープリンタでは、像担持体(以下感光体と称す)を、帯電チャージャーによるコロナ放電で帯電させ、その後、各色の潜像を光信号として感光体に照射し、静電潜像を形成し、第1色、例えばイエロートナーで現像し、潜像を顕像化する。その後、感光体にイエロートナーの帯電と逆極性に帯電された転写体を当接し、感光体上に形成されたイエロートナー像を転写する。感光体は転写時に残留したトナーをクリーニングしたのち除電され、第1のカラートナーの現像、転写を終える。その後、マゼンタ、シアンなどのトナーに対してもイエロートナーと同様な操作を繰り返し、各色のトナー像を転写体上で重ね合わせてカラー像を形成する方法が取られている。そしてこれらの重畳したトナー像はトナーと逆極性に帯電した紙に転写される4パス方式のカラープロセスが実用化されている。   In a color printer, an image carrier (hereinafter referred to as a photoconductor) is charged by corona discharge by a charging charger, and then a latent image of each color is irradiated to the photoconductor as an optical signal to form an electrostatic latent image. The latent image is developed by developing with one color, for example, yellow toner. Thereafter, a transfer member charged with a polarity opposite to that of the yellow toner is brought into contact with the photosensitive member to transfer the yellow toner image formed on the photosensitive member. The photosensitive member is neutralized after cleaning the toner remaining at the time of transfer, and the development and transfer of the first color toner are completed. Thereafter, the same operation as yellow toner is repeated for toners such as magenta and cyan, and a color image is formed by superimposing toner images of respective colors on a transfer member. A four-pass color process in which these superimposed toner images are transferred onto paper charged to a polarity opposite to that of the toner has been put into practical use.

また、帯電器、感光体、現像部等を有する像形成ステーションを複数並べて配置し、感光体に無端状の転写体を当接させて、転写体に順次各色のトナーを連続して転写させる一次転写プロセスを実行して、転写体に多層の転写カラートナー画像を形成し、その後、転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成されたタンデムカラープロセスや、転写体を用いずに直接紙やオーバーヘッドプロジェクター(OHP)の転写媒体に連続して転写するタンデムカラープロセスが提案されている。   In addition, a plurality of image forming stations having a charger, a photosensitive member, a developing unit, and the like are arranged side by side, an endless transfer member is brought into contact with the photosensitive member, and toners of respective colors are sequentially transferred to the transfer member sequentially. Executes the transfer process to form a multi-layer transfer color toner image on the transfer body, and then transfers the multi-layer toner image formed on the transfer body to a transfer medium such as paper or OHP at once. A tandem color process configured to execute the process, and a tandem color process for continuously transferring directly to a transfer medium of paper or an overhead projector (OHP) without using a transfer body have been proposed.

定着プロセスにおいては、カラー画像ではカラートナーを溶融混色させ透光性を上げる必要がある。トナーの溶融不良が起こるとトナー画像表面又は内部に於いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に、重なった部分では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融特性を有し、色調を妨げないような透光性を有することが必要条件である。OHP用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要はより大きくなっている。   In the fixing process, in color images, it is necessary to melt and mix color toners to improve translucency. When toner fusing failure occurs, light scattering occurs on the surface or inside of the toner image, and the original color tone of the toner dye is impaired. In addition, in the overlapping portion, light does not enter the lower layer and color reproducibility deteriorates. . Therefore, it is a necessary condition that the toner has a complete melting characteristic and a translucency that does not disturb the color tone. The need for light transmissivity on OHP paper is increasing with the increase in color presentation opportunities.

カラー画像を得る際に、定着ローラ表面にトナーが付着してオフセットが生じるため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構成が複雑になる。そのため機器の小型化、メンテフリー化、低コスト化のために、後述する定着時にオイルを使用しないオイルレス定着の実現が要求される。これを可能とするため、シャープメルト特性を有する結着樹脂中にワックス等の離型剤を添加する構成が実用化されつつある。   When a color image is obtained, toner adheres to the surface of the fixing roller to cause an offset, so that a large amount of oil or the like must be applied to the fixing roller, which complicates handling and the configuration of the device. For this reason, in order to reduce the size, maintain maintenance, and reduce the cost of the equipment, it is required to realize oilless fixing that does not use oil during fixing, which will be described later. In order to make this possible, a configuration in which a release agent such as wax is added to a binder resin having sharp melt characteristics is being put into practical use.

しかし、このようなトナーの構成での課題は、トナーの凝集性が強い特質を有するため、転写時のトナー像乱れ、転写不良の傾向がより顕著に生じ、転写と定着の両立が困難となる。また二成分現像として使用する際に、粒子間の衝突、摩擦、又は粒子と現像器との衝突、摩擦等の機械的な衝突、摩擦による発熱により、キャリア表面にトナーの低融点成分が付着するスペントが生じ易く、キャリアの帯電能力を低下させ現像剤の長寿命化の妨げとなる。   However, the problem with such a toner configuration is that the toner has a high agglomeration characteristic, so that the tendency of toner image disturbance and transfer failure during transfer occurs more significantly, making it difficult to achieve both transfer and fixing. . When used as two-component development, the low melting point component of the toner adheres to the surface of the carrier due to collision between particles, friction, mechanical collision such as collision between particles and developer, friction, etc., or heat generated by friction. Spent is likely to occur, which lowers the charging ability of the carrier and hinders the long life of the developer.

下記特許文献1には、正帯電型トナ−に対し、被覆層のシリコ−ン樹脂にフッ素置換アルキル基を導入したキャリアが提案されている。さらには、下記特許文献2では、高速プロセスにおいて、現像能力が高く、それが長期において劣化しないものとして、導電性カ−ボンと架橋型フッ素変性シリコ−ン樹脂を含有するコ−ティングキャリアが提案されている。シリコ−ン樹脂の優れた帯電特性を生かすとともにフッ素置換アルキル基によって、滑り性・剥離性・撥水性等の特性を付与し、摩耗・はがれ・クラック等が発生しにくい上、スペント化も防止できるとしているが、摩耗・はがれ・クラック等についても満足の行くものではない上に、正帯電性を有するトナ−においては適正な帯電量が得られるものの、負帯電性を有するトナ−を用いた場合、帯電量が低過ぎ、逆帯電性トナ−(正帯電性を有するトナ−)が多量に発生し、カブリやトナ−飛散等の悪化が生じ、使用に耐えるものではなかった。   Patent Document 1 below proposes a carrier in which a fluorine-substituted alkyl group is introduced into a silicone resin of a coating layer for a positively charged toner. Further, Patent Document 2 below proposes a coating carrier containing a conductive carbon and a cross-linked fluorine-modified silicone resin, as it has a high development capability in a high-speed process and does not deteriorate in the long term. Has been. Taking advantage of the excellent charging characteristics of silicone resin, the fluorine-substituted alkyl group provides slipperiness, peelability, water repellency, etc., preventing wear, peeling, cracks, etc., and preventing spelling. However, wear, delamination, cracks, etc. are not satisfactory, and a positively charged toner can provide an appropriate charge amount, but a negatively charged toner is used. The charge amount was too low, and a large amount of reversely charged toner (toner having positive chargeability) was generated, resulting in deterioration such as fogging and toner scattering, and was not durable.

またトナーにおいて、種々の構成が提案されている。周知のように電子写真方法に使用される静電荷現像用のトナ−は一般的に結着樹脂である樹脂成分、顔料もしくは染料からなる着色成分および可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然または合成樹脂が単独あるいは適時混合して使用される。   Various configurations have been proposed for toner. As is well known, the toner for electrostatic charge development used in the electrophotographic method is generally a resin component which is a binder resin, a coloring component consisting of a pigment or a dye, a plasticizer, a charge control agent, and further if necessary. It is comprised by additional components, such as a mold release agent. As the resin component, natural or synthetic resins may be used alone or mixed in a timely manner.

そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱混練し、気流式衝突板方式により微粉砕し、微粉分級されてトナー母体が完成する。また化学重合的な方法によりトナー母体が作成される方法もある。その後このトナー母体に例えば疎水性シリカなどの外添剤を外添処理してトナーが完成する。一成分現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャリアと混合することによって二成分現像剤が得られる。   Then, the above additives are premixed at an appropriate ratio, heated and kneaded by heat melting, finely pulverized by an airflow type impact plate method, and finely classified to complete a toner base. There is also a method in which a toner base is prepared by a chemical polymerization method. Thereafter, an external additive such as hydrophobic silica is added to the toner base to complete the toner. In one-component development, the toner is composed only of toner, but a two-component developer can be obtained by mixing with toner and a carrier composed of magnetic particles.

しかし、従来の混練粉砕法における粉砕・分級操作では、小粒径化といっても経済的、性能的に現実に提供できる粒子径は約8μm程度までである。現在、種々の方法による小粒径トナーを製造する方法が検討されている。またトナーの溶融混練時に低軟化点の樹脂中にワックス等の離型剤を配合してオイルレス定着を実現させる方法が検討されている。しかし配合できるワックス量には限界があり添加量を多くするに従ってトナーの流動性の低下、転写時の中抜けの増大、感光体への融着の増加等の弊害が生じてくる。   However, in the conventional pulverizing / classifying operation in the kneading and pulverizing method, the particle size that can be actually provided economically and in performance is about 8 μm even if the particle size is reduced. At present, methods for producing small-diameter toners by various methods are being studied. Also, a method for realizing oil-less fixing by blending a release agent such as wax in a resin having a low softening point when the toner is melt-kneaded has been studied. However, there is a limit to the amount of wax that can be blended, and as the amount added is increased, adverse effects such as a decrease in toner fluidity, an increase in voids during transfer, and an increase in fusion to the photoreceptor occur.

そのために、混練粉砕法とは異なる種々の重合法を用いたトナーの製造方法が検討されている。例えば、懸濁重合法によりトナーを調製すると、トナーの粒度分布を制御しようとしても混練粉砕法の域を出ることはできず、多くの場合はさらなる分級操作を必要とする。また、これらの方法で得たトナーは、その形状がほぼ真球状であるため、感光体等に残留するトナーのクリーニング性が極めて悪く、画質信頼性を損ねるという問題がある。   Therefore, a toner production method using various polymerization methods different from the kneading and pulverization method has been studied. For example, when a toner is prepared by a suspension polymerization method, even if an attempt is made to control the particle size distribution of the toner, it cannot leave the range of the kneading and pulverization method, and in many cases, further classification operation is required. Further, since the toner obtained by these methods has a substantially spherical shape, there is a problem that the toner remaining on the photosensitive member or the like is very poorly cleaned and the image quality reliability is impaired.

また、乳化重合法を用いたトナーの調製法は、少なくとも樹脂粒子を分散させてなる分散液中で凝集粒子を形成し凝集粒子分散液を調製する工程、凝集粒子分散液中に樹脂微粒子を分散させてなる樹脂微粒子分散液を添加混合して凝集粒子に樹脂微粒子を付着させて付着粒子を形成する工程及び付着粒子を加熱して融合する工程により製造される。   In addition, a toner preparation method using an emulsion polymerization method includes a step of forming aggregated particles in a dispersion obtained by dispersing at least resin particles to prepare an aggregated particle dispersion, and dispersing resin fine particles in the aggregated particle dispersion The resin fine particle dispersion thus prepared is added and mixed so that the resin fine particles are adhered to the aggregated particles to form the adhered particles, and the adhered particles are heated and fused.

下記特許文献3では、極性を有する分散剤中に樹脂粒子を分散させてなる樹脂粒子分散液と、極性を有する分散剤中に着色剤粒子を分散させてなる着色剤粒子分散液とを少なくとも混合して混合液を調製する混合液調製工程、前記混合液中において含まれる分散剤の極性が同極性とすることで、帯電性及び発色性に優れた信頼性の高い静電荷像現像用トナーを容易にかつ簡便に製造し得ることが開示されている。   In the following Patent Document 3, at least a resin particle dispersion obtained by dispersing resin particles in a polar dispersant and a colorant particle dispersion obtained by dispersing colorant particles in a polar dispersant are mixed. A liquid mixture preparation step for preparing a liquid mixture, and by making the polarity of the dispersant contained in the liquid mixture the same polarity, a highly reliable electrostatic image developing toner excellent in chargeability and color development It is disclosed that it can be easily and conveniently manufactured.

また、下記特許文献4では、離型剤が、炭素数が12〜30の高級アルコール及び炭素数12〜30の高級脂肪酸の少なくとも一方からなるエステルを少なくとも1種含み、かつ、該樹脂粒子が、分子量が異なる少なくとも2種の樹脂粒子を含むことで、定着性、発色性、透明性、混色性等に優れることが開示されている。   Moreover, in the following Patent Document 4, the release agent contains at least one ester composed of at least one of a higher alcohol having 12 to 30 carbon atoms and a higher fatty acid having 12 to 30 carbon atoms, and the resin particles include: It is disclosed that by including at least two kinds of resin particles having different molecular weights, the fixing property, color developing property, transparency, color mixing property and the like are excellent.

離型剤としては、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;シリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス;ミツロウのごとき動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物系、石油系のワックス、及びそれらの変性物が開示されている。   Release agents include low molecular weight polyolefins such as polyethylene, polypropylene, and polybutene; fatty acid amides such as silicones, oleic acid amide, erucic acid amide, ricinoleic acid amide, stearic acid amide; carnauba wax, rice wax Plant waxes such as candelilla wax, tree wax, jojoba oil, etc .; animal waxes such as beeswax; minerals such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax, petroleum System waxes and their modifications are disclosed.

しかし、離型剤を添加してその分散性が悪化すると、定着時に溶融したトナー画像において色濁りが生じ易い傾向にある。それと共に顔料の分散度も悪化し、トナーの発色性が不十分になってしまう。また次の工程において凝集体表面にさらに樹脂微粒子を付着融合する際にその離型剤等の分散性低下が樹脂微粒子の付着を不安定なものとなってしまう。また一度樹脂と凝集した離型剤が分離して水系中に遊離する。離型剤の分散は使用するワックス等の極性、融点等の熱特性が混合凝集時の凝集に与える影響は大きい。さらには定着時にオイルを使用しないオイルレス定着を実現するため、特定のワックスを多量に添加する構成となる。そして融点、軟化点、粘弾性が異なる樹脂と凝集させ、加熱により融合する際に均一な状態を保持したまま融合することが困難となる。特に一定の酸価、官能基を有する離型剤を使用することで、オイルレス定着と、現像時のカブリの低減や、転写効率との両立を図ることが可能となるが、逆に製造時の水系中での樹脂微粒子、顔料微粒子との均一な混合凝集が妨げられ、水系中で凝集にかかわらない浮遊した離型剤の存在、また顔料においても浮遊顔料の存在を増大させる傾向にある。
特許第2801507号公報 特開2002−23429号公報 特開平10−198070号公報 特開平10−301332号公報
However, if the dispersibility is deteriorated by adding a release agent, color turbidity tends to occur in the toner image melted at the time of fixing. At the same time, the dispersibility of the pigment also deteriorates, and the color developability of the toner becomes insufficient. In addition, when the resin fine particles are further adhered and fused on the surface of the aggregate in the next step, the dispersion of the release agent or the like makes the adhesion of the resin fine particles unstable. Moreover, the release agent once aggregated with the resin is separated and released into the aqueous system. The dispersion of the release agent has a great influence on the agglomeration during mixing and agglomeration due to the polarity and melting point of the wax used. Furthermore, in order to realize oil-less fixing without using oil at the time of fixing, a specific wax is added in a large amount. And when it fuse | melts with resin from which melting | fusing point, a softening point, and viscoelasticity differ, it becomes difficult to unite | combine, maintaining a uniform state, when uniting by heating. In particular, it is possible to achieve both oil-less fixing, fogging during development, and transfer efficiency by using a release agent having a certain acid value and functional group. In the aqueous system, uniform mixing and aggregation with resin fine particles and pigment fine particles are hindered, and there is a tendency to increase the presence of a floating release agent that is not involved in aggregation in the aqueous system, and also in the pigment.
Japanese Patent No. 2801507 JP 2002-23429 A JP-A-10-198070 JP-A-10-301332

本発明は、シャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成できることを第1番目の目的とする。第2番目の目的は、定着ローラにオイルを使用しないオイルレス定着において、トナー中にワックス等の離型剤を使用して低温定着と、高温オフセット性と貯蔵安定性の両立を実現することである。第3番目の目的は、ワックス等の離型剤を含有したトナーと組合せた使用においてもスペント化による劣化も生じない高い耐久性のある長寿命の二成分現像剤を提供することである。第4番目の目的は、転写時の中抜けや、飛び散りを防止し、高転写効率が得られる画像形成装置を提供することである。   The first object of the present invention is to produce a toner having a small particle diameter having a sharp particle size distribution without requiring a classification step. The second purpose is to achieve both low temperature fixing and high temperature offset and storage stability by using a release agent such as wax in the toner in oilless fixing without using oil in the fixing roller. is there. The third object is to provide a long-life two-component developer having high durability that does not deteriorate due to spent even when used in combination with a toner containing a release agent such as wax. A fourth object is to provide an image forming apparatus that prevents high-efficiency by preventing omission and scattering during transfer.

本発明のトナーの製造方法は、水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、凝集加熱により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理する工程とを含む。   The toner production method of the present invention includes at least a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a wax particle dispersion in which wax particles are dispersed in an aqueous medium. And a toner manufacturing method in which toner is produced in an aqueous system by coagulation heating, wherein at least a resin particle dispersion in which the resin particles are dispersed, a colorant particle dispersion in which the colorant particles are dispersed, and A step of preparing a mixed dispersion of the wax particle dispersion in which the wax particles are dispersed, adjusting the pH of the mixed dispersion to a range of 9.5 to 12.2, adding a water-soluble inorganic salt, and heating; The resin particles, the colorant particles and the wax particles are processed to form aggregated particles in which at least a part is melted, and the pH when the aggregated particles are formed is 7.0 to 9.5. A step ranges, then pH was adjusted to a range of 2.2 to 6.8, and a step of heat treatment.

また、本発明の別のトナーの製造方法は、水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、前記芯粒子が分散した芯粒子分散液に、さらに第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加する工程と、pHを5.2〜8.8の範囲に調整する工程と、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理する工程と、pHを2.2〜6.8の範囲に調整する工程と、さらに、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して前記芯粒子に、前記第二の樹脂粒子を融着する工程とを含む。   In another toner production method of the present invention, at least a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and wax particles are dispersed in an aqueous medium. A toner manufacturing method of mixing a wax particle dispersion and preparing a toner in an aqueous system by heat aggregation, comprising at least a resin particle dispersion in which the resin particles are dispersed, and a colorant in which the colorant particles are dispersed A step of preparing a mixed dispersion of a particle dispersion and a wax particle dispersion in which the wax particles are dispersed; and adjusting the pH of the mixed dispersion to a range of 9.5 to 12.2, Addition and heat treatment to form aggregated particles in which at least a part of the resin particles, the colorant particles and the wax particles aggregated is melted, and the pH when the aggregated particles are formed is 7. A step in which the core particles are dispersed, a step in which the core particles are dispersed, a step in which the core particles are dispersed, a step in which the core particles are dispersed, A step of adding a second resin particle dispersion in which second resin particles are further dispersed, a step of adjusting the pH to a range of 5.2 to 8.8, and a glass transition of the second resin particles. A heat treatment at a temperature equal to or higher than the point temperature, a step of adjusting the pH to a range of 2.2 to 6.8, and a heat treatment at a temperature equal to or higher than the glass transition temperature of the second resin particles. Fusing the second resin particles to the core particles.

本発明のさらに別のトナーの製造方法は、水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、前記芯粒子が分散した芯粒子分散液のpH値をHSとすると、分散液のpH値をHS+2〜HS−5の範囲に調整した第ニの樹脂粒子を分散させた第二の樹脂粒子分散液を、前記芯粒子が分散した芯粒子分散液に添加混合する工程とを含む。   Still another toner production method of the present invention includes a first resin particle dispersion in which at least first resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a wax in an aqueous medium. A toner manufacturing method for producing a toner in an aqueous system by mixing with a wax particle dispersion liquid in which particles are dispersed, and at least a first resin particle dispersion liquid in which at least the first resin particles are dispersed A step of preparing a mixed dispersion of the colorant particle dispersion in which the colorant particles are dispersed and the wax particle dispersion in which the wax particles are dispersed; and the pH of the mixed dispersion is 9.5 to 12.2. The water-soluble inorganic salt is added, and heat treatment is performed to form agglomerated particles in which the first resin particles, the colorant particles, and the wax particles are agglomerated to form agglomerated particles. grain A step in which the pH is in the range of 7.0 to 9.5, a step of adjusting the pH to a range of 2.2 to 6.8, and then heat-treating to form core particles; When the pH value of the core particle dispersion in which the core particles are dispersed is HS, the second resin particle dispersion in which the second resin particles in which the pH value of the dispersion is adjusted to the range of HS + 2 to HS-5 is dispersed. And adding to a core particle dispersion in which the core particles are dispersed.

本発明の二成分現像剤は、前記の製造方法で製造されたトナー母体粒子に、平均粒子径が6nm〜200nmの範囲の無機微粉末を前記トナー母体粒子100重量部に対し1〜6重量部の範囲で添加されるトナーと、硬化させたバインダー樹脂と磁性体微粒子とからなる磁性粒子であり、前記磁性体微粒子の含有量が80〜99wt%、数平均粒子径が10〜60μmであり、かつ前記磁性粒子の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとを含むことを特徴とする。   In the two-component developer of the present invention, 1 to 6 parts by weight of inorganic fine powder having an average particle diameter in the range of 6 nm to 200 nm is added to 100 parts by weight of the toner base particles. Magnetic particles comprising a toner added in the range of, a cured binder resin and magnetic fine particles, the content of the magnetic fine particles is 80 to 99 wt%, the number average particle size is 10 to 60 μm, And the surface of the said magnetic particle contains the carrier containing the magnetic particle coat | covered with the fluorine-modified silicone resin containing an aminosilane coupling agent, It is characterized by the above-mentioned.

本発明の画像形成装置は、少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を前記の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65(sec)の条件を満足することを特徴とする。   The image forming apparatus of the present invention has a plurality of toner image forming stations including at least an image carrier, a charging unit for forming an electrostatic latent image on the image carrier, and a toner carrier, and is formed on the image carrier. The electrostatic latent image is visualized by the two-component developer, and the transfer process is performed in which the toner image that has been visualized by the electrostatic latent image is sequentially transferred onto a transfer medium. A transfer system, wherein the transfer process is a distance from the first transfer position to the second transfer position, or a distance from the second transfer position to the third transfer position, or from the third transfer position to the second transfer position. When the distance to the transfer position 4 is d1 (mm) and the peripheral speed of the photosensitive member is v (mm / s), the condition of d1 / v ≦ 0.65 (sec) is satisfied.

本発明は、シャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成できる。   According to the present invention, a toner having a small particle size having a sharp particle size distribution can be produced without a classification step.

本発明方法は、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスを分散させたワックス粒子分散液とを水系中で混合凝集し、加熱して生成されるトナー母体であって、水系中で凝集にかかわらない浮遊したワックスの粒子の存在をなくし、顔料も浮遊顔料の存在をなくし、小粒径でかつ均一で狭い範囲でシャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成することができる。   In the method of the present invention, a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a wax particle dispersion in which wax is dispersed are mixed and aggregated in an aqueous system and heated. The toner base produced in this way eliminates the presence of floating wax particles that are not involved in agglomeration in the aqueous system, and the pigment also eliminates the presence of floating pigments. Thus, a toner having a small particle diameter can be prepared without a classification step.

また本発明は、オイルの塗布を必要とせずにオフセット性を防止し、低温で定着できる。さらに、ワックス等の離型剤を含有したトナーと組合せた使用においても、スペント化による劣化も生じない耐久性のある二成分現像剤を実現できる。   Further, the present invention can prevent the offset property without requiring the application of oil and can be fixed at a low temperature. Furthermore, a durable two-component developer that does not deteriorate due to spent even when used in combination with a toner containing a release agent such as wax can be realized.

また複数の感光体及び現像部を有する像形成ステーションを並べて配置し、転写体に順次各色のトナーを連続して転写プロセスを実行するタンデムカラープロセスにおいて、転写時の中抜けや逆転写を防止し、高転写効率を得ることが出来る。   In addition, in a tandem color process that arranges image forming stations that have multiple photoconductors and development sections side by side, and sequentially transfers the toner of each color to the transfer body, it prevents omission and reverse transfer during transfer. High transfer efficiency can be obtained.

本発明は、オイルレス定着で高光沢性、高透光性を有し、好適な帯電特性及び環境依存性、クリーニング性、転写性を有し、かつシャープな粒度分布を有する小粒子径の静電荷像現像用トナー、二成分現像剤を提供し、かつ、トナーの飛散、かぶり等の無い高画質で信頼性の高いカラー画像の形成を可能にする画像形成を提供することについて鋭意検討した。   The present invention is an oilless fixing that has high glossiness and high translucency, suitable charging characteristics, environmental dependency, cleaning properties, transferability, and a small particle size static particle having a sharp particle size distribution. The present inventors have earnestly studied to provide a toner for developing a charge image and a two-component developer, and to provide an image formation capable of forming a high-quality and reliable color image free from toner scattering and fogging.

(1)重合方法
樹脂粒子分散液の調製は、ビニル系単量体をイオン性界面活性剤中で乳化重合やシード重合等することにより、ビニル系単量体の単独重合体又は共重合体(ビニル系樹脂)の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。その手段としては、例えば、高速回転型乳化装置、高圧乳化装置、コロイド型乳化装置、メデイアを有するボールミル、サンドミル、ダイノミルなどのそれ自体公知の分散装置が挙げられる。
(1) Polymerization method The resin particle dispersion is prepared by subjecting the vinyl monomer to emulsion polymerization or seed polymerization in an ionic surfactant, thereby producing a vinyl monomer homopolymer or copolymer ( A dispersion is prepared by dispersing resin particles of vinyl resin) in an ionic surfactant. As the means, for example, a high-speed rotating emulsifier, a high-pressure emulsifier, a colloid emulsifier, a ball mill having a medium, a sand mill, a dyno mill, and the like are known per se.

樹脂粒子における樹脂が、前記ビニル系単量体の単独重合体又は共重合体以外の樹脂である場合には、該樹脂が、水への溶解度が比較的低い油性溶剤に溶解するのであれば、該樹脂を該油性溶剤に溶解させ、この溶液を、ホモジナイザー等の分散機を用いてイオン性界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより、ビニル系樹脂以外の樹脂製の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。   When the resin in the resin particles is a resin other than the homopolymer or copolymer of the vinyl monomer, if the resin is dissolved in an oily solvent having a relatively low solubility in water, The resin is dissolved in the oily solvent, and the solution is finely dispersed in water together with an ionic surfactant and a polymer electrolyte using a disperser such as a homogenizer, and then heated or reduced in pressure to evaporate the oily solvent. As a result, a dispersion is prepared by dispersing resin particles made of resin other than vinyl resin in an ionic surfactant.

重合開始剤としては、2,2’−アゾビスー(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンー1−カルボニトリル)、2,2’−アゾビスー4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤、や過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、アゾ系化合物(4,4'−アゾビス4−シアノ吉草酸及びその塩、2,2'−アゾビス(2−アミジノプロパン)塩等)、パーオキシド化合物等が挙げられる。   As polymerization initiators, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile), 2 , 2′-azobis-4-methoxy-2,4-dimethylvaleronitrile, azo-based or diazo-based polymerization initiators such as azobisisobutyronitrile, persulfates (potassium persulfate, ammonium persulfate, etc.), azo-based Examples thereof include compounds (4,4′-azobis-4-cyanovaleric acid and its salts, 2,2′-azobis (2-amidinopropane) salts, etc.), peroxide compounds and the like.

着色剤粒子分散液は、界面活性剤を添加した水中に着色剤粒子を添加し、前記した分散の手段を用いて分散させることにより調製される。
ワックス粒子分散液は、界面活性剤を添加した水中にワックスを添加し、前記した分散の手段を用いて分散させることにより調製される。
The colorant particle dispersion is prepared by adding colorant particles in water to which a surfactant has been added and dispersing the particles using the above-described dispersion means.
The wax particle dispersion is prepared by adding a wax in water to which a surfactant has been added, and dispersing using the above-described dispersion means.

本実施形態のトナーは、水系媒体中で樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液とを水系中で混合凝集し、加熱してトナー母体粒子を生成する。   The toner according to the exemplary embodiment is obtained by mixing and aggregating a resin particle dispersion in which resin particles are dispersed in an aqueous medium, a colorant particle dispersion in which colorant particles are dispersed, and a wax particle dispersion in an aqueous system. Heat to produce toner base particles.

本発明の好ましい第一の製造方法の構成としては、水系媒体中で樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液の混合分散液に水溶性無機塩を添加し、樹脂のガラス転移点温度(Tg)以上に加熱することで一定の粒径を有した凝集粒子(芯粒子と称することもある)生成される。   A preferred first production method of the present invention comprises mixing a resin particle dispersion in which resin particles are dispersed in an aqueous medium, a colorant particle dispersion in which colorant particles are dispersed, and a wax particle dispersion. Aggregated particles (sometimes referred to as core particles) having a certain particle size are produced by adding a water-soluble inorganic salt to the dispersion and heating to a temperature equal to or higher than the glass transition temperature (Tg) of the resin.

このとき水溶性無機塩の添加前及び加熱前に、混合分散液のpHを9.5〜12.2の範囲に調整することが好ましい。1NのNaOHを添加することでpHの調整が可能である。pHを調整することにより、添加する水溶性無機塩との関係から、樹脂、着色剤及びワックス粒子同士の凝集を促進するとともに、過度の凝集を抑制して、小粒径で狭い粒度分布の粒子形成を可能とするためである。pHが9.5未満であると、形成された粒子が粗大化する傾向となる。また、pHが12.2を超えると、樹脂、着色剤及びワックス粒子同士の凝集が進まず、遊離したワックス粒子、着色剤粒子が多くなり、ワックスを均一に内包化することが困難になる。   At this time, it is preferable to adjust the pH of the mixed dispersion to a range of 9.5 to 12.2 before adding the water-soluble inorganic salt and before heating. The pH can be adjusted by adding 1N NaOH. Particles with small particle size and narrow particle size distribution by adjusting pH and promoting aggregation of resin, colorant and wax particles from the relationship with water-soluble inorganic salt to be added, and suppressing excessive aggregation This is to enable formation. When the pH is less than 9.5, the formed particles tend to be coarse. On the other hand, if the pH exceeds 12.2, aggregation of the resin, the colorant and the wax particles does not proceed, and the amount of the released wax particles and colorant particles increases, making it difficult to encapsulate the wax uniformly.

pH調整後に、水溶性無機塩を添加し、加熱処理して少なくとも樹脂粒子、着色剤粒子及びワックス粒子が凝集した所定の体積平均粒径(例えば3〜6μm)の凝集粒子が形成される。この所定の体積平均粒径の凝集粒子が形成されたときの液のpHを7.0〜9.5の範囲に保持することにより、着色剤やワックスの遊離が少なく、ワックスが内包された狭い粒度分布の凝集粒子が形成できる。添加するNaOH量、凝集剤種や量、乳化重合樹脂分散液のpH、着色剤分散液のpH、ワックス分散液のpHの設定値や、加熱温度、時間は適宜選択する。   After pH adjustment, a water-soluble inorganic salt is added, and heat treatment is performed to form aggregated particles having a predetermined volume average particle size (for example, 3 to 6 μm) in which at least resin particles, colorant particles, and wax particles are aggregated. By maintaining the pH of the liquid when the aggregated particles having the predetermined volume average particle diameter are formed in the range of 7.0 to 9.5, the release of the colorant and the wax is small and the wax is included and narrow. Agglomerated particles having a particle size distribution can be formed. The amount of NaOH to be added, the type and amount of flocculant, the pH of the emulsion polymerization resin dispersion, the pH of the colorant dispersion, the pH of the wax dispersion, the heating temperature, and the time are appropriately selected.

混合分散液を加熱処理することによりシャープメルト性を有するワックスの溶融が始まり、溶融したワックス同士の凝集が始まる。樹脂のガラス転移点(Tg)は30〜70℃であるが、水系媒体が樹脂のTg以上の温度でも、樹脂はワックスのようにシャープに溶融が始まるわけではなく、表面が徐々に溶融が進む。そして溶融したワックスを取り囲むように樹脂及び顔料の微粒子が凝集し、凝集した樹脂も熱により溶融し融着する。そして低融点のワックスが樹脂によって内包化される状態が形成される。   By heat-treating the mixed dispersion, melting of the wax having sharp melt properties starts and aggregation of the melted waxes begins. Although the glass transition point (Tg) of the resin is 30 to 70 ° C., even when the aqueous medium is at a temperature higher than the Tg of the resin, the resin does not start to melt sharply like wax, and the surface gradually melts. . Then, resin and pigment fine particles aggregate so as to surround the melted wax, and the aggregated resin is also melted and fused by heat. And the state in which the low melting point wax is encapsulated by the resin is formed.

凝集粒子が形成されたときの液のpHが7.0未満であると、凝集粒子が粗大化する傾向になる。pHが9.5を超えると、凝集不良で着色剤やワックスの遊離が多くなる傾向になる。   If the pH of the liquid when the aggregated particles are formed is less than 7.0, the aggregated particles tend to be coarse. When the pH exceeds 9.5, the colorant and wax are likely to be liberated due to poor aggregation.

その後さらにpHを2.2〜6.8の範囲に調整し加熱処理して凝集粒子であるトナー母体粒子を生成することが好ましい。この範囲に調整して加熱処理を施すことにより、凝集粒子相互の二次凝集を抑制しながら、かつ粒子形状の球形化を進めることができ、また粒度分布をよりシャープに絞り込めることが出来る。このような方法で生成したトナー母体粒子を洗浄乾燥後に外添処理を施してトナーが作成される。pHが2.2未満であると、界面活性剤の効果が消されてしまう。pHが6.8を超えると、加熱により凝集粒子の二次凝集が生じて粒子径が大きくなるとともに、粒度分布もブロードになる。   Thereafter, it is preferable to further adjust the pH to a range of 2.2 to 6.8 and heat treatment to produce toner base particles that are aggregated particles. By adjusting the heat treatment within this range, the secondary agglomeration between the agglomerated particles can be suppressed, the spheroidization of the particle shape can be promoted, and the particle size distribution can be narrowed down more sharply. The toner base particles produced by such a method are washed and dried, and then subjected to an external addition treatment to produce a toner. If the pH is less than 2.2, the effect of the surfactant is lost. When the pH exceeds 6.8, secondary aggregation of the aggregated particles occurs due to heating, and the particle diameter increases and the particle size distribution also becomes broad.

また、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液を混合した混合分散液のpHを6.0以下とした混合分散液を作成することが好ましい。乳化重合樹脂を重合生成する際に重合開始剤として過硫酸カリウム等の過硫酸塩を使用した際、その残留分が加熱凝集工程時の熱により分解してpHを下げてしまうことがあるためである。樹脂の乳化重合した後に一定温度以上(残留分を十分に分解させておくために80℃以上が好ましい)で、一定時間(1〜5時間程度が好ましい)加熱処理を施すことが好ましい。このときの乳化重合樹脂の分散液のpHは4以下、更に好ましくは1.8以下とすることが好ましい。混合分散液を作成したときのpHが6.0を超えていると、加熱して着色樹脂粒子を形成する際に、重合開始剤の過硫酸塩の残留分が分解し、液中のpH変動(pH減少現象)が大きくなり、加熱凝集して得られた粒子が粗大化する傾向となる。   Further, a mixed dispersion in which the pH of the mixed dispersion obtained by mixing the resin particle dispersion in which the resin particles are dispersed, the colorant particle dispersion in which the colorant particles are dispersed, and the wax particle dispersion is 6.0 or less is used. It is preferable to create When a persulfate such as potassium persulfate is used as a polymerization initiator when polymerizing an emulsion polymerization resin, the residue may be decomposed by the heat during the heat aggregation process to lower the pH. is there. After emulsion polymerization of the resin, it is preferable to carry out a heat treatment at a certain temperature or higher (preferably 80 ° C. or higher in order to sufficiently decompose the residue) for a certain time (preferably about 1 to 5 hours). At this time, the pH of the dispersion of the emulsion polymerization resin is preferably 4 or less, more preferably 1.8 or less. When the pH of the mixed dispersion is over 6.0, when the colored resin particles are formed by heating, the residual content of the polymerization initiator persulfate is decomposed and the pH in the liquid varies. The (pH reduction phenomenon) increases, and the particles obtained by heat aggregation tend to be coarse.

本発明の好ましい第ニの製造方法の構成としては、第一の製造方法により生成した凝集粒子(芯粒子とも称する)が分散した凝集粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を混合し、加熱融着することで、樹脂の表面層を形成する構成である。これによりトナーの耐久性や、オフセット性をより良好なものとすることが出来る。   As a preferred second production method of the present invention, the second resin particles are dispersed in an aggregated particle dispersion in which aggregated particles (also referred to as core particles) produced by the first production method are dispersed. The resin particle dispersion is mixed and heat-fused to form a resin surface layer. As a result, the durability and offset property of the toner can be improved.

芯粒子の表面に第二の樹脂を付着させて、その第二の樹脂のTg以上に加熱して樹脂表面融着層を形成する際には、第二の樹脂粒子を遊離させることなく、かつ芯粒子の二次凝集を防いで、芯粒子表面に均一に付着させることが必要である。   When the second resin is attached to the surface of the core particle and heated to Tg or more of the second resin to form the resin surface fusion layer, the second resin particle is not released, and It is necessary to prevent the secondary agglomeration of the core particles and to uniformly adhere to the surface of the core particles.

その芯粒子が分散した芯粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加し、第二の樹脂粒子分散液が添加された芯粒子分散液のpHを5.2〜8.8の範囲に調整し、その後、第二の樹脂粒子のガラス転移点温度以上の温度で0.5〜2時間加熱処理することが好ましい。pH調整の目的は、芯粒子表面に粒子径が2桁異なる第二の樹脂粒子の付着を促進させ、かつ第二の樹脂粒子同士や芯粒子同士の凝集を防ぐためである。pH調整により粒子間の反発力や、凝集力を調整できる。   Add the second resin particle dispersion in which the second resin particles are dispersed to the core particle dispersion in which the core particles are dispersed, and adjust the pH of the core particle dispersion to which the second resin particle dispersion is added. It is preferable to adjust to the range of 5.2 to 8.8 and then heat-treat at a temperature equal to or higher than the glass transition temperature of the second resin particles for 0.5 to 2 hours. The purpose of pH adjustment is to promote adhesion of the second resin particles having a particle size different by two digits on the surface of the core particles and to prevent aggregation of the second resin particles or the core particles. The repulsive force between particles and the cohesive force can be adjusted by adjusting the pH.

この工程により、第二の樹脂粒子を芯粒子表面に浮遊粒子を抑えて均一に付着させることが可能となる。pHが5.2未満であると、第二の樹脂粒子の付着が起こりにくく、遊離樹脂粒子が増加する傾向になる。pHが8.8を超えると、芯粒子同士の二次凝集が発生しやすくなる。処理時間を2時間以上長くすると、粒子の粗大化と粒度分布がブロードになる傾向にある。   By this step, the second resin particles can be uniformly adhered to the surface of the core particles while suppressing suspended particles. When the pH is less than 5.2, adhesion of the second resin particles hardly occurs and the free resin particles tend to increase. If the pH exceeds 8.8, secondary aggregation between the core particles tends to occur. When the treatment time is increased by 2 hours or more, the coarsening of the particles and the particle size distribution tend to be broad.

その後にさらにpHを3.2〜6.8の範囲に調整した後、さらに第二の樹脂粒子のガラス転移点温度以上の温度で2〜6時間加熱処理して、前記芯粒子に第二の樹脂粒子を融着させることが好ましい。   Thereafter, the pH is further adjusted to a range of 3.2 to 6.8, and then heat treatment is performed at a temperature equal to or higher than the glass transition temperature of the second resin particles for 2 to 6 hours. It is preferable to fuse the resin particles.

第二の樹脂粒子分散液を添加した芯粒子分散液を、液pHを調整する工程を少なくとも2段階以上有し、その工程において、2回目の液pHの調整が1回目に調整した液のpH値より少ない値に調整する。これはそのままのpH値の状態で加熱処理を進めると芯粒子同士の凝集が進み粒径が粗大化してしまう。しかし、加熱処理を進めないと、芯粒子表面に付着した第二の樹脂粒子の融着が進まず、表面が凹凸状のままとなり、現像、転写性に課題を残すことになる。第1回目のpHを5.2〜8.8の範囲に調整する目的は、芯粒子に第二の樹脂粒子の付着を促進させることを狙いとするもので、そのため液のpH値を中性付近にシフトさせることが効果的である。   The core particle dispersion to which the second resin particle dispersion is added has at least two stages of adjusting the liquid pH, and in this process, the pH of the liquid adjusted for the first time is adjusted for the second time. Adjust to a value less than the value. If the heat treatment is advanced with the pH value as it is, aggregation of the core particles proceeds and the particle size becomes coarse. However, if the heat treatment is not advanced, the fusion of the second resin particles adhering to the surface of the core particles will not proceed, and the surface will remain uneven, leaving problems in development and transferability. The purpose of adjusting the pH of the first time to the range of 5.2 to 8.8 is to promote the adhesion of the second resin particles to the core particles, and therefore the pH value of the liquid is neutral. It is effective to shift to the vicinity.

そしてさらに、その後にpHを3.2〜6.8の範囲に再度調整する目的は、第二の樹脂粒子が付着した芯粒子同士が二次凝集を生じて、粒子が粗大化することを防ぐことを狙いし、二次凝集を起こさずに、芯粒子に第二の樹脂粒子を融着させて狭い粒度分布の粒子を生成することが可能となる。   Further, the purpose of adjusting the pH again in the range of 3.2 to 6.8 is to prevent the core particles to which the second resin particles are adhered from from each other causing secondary aggregation and coarsening of the particles. This makes it possible to produce particles with a narrow particle size distribution by fusing the second resin particles to the core particles without causing secondary aggregation.

この工程により、芯粒子相互、或いは第二の樹脂粒子相互の二次凝集を起こさず、芯粒子に第二の樹脂粒子を融着させて狭い粒度分布の粒子を得ることが出来る。pHが3.2未満であると、一旦付着した樹脂粒子が遊離する場合がある。pHが6.8を超えると、芯粒子の二次凝集が発生しやすくなる。   By this step, particles having a narrow particle size distribution can be obtained by fusing the second resin particles to the core particles without causing secondary aggregation between the core particles or the second resin particles. If the pH is less than 3.2, the resin particles once adhered may be released. When the pH exceeds 6.8, secondary aggregation of the core particles tends to occur.

芯粒子と、第二の樹脂粒子が芯粒子に付着融着した粒子との体積平均粒子径の差が0.5〜2μmであることが好ましい。0.5μm未満であると、第二の樹脂の付着状態が不良で、水分の影響、第二の樹脂自体の強度が不足する。2μmを超えると定着性、光沢性を低下させる。   The difference in volume average particle diameter between the core particles and the particles in which the second resin particles are adhered and fused to the core particles is preferably 0.5 to 2 μm. If the thickness is less than 0.5 μm, the adhesion state of the second resin is poor, and the influence of moisture and the strength of the second resin itself are insufficient. If it exceeds 2 μm, the fixing property and glossiness are lowered.

本発明の好ましい第三の製造方法の構成としては、芯粒子が分散した芯粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加混合し、第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して芯粒子に、第二の樹脂粒子を芯粒子に融着させる樹脂融着層を形成することによりトナー母体粒子を生成する構成であって、生成された芯粒子分散液に、第二の樹脂粒子分散液を添加する際、芯粒子が分散した芯粒子分散液のpH値をHSとすると、第ニの樹脂粒子を分散させた第二の樹脂粒子分散液のpHをHS+2〜HS−5の範囲に調整して添加する構成である。   As a preferred third production method of the present invention, the second resin particle dispersion in which the second resin particles are dispersed is added to and mixed with the core particle dispersion in which the core particles are dispersed. The toner base particles are produced by forming a resin fusion layer for fusing the second resin particles to the core particles by heat treatment at a temperature equal to or higher than the glass transition temperature of the particles, When adding the second resin particle dispersion to the produced core particle dispersion, assuming that the pH value of the core particle dispersion in which the core particles are dispersed is HS, the second resin particles are dispersed in the second resin particle dispersion. In this configuration, the pH of the resin particle dispersion is adjusted to the range of HS + 2 to HS-5.

芯粒子分散液に酸性の強い第二の樹脂粒子分散液等を添加すると、水溶性無機塩の凝集剤としての効果が弱まり、芯粒子と樹脂粒子との付着が妨げられる。また芯粒子分散液にpH値が離れた樹脂粒子分散液等を添加すると、液のpHのバランスが急に乱されるため、芯粒子への樹脂粒子の付着が生じないばかりか、芯粒子同士の二次凝集を発生させる結果となってしまう。このような現象を抑えるために、第二の樹脂粒子分散液のpHを調整することが効果的である。   If a highly acidic second resin particle dispersion or the like is added to the core particle dispersion, the effect of the water-soluble inorganic salt as an aggregating agent is weakened, and adhesion between the core particles and the resin particles is hindered. Further, when a resin particle dispersion having a pH value separated from the core particle dispersion is added, the pH balance of the liquid is suddenly disturbed, so that the resin particles do not adhere to the core particles. As a result, secondary aggregation occurs. In order to suppress such a phenomenon, it is effective to adjust the pH of the second resin particle dispersion.

この構成により、第ニの樹脂粒子の浮遊粒子の発生が低減され、第ニの樹脂粒子の芯粒子表面への均一な付着が行える。また芯粒子への付着が促進され、付着溶融の処理時間が早くなり、生産性を向上させることができる。また、第ニの樹脂粒子の芯粒子への付着溶融の際、粒子の急激な粗大化を防ぐことができ、小粒径でシャープな粒度分布を形成することができる。HS+2よりも大きいと、粒子が粗大化し、粒度分布がブロードになる傾向にある。HS−5よりも小さいと、第ニの樹脂粒子の凝集粒子への付着が進まず、処理に長時間要すだけでなく、第ニの樹脂粒子が水系中に浮遊したままで、白濁のまま進行しない傾向にある。   With this configuration, the generation of floating particles of the second resin particles is reduced, and the second resin particles can be uniformly attached to the surface of the core particles. Further, the adhesion to the core particles is promoted, the adhesion melting treatment time is shortened, and the productivity can be improved. In addition, when the second resin particles are adhered and melted to the core particles, rapid coarsening of the particles can be prevented, and a sharp particle size distribution can be formed with a small particle size. When it is larger than HS + 2, the particles become coarse and the particle size distribution tends to be broad. If it is smaller than HS-5, the adhesion of the second resin particles to the agglomerated particles will not proceed, and not only will the treatment take a long time, but the second resin particles will remain suspended in the aqueous system and remain cloudy. There is a tendency not to progress.

本発明の好ましい第三の製造方法の構成において、生成された芯粒子分散液に添加する第ニの樹脂粒子を分散させた第二の樹脂粒子分散液のpH値は、芯粒子が分散した芯粒子分散液のpH値にかかわりなく、3.5〜10.5の範囲に調整して添加する構成が好ましい。   In the configuration of the preferred third production method of the present invention, the pH value of the second resin particle dispersion in which the second resin particles added to the produced core particle dispersion are dispersed is the core in which the core particles are dispersed. Regardless of the pH value of the particle dispersion, a configuration in which the particle dispersion is adjusted and added in the range of 3.5 to 10.5 is preferable.

pHが3.5よりも小さくなると第ニの樹脂粒子の芯粒子表面への付着が進行せず、第ニの樹脂粒子が水系中で浮遊したままで、液は白濁したままである。pHが10.5よりも大きいと、生成される粒子が急激に粗大化する傾向にある。   When the pH is less than 3.5, the adhesion of the second resin particles to the surface of the core particles does not proceed, the second resin particles remain floating in the aqueous system, and the liquid remains cloudy. When the pH is higher than 10.5, the generated particles tend to coarsen rapidly.

その後、任意の洗浄工程、固液分離工程、及び乾燥工程を経て、トナーを得ることができる。この洗浄工程においては、帯電性を向上させる観点より、十分にイオン交換水による置換洗浄を行うのが好ましい。前記固液分離工程における分離方法としては、特に制限はなく、生産性の観点から、吸引濾過法や加圧濾過法などの公知のろ過方法が好ましく挙げられる。前記乾燥工程における乾燥方法としては、特に制限はなく、生産性の観点から、フラッシュジェット乾燥方法、流動乾燥方法、及び振動型流動乾燥方法などの公知の乾燥方法が好ましく挙げられる。   Thereafter, the toner can be obtained through any washing step, solid-liquid separation step, and drying step. In this washing step, it is preferable to sufficiently perform substitution washing with ion-exchanged water from the viewpoint of improving the chargeability. There is no restriction | limiting in particular as a separation method in the said solid-liquid separation process, From a viewpoint of productivity, well-known filtration methods, such as a suction filtration method and a pressure filtration method, are mentioned preferably. There is no restriction | limiting in particular as a drying method in the said drying process, Well-known drying methods, such as a flash jet drying method, a fluidized drying method, and a vibration type fluidized drying method, are mentioned preferably from a viewpoint of productivity.

水溶性無機塩としては、アルカリ金属塩及びアルカリ土類金属塩を挙げることができる。アルカリ金属としては、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。これらのうち、カリウム、ナトリウム、マグネシウム、カルシウム、バリウムが好ましい。前記アルカリ金属又はアルカリ土類金属の対イオン(塩を構成する陰イオン)としては、塩化物イオン、臭化物イオン、ヨウ化物イオン、炭酸イオン、硫酸イオン等が挙げられる。   Examples of water-soluble inorganic salts include alkali metal salts and alkaline earth metal salts. Examples of the alkali metal include lithium, potassium, and sodium, and examples of the alkaline earth metal include magnesium, calcium, strontium, and barium. Of these, potassium, sodium, magnesium, calcium, and barium are preferable. Examples of the counter ion (anion constituting the salt) of the alkali metal or alkaline earth metal include chloride ion, bromide ion, iodide ion, carbonate ion and sulfate ion.

水に無限溶解する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、アセトン等が挙げられる。これらのうち、メタノール、エタノール、1−プロパノール、2−プロパノールなどの炭素数が3以下のアルコールが好ましく、特に2−プロパノールが好ましい。極性を有する分散剤としては、極性界面活性剤を含有する水系媒体などが挙げられる。水系媒体としては、蒸留水、イオン交換水等の水、アルコール類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記極性を有する分散剤における前記極性界面活性剤の含有量としては、一概に規定することはできず、目的に応じて適宜選択することができる。   Examples of the organic solvent infinitely soluble in water include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, glycerin, acetone and the like. Among these, alcohols having 3 or less carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol and the like are preferable, and 2-propanol is particularly preferable. Examples of the dispersant having polarity include an aqueous medium containing a polar surfactant. Examples of the aqueous medium include water such as distilled water and ion exchange water, and alcohols. These may be used individually by 1 type and may use 2 or more types together. The content of the polar surfactant in the dispersant having the polarity cannot be generally defined and can be appropriately selected according to the purpose.

極性界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤、アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤などが挙げられる。   Examples of polar surfactants include anionic surfactants such as sulfate ester, sulfonate, phosphate, and soap, and cationic surfactants such as amine salt type and quaternary ammonium salt type. Can be mentioned.

前記アニオン界面活性剤の具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウムなどが挙げられる。前記カチオン界面活性剤の具体例としては、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジステアリルアンモニウムクロライドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   Specific examples of the anionic surfactant include sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate and the like. Specific examples of the cationic surfactant include alkylbenzene dimethyl ammonium chloride, alkyl trimethyl ammonium chloride, distearyl ammonium chloride and the like. These may be used individually by 1 type and may use 2 or more types together.

また本発明においては、これらの極性界面活性剤と、非極性界面活性剤とを併用することできる。前記非極性界面活性剤としては、例えば、ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン系界面活性剤などが挙げられる。   In the present invention, these polar surfactants and nonpolar surfactants can be used in combination. Examples of the nonpolar surfactant include nonionic surfactants such as polyethylene glycol, alkylphenol ethylene oxide adducts, and polyhydric alcohols.

(2)ワックス
本実施形態のトナーにおけるワックスとして好ましい第一の構成は、ヨウ素価が25以下、けん化価が30〜300からなる構成のワックスを使用する構成である。これによりオイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またトナー多層転写時にトナーの電荷作用による反発が緩和され、転写効率の低下、転写時の文字の中抜け、逆転写を抑えることができる。また後述するキャリアと組合せた使用によりキャリアへのスペントの発生を抑制でき、現像剤の長寿命化を可能とできる。また現像器内でのハンドリング性が向上し、現像の奥側と、手前側で画像の均一性が向上する。また現像メモリー発生を低減できる。
(2) Wax A first preferred configuration as the wax in the toner of the present embodiment is a configuration using a wax having a iodine value of 25 or less and a saponification value of 30 to 300. As a result, oilless fixing having high glossiness and translucency can be realized by preventing low offset and fixing at low temperature without applying oil. Further, the repulsion due to the charge action of the toner during the multilayer toner transfer is alleviated, and it is possible to suppress the transfer efficiency from being lowered, the character missing during the transfer, and the reverse transfer. Further, the use in combination with the carrier described later can suppress the occurrence of spent on the carrier, and can extend the life of the developer. Further, the handling property in the developing device is improved, and the uniformity of the image is improved on the rear side and the front side of the development. Further, development memory generation can be reduced.

ヨウ素価が25より大きいと、水系中での浮遊物が増大し、凝集粒子表面への均一付着性が低下する。これがトナーに残留してしまうと、感光体等のフィルミングを生じさせる。一次転写でのトナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。環境依存性が大きく、また長期連続使用時に材料の帯電性の変化が大きくなり画像の安定性を阻害する。また現像メモリーも発生しやすくなる。けん化価が30より小さくなると、不けん化物、炭化水素の存在が増加し、感光体フィルミング、トナーの帯電性の悪化を生じる。フィルミングや連続使用時の帯電性の低下を招く。300より大きくなると水系中での浮遊物が増大し、凝集粒子表面への均一付着性が低下する。トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。   When the iodine value is larger than 25, suspended matters in the aqueous system increase, and uniform adhesion to the surface of the aggregated particles decreases. If this remains in the toner, filming of the photoreceptor or the like is caused. The repulsion due to the charge effect of the toner is difficult to be mitigated during the multi-layer transfer of the toner in the primary transfer. The environmental dependency is large, and the change in the charging property of the material becomes large during long-term continuous use, which hinders the stability of the image. Development memory is also likely to occur. If the saponification value is less than 30, the presence of unsaponifiable matter and hydrocarbons increases, causing photoreceptor filming and toner chargeability deterioration. It causes a decrease in chargeability during filming and continuous use. If it exceeds 300, suspended matter in the aqueous system increases, and the uniform adhesion to the surface of the aggregated particles decreases. The repulsion due to the charge action of the toner is less likely to be alleviated. In addition, fog and toner scattering increase.

そのワックスの220℃における加熱減量は8重量%以下であることが好ましい。加熱減量が8重量%より大きくなると、トナーのガラス転移点を低下させ、トナーの貯蔵安定性を損なう。現像特性に悪影響を与え、カブリや感光体フィルミングを生じさせる。生成されるトナーの粒度分布がブロードになってしまう。   The heat loss of the wax at 220 ° C. is preferably 8% by weight or less. When the loss on heating exceeds 8% by weight, the glass transition point of the toner is lowered, and the storage stability of the toner is impaired. It adversely affects the development characteristics and causes fogging and photoconductor filming. The particle size distribution of the generated toner becomes broad.

ゲル浸透クロマトグラフィー(GPC)における分子量特性、数平均分子量が100〜5000、重量平均分子量が200〜10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜10、分子量5×102〜1×104の領域に少なくとも一つの分子量極大ピークを有していることが好ましい。より好ましくは数平均分子量が500〜4500、重量平均分子量が600〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜7、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜9、さらに好ましくは数平均分子量が700〜4000、重量平均分子量が800〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜6、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜8である。 Molecular weight characteristics in gel permeation chromatography (GPC), number average molecular weight is 100 to 5000, weight average molecular weight is 200 to 10,000, and ratio of weight average molecular weight to number average molecular weight (weight average molecular weight / number average molecular weight) is 1.01 to 1.01. 8. The ratio of Z-average molecular weight to number-average molecular weight (Z-average molecular weight / number-average molecular weight) is 1.02 to 10, and the molecular weight is 5 × 10 2 to 1 × 10 4 and has at least one molecular weight maximum peak. Preferably it is. More preferably, the number average molecular weight is 500-4500, the weight average molecular weight is 600-9000, the ratio of weight average molecular weight to number average molecular weight (weight average molecular weight / number average molecular weight) is 1.01-7, Z average molecular weight and number average. The molecular weight ratio (Z average molecular weight / number average molecular weight) is 1.02 to 9, more preferably the number average molecular weight is 700 to 4000, the weight average molecular weight is 800 to 8000, and the ratio of the weight average molecular weight to the number average molecular weight (weight average). (Molecular weight / number average molecular weight) is 1.01 to 6, and the ratio of Z average molecular weight to number average molecular weight (Z average molecular weight / number average molecular weight) is 1.02 to 8.

数平均分子量が100より小さく、重量平均分子量が200より小さく、分子量極大ピークが5×102よりも小さい範囲に位置しているとなると保存安定性が悪化する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性保持を阻害する。トナーの感光体フィルミングを生じてしまう。生成されるトナーの粒度分布がブロードになってしまう。 When the number average molecular weight is smaller than 100, the weight average molecular weight is smaller than 200, and the molecular weight maximum peak is located in a range smaller than 5 × 10 2 , the storage stability is deteriorated. Further, the handling property in the developing device is lowered, and the toner density uniformity is inhibited. This causes toner photoconductor filming. The particle size distribution of the generated toner becomes broad.

数平均分子量が5000より大きく、重量平均分子量が10000より大きく、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が8より大きく、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10より大きく、分子量極大ピークが1×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着性、耐オフセット性等の定着性機能が低下する。ワックスの乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。 The number average molecular weight is greater than 5000, the weight average molecular weight is greater than 10,000, the ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight) is greater than 8, and the ratio of the Z average molecular weight to the number average molecular weight (Z When the average molecular weight / number average molecular weight) is larger than 10 and the molecular weight maximum peak is located in a range larger than the region of 1 × 10 4 , the releasing function is weakened, and fixing functions such as fixing property and offset resistance are provided. Decreases. It becomes difficult to reduce the particle size of the generated particles when the emulsified dispersed particles of wax are generated.

DSC法による吸熱ピーク温度(融点Tmw)が50〜100℃のものが好ましい。好ましくは55〜95℃、さらに好ましくは、65〜85℃のものである。50℃よりも低いと、トナーの貯蔵安定性が悪化する。100℃よりも高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。   An endothermic peak temperature (melting point Tmw) by DSC method is preferably 50 to 100 ° C. Preferably it is 55-95 degreeC, More preferably, it is 65-85 degreeC. When the temperature is lower than 50 ° C., the storage stability of the toner is deteriorated. When the temperature is higher than 100 ° C., it is difficult to reduce the particle diameter of the generated particles when the emulsified dispersed particles are generated. Uniform adhesion to the surface of the aggregated particles is reduced.

さらに融点以上の温度での10℃変化時の容積増加率が2〜30%の材料が好ましい。固体から液体に変わるとき急激に膨張することで定着時の熱で溶融したとき、トナー相互の接着性がより強化され、より定着性が向上し、また定着ローラとの離型性も良くなり耐オフセット性も向上する。   Furthermore, the material whose volume increase rate at the time of 10 degreeC change at the temperature more than melting | fusing point is 2 to 30% is preferable. When it changes from solid to liquid when it melts with heat during fixing, the adhesion between the toners is further strengthened, the fixing property is further improved, and the releasability from the fixing roller is also improved. Offset property is also improved.

添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜80重量部、より好ましくは10〜50重量部、さらに好ましくは15〜20重量部添加が好ましい。2重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。   The addition amount is preferably 2 to 90 parts by weight with respect to 100 parts by weight of the binder resin. Preferably, 5 to 80 parts by weight, more preferably 10 to 50 parts by weight, and still more preferably 15 to 20 parts by weight is added to 100 parts by weight of the binder resin. If it is 2 parts by weight or less, the effect of improving the fixing property cannot be obtained, and if it is 90 parts by weight or more, the storage stability is difficult.

ワックスとしては、メドウフォーム油誘導体、カルナウバワックス誘導体、ホホバ油誘導体、木ロウ、ミツロウ、オゾケライト、カルナウバワックス、キャンデリアワックス、セレシンワックス、ライスワックス等の材料も好ましく、またこれらの誘導体も好適に使用される。そして一種類又は二種類以上組み合わせての使用も可能である。   As the wax, materials such as meadow foam oil derivatives, carnauba wax derivatives, jojoba oil derivatives, wood wax, beeswax, ozokerite, carnauba wax, canderia wax, ceresin wax, rice wax and the like are also preferable, and these derivatives are also suitable. Used for. One type or a combination of two or more types can be used.

メドウフォーム油誘導体としては、メドウフォーム油脂肪酸、メドウフォーム油脂肪酸の金属塩、メドウフォーム油脂肪酸エステル、水素添加メドウフォーム油、メドウフォーム油アミド、ホモメドウフォーム油アミド、メドウフォーム油トリエステル、エポキシ化メドウフォーム油のマレイン酸誘導体、メドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性メドウフォーム油も好ましく使用できる。小粒径の均一な粒度分布の乳化分散体を作成することができる。凝集粒子表面への均一な付着性が得られる。   Meadowfoam oil derivatives include Meadowfoam oil fatty acid, metal salt of Meadowfoam oil fatty acid, Meadowfoam oil fatty acid ester, hydrogenated Meadowfoam oil, Meadowfoam oil amide, Homo Meadowfoam oil amide, Meadowfoam oil triester, Epoxy A maleic acid derivative of a halogenated meadowfoam oil, an isocyanate polymer of a meadowfoam oil fatty acid polyhydric alcohol ester, and a halogenated modified meadowfoam oil can also be preferably used. An emulsified dispersion having a small particle size and a uniform particle size distribution can be prepared. Uniform adhesion to the surface of the aggregated particles can be obtained.

オイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。   It is a preferable material that is effective for oilless fixing, prolonging the developer life, and improving transferability. These can be used alone or in combination of two or more.

メドウフォーム油をけん化分解して得られるメドウフォーム油脂肪酸は4〜30個の炭素原子を有する脂肪酸からなるものが好ましい。その金属塩はナトリウム、カリウム、カルシウム、マグネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好である。   The meadow foam oil fatty acid obtained by saponification and decomposition of meadow foam oil is preferably composed of a fatty acid having 4 to 30 carbon atoms. As the metal salt, metal salts such as sodium, potassium, calcium, magnesium, barium, zinc, lead, manganese, iron, nickel, cobalt, and aluminum can be used. Good offset resistance at high temperatures.

メドウフォーム油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、メドウフォーム油脂肪酸ペンタエリスリトールモノエステル、メドウフォーム油脂肪酸ペンタエリスリトールトリエステル、メドウフォーム油脂肪酸トリメチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに耐コールドオフセット性が良好である。   Meadow foam oil fatty acid esters include, for example, esters such as methyl, ethyl, butyl, glycerin, pentaerythritol, polypropylene glycol, and trimethylolpropane, and in particular, meadow foam oil fatty acid pentaerythritol monoester and meadowfoam oil fatty acid pentaerythritol triester. Ester, meadow foam oil fatty acid trimethylolpropane ester and the like are preferable. Good cold offset resistance as well as offset resistance at high temperatures.

さらには、メドウフォーム油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、等のイソシアネートで架橋して得られるメドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。   Furthermore, an esterification reaction product of meadow foam oil fatty acid and a polyhydric alcohol such as glycerin, pentaerythritol, trimethylolpropane, etc., such as tolylene diisocyanate (TDI), diphenylmethane-4,4′-diisocyanate (MDI), etc. An isocyanate polymer of a meadow foam oil fatty acid polyhydric alcohol ester obtained by crosslinking with isocyanate can also be preferably used. The spent property to the carrier is small and the life of the two-component developer can be extended.

水素添加メドウフォーム油はメドウフォーム油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光沢性、透光性を向上できる。   Hydrogenated Meadowfoam oil is obtained by hydrogenating Meadowfoam oil to make unsaturated bonds saturated bonds. Glossiness and translucency can be improved along with offset resistance.

メドウフォーム油アミドはメドウフォーム油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が75〜120℃の物が得られる。ホモメドウフォーム油アミドは、メドウフォーム油を加水分解後還元してアルコールとした後、二トリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。   Meadowfoam oil amide is obtained by hydrolyzing meadowfoam oil and esterifying it into fatty acid methyl ester, and then reacting with a mixture of concentrated aqueous ammonia and ammonium chloride. Furthermore, it becomes possible to adjust melting | fusing point by hydrogenating this. It is also possible to hydrogenate before hydrolysis. A product having a melting point of 75 to 120 ° C. is obtained. Homomeadofoam oil amide is obtained through nitrile after hydrolyzing and reducing it to an alcohol. Glossiness and translucency can be improved along with offset resistance.

ホホバ油誘導体としては、ホホバ油脂肪酸、ホホバ油脂肪酸の金属塩、ホホバ油脂肪酸エステル、水素添加ホホバ油、ホホバ油アミド、ホモホホバ油アミド、ホホバ油トリエステル、エポキシ化ホホバ油のマレイン酸誘導体、ホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性ホホバ油も好ましく使用できる。小粒径の均一な粒度分布の乳化分散体を作成することができる。凝集粒子表面への均一な付着性が得られる。また樹脂とワックスの均一混合分散が行いやすい。オイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。   Jojoba oil derivatives include jojoba oil fatty acid, metal salt of jojoba oil fatty acid, jojoba oil fatty acid ester, hydrogenated jojoba oil, jojoba oil amide, homo jojoba oil amide, jojoba oil triester, maleic acid derivative of epoxidized jojoba oil, jojoba An isocyanate polymer of an oil fatty acid polyhydric alcohol ester and a halogenated modified jojoba oil can also be preferably used. An emulsified dispersion having a small particle size and a uniform particle size distribution can be prepared. Uniform adhesion to the surface of the aggregated particles can be obtained. In addition, it is easy to uniformly mix and disperse the resin and wax. It is a preferable material that is effective for oilless fixing, prolonging the developer life, and improving transferability. These can be used alone or in combination of two or more.

ホホバ油をけん化分解して得られるホホバ油脂肪酸は4〜30個の炭素原子を有する脂肪酸からなる。その金属塩はナトリウム、カリウム、カルシウム、マグネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好である。   Jojoba oil fatty acid obtained by saponifying and decomposing jojoba oil consists of fatty acids having 4 to 30 carbon atoms. As the metal salt, metal salts such as sodium, potassium, calcium, magnesium, barium, zinc, lead, manganese, iron, nickel, cobalt, and aluminum can be used. Good offset resistance at high temperatures.

ホホバ油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、ホホバ油脂肪酸ペンタエリスリトールモノエステル、ホホバ油脂肪酸ペンタエリスリトールトリエステル、ホホバ油脂肪酸トリメチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに耐コールドオフセット性が良好である。   Examples of jojoba oil fatty acid esters include methyl, ethyl, butyl, glycerin, pentaerythritol, polypropylene glycol, trimethylolpropane and the like, and in particular, jojoba oil fatty acid pentaerythritol monoester, jojoba oil fatty acid pentaerythritol triester, jojoba Oil fatty acid trimethylolpropane ester and the like are preferable. Good cold offset resistance as well as offset resistance at high temperatures.

さらには、ホホバ油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタン−4,4'−ジシソシアネート(MDI)、等のイソシアネートで架橋して得られるホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。   Furthermore, an esterification reaction product of jojoba oil fatty acid and a polyhydric alcohol such as glycerin, pentaerythritol, trimethylolpropane, tolylene diisocyanate (TDI), diphenylmethane-4,4′-disicocyanate (MDI), etc. An isocyanate polymer of jojoba oil fatty acid polyhydric alcohol ester obtained by crosslinking with the above isocyanate can also be preferably used. The spent property to the carrier is small and the life of the two-component developer can be extended.

水素添加ホホバ油はホホバ油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光沢性、透光性を向上できる。   Hydrogenated jojoba oil is obtained by hydrogenating jojoba oil to make unsaturated bonds saturated bonds. Glossiness and translucency can be improved along with offset resistance.

ホホバ油アミドはホホバ油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が75〜120℃の物が得られる。ホモホホバ油アミドは、ホホバ油を加水分解後還元してアルコールとした後、二トリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。   Jojoba oil amide is obtained by hydrolyzing jojoba oil and then esterifying it into fatty acid methyl ester, and then reacting with a mixture of concentrated aqueous ammonia and ammonium chloride. Furthermore, it becomes possible to adjust melting | fusing point by hydrogenating this. It is also possible to hydrogenate before hydrolysis. A product having a melting point of 75 to 120 ° C. is obtained. Homo jojoba oil amide is obtained through hydrolysis of jojoba oil and then reducing it to alcohol, followed by nitrile. Glossiness and translucency can be improved along with offset resistance.

ケン化価は、試料の1gをけん化するのに要する水酸化カリウムKOHのミリグラム数をいう。酸価とエステル価の和にあたる。ケン化価値を測定するには約0.5Nの水酸化カリウムのアルコール溶液中で試料をケン化した後、0.5Nの塩酸で過剰の水酸化カリウムを滴定する。   Saponification value refers to the number of milligrams of potassium hydroxide KOH required to saponify 1 g of a sample. This is the sum of acid value and ester value. To determine the saponification value, a sample is saponified in an alcohol solution of about 0.5 N potassium hydroxide, and then excess potassium hydroxide is titrated with 0.5 N hydrochloric acid.

ヨウ素価は試料にハロゲンを作用させたときに、吸収されるハロゲンの量をヨウ素に換算し、試料100gに対するg数で表したものをいう。脂肪100gに吸収されるヨウ素のグラム数であり、この値が大きいほど試料中の脂肪酸の不飽和度が高いことを示す。試料のクロロホルム又は四塩化炭素溶液にヨウ素と塩化水銀(II)のアルコール溶液又は塩化ヨウ素の氷酢酸溶液を加えて、放置後反応しないで残ったヨウ素をチオ硫酸ナトリウム標準液で滴定して吸収ヨウ素量を算出する。   The iodine value refers to the amount of halogen absorbed when halogen is allowed to act on a sample, and expressed in terms of g relative to 100 g of the sample. This is the number of grams of iodine absorbed by 100 g of fat, and the higher this value, the higher the degree of unsaturation of the fatty acid in the sample. Add iodine and mercury (II) chloride alcohol solution or iodine glacial acetic acid solution to chloroform or carbon tetrachloride solution of the sample, and titrate the remaining iodine without reacting with sodium thiosulfate standard solution to absorb iodine Calculate the amount.

加熱減量の測定は試料セルの重量を0.1mgまで精秤(W1mg)し、これに試料10〜15mgを入れ、0.1mgまで精秤する(W2mg)。試料セルを示差熱天秤にセットし、秤量感度を5mgにして測定開始する。測定後、チャートにより試料温度が220℃になった時点での重量減を0.1mgまで読み取る(W3mg)。装置は、真空理工製TGD−3000、昇温速度は10℃/min、最高温度は220℃、保持時間は1minで、加熱減量(%)=W3/(W2−W1)×100、で求められる。   For the measurement of the loss on heating, the weight of the sample cell is precisely weighed to 0.1 mg (W1 mg), 10 to 15 mg of the sample is put in this, and it is precisely weighed to 0.1 mg (W2 mg). The sample cell is set on a differential thermobalance, and the measurement is started with a weighing sensitivity of 5 mg. After the measurement, the weight loss when the sample temperature reaches 220 ° C. is read to 0.1 mg by the chart (W3 mg). The apparatus is TGD-3000 manufactured by Vacuum Riko, the heating rate is 10 ° C./min, the maximum temperature is 220 ° C., the holding time is 1 min, and the heating loss (%) = W 3 / (W 2 −W 1) × 100. .

これによりカラー画像における透光性を改善すると共にローラへの耐オフセット性を向上させることが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。   Thereby, it is possible to improve the translucency in the color image and to improve the resistance to offset to the roller. Further, it is possible to suppress the occurrence of spent on the carrier and to extend the life of the developer.

また、本実施形態のトナーにおいて使用するワックスとして好ましい第ニの構成は、長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び合成炭化水素系ワックスとの反応により得られるワックスが好ましい。炭素数4〜30の長鎖アルキル基が好ましく、酸価10〜80mgKOH/gのワックスを使用する構成である。   Further, the second preferred structure as the wax used in the toner of the present embodiment is preferably a wax obtained by a reaction with a long-chain alkyl alcohol, an unsaturated polyvalent carboxylic acid or an anhydride thereof, and a synthetic hydrocarbon wax. A long chain alkyl group having 4 to 30 carbon atoms is preferable, and a wax having an acid value of 10 to 80 mgKOH / g is used.

このワックスは、炭素数4〜30の長鎖アルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスが好ましい。   This wax is preferably a wax obtained by a reaction of a long-chain alkyl alcohol having 4 to 30 carbon atoms with an unsaturated polycarboxylic acid or an anhydride thereof and an unsaturated hydrocarbon wax.

また、長鎖アルキルアミンと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られワックス、又は長鎖フルオロアルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスも好適に使用できる。効果は長鎖アルキル基による離型作用の増進、エステル基による樹脂との分散相性を良くし、ビニル基による耐久性、オフセット性の良化効果が考えられる。   Further, a wax obtained by reacting a long chain alkylamine with an unsaturated polyvalent carboxylic acid or an anhydride thereof and an unsaturated hydrocarbon wax, or a long chain fluoroalkyl alcohol and an unsaturated polyvalent carboxylic acid or an anhydride thereof, and A wax obtained by reaction with an unsaturated hydrocarbon wax can also be suitably used. The effects include the enhancement of the releasing action by the long chain alkyl group, the improvement of the dispersion phase with the resin by the ester group, and the improvement of durability and offset property by the vinyl group.

このワックスのGPCにおける分子量分布において、重量平均分子量が1000〜6000、Z平均分子量が1500〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜3.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜6.5、1×103〜3×104の領域に少なくとも一つの分子量極大ピークを有し、酸価10〜80mgKOH/g、融点50〜120℃、25℃における針入度が4以下であることが好ましい。 In the molecular weight distribution in GPC of this wax, the weight average molecular weight is 1000 to 6000, the Z average molecular weight is 1500 to 9000, and the ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight) is 1.1 to 3. 8. The ratio of Z-average molecular weight to number-average molecular weight (Z-average molecular weight / number-average molecular weight) has at least one molecular weight maximum peak in the region of 1.5 to 6.5, 1 × 10 3 to 3 × 10 4 The penetration value at an acid value of 10 to 80 mgKOH / g, a melting point of 50 to 120 ° C. and 25 ° C. is preferably 4 or less.

より好ましくは重量平均分子量が1000〜5000、Z平均分子量が1700〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜2.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜4.5、1×103〜1×104の領域に少なくとも一つの分子量極大ピークを有し、酸価10〜50mgKOH/g、融点60〜110℃が好ましく、
更に好ましくは重量平均分子量が1000〜2500、Z平均分子量が1900〜3000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.2〜1.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.7〜2.5、1×103〜3×103の領域に少なくとも一つの分子量極大ピークを有し、酸価35〜50mgKOH/g、融点65〜95℃である。
More preferably, the weight average molecular weight is 1000 to 5000, the Z average molecular weight is 1700 to 8000, the ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight) is 1.1 to 2.8, and the Z average molecular weight is The number average molecular weight ratio (Z average molecular weight / number average molecular weight) is at least one molecular weight maximum peak in the region of 1.5 to 4.5 and 1 × 10 3 to 1 × 10 4 , and the acid value is 10 to 50 mgKOH. / G, melting point 60-110 ° C. is preferable,
More preferably, the weight average molecular weight is 1000 to 2500, the Z average molecular weight is 1900 to 3000, the ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight) is 1.2 to 1.8, and the Z average molecular weight is The number average molecular weight ratio (Z average molecular weight / number average molecular weight) is in the region of 1.7 to 2.5, 1 × 10 3 to 3 × 10 3 , and has at least one molecular weight maximum peak, and an acid value of 35 to 50 mgKOH / G, melting point 65-95 ° C.

オイルレス定着における非オフセット性と高光沢性、OHPの高透光性を発現でき、高温保存性を低下させることがない。薄紙に3層のカラートナーが形成された画像において、定着ローラやベルトとの紙の分離性向上に特に効果がある。   Non-offset property and high glossiness in oilless fixing, and high translucency of OHP can be expressed, and high temperature storage stability is not deteriorated. In an image in which three layers of color toner are formed on thin paper, this is particularly effective for improving the paper separation from the fixing roller and belt.

また極性を有する分散剤中での乳化分散が均一な小粒径粒子の作成が可能となり、混合凝集により樹脂顔料との均一凝集が可能となり、浮遊物の存在をなくし、色濁りを抑えられる。また凝集粒子表面への均一な付着性が得られる。これによりオイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。   Further, it is possible to produce particles having a small particle size that are uniformly emulsified and dispersed in a polar dispersant, and it is possible to uniformly agglomerate with the resin pigment by mixing and agglomeration, thereby eliminating the presence of suspended matters and suppressing color turbidity. Further, uniform adhesion to the surface of the aggregated particles can be obtained. As a result, oilless fixing having high glossiness and translucency can be realized by preventing low offset and fixing at low temperature without applying oil.

後述したキャリアと組合せた使用により、オイルレス定着と共にスペントの発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。さらには連続使用時の帯電安定性が得られ、定着性と現像安定性との両立が可能となる。   By using it in combination with the carrier described later, the generation of spent can be suppressed together with oilless fixing, the life of the developer can be extended, the uniformity in the developing device can be maintained, and the occurrence of development memory can also be suppressed. Furthermore, charging stability during continuous use can be obtained, and both fixing property and development stability can be achieved.

ここで、ワックスの長鎖アルキルの炭素数が4より小さいと離型作用が弱くなり分離性、高温非オフセット性が低下する。長鎖アルキルの炭素数が30より大きいと樹脂との混合凝集性が悪くなり、分散性が低下する。酸価が10mgKOH/gより小さいとトナーの長期使用時の帯電量低下を招く。酸価が80mgKOH/gより大きいと耐湿性が低下し、高湿下でのかぶりが増大する。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。   Here, if the carbon number of the long-chain alkyl of the wax is smaller than 4, the releasing action is weakened, and the separation property and the high temperature non-offset property are lowered. When the carbon number of the long-chain alkyl is larger than 30, the mixed aggregation property with the resin is deteriorated and the dispersibility is lowered. When the acid value is smaller than 10 mgKOH / g, the charge amount during long-term use of the toner is reduced. When the acid value is greater than 80 mgKOH / g, the moisture resistance decreases, and the fogging under high humidity increases. If it is high, it is difficult to reduce the particle size of the produced particles when the emulsified dispersed particles are produced. Uniform adhesion to the surface of the aggregated particles is reduced.

融点が50℃より小さいとトナーの貯蔵安定性が低下する。融点が120℃より大きいと離型作用が弱くなり非オフセット温度幅が狭くなる。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。   When the melting point is less than 50 ° C., the storage stability of the toner is lowered. When the melting point is higher than 120 ° C., the releasing action is weakened and the non-offset temperature range is narrowed. If it is high, it is difficult to reduce the particle size of the produced particles when the emulsified dispersed particles are produced.

25℃における針入度が4より大きいと強靭性が低下し、長期使用中に感光体フィルミングを生じる。   When the penetration at 25 ° C. is larger than 4, the toughness is lowered and the photoreceptor filming occurs during long-term use.

重量平均分子量が1000よりも小さく、Z平均分子量が1500より小さく、重量平均分子量/数平均分子量が1.1よりも小さく、Z平均分子量/数平均分子量が1.5よりも小さく、分子量極大ピークが1×103よりも小さい範囲に位置していると、トナーの保存性が低下、感光体や中間転写体にフィルミングを発生する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性を低下させる。また現像メモリーを生じ易くなる。高速回転による高せん断力作用時の乳化分散粒子生成時の生成粒子の粒度分布がブロ−ドになってしまう。 Weight average molecular weight smaller than 1000, Z average molecular weight smaller than 1500, Weight average molecular weight / number average molecular weight smaller than 1.1, Z average molecular weight / number average molecular weight smaller than 1.5, molecular weight maximum peak Is located in a range smaller than 1 × 10 3 , the storage stability of the toner is lowered, and filming occurs on the photosensitive member and the intermediate transfer member. Further, the handling property in the developing device is lowered, and the uniformity of the toner density is lowered. Also, development memory is likely to occur. The particle size distribution of the produced particles at the time of producing the emulsified dispersed particles at the time of the action of a high shearing force by high-speed rotation becomes a load.

重量平均分子量が6000よりも大きく、Z平均分子量が9000よりも大きく、重量平均分子量/数平均分子量が3.8よりも大きく、Z平均分子量/数平均分子量が6.5よりも大きく、分子量極大ピークが3×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着オフセット性が低下する。乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。 The weight average molecular weight is greater than 6000, the Z average molecular weight is greater than 9000, the weight average molecular weight / number average molecular weight is greater than 3.8, the Z average molecular weight / number average molecular weight is greater than 6.5, and the molecular weight maximum If the peak is located in a range larger than the region of 3 × 10 4 , the releasing action is weakened and the fixing offset property is lowered. It becomes difficult to reduce the particle size of the generated particles when the emulsified dispersed particles are generated.

アルコールとしてはオクタノール(C8H17OH)、ドデカノール(C12H25OH)、ステアリルアルコール(C18H37OH)、ノナコサノール(C29H59OH)、ペンタデカノール(C15H31OH)等の炭素数4〜30の範囲のアルキル鎖を持つものが使用できる。またアミン類としてN−メチルヘキシルアミン、ノニルアミン、ステアリルアミン、ノナデシルアミン等が好適に使用できる。フルオロアルキルアルコールとしては、1−メトキシ−(パーフルオロー2−メチル−1−プロペン)、ヘキサフルオロアセトン、3−パーフルオロオクチルー1,2−エポキシプロパン等が好適に使用できる。
不飽和多価カルボン酸又はその無水物としては、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸等が一種又は二種以上使用できる。なかでもマレイン酸、無水マレイン酸がより好ましい。
Alcohols include octanol (C 8 H 17 OH), dodecanol (C 12 H 25 OH), stearyl alcohol (C 18 H 37 OH), nonacosanol (C 29 H 59 OH), pentadecanol (C 15 H 31 OH) Those having an alkyl chain having 4 to 30 carbon atoms, such as, can be used. Moreover, N-methylhexylamine, nonylamine, stearylamine, nonadecylamine, etc. can be used conveniently as amines. As the fluoroalkyl alcohol, 1-methoxy- (perfluoro-2-methyl-1-propene), hexafluoroacetone, 3-perfluorooctyl-1,2-epoxypropane and the like can be preferably used.
As the unsaturated polyvalent carboxylic acid or anhydride thereof, one or more of maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride and the like can be used. Of these, maleic acid and maleic anhydride are more preferable.

合成炭化水素系ワックスとしては、ポリエチレン、ポリプロピレン、フィシャートッロプッシュワックス、α―オレフィン等が好適に使用できる。   As the synthetic hydrocarbon wax, polyethylene, polypropylene, Fischer Toro push wax, α-olefin and the like can be suitably used.

不飽和多価カルボン酸又はその無水物をアルコール又はアミンを用いて重合させ、次にこれをジクルミパーオキサイドやターシャリーブチルパーオキシイソプロピルモノカルボネート等の存在下で合成炭化水素系ワックスに付加させることにより得ることができる。   Unsaturated polyhydric carboxylic acid or its anhydride is polymerized with alcohol or amine, and this is then added to synthetic hydrocarbon wax in the presence of dicrummi peroxide or tertiary butyl peroxyisopropyl monocarbonate. Can be obtained.

また、本実施形態のトナーにおいて使用するワックスとして好ましい第三の構成は、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の材料が好ましく、一種類又は二種類以上組合せての使用も有効である。均一な乳化分散の小粒径粒子の作成が可能となり、凝集粒子表面への均一な付着性が得られ、オイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またオイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。   In addition, the third configuration preferable as the wax used in the toner of the present embodiment is preferably a material such as a hydroxy stearic acid derivative, a glycerin fatty acid ester, a glycol fatty acid ester, or a sorbitan fatty acid ester, and one kind or a combination of two or more kinds. The use of is also effective. It enables creation of small particles with uniform emulsification and dispersion, uniform adhesion to the surface of aggregated particles, and prevention of offset without applying oil, low temperature fixing, high glossiness, transparency Oilless fixing with light properties can be realized. In addition to the oilless fixing, the life of the developer can be extended, the uniformity in the developing device can be maintained, and the occurrence of development memory can be suppressed.

ヒドロキシステアリン酸の誘導体としては、12−ヒドロキシステアリン酸メチル、12−ヒドロキシステアリン酸ブチル、プロピレングリコールモノ12−ヒドロキシステアラート、グリセリンモノ12−ヒドロキシステアラート、エチレングリコールモノ12−ヒドロキシステアラート等が好適な材料である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。   Preferred derivatives of hydroxystearic acid include methyl 12-hydroxystearate, butyl 12-hydroxystearate, propylene glycol mono12-hydroxystearate, glycerin mono12-hydroxystearate, ethylene glycol mono12-hydroxystearate, etc. Material. It has the effect of preventing paper wrapping in oilless fixing and the effect of preventing filming.

グリセリン脂肪酸エステルとしてはグリセリンステアラート、グリセリンジステアラート、グリセリントリステアラート、グリセリンモノパルミタート、グリセリンジパルミタート、グリセリントリパルミタート、グリセリンベヘナート、グリセリンジベヘナート、グリセリントリベヘナート、グリセリンモノミリスタート、グリセリンジミリスタート、グリセリントリミリスタート等が好適な材料である。オイルレス定着における低温時のコールドオフセット性緩和と、転写性低下防止効果がある。   Glycerin fatty acid esters include glycerol stearate, glycerol distearate, glycerol tristearate, glycerol monopalmitate, glycerol dipalmitate, glycerol tripalmitate, glycerol behenate, glycerol dibehenate, glycerol tribehenate, glycerol monomyristate Glycerin dimyristate, glycerin trimyristate, and the like are suitable materials. It has the effect of alleviating cold offset at low temperatures and preventing deterioration of transferability in oilless fixing.

グリコール脂肪酸エステルとしては、プロピレングリコールモノパルミタート、プロピレングリコールモノステアラート等のプロピレングリコール脂肪酸エステル、エチレングリコールモノステアラート、エチレングリコールモノパルミタート等のエチレングリコール脂肪酸エステルが好適な材料である。オイルレス定着性とともに、現像での滑りを良くしキャリアスペント防止の効果がある。   As the glycol fatty acid ester, propylene glycol fatty acid esters such as propylene glycol monopalmitate and propylene glycol monostearate, and ethylene glycol fatty acid esters such as ethylene glycol monostearate and ethylene glycol monopalmitate are suitable materials. Along with oil-less fixability, it has the effect of preventing slippage during development and preventing carrier spent.

ソルビタン脂肪酸エステルとしては、ソルビタンモノパルミタート、ソルビタンモノステアラート、ソルビタントリパルミタート、ソルビタントリステアラートが好適な材料である。さらには、ペンタエリスリトールのステアリン酸エステル、アジピン酸とステアリン酸又はオレイン酸の混合エステル類等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。   As sorbitan fatty acid esters, sorbitan monopalmitate, sorbitan monostearate, sorbitan tripalmitate, and sorbitan tristearate are suitable materials. Furthermore, materials such as stearic acid ester of pentaerythritol and mixed esters of adipic acid and stearic acid or oleic acid are preferable, and one kind or a combination of two or more kinds can be used. It has the effect of preventing paper wrapping in oilless fixing and the effect of preventing filming.

また、本実施形態のトナーにおいて使用するワックスとして好ましい第四の構成は、脂肪族アミド系のワックスの使用も好ましい。均一な乳化分散の小粒径粒子の作成が可能となり、凝集粒子表面への均一な付着性が得られ、オイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またオイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。   In addition, as a fourth configuration preferable as the wax used in the toner of the exemplary embodiment, it is also preferable to use an aliphatic amide wax. It enables creation of small particles with uniform emulsification and dispersion, uniform adhesion to the surface of aggregated particles, and prevention of offset without applying oil, low temperature fixing, high glossiness, transparency Oilless fixing with light properties can be realized. In addition to the oilless fixing, the life of the developer can be extended, the uniformity in the developing device can be maintained, and the occurrence of development memory can be suppressed.

カラー画像における透光性を向上できる。特に定着画像表面の平滑性を促進させ高画質のカラー像を得ることが可能となる。さらには定着時の複写用紙の定着ローラへの巻き付きを防止することができ、透光性と耐オフセット性の両立、転写時の中抜けを防止することが可能となる。   The translucency in a color image can be improved. In particular, it is possible to promote the smoothness of the surface of the fixed image and obtain a high-quality color image. Furthermore, it is possible to prevent the copy paper from being wound around the fixing roller at the time of fixing, and it is possible to achieve both the light-transmitting property and the offset resistance and to prevent omission during transfer.

脂肪族アミド系のワックスとしては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、アラキジン酸アミド、エイコセン酸アミド、ベヘニン酸アミド、エルカ酸アミド、リグリノセリン酸アミド等の炭素数4〜30を有する飽和又は1価の不飽和の脂肪族アミドで、融点が50〜120℃が好ましい。より好ましくは70〜100℃、さらに好ましくは75〜95℃である。融点が50℃より小さくとなるとトナーの貯蔵安定性が悪化する。感光体へのフィルミングが発生しやすくなる。融点が120℃より大きいと、乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。定着画像表面の平滑性が低下し、透光性を悪化させる。   Examples of the aliphatic amide wax include 4 to 4 carbon atoms such as palmitic acid amide, palmitoleic acid amide, stearic acid amide, oleic acid amide, arachidic acid amide, eicosenoic acid amide, behenic acid amide, erucic acid amide, and ligrinoseric acid amide. A saturated or monovalent unsaturated aliphatic amide having a melting point of 50 to 120 ° C. More preferably, it is 70-100 degreeC, More preferably, it is 75-95 degreeC. When the melting point is lower than 50 ° C., the storage stability of the toner is deteriorated. Filming on the photoreceptor is likely to occur. When the melting point is higher than 120 ° C., it is difficult to reduce the particle size of the generated particles when the emulsified dispersed particles are generated. Uniform adhesion to the surface of the aggregated particles is reduced. The smoothness of the surface of the fixed image is lowered and the translucency is deteriorated.

添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜50重量部、より好ましくは10〜30重量部、さらに好ましくは15〜20重量部添加が好ましい。1重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。   The addition amount is preferably 2 to 90 parts by weight with respect to 100 parts by weight of the binder resin. Preferably, 5 to 50 parts by weight, more preferably 10 to 30 parts by weight, and still more preferably 15 to 20 parts by weight is added to 100 parts by weight of the binder resin. If it is 1 part by weight or less, the effect of improving the fixing property cannot be obtained, and if it is 90 parts by weight or more, there is a problem in storage stability.

さらにはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、プロピレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、プロピレンビスオレイン酸アミド、ブチレンビスオレイン酸アミド、メチレンビスラウリン酸アミド、エチレンビスラウリン酸アミド、プロピレンビスラウリン酸アミド、ブチレンビスラウリン酸アミド、メチレンビスミリスチン酸アミド、エチレンビスミリスチン酸アミド、プロピレンビスミリスチン酸アミド、ブチレンビスミリスチン酸アミド、メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド、プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、メチレンビスパルミトレイン酸アミド、エチレンビスパルミトレイン酸アミド、プロピレンビスパルミトレイン酸アミド、ブチレンビスパルミトレイン酸アミド、メチレンビスアラキジン酸アミド、エチレンビスアラキジン酸アミド、プロピレンビスアラキジン酸アミド、ブチレンビスアラキジン酸アミド、メチレンビスエイコセン酸アミド、エチレンビスエイコセン酸アミド、プロピレンビスエイコセン酸アミド、ブチレンビスエイコセン酸アミド、メチレンビスベヘニン酸アミド、エチレンビスベヘニン酸アミド、プロピレンビスベヘニン酸アミド、ブチレンビスベヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸アミド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の飽和又は1〜2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスが好ましい。   Furthermore, methylene bis stearic acid amide, ethylene bis stearic acid amide, propylene bis stearic acid amide, butylene bis stearic acid amide, methylene bis oleic acid amide, ethylene bis oleic acid amide, propylene bis oleic acid amide, butylene bis oleic acid amide, Methylene bis lauric acid amide, ethylene bis lauric acid amide, propylene bis lauric acid amide, butylene bis lauric acid amide, methylene bis myristic acid amide, ethylene bis myristic acid amide, propylene bis myristic acid amide, butylene bis myristic acid amide, methylene bis Palmitic acid amide, ethylene bis palmitic acid amide, propylene bis palmitic acid amide, butylene bis palmitic acid amide, methylene bis palmitic tray Acid amide, ethylene bispalmitoleic acid amide, propylene bispalmitoleic acid amide, butylene bispalmitoleic acid amide, methylene bisarachidic acid amide, ethylene bisarachidic acid amide, propylene bisarachidic acid amide, butylene bisarachidic acid amide, methylene Biseicosenoic acid amide, ethylene biseicosenoic acid amide, propylene biseicosenoic acid amide, butylene biseicosenoic acid amide, methylene bisbehenic acid amide, ethylene bisbehenic acid amide, propylene bisbehenic acid amide Alkylene bis-saturated or divalent unsaturated fatty acids such as butylene bisbehenic acid amide, methylene biserucic acid amide, ethylene biserucic acid amide, propylene biserucic acid amide, butylene biserucic acid amide Wax fatty acid amide is preferable.

融点は50〜120℃が好ましい。より好ましくは70〜100℃、さらに好ましくは75〜95℃である。融点が50℃より小さくとなるとトナーの貯蔵安定性が悪化する。感光体へのフィルミングが発生しやすくなる。融点が120℃より大きいと、乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。定着画像表面の平滑性が低下し、透光性を悪化させる。   The melting point is preferably 50 to 120 ° C. More preferably, it is 70-100 degreeC, More preferably, it is 75-95 degreeC. When the melting point is lower than 50 ° C., the storage stability of the toner is deteriorated. Filming on the photoreceptor is likely to occur. When the melting point is higher than 120 ° C., it is difficult to reduce the particle size of the generated particles when the emulsified dispersed particles are generated. Uniform adhesion to the surface of the aggregated particles is reduced. The smoothness of the surface of the fixed image is lowered and the translucency is deteriorated.

添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜50重量部、より好ましくは10〜30重量部、さらに好ましくは15〜20重量部添加が好ましい。1重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。   The addition amount is preferably 2 to 90 parts by weight with respect to 100 parts by weight of the binder resin. Preferably, 5 to 50 parts by weight, more preferably 10 to 30 parts by weight, and still more preferably 15 to 20 parts by weight is added to 100 parts by weight of the binder resin. If it is 1 part by weight or less, the effect of improving the fixing property cannot be obtained, and if it is 90 parts by weight or more, there is a problem in storage stability.

これらのワックスを混合凝集時に脱離浮遊させず、均一に樹脂中に内包化するためには、ワックスの分散粒度分布、ワックスの組成、ワックスの溶融特性も影響される。   In order for these waxes to be uniformly encapsulated in the resin without being desorbed and suspended during mixing and aggregation, the dispersion particle size distribution of the wax, the composition of the wax, and the melting characteristics of the wax are also affected.

樹脂粒子としてスチレンアクリル系の共重合体を使用するに際しては、ポリプロピレンやポリエチレン等のビニル系のワックスよりも、一定の酸価やヨウ素価を有するエステル系ワックスの使用により、混合凝集時に脱離浮遊させず、均一に樹脂中に略一箇所に集めた形で内包化できる。遊離ワックスの影響を排除でき、OPCや転写ベルトへのフィルミング、キャリアスペントを防止でき、かつ転写時の中抜け、逆転写を効果的に防ぐことが可能となる。   When using styrene acrylic copolymers as resin particles, the use of ester waxes with a certain acid value and iodine value rather than vinyl waxes such as polypropylene and polyethylene makes it possible to desorb and float during mixing and aggregation. Without entrapment, it can be encapsulated in the form of being uniformly collected in one place in the resin. It is possible to eliminate the influence of free wax, to prevent filming and carrier spent on OPC and transfer belt, and to effectively prevent omission and reverse transfer during transfer.

前述したワックスの構成において、ワックス粒子分散液は、界面活性剤を添加した水系媒体中にワックスをイオン交換水中で加熱し、溶融させ分散させることにより調製される。   In the wax configuration described above, the wax particle dispersion is prepared by heating, melting, and dispersing the wax in ion exchange water in an aqueous medium to which a surfactant is added.

このときワックスの分散粒子径は小粒径側から積算したときの体積粒径積算分布において16%径(PR16)が20〜200nm、50%径(PR50)が40〜300nm、84%径(PR84)が400nm以下、PR84/PR16が1.2〜2.0の大きさにまで乳化分散し、200nm以下の粒子が65体積%以上、500nmを越える粒子が10体積%以下であることが好ましい。   At this time, the dispersed particle diameter of the wax is 20 to 200 nm for the 16% diameter (PR16), 40 to 300 nm for the 50% diameter (PR50), and 84% for the 84% diameter (PR84). ) Is 400 nm or less, PR84 / PR16 is emulsified and dispersed to a size of 1.2 to 2.0, and particles of 200 nm or less are preferably 65% by volume or more and particles exceeding 500 nm are preferably 10% by volume or less.

好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜100nm、50%径(PR50)が40〜160nm、84%径(PR84)が260nm以下、PR84/PR16が1.2〜1.8である。150nm以下の粒子が65体積%以上、400nmを越える粒子が10体積%以下であることが好ましい。   Preferably, the 16% diameter (PR16) is 20 to 100 nm, the 50% diameter (PR50) is 40 to 160 nm, and the 84% diameter (PR84) is 260 nm or less when integrated from the small particle diameter side. PR84 / PR16 is 1.2 to 1.8. It is preferable that particles of 150 nm or less are 65 volume% or more and particles exceeding 400 nm are 10 volume% or less.

さらに好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜60nm、50%径(PR50)が40〜120nm、84%径(PR84)が220nm以下、PR84/PR16が1.2〜1.8である。130nm以下の粒子が65体積%以上、300nmを越える粒子が10体積%以下であることが好ましい。   More preferably, the 16% diameter (PR16) is 20 to 60 nm, the 50% diameter (PR50) is 40 to 120 nm, and the 84% diameter (PR84) is 220 nm or less when integrated from the small particle diameter side. , PR84 / PR16 is 1.2 to 1.8. It is preferable that particles of 130 nm or less are 65 volume% or more, and particles exceeding 300 nm are 10 volume% or less.

樹脂粒子分散液と着色剤粒子分散液及びワックス粒子分散液とを混合凝集して凝集粒子を形成するとき、50%径(PR50)が20〜200nmと微細分散とすることにより、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。   When the resin particle dispersion, the colorant particle dispersion, and the wax particle dispersion are mixed and aggregated to form aggregated particles, the 50% diameter (PR50) is 20 to 200 nm, so that the wax becomes resin particles. It is easy to be taken in between, preventing aggregation between the waxes itself, and uniform dispersion. Particles that are taken into the resin particles and float in the water can be eliminated.

さらに凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、表面張力の関係から溶融した樹脂粒子が溶融したワックス粒子を取り囲み、包含する形となり、樹脂中に離型剤が内包されやすくなる。   Furthermore, when the aggregated particles are heated in an aqueous system to obtain molten aggregated particles, the molten resin particles surround and include the molten wax particles because of the surface tension, and the release agent is included in the resin. It becomes easy.

PR16が160nmより大きく、50%径(PR50)が200nmより大きく、PR84が300nmよりも大きく、PR84/PR16が2.0よりも大きく、200nm以下の粒子が65体積%より多く、500nmを越える粒子が10体積%より多くなると、ワックスが樹脂粒子間に取り込まれにくくワックス自体同士のみでの凝集が多発する傾向となる。また、樹脂粒子に取り込まれず、水中に浮遊する粒子が増大する傾向にある。凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、溶融した樹脂粒子が溶融したワックス粒子を包含する形となりにくく、樹脂中にワックスが内包されにくくなる。さらに樹脂を付着融合させる際にトナー母体表面に露出遊離するワックス量が多くなり、感光体へのフィルミング、キャリアへのスペントの増加、現像でのハンドリング性が低下し、また現像メモリーが発生しやすくなる。   PR16 is larger than 160 nm, 50% diameter (PR50) is larger than 200 nm, PR84 is larger than 300 nm, PR84 / PR16 is larger than 2.0, particles of 200 nm or less are larger than 65% by volume and larger than 500 nm When the amount exceeds 10% by volume, the wax is difficult to be taken in between the resin particles, and the agglomeration of only the waxes tends to occur frequently. In addition, particles that are not taken into the resin particles and float in water tend to increase. When the agglomerated particles are heated in an aqueous system to obtain fused agglomerated particles, the molten resin particles are less likely to include the melted wax particles, and the wax is less likely to be included in the resin. In addition, when the resin is adhered and fused, the amount of wax that is exposed and released on the surface of the toner base increases, filming on the photoconductor, increased spent on the carrier, handling characteristics during development, and development memory are generated. It becomes easy.

PR16が20nmより小さく、50%径(PR50)が40nmより小さく、PR84/PR16が1.2よりも小さくしようとすると、分散状態を維持しづらく、放置時にワックスの再凝集が発生し、粒度分布の放置安定性が低下する傾向となる。また分散時に負荷が大きくなり、発熱が大きくなり、生産性が低下する傾向となる。   When PR16 is smaller than 20 nm, 50% diameter (PR50) is smaller than 40 nm, and PR84 / PR16 is smaller than 1.2, it is difficult to maintain a dispersed state, and reaggregation of wax occurs when left, and particle size distribution. There is a tendency for the storage stability of the to decrease. In addition, the load increases during dispersion, heat generation increases, and productivity tends to decrease.

またワックス粒子分散液中に分散させたワックス粒子の小粒径側から積算したときの体積粒径積算分における50%径(PR50)が、凝集粒子を形成する際の樹脂粒子の50%径(PR50)よりも小さくすることで、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、表面張力の関係から溶融した樹脂粒子が溶融したワックス粒子を包含する形となり、樹脂中にワックスが内包されやすくなる。より好ましくは、樹脂粒子の50%径(PR50)よりも20%以上小さくすることである。   In addition, the 50% diameter (PR50) in the volume particle size integration when the wax particles dispersed in the wax particle dispersion are integrated from the small particle size side is the 50% diameter of the resin particles when forming the aggregated particles ( By making it smaller than PR50), the wax is easily taken up between the resin particles, and aggregation between the waxes itself can be prevented, and the dispersion can be performed uniformly. Particles that are taken into the resin particles and float in the water can be eliminated. When the aggregated particles are heated in an aqueous system to obtain molten aggregated particles, the melted resin particles include the melted wax particles because of the surface tension, and the wax is easily included in the resin. More preferably, it is 20% or more smaller than the 50% diameter (PR50) of the resin particles.

ワックスの融点以上の温度に保持された分散剤を添加した媒体中に、前記ワックスをワックス濃度40wt%以下で溶融させたワックス溶融液を、固定体と一定のギャップを介して高速回転する回転体により生じる高せん断力作用により乳化分散させることにより、ワックス粒子を微細に分散できる。   A rotating body in which a wax melt obtained by melting the wax at a wax concentration of 40 wt% or less is rotated at a high speed through a fixed gap with a fixed gap in a medium to which a dispersant maintained at a temperature higher than the melting point of the wax is added. The wax particles can be finely dispersed by emulsifying and dispersing by the action of high shear force generated by the above.

図3、4に示す一定容量の槽内の槽壁に、0.1mm〜10mm程度のギャップを設けて、回転体を30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上の高速で回転することにより、水系に強力なずりせん断力が作用し、微細な粒径の乳化分散体が得られる。処理時間は30s〜5min程度の処理で分散体が形成できる。   3 and 4, a gap of about 0.1 mm to 10 mm is provided on the wall of the tank having a constant capacity, and the rotating body is 30 m / s or more, preferably 40 m / s or more, more preferably 50 m / s or more. By rotating at a high speed, a strong shearing force acts on the aqueous system, and an emulsified dispersion having a fine particle size can be obtained. The dispersion can be formed by a treatment time of about 30 seconds to 5 minutes.

また図5、6に示すような固定した固定体に対し、1〜100μm程度のギャップを設けて30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上で回転する回転体との強いせん断力作用を付加することにより、微細な分散体を作成することができる。   A rotating body that rotates at a speed of 30 m / s or more, preferably 40 m / s or more, more preferably 50 m / s or more, with a gap of about 1 to 100 μm provided to a fixed stationary body as shown in FIGS. By adding a strong shearing force action, a fine dispersion can be created.

高圧ホモジナイザーのような高圧式の分散機よりも微細な粒子の粒度分布をより狭小化シャープに形成できる。また長時間の放置でも分散体を形成した微粒子が再凝集することなく、安定した分散状態を保つことができ、粒度分布の放置安定性が向上する。   Compared with a high-pressure disperser such as a high-pressure homogenizer, the particle size distribution of fine particles can be made narrower and sharper. Further, even when left for a long time, the fine particles forming the dispersion do not reaggregate and can maintain a stable dispersion state, and the standing stability of the particle size distribution is improved.

ワックスの融点が高い場合は、高圧状態で加熱することにより溶融した液を作成する。またワックスを油性溶剤に溶解させる。この溶液を図3、4、5、6に示した分散機を用いて界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより得られる。   When the melting point of the wax is high, a molten liquid is prepared by heating in a high pressure state. Also, the wax is dissolved in an oily solvent. This solution is obtained by dispersing fine particles in water together with a surfactant and a polymer electrolyte using the disperser shown in FIGS. 3, 4, 5 and 6, and then evaporating the oily solvent by heating or decompressing. .

粒度測定は堀場製作所レーザ回折粒度測定器(LA920)、島津製作所レーザ回折粒度測定器(SALD2100)などを用いて測定することができる。   The particle size can be measured using a Horiba laser diffraction particle size measuring device (LA920), a Shimadzu laser diffraction particle size measuring device (SALD2100), or the like.

(3)樹脂
本実施形態のトナーの樹脂微粒子としては、例えば熱可塑性結着樹脂が挙げられる。具体的には、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル等アクリル系単量体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のメタクリル系単量体;さらにアクリル酸、メタクリル酸、スチレンスルフォン酸ナトリウム等のエチレン性不飽和酸単量体;さらにアクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;エチレン、プロピレン、ブタジエンなどのオレフィン類などの単量体などの単独重合体、それらの単量体を2種以上組み合せた共重合体、又はそれらの混合物、さらには、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、又は、それらと前記ビニル系樹脂との混合物、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等を挙げることができる。
(3) Resin Examples of the resin fine particles of the toner of the present embodiment include a thermoplastic binder resin. Specifically, styrenes such as styrene, parachlorostyrene, and α-methylstyrene; acrylic monomers such as methyl acrylate, ethyl acrylate, n-propyl acrylate, lauryl acrylate, and 2-ethylhexyl acrylate; Methacrylic monomers such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate; and ethylenically unsaturated acids such as acrylic acid, methacrylic acid, sodium styrenesulfonate Vinyl nitriles such as acrylonitrile and methacrylonitrile; vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone and vinyl isopropenyl ketone; ethylene, Homopolymers such as monomers such as olefins such as lopyrene and butadiene, copolymers obtained by combining two or more of these monomers, or mixtures thereof, and epoxy resins, polyester resins, polyurethane resins, Polyamide resins, cellulose resins, polyether resins, etc., non-vinyl condensation resins, or mixtures of these with vinyl resins, graft polymers obtained by polymerizing vinyl monomers in the presence of these resins, etc. Can be mentioned.

これらの樹脂の中でもビニル系樹脂が特に好ましい。ビニル系樹脂の場合、イオン性界面活性剤などを用いて乳化重合やシード重合により樹脂粒子分散液を容易に調製することができる点で有利である。前記ビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸、ビニルスルフォン酸、エチレンイミン、ビニルピリジン、ビニルアミンなどのビニル系高分子酸やビニル系高分子塩基の原料となるモノマーが挙げられる。本発明においては、前記樹脂粒子が、前記ビニル系モノマーをモノマー成分として含有するのが好ましい。本発明においては、これらのビニル系モノマーの中でも、ビニル系樹脂の形成反応の容易性等の点でビニル系高分子酸がより好ましく、具体的にはアクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸などのカルボキシル基を解離基として有する解離性ビニル系モノマーが、重合度やガラス転移点の制御の点で特に好ましい。   Among these resins, vinyl resins are particularly preferable. In the case of a vinyl resin, it is advantageous in that a resin particle dispersion can be easily prepared by emulsion polymerization or seed polymerization using an ionic surfactant or the like. Examples of the vinyl monomers include vinyl polymer acids and vinyl polymer bases such as acrylic acid, methacrylic acid, maleic acid, cinnamic acid, fumaric acid, vinyl sulfonic acid, ethyleneimine, vinyl pyridine, and vinyl amine. The monomer used as a raw material is mentioned. In the present invention, the resin particles preferably contain the vinyl monomer as a monomer component. In the present invention, among these vinyl monomers, vinyl polymer acids are more preferable from the viewpoint of ease of formation reaction of vinyl resins, and specifically, acrylic acid, methacrylic acid, maleic acid, cinnamon. A dissociable vinyl monomer having a carboxyl group such as acid or fumaric acid as a dissociating group is particularly preferred in terms of controlling the degree of polymerization and the glass transition point.

樹脂粒子分散液における前記樹脂粒子の含有量としては、通常5〜50重量%であり、好ましくは10〜30重量%である。   The content of the resin particles in the resin particle dispersion is usually 5 to 50% by weight, preferably 10 to 30% by weight.

樹脂、ワックス及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル浸透クロマトグラフィー(GPC)によって測定された値である。   The molecular weights of the resin, wax, and toner are values measured by gel permeation chromatography (GPC) using several types of monodisperse polystyrene as standard samples.

装置は、東ソー社製HPLC8120シリーズ、カラムはTSKgel superHM−H H4000/H3000/H2000(7.8mm径、150mm×3)、溶離液THF(テトラヒドロフラン)、流量0.6ml/min、試料濃度0.1%、注入量20μL、検出器RI、測定温度40℃、測定前処理は試料をTHFに溶解後0.45μmのフィルターでろ過しシリカ等の添加剤を除去した樹脂成分を測定する。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。   The apparatus is HPLC 8120 series manufactured by Tosoh Corporation, the column is TSKgel superHM-H H4000 / H3000 / H2000 (7.8 mm diameter, 150 mm × 3), eluent THF (tetrahydrofuran), flow rate 0.6 ml / min, sample concentration 0.1 %, Injection amount 20 μL, detector RI, measurement temperature 40 ° C., pretreatment for measurement is to measure a resin component obtained by dissolving a sample in THF and filtering through a 0.45 μm filter to remove additives such as silica. The measurement conditions are conditions in which the molecular weight distribution of the target sample is included in a range in which the logarithm of the molecular weight and the count number are linear in a calibration curve obtained with several types of monodisperse polystyrene standard samples.

また炭素数4〜30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスの測定は、装置はWATERS製GPC−150C、カラムはShodex HT−806M(8.0mmI.D.−30cm×2)、溶離液はo−ジクロロベンゼン、流量は1.0mL/min、試料濃度は0.3%、注入量は200μL、検出器はRI、測定温度は130℃、測定前処理は試料を溶媒に溶解後0.5μmの金属焼結フィルターでろ過処理した。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。   In addition, the measurement of the wax obtained by the reaction with a long chain alkyl alcohol having 4 to 30 carbon atoms, an unsaturated polyvalent carboxylic acid or its anhydride, and an unsaturated hydrocarbon wax was performed using a GPC-150C manufactured by WATERS. Shodex HT-806M (8.0 mm ID-30 cm × 2), eluent is o-dichlorobenzene, flow rate is 1.0 mL / min, sample concentration is 0.3%, injection volume is 200 μL, detector is RI The measurement temperature was 130 ° C., and the pre-measurement treatment was performed by filtering the sample with a 0.5 μm sintered metal filter after dissolving the sample in a solvent. The measurement conditions are conditions in which the molecular weight distribution of the target sample is included in a range in which the logarithm of the molecular weight and the count number are linear in a calibration curve obtained with several types of monodisperse polystyrene standard samples.

また、結着樹脂の軟化点は、島津製作所の定荷重押出し形細管式レオメータフローテスタ(CFT500)により、1cm3の試料を昇温速度6℃/分で加熱しながらプランジャーにより約9.8×105N/m2の荷重を与え、直径1mm、長さ1mmのダイから押し出して、このプランジャーのピストンストロークと温度との関係における昇温温度特性との関係から、ピストンストロークが立上り始める温度が流出開始温度(Tfb)、曲線の最低値と流出終了点の差の1/2を求め、それと曲線の最低値を加えた点の位置における温度を1/2法における溶融温度(軟化点Tm)となる。 The softening point of the binder resin was about 9.8 with a plunger while heating a 1 cm 3 sample at a heating rate of 6 ° C./min with a constant-load extrusion type capillary rheometer flow tester (CFT500) manufactured by Shimadzu Corporation. Applying a load of × 10 5 N / m 2 , pushing out from a die with a diameter of 1 mm and a length of 1 mm, the piston stroke starts to rise from the relationship between the temperature rise characteristic of the plunger stroke and temperature. The temperature is the outflow start temperature (Tfb), 1/2 of the difference between the lowest value of the curve and the end point of the outflow, and the temperature at the point where the minimum value of the curve is added is the melting temperature (softening point) in the 1/2 method. Tm).

また樹脂のガラス転移点は示差走査熱量計(島津製作所DSC−50)を用い、100℃まで昇温し、その温度にて3分間放置した後、降温速度10℃/minで室温まで冷却したサンプルを、昇温速度10℃/minで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上り部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。
ワックスのDSCによる吸熱ピークの融点は、示差走査熱量計(島津製作所DSC−50)を用い、5℃/minで200℃まで昇温し、5分間保温10℃まで急冷後、15分間放置後5℃/minで昇温させ、吸熱(融解)ピークから求めた。セルに投入するサンプル量は10mg±2mgとした。
In addition, the glass transition point of the resin was measured by using a differential scanning calorimeter (Shimadzu DSC-50), heated to 100 ° C., allowed to stand at that temperature for 3 minutes, and then cooled to room temperature at a cooling rate of 10 ° C./min. When the thermal history is measured by heating at a heating rate of 10 ° C./min, the maximum slope between the baseline extension line below the glass transition point and the peak rising portion to the peak apex is shown. Says the temperature at the intersection with the tangent.
The melting point of the endothermic peak by DSC of the wax was 5 ° C / min using a differential scanning calorimeter (Shimadzu DSC-50), heated to 200 ° C, rapidly cooled to 10 ° C for 5 minutes, then allowed to stand for 15 minutes. The temperature was raised at ° C./min, and the endothermic (melting) peak was obtained. The amount of sample put into the cell was 10 mg ± 2 mg.

(4)電荷制御剤
電荷制御剤としては、アクリルスルホン酸系の重合体で、スチレン系モノマーと極性基としてスルホン酸基を有するアクリル酸系モノマーとのビニル共重合体が好ましい。特にはアクリルアミド−2−メチルプロパンスルホン酸との共重合体が好ましい特性を発揮できる。後述するキャリアと組合せて使用することにより、現像器内でのハンドリング性を向上し、トナー濃度の均一性が向上する。さらに現像メモリーの発生を抑制できる。また、好ましい材料としてはサリチル酸誘導体の金属塩が用いられる。この構成により、定着時での帯電作用による画像乱れを防止できる。これはワックスのもつ酸価を有する官能基と金属塩の帯電極性の効果と思われる。また連続使用時での帯電量の低下を防止できる。
(4) Charge Control Agent The charge control agent is preferably an acrylic sulfonic acid polymer, and a vinyl copolymer of a styrene monomer and an acrylic acid monomer having a sulfonic acid group as a polar group. In particular, a copolymer with acrylamido-2-methylpropanesulfonic acid can exhibit preferable characteristics. By using it in combination with a carrier to be described later, the handling property in the developing device is improved and the uniformity of the toner density is improved. Further, development memory can be suppressed. As a preferable material, a metal salt of a salicylic acid derivative is used. With this configuration, it is possible to prevent image disturbance due to charging during fixing. This seems to be the effect of the functional group having the acid value of the wax and the charging polarity of the metal salt. In addition, it is possible to prevent a decrease in charge amount during continuous use.

これらは乳化重合時の樹脂モノマー(例えばスチレンモノマーが好適)に溶融させ、モノマーを乳化重合させることで、CCAが添加された樹脂微粒子分散体を作成することができる。   These are melted in a resin monomer (for example, a styrene monomer is preferable) at the time of emulsion polymerization, and the monomer is emulsion polymerized to prepare a resin fine particle dispersion to which CCA is added.

添加量は樹脂100重量部に対し、0.1〜5重量部が好ましい。より好ましくは0.1〜2重量部、さらに好ましくは0.5〜1.5重量部である。0.1重量部よりも少ないと、帯電作用効果が無くなる。5重部よりも多くなると分散が均一化しない。カラー画像での色濁りが目立ってくる。   The addition amount is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin. More preferably, it is 0.1-2 weight part, More preferably, it is 0.5-1.5 weight part. When the amount is less than 0.1 parts by weight, the charging effect is lost. If it exceeds 5 parts, the dispersion will not be uniform. Color turbidity in color images is noticeable.

(5)顔料
本実施形態に使用される着色剤(顔料)として、黒顔料としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体が好ましく使用できる。
(5) Pigment As the colorant (pigment) used in the present embodiment, carbon black, iron black, graphite, nigrosine, and an azo dye metal complex can be preferably used as the black pigment.

イエロー顔料としては、C.I.ピグメント・イエロー1,3,74,97又は98等のアセト酢酸アリールアミド系モノアゾ黄色顔料、C.I.ピグメント・イエロー12,13,14,17等のアセト酢酸アリールアミド系ジスアゾ黄色顔料、C.I.ソルベンイエロー19,77,79又はC.I.ディスパース・イエロー164が配合され、特に好ましくはC.I.ピグメント・イエロー93,180,185のベンズイミダゾロン系顔料が好適である。   Examples of yellow pigments include C.I. I. Acetoacetic acid arylamide monoazo yellow pigments such as C.I. Pigment Yellow 1, 3, 74, 97 or 98; I. Acetoacetic acid arylamide disazo yellow pigments such as C.I. Pigment Yellow 12, 13, 14, and 17; I. Solven Yellow 19, 77, 79 or C.I. I. Disperse Yellow 164 is blended, and C.I. I. Benzimidazolone pigments of CI Pigment Yellow 93, 180 and 185 are preferred.

またマゼンタ顔料としては、C.I.ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C.I.ソルベント・レッド49,52,58,8等の赤色染料が好ましく使用できる。   Examples of magenta pigments include C.I. I. Red pigments such as CI Pigment Red 48, 49: 1, 53: 1, 57, 57: 1, 81, 122, 5; I. Red dyes such as Solvent Red 49, 52, 58 and 8 can be preferably used.

シアン顔料としては、C.I.ピグネント・ブルー15:3等のフタロシアニン及びその誘導体の青色染顔料が好ましく使用できる。添加量は結着樹脂100重量部に対し、3〜8重量部が好ましい。   Examples of cyan pigments include C.I. I. A blue dyed pigment of phthalocyanine and its derivatives such as Pigment Blue 15: 3 can be preferably used. The addition amount is preferably 3 to 8 parts by weight with respect to 100 parts by weight of the binder resin.

各粒子のメジアン径としては、通常1μm以下であり、0.01〜1μmであるのが好ましい。前記メジアン径が1μmを超えると、最終的に得られる静電荷像現像用トナーの粒径分布が広くなったり、遊離粒子が発生し、性能や信頼性の低下を招き易い。一方、前記メジアン径が前記範囲内にあると前記欠点がない上、トナー間の偏在が減少し、トナー中の分散が良好となり、性能や信頼性のバラツキが小さくなる点で有利である。なお、前記メジアン径は、例えば堀場製作所レーザ回折粒度測定器(LA920)などを用いて測定することができる。   The median diameter of each particle is usually 1 μm or less, preferably 0.01 to 1 μm. When the median diameter exceeds 1 μm, the particle size distribution of the finally obtained toner for developing an electrostatic charge image is broadened, or free particles are generated, which easily deteriorates performance and reliability. On the other hand, when the median diameter is within the above range, there are no disadvantages, and the uneven distribution among the toners is reduced, the dispersion in the toner is improved, and the variation in performance and reliability is advantageous. The median diameter can be measured using, for example, a Horiba laser diffraction particle size measuring instrument (LA920).

(6)外添剤
本実施形態では外添剤として、シリカ、アルミナ、酸化チタン、ジルコニア、マグネシア、フェライト、マグネタイト等の金属酸化物微粉末、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等のチタン酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のジルコン酸塩あるいはこれらの混合物が用いられる。外添剤は必要に応じて疎水化処理される。
(6) External additive In this embodiment, as an external additive, metal oxide fine powders such as silica, alumina, titanium oxide, zirconia, magnesia, ferrite, and magnetite, barium titanate, calcium titanate, strontium titanate, etc. A zirconate such as titanate, barium zirconate, calcium zirconate, strontium zirconate or a mixture thereof is used. The external additive is hydrophobized as necessary.

外添剤が処理されるシリコーンオイル系の材料としては、(化3)に示されるものが好ましい。   As the silicone oil-based material to be treated with the external additive, those shown in (Chemical Formula 3) are preferable.

Figure 0004482481
Figure 0004482481

(但し、R2は炭素数1〜3のアルキル基、R3は炭素数1〜3のアルキル基、ハロゲン変性アルキル基、フェニル基、又は置換フェニル基、R1は炭素数1〜3のアルキル基、又は炭素数1〜3のアルコキシ基、m及びnは1以上100以下の整数を示す。)
例えばジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、アミノ変性シリコーンオイル、クロルフェニル変成シリコーンオイルのうちの少なくとも1種類以上で処理される外添剤が好適に使用される。例えば東レダウコーニングシリコーン社のSH200、SH510、SF230、SH203、BY16―823、BY16―855B等が挙げられる。処理は外添剤とシリコーンオイル等の材料とをヘンシェルミキサ等の混合機により混合する方法や、外添剤へシリコーンオイル系の材料を噴霧する方法、溶剤にシリコーンオイル系の材料を溶解或いは分散させた後、外添剤と混合した後、溶剤を除去して作成する方法等がある。外添剤粉末100重量部に対して、シリコーンオイル系の材料は1〜20重量部配合されるのが好ましい。
(However, R 2 is an alkyl group having 1 to 3 carbon atoms, R 3 is an alkyl group having 1 to 3 carbon atoms, a halogen-modified alkyl group, a phenyl group, or a substituted phenyl group, and R 1 is an alkyl group having 1 to 3 carbon atoms. Group, or an alkoxy group having 1 to 3 carbon atoms, m and n represent an integer of 1 to 100.)
For example, dimethyl silicone oil, methyl hydrogen silicone oil, methyl phenyl silicone oil, cyclic dimethyl silicone oil, epoxy modified silicone oil, carboxyl modified silicone oil, carbinol modified silicone oil, methacryl modified silicone oil, mercapto modified silicone oil, polyether modified An external additive treated with at least one of silicone oil, methylstyryl-modified silicone oil, alkyl-modified silicone oil, fluorine-modified silicone oil, amino-modified silicone oil, and chlorophenyl-modified silicone oil is preferably used. For example, SH200, SH510, SF230, SH203, BY16-823, BY16-855B, etc. manufactured by Toray Dow Corning Silicone may be mentioned. For the treatment, a method of mixing the external additive and a material such as silicone oil with a mixer such as a Henschel mixer, a method of spraying a silicone oil-based material on the external additive, or dissolving or dispersing the silicone oil-based material in a solvent And after mixing with an external additive, the solvent is removed to prepare. It is preferable that 1 to 20 parts by weight of the silicone oil-based material is blended with respect to 100 parts by weight of the external additive powder.

シランカップリング剤としては、ジメチルジクロロシラン、トリメチルクロルシラン、アリルジメチルクロルシラン、ヘキサメチルジシラザン、アリルフェニルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、外添剤粉体を攪拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、外添剤粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。   As silane coupling agents, dimethyldichlorosilane, trimethylchlorosilane, allyldimethylchlorosilane, hexamethyldisilazane, allylphenyldichlorosilane, benzylmethylchlorosilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, There are vinyltriacetoxysilane, divinylchlorosilane, dimethylvinylchlorosilane, and the like. The silane coupling agent treatment is a dry treatment in which the vaporized silane coupling agent is reacted with the cloud of the external additive powder by stirring or the like, or a silane coupling in which the external additive powder is dispersed in a solvent. It is processed by a wet method in which an agent is dropped.

またシランカップリング処理した後にシリコーンオイル系の材料を処理することも好ましい。   It is also preferable to treat the silicone oil-based material after the silane coupling treatment.

正極帯電性を有する外添剤はアミノシランや、下記式(化4)に示されるアミノ変性シリコーンオイル、エポキシ変性シリコーンオイルで処理される。   The external additive having positive electrode chargeability is treated with aminosilane, amino-modified silicone oil or epoxy-modified silicone oil represented by the following formula (Formula 4).

Figure 0004482481
Figure 0004482481

(但し、R1及びR6は水素、炭素数1〜3のアルキル基、アルコキシ基、又はアリール基、R2は炭素数1〜3のアルキレン基、又はフェニレン基、R3は窒素複素環を含む有機基、R4及びR5は水素、炭素数1〜3のアルキル基、又はアリール基、mは1以上の数、n及びqは0を含む正の整数、n+1は1以上の正の数を示す。)
また、疎水性処理を高めるため、ヘキサメチルジシラザンやジメチルジクロロシラン、他のシリコーンオイルによる処理の併用も好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイルのうちの少なくとも1種類以上で処理することが好ましい。
(However, R 1 and R 6 are hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or an aryl group, R 2 is an alkylene group having 1 to 3 carbon atoms, or a phenylene group, and R 3 includes a nitrogen heterocycle. Organic group, R4 and R5 are hydrogen, an alkyl group having 1 to 3 carbon atoms, or an aryl group, m is a number of 1 or more, n and q are positive integers including 0, and n + 1 is a positive number of 1 or more .)
Moreover, in order to improve hydrophobic treatment, the combined use of treatment with hexamethyldisilazane, dimethyldichlorosilane, or other silicone oil is also preferable. For example, it is preferable to treat with at least one of dimethyl silicone oil, methylphenyl silicone oil, and alkyl-modified silicone oil.

また、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩により無機微粉末の表面を処理することも好ましい。いずれか1種又は2種以上を表面処理したシリカ又は酸化チタン微粉末がより好ましい。
脂肪酸、脂肪酸金属塩としては、カプリル酸、カプリン酸、ウンデシル酸、ラウリル酸、ミスチリン酸、パリミチン酸、ステアリン酸、ベヘン酸、モンタン酸、ラクセル酸、オレイン酸、エルカ酸、ソルビン酸、リノール酸等が挙げられる。中でも炭素数14〜20の脂肪酸が好ましい。
It is also preferable to treat the surface of the inorganic fine powder with a fatty acid ester, a fatty acid amide, or a fatty acid metal salt. Silica or titanium oxide fine powder obtained by surface-treating any one kind or two or more kinds is more preferred.
Examples of fatty acids and fatty acid metal salts include caprylic acid, capric acid, undecyl acid, lauric acid, myristylic acid, parimitic acid, stearic acid, behenic acid, montanic acid, laccellic acid, oleic acid, erucic acid, sorbic acid, linoleic acid, etc. Is mentioned. Of these, fatty acids having 14 to 20 carbon atoms are preferred.

また脂肪酸金属塩を構成する金属としては、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウム、ナトリウム、鉛、バリウムが挙げられ、中でもアルミニウム、亜鉛、ナトリウムが好ましい。特に好ましくはジステアリン酸アルミニウム(Al(OH)(C17H35COO)2)、又はモノステアリン酸アルミニウム(Al(OH)2(C17H35COO))、等のジ脂肪酸アルミニウム、モノ脂肪酸アルミニウムが好ましい。OH基を有することが過帯電を防止し、転写不良を抑えることができる。また処理時にシリカ等の無機微粉末との処理性が向上するものと考えられる。 Examples of the metal constituting the fatty acid metal salt include aluminum, zinc, calcium, magnesium, lithium, sodium, lead, and barium. Of these, aluminum, zinc, and sodium are preferable. Particularly preferred are aluminum distearate (Al (OH) (C 17 H 35 COO) 2 ) or aluminum monostearate (Al (OH) 2 (C 17 H 35 COO)), etc. Is preferred. Having an OH group can prevent overcharging and suppress poor transfer. Moreover, it is thought that the processability with inorganic fine powders, such as a silica, improves at the time of a process.

また、小粒径トナーのハンドリング性を向上でき、現像、転写において高画質化と転写性向上の両立を図ることができる。現像においては潜像をより忠実に再現できる。そして転写の際のトナー粒子の転写率を悪化させることなく転写できる。またタンデム転写においても再転写を防止でき、中抜けの発生の抑制が可能となる。さらには現像量を少なくしても高画像濃度を得ることができる。また後述するキャリアと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。   In addition, the handling property of the toner having a small particle diameter can be improved, and both high image quality and improved transferability can be achieved in development and transfer. In development, the latent image can be reproduced more faithfully. Transfer can be performed without deteriorating the transfer rate of the toner particles during transfer. Further, in tandem transfer, retransfer can be prevented, and occurrence of voids can be suppressed. Furthermore, a high image density can be obtained even if the development amount is reduced. In addition, use in combination with a carrier, which will be described later, can further improve spent resistance, improve handling in the developing device, and increase toner density uniformity. Moreover, development memory generation can be suppressed.

外添剤として、平均粒子径6nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し1〜6重量部外添処理する構成が好ましい。平均粒子径6nmよりも小さいと、シリカ浮遊や感光体へのフィルミングが生じ易い。転写時の逆転写の発生を抑さえ切れない。200nmよりも大きくなると、トナーの流動性が悪化する。1.5重量部よりも少ないとトナーの流動性が悪化する。転写時の逆転写の発生を抑さえ切れない。6重量部よりも多いとシリカ浮遊や感光体へのフィルミングが生じ易い。高温オフセット性を悪化される。   As the external additive, a configuration in which 1 to 6 parts by weight of an inorganic fine powder having an average particle diameter of 6 nm to 200 nm is externally added to 100 parts by weight of the toner base particles is preferable. If the average particle diameter is smaller than 6 nm, silica floating or filming on the photoreceptor is likely to occur. The occurrence of reverse transcription during transcription cannot be suppressed. When it is larger than 200 nm, the fluidity of the toner is deteriorated. When the amount is less than 1.5 parts by weight, the fluidity of the toner is deteriorated. The occurrence of reverse transcription during transcription cannot be suppressed. If the amount is more than 6 parts by weight, silica floating and filming on the photoreceptor are likely to occur. High temperature offset is deteriorated.

さらには、平均粒子径が6nm〜20nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜2.5重量部と、20nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜3.5重量部とを少なくとも外添処理する構成が好ましい。この構成により機能分離したシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。またキャリアへのスペントを防止できる。このとき平均粒子径が6nm〜20nmの無機微粉末の強熱減量が1.5〜25wt%、平均粒子径が20nm〜200nmの強熱減量が0.5〜23wt%であることが好ましい。   Further, the inorganic fine powder having an average particle diameter of 6 nm to 20 nm is 0.5 to 2.5 parts by weight with respect to 100 parts by weight of the toner base particles, and the inorganic fine powder having an average particle diameter of 20 nm to 200 nm is 100 parts by weight of the toner base particles. On the other hand, a configuration in which 0.5 to 3.5 parts by weight is at least externally added is preferable. By using the silica whose function is separated by this configuration, it is possible to obtain a margin for handling property in development, reverse transfer at the time of transfer, dropout, and scattering. In addition, the spent on the carrier can be prevented. At this time, the ignition loss of the inorganic fine powder having an average particle diameter of 6 nm to 20 nm is preferably 1.5 to 25 wt%, and the ignition loss of the average particle diameter of 20 nm to 200 nm is preferably 0.5 to 23 wt%.

シリカの強熱減量を特定することにより、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。また先述したキャリアやワックスと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。   By specifying the loss on ignition of silica, more margin can be taken against reverse transfer, dropout and scattering during transfer. Further, the use in combination with the carrier and wax described above can improve the spent resistance, improve the handling property in the developing device, and increase the uniformity of the toner density. Moreover, development memory generation can be suppressed.

平均粒子径が6nm〜20nmの強熱減量が1.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。25wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜20wt%、より好ましくは5〜19wt%である。   If the loss on ignition with an average particle size of 6 nm to 20 nm is less than 1.5 wt%, the transfer margin for reverse transfer and voids becomes narrow. If it exceeds 25 wt%, the surface treatment becomes uneven, resulting in uneven charging. The ignition loss is preferably 1.5 to 20 wt%, more preferably 5 to 19 wt%.

平均粒子径が20nm〜200nmの強熱減量が0.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。23wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜18wt%、より好ましくは5〜16wt%である。   If the loss on ignition with an average particle diameter of 20 nm to 200 nm is less than 0.5 wt%, the transfer margin for reverse transfer and hollow out becomes narrow. If it exceeds 23 wt%, the surface treatment becomes uneven, resulting in uneven charging. The ignition loss is preferably 1.5 to 18 wt%, more preferably 5 to 16 wt%.

さらには、平均粒子径6nm〜200nm、強熱減量が0.5〜25wt%である正帯電性無機微粉末をさらにトナー母体粒子100重量部に対し0.2〜1.5重量部を外添処理する構成も好ましい。   Further, a positively chargeable inorganic fine powder having an average particle diameter of 6 nm to 200 nm and an ignition loss of 0.5 to 25 wt% is further externally added in an amount of 0.2 to 1.5 parts by weight based on 100 parts by weight of the toner base particles. A configuration for processing is also preferable.

正帯電性無機微粉末を添加する効果は、トナーが長期連続使用の際に過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。またキャリアへのスペントを防止できる。0.2重量部よりも少ないとその効果が得にくい。1.5重量部よりも多くなると、現像でのかぶりが増大する。強熱減量は好ましくは1.5〜20wt%、より好ましくは5〜19wt%である。   The effect of adding the positively chargeable inorganic fine powder suppresses the toner from being overcharged during long-term continuous use, and can further extend the developer life. Furthermore, the effect of suppressing scattering during transfer due to overcharging can also be obtained. In addition, the spent on the carrier can be prevented. If the amount is less than 0.2 parts by weight, it is difficult to obtain the effect. If it exceeds 1.5 parts by weight, fogging during development increases. The ignition loss is preferably 1.5 to 20 wt%, more preferably 5 to 19 wt%.

乾燥減量(%)は、予め乾燥、放冷、精秤した容器に試料約1gを取り、精秤する。熱風乾燥器(105℃±1℃)で2時間乾燥する。デシケータ中で30分間放冷後その重量を精秤し次式より算出する。   For drying loss (%), about 1 g of a sample is placed in a container that has been dried, allowed to cool, and precisely weighed in advance, and weighed accurately. Dry in a hot air dryer (105 ° C ± 1 ° C) for 2 hours. After cooling in a desiccator for 30 minutes, the weight is precisely weighed and calculated from the following formula.

乾燥減量(%)=[乾燥による減量(g)/試料量(g)]×100
強熱減量は、予め乾燥、放冷、精秤した磁性ルツボに試料約1gを取り、精秤する。500℃に設定した電気炉中で2時間強熱する。デシケータ中で1時間放冷後その重量を精秤し次式より算出する。
Loss on drying (%) = [Loss on drying (g) / Sample amount (g)] × 100
For ignition loss, about 1 g of a sample is placed in a magnetic crucible that has been dried, allowed to cool, and precisely weighed in advance, and weighed accurately. Ignite for 2 hours in an electric furnace set to 500 ° C. After standing to cool in a desiccator for 1 hour, its weight is precisely weighed and calculated from the following formula.

強熱減量(%)=[強熱による減量(g)/試料量(g)]×100
また処理された無機微粉末の水分吸着量が1wt%以下であることが好ましい。さらに好ましくは0.5wt%以下、より好ましくは0.1wt%以下、とくに好ましくは0.05wt%以下である。1wt%より多いと、帯電性の低下、耐久時の感光体へのフィルミングを生じる。水分吸着量の測定は、水吸着装置については、連続蒸気吸着装置(BELSORP18:日本ベル株式会社)にて測定した。
Loss on ignition (%) = [Loss on ignition (g) / Sample amount (g)] × 100
Moreover, it is preferable that the moisture adsorption amount of the processed inorganic fine powder is 1 wt% or less. More preferably, it is 0.5 wt% or less, More preferably, it is 0.1 wt% or less, Most preferably, it is 0.05 wt% or less. When the content is more than 1 wt%, chargeability is deteriorated and filming on the photoconductor during durability is caused. The water adsorption amount was measured with a continuous vapor adsorption device (BELSORP18: Nippon Bell Co., Ltd.) for the water adsorption device.

疎水化度の測定は、250mlのビーカー中に装入した蒸留水50mlに試験すべき生成物0.2gを秤取する。先端に、液体中に浸威しているビュレットからメタノールを無機微粉末の総量がぬれるまで滴下する。その際不断に電磁攪拌機でゆっくりと攪拌する。完全に濡らすために必須なメタノール量a(ml)から次式により疎水化度が算出される。   For the determination of the degree of hydrophobicity, 0.2 g of the product to be tested is weighed into 50 ml of distilled water charged in a 250 ml beaker. At the tip, methanol is dropped from a burette invaded in the liquid until the total amount of the inorganic fine powder is wet. At that time, slowly stir slowly with an electromagnetic stirrer. The degree of hydrophobicity is calculated by the following equation from the amount of methanol a (ml) essential for complete wetting.

疎水化度=(a/(50+a))×100(%)
(7)トナーの粉体物性
本実施形態では、結着樹脂、着色剤及びワックスを含むトナー母体粒子の体積平均粒径が3〜7μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が10〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が25〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.5の範囲にあり、体積平均粒径における変動係数は10〜25%、個数粒径分布の変動係数が10〜28%であることが好ましい。
Hydrophobic degree = (a / (50 + a)) × 100 (%)
(7) Toner powder physical properties In this embodiment, toner base particles containing a binder resin, a colorant and a wax have a volume average particle diameter of 3 to 7 μm and a toner particle diameter of 2.52 to 4 μm in the number distribution. Toner having a mother particle content of 10 to 75% by number, a toner particle size of 25 to 75% by volume in a volume distribution of 4 to 6.06 μm, and a toner particle size of 8 μm or more in a volume distribution Toner containing 5% by volume or less of mother particles and having a particle size of 4 to 6.06 μm in the volume distribution, V46 being the volume percent of the mother particles having a particle size of 4 to 6.06 μm in the number distribution When the number% of the base particles is P46, P46 / V46 is in the range of 0.5 to 1.5, the variation coefficient in the volume average particle size is 10 to 25%, and the variation coefficient in the number particle size distribution is 10 to 10. 28% Is preferred.

好ましくは、トナー母体粒子の体積平均粒径が3〜6.5μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が20〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が35〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が3体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.3の範囲にあり、体積平均粒径における変動係数は10〜20%、個数粒径分布の変動係数が10〜23%であることが好ましい。   Preferably, the toner base particles have a volume average particle size of 3 to 6.5 μm, the content of toner base particles having a particle size of 2.52 to 4 μm in the number distribution is 20 to 75% by number, and 4 to 6 in the volume distribution. Toner base particles having a particle size of 0.06 μm are 35 to 75% by volume, toner base particles having a particle size of 8 μm or more in the volume distribution are contained in 3% by volume or less, and 4 to 6. When the volume% of toner base particles having a particle size of 06 μm is V46 and the number% of toner base particles having a particle size of 4 to 6.06 μm in the number distribution is P46, P46 / V46 is 0.5. It is preferable that the coefficient of variation in the volume average particle diameter is 10 to 20% and the coefficient of variation of the number particle size distribution is 10 to 23%.

さらに、好ましくは、トナー母体粒子の体積平均粒径が3〜5μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が40〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が45〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が3体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜0.9の範囲にあり、体積平均粒径における変動係数は10〜15%、個数粒径分布の変動係数が10〜18%であることが好ましい。   More preferably, the toner base particles have a volume average particle size of 3 to 5 μm, the content of toner base particles having a particle size of 2.52 to 4 μm in the number distribution is 40 to 75% by number, and 4 to 6 in the volume distribution. The toner base particles having a particle size of 0.06 μm are 45 to 75% by volume, the toner base particles having a particle size of 8 μm or more in the volume distribution are contained in 3% by volume or less, and 4 to 6. When the volume% of toner base particles having a particle size of 06 μm is V46 and the number% of toner base particles having a particle size of 4 to 6.06 μm in the number distribution is P46, P46 / V46 is 0.5. It is preferable that the variation coefficient in the volume average particle size is 10 to 15% and the variation coefficient of the number particle size distribution is 10 to 18%.

高解像度画質、さらにはタンデム転写における逆転写の防止、中抜けを防止し、オイルレス定着との両立を図ることを可能とできる。トナー中の微粉はトナーの流動性、画質、貯蔵安定性、感光体や現像ローラ、転写体ヘのフィルミング、経時特性、転写性、特にタンデム方式での多層転写性に影響する。さらにはオイルレス定着での非オフセット性、光沢性、透光性に影響する。オイルレス定着実現のためにワックス等のワックスを配合したトナーにおいて、タンデム転写性との両立において微粉量が影響する。   It is possible to prevent high-resolution image quality, and also prevent reverse transfer and dropout in tandem transfer, and achieve both oil-less fixing. The fine powder in the toner affects toner fluidity, image quality, storage stability, filming on the photosensitive member, developing roller, and transfer member, aging characteristics, transferability, particularly multi-layer transfer in the tandem system. Furthermore, it affects the non-offset property, glossiness and translucency in oilless fixing. In a toner containing a wax such as a wax for realizing oil-less fixing, the amount of fine powder affects the compatibility with tandem transferability.

体積平均粒径が7μmを超えると画質と転写の両立が図れない。体積平均粒径が3μm未満であると現像でのトナー粒子のハンドリグ性が困難となる。   When the volume average particle size exceeds 7 μm, it is impossible to achieve both image quality and transfer. When the volume average particle size is less than 3 μm, it becomes difficult to handle the toner particles during development.

個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が10個数%未満になると、画質と転写の両立が図れない。75個数%を超えると、現像でのトナー母体粒子のハンドリグ性が困難となる。また感光体、現像ローラ、転写体へのフィルミングが発生しやすくなる。さらに微粉は熱ローラとの付着性も大きいためオフセットしやすい傾向にある。またタンデム方式において、トナーの凝集が強くなりやすく、多層転写時に2色目の転写不良を生じ易くなる。適当な範囲が必要となる。   If the content of toner base particles having a particle diameter of 2.52 to 4 μm in the number distribution is less than 10% by number, it is impossible to achieve both image quality and transfer. When it exceeds 75% by number, it becomes difficult to handle the toner base particles during development. In addition, filming on the photosensitive member, the developing roller, and the transfer member is likely to occur. Furthermore, fine powder tends to be offset because of its high adhesion to the heat roller. Further, in the tandem system, toner aggregation tends to be strong, and transfer failure of the second color is likely to occur during multilayer transfer. An appropriate range is required.

体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が75体積%を超えると、画質と転写の両立が図れない。30体積%未満になると、画質の低下が生じる。   If toner base particles having a particle size of 4 to 6.06 μm in the volume distribution exceed 75% by volume, it is impossible to achieve both image quality and transfer. When it is less than 30% by volume, the image quality is deteriorated.

体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%を越えて含有すると、画質の低下が生じる。転写不良の原因となる。   When toner mother particles having a particle size of 8 μm or more in the volume distribution are contained exceeding 5% by volume, the image quality is deteriorated. Causes transfer failure.

体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5よりも小さいとき、微粉存在量が過多になり、流動性の低下、転写性の悪化、地カブリが悪化する。1.5よりも大きいときは、大きい粒子が多く存在しかつ粒度分布がブロードになり、高画質化が図ることが出来ない。   When the volume% of toner base particles having a particle diameter of 4 to 6.06 μm in the volume distribution is V46, and the number% of toner base particles having a particle diameter of 4 to 6.06 μm in the number distribution is P46, When P46 / V46 is less than 0.5, the amount of fine powder present becomes excessive, resulting in poor fluidity, poor transferability, and poor background fog. When it is larger than 1.5, there are many large particles and the particle size distribution becomes broad, so that high image quality cannot be achieved.

P46/V46を規定する目的は、トナー粒子を小粒径にして、かつその粒度分布を狭くするための指標とできるものである。   The purpose of defining P46 / V46 can be used as an index for making the toner particles small and narrowing the particle size distribution.

変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。コールターカウンタ(コールター社)を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗を(n−1)で割った値の平方根であらわされる。   The coefficient of variation is the standard deviation of the toner particle size divided by the average particle size. This is based on the particle diameter measured using a Coulter counter (Coulter). The standard deviation is expressed as the square root of the value obtained by dividing the square of the difference from the average value of each measured value when (n-1) is measured when n particle systems are measured.

つまり変動係数とは粒度分布の広がり具合を表したもので、体積粒径分布の変動係数が10%未満、又は個数粒径分布の変動係数が10%未満となると、生産的に困難であり、コストアップの要因となる。体積粒径分布の変動係数が25%より大、又は個数粒径分布の変動係数が28%より大きくなると、粒度分布がブロードとなり、トナーの凝集性が強くなり、感光体へのフィルミング、転写不良、クリーナーレスプロセスでの残留トナーの回収が困難となる。   In other words, the coefficient of variation represents the extent of the particle size distribution, and if the coefficient of variation of the volume particle size distribution is less than 10% or the coefficient of variation of the number particle size distribution is less than 10%, it is difficult to produce, This will increase costs. When the variation coefficient of the volume particle size distribution is larger than 25% or the variation coefficient of the number particle size distribution is larger than 28%, the particle size distribution becomes broad, the toner cohesion becomes stronger, and the filming and transfer to the photosensitive member are performed. It is difficult to collect residual toner in a defective and cleaner-less process.

粒度分布測定は、コールターカウンタTA−II型(コールターカウンタ社)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びパーソナルコンピュータを接続して測定する。電解液は濃度1%となるよう界面活性剤(ラウリル硫酸ナトリウム)を加えたもの50ml程度に被測定トナーを2mg程度加え、試料を懸濁した電解液は超音波分散器で約3分間分散処理を行い、コールターカウンタTA−II型にてアパーチャー70μmのアパーチャーを用いた。70μmのアパーチャー系では、粒度分布測定範囲は1.26μm〜50.8μmであるが、2.0μm未満の領域は外来ノイズ等の影響で測定精度や測定の再現性が低いため実用的ではない。よって測定領域を2.0μm〜50.8μmとした。   The particle size distribution is measured by using a Coulter Counter TA-II type (Coulter Counter Co., Ltd.) and connecting an interface (manufactured by Nikkaki Co., Ltd.) for outputting the number distribution and volume distribution and a personal computer. The electrolyte solution is a surfactant (sodium lauryl sulfate) added to a concentration of 1%. About 2 mg of the toner to be measured is added to about 50 ml. The electrolyte solution in which the sample is suspended is dispersed for about 3 minutes with an ultrasonic disperser. And an aperture of 70 μm was used with a Coulter counter TA-II type. In the 70 μm aperture system, the particle size distribution measurement range is 1.26 μm to 50.8 μm, but the region less than 2.0 μm is not practical because the measurement accuracy and measurement reproducibility are low due to the influence of external noise and the like. Therefore, the measurement area was set to 2.0 μm to 50.8 μm.

また、静嵩密度と動嵩密度から算出されるのが圧縮度で、トナー流動性の指標の一つである。トナーの流動性はトナーの粒度分布、トナー粒子形状、外添剤、ワックスの種類や量に影響される。トナーの粒度分布が狭く微粉が少ない場合、トナーの表面に凹凸が少なく形状が球形に近い場合、外添剤の添加量が多い場合、外添剤の粒径が小さい場合は、圧縮度が小さくなりトナーの流動性は高くなる。圧縮度は5〜40%が好ましい。より好ましくは、10〜30%である。オイルレス定着と、タンデム方式多層転写との両立を図ることが可能となる。5%より小さいと、定着性が低下し、特に透光性が悪化しやすい。現像ロ−ラからトナー飛散が多くなりやすい。40%よりも大きい転写性が低下し、タンデム方式での中抜け、転写不良を生じる。   Further, the degree of compression is calculated from the static bulk density and the dynamic bulk density, which is one of the indicators of toner fluidity. The fluidity of the toner is affected by the particle size distribution of the toner, the toner particle shape, the external additive, and the type and amount of the wax. When the toner particle size distribution is narrow and the amount of fine powder is small, the toner surface has few irregularities and the shape is nearly spherical, the amount of external additive added is large, or the particle size of the external additive is small, the degree of compression is small. The fluidity of the toner becomes higher. The degree of compression is preferably 5 to 40%. More preferably, it is 10 to 30%. It is possible to achieve both oilless fixing and tandem multi-layer transfer. If it is less than 5%, the fixability is lowered, and the translucency is particularly likely to deteriorate. Toner scattering tends to increase from the developing roller. Transferability greater than 40% is lowered, and tandem-type deficiency occurs and transfer failure occurs.

(8)キャリア
本実施形態のキャリアは、少なくとも磁性体粒子とバインダー樹脂とを有する複合磁性粒子であって、その磁性粒子表面がアミノシランカップリング剤を含有したフッ素変性シリコーン系樹脂からなる樹脂により被覆されているキャリアが好適に使用される。
(8) Carrier The carrier of this embodiment is a composite magnetic particle having at least magnetic particles and a binder resin, and the surface of the magnetic particle is coated with a resin made of a fluorine-modified silicone resin containing an aminosilane coupling agent. The carrier used is preferably used.

本発明における磁性粒子を構成するバインダー樹脂としては、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、フェノール系樹脂、エポキシ樹脂、ポリアミド樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、キシレン樹脂、アセトグアナミン樹脂、フラン樹脂、シリコーン系樹脂、ポリイミド樹脂、ウレタン樹脂があり、これらの樹脂は単独でも2種以上を混合しても構わないが、少なくともフェノール樹脂を含有していることが好ましい。   A thermosetting resin is preferable as the binder resin constituting the magnetic particles in the present invention. Thermosetting resins include phenolic resins, epoxy resins, polyamide resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, xylene resins, acetoguanamine resins, furan resins, silicone resins, polyimide resins, urethane resins. These resins may be used alone or in combination of two or more, but preferably contain at least a phenol resin.

本発明における複合体粒子は、平均粒子径が好ましくは10〜50μm、より好ましくは10〜40μm、さらに好ましくは10〜30μm、最も好ましくは15〜30μmの球状粒子であることが好ましい。さらにその特性は比重が2.5〜4.5、特に2.5〜4.0であり、キャリアの窒素吸着によるBET比表面積が0.03〜0.3m2/gであることが好ましい。キャリアの平均粒径が10μm未満では、キャリア粒子の分布において微粒子の存在率が高くなり、それらのキャリア粒子はキャリア1粒子当たりの磁化が低くなるため、キャリアが感光体に現像されやすくなる。また、キャリアの平均粒子が50μmを超えると、キャリア粒子の比表面積が小さくなり、トナ−保持力が弱くなるため、トナー飛散が発生する。また、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪く好ましくない。 The composite particles in the present invention are preferably spherical particles having an average particle diameter of preferably 10 to 50 μm, more preferably 10 to 40 μm, still more preferably 10 to 30 μm, and most preferably 15 to 30 μm. Further, the specific gravity is 2.5 to 4.5, particularly 2.5 to 4.0, and the BET specific surface area by nitrogen adsorption of the carrier is preferably 0.03 to 0.3 m 2 / g. When the average particle diameter of the carrier is less than 10 μm, the abundance ratio of the fine particles is high in the carrier particle distribution, and the carrier particles have a low magnetization per carrier particle, so that the carrier is easily developed on the photoreceptor. On the other hand, when the average particle of the carrier exceeds 50 μm, the specific surface area of the carrier particle becomes small and the toner holding force becomes weak, so that toner scattering occurs. In addition, a full color with many solid portions is not preferable because the reproduction of the solid portions is particularly poor.

従来のフェライト系をコア粒子とするキャリアでは、比重が5〜6と大きく、また粒子径も50〜80μmと大きいため、BET比表面積が小さい値となっており、トナーとの攪拌時の混合性が弱く、トナーが補給されたときの帯電立ち上がり性が不十分でトナーが多く消費され、多量のトナーが補給されたとき、カブリの発生が多く見られる傾向にあった。またトナーとキャリアとの濃度比率を狭い範囲で制御しないと、画像濃度とカブリ、トナー飛散低減の両立を図ることが困難であった。しかし比表面積値の大きいキャリアの使用により、トナーとキャリアとの濃度比率を広い範囲で制御しても画質の悪化が生じにくく、トナー濃度制御がラフに行えることが出来る。   A conventional carrier having ferrite-based core particles has a large specific gravity of 5 to 6 and a particle diameter of 50 to 80 μm, so the BET specific surface area is small, and the mixing property when stirring with toner is small. However, when the toner is replenished, the charge rising property is insufficient and a large amount of toner is consumed, and when a large amount of toner is replenished, there is a tendency that a lot of fog occurs. If the density ratio between the toner and the carrier is not controlled within a narrow range, it is difficult to achieve both the image density, fogging and toner scattering reduction. However, by using a carrier having a large specific surface area value, even if the toner / carrier density ratio is controlled in a wide range, image quality is hardly deteriorated and toner density control can be performed roughly.

また前述したトナーは球形に近い形をしており、比表面積値もキャリアに近づいている。そのためトナーとの攪拌時の混合性がより均一に行えることができ。トナーが補給されたとき、良好な帯電立ち上がり性を有し、トナーとキャリアとの濃度比率をより広い範囲で制御しても画質の悪化が生じにくく、画像濃度とカブリ、トナー飛散低減の両立を図ることが出来る。   Further, the above-described toner has a shape close to a sphere, and the specific surface area value also approaches the carrier. Therefore, the mixing property with the toner can be more uniformly mixed. When toner is replenished, it has good charge rise characteristics, and even if the toner / carrier density ratio is controlled over a wider range, image quality is unlikely to deteriorate, and both image density, fog and toner scattering are reduced. I can plan.

このときトナーの比表面積値をTS(m2/g)、キャリアの比表面積値をCS(m2/g)とすると、TS/CSが2〜110の関係を満たすことにより、画質の安定性を図ることが出来る。好ましくは2〜50、より好ましくは2〜30である。2よりの小さいと、キャリア付着が生じやすくなる。また110よりも大きいと、画像濃度とカブリ、トナー飛散低減の両立を図るためのトナーとキャリアとの濃度比率が狭くなってしまい、画質の悪化が生じやすくなる。従来のフェライト系をコア粒子とするキャリアでは、比表面積が小さい値であり、また従来の粉砕方式のトナーでは形状が不定形であり、比表面積値が大きい値となっている。 At this time, assuming that the specific surface area value of the toner is TS (m 2 / g) and the specific surface area value of the carrier is CS (m 2 / g), the TS / CS satisfies the relationship of 2 to 110, thereby stabilizing the image quality. Can be planned. Preferably it is 2-50, More preferably, it is 2-30. If it is less than 2, carrier adhesion tends to occur. On the other hand, if it is larger than 110, the density ratio between the toner and the carrier for reducing the image density, fogging and toner scattering is reduced, and the image quality is liable to deteriorate. A conventional carrier having ferrite-based core particles has a small specific surface area, and a conventional pulverized toner has an irregular shape and a large specific surface area.

複合磁性粒子は、磁性体粒子及び塩基性触媒の存在下で、フェノール類とアルデヒド類とを水性媒体中で撹拌しながら、フェノール類とアルデヒド類とを反応・硬化させて、磁性粒子とフェノール樹脂とを含有する磁性粒子を生成する方法により製造することが出来る。   Composite magnetic particles are produced by reacting and curing phenols and aldehydes in the presence of magnetic particles and a basic catalyst while stirring the phenols and aldehydes in an aqueous medium. It can manufacture by the method of producing | generating the magnetic particle containing these.

得られる複合磁性粒子の平均粒子径の制御は、使用する水の量によって適当な剪断・圧密がかかるように撹拌装置の撹拌翼周速度を調整することによって、調整が可能である。   The average particle diameter of the obtained composite magnetic particles can be controlled by adjusting the stirring blade peripheral speed of the stirring device so that appropriate shearing and compaction are applied depending on the amount of water used.

バインダー樹脂としてエポキシ樹脂を用いた複合体粒子の製造は、例えば、水性媒体中にビスフェノール類とエピハロヒドリンと親油化処理を行なった無機化合物粒子粉末を分散させ、アルカリ水性媒体中で反応させる方法が挙げられる。   Production of composite particles using an epoxy resin as a binder resin is, for example, a method in which bisphenols, epihalohydrin, and lipophilic inorganic compound particle powder are dispersed in an aqueous medium and reacted in an alkaline aqueous medium. Can be mentioned.

本発明における複合磁性粒子の磁性体微粒子と、バインダー樹脂との含有割合は、バインダー樹脂1〜20質量%と磁性体粒子80〜99質量%であることが好ましい。磁性体粒子の含有量が80wt%未満の場合には、飽和磁化値が小さくなり、99wt%を越える場合には、フェノール樹脂による磁性体微粒子間の結着が弱くなりやすい。複合磁性粒子の強度を考慮すると、97wt%以下であることが好ましい。   In the present invention, the content ratio between the magnetic fine particles of the composite magnetic particles and the binder resin is preferably 1 to 20% by mass of the binder resin and 80 to 99% by mass of the magnetic particles. When the content of the magnetic particles is less than 80 wt%, the saturation magnetization value becomes small, and when it exceeds 99 wt%, the binding between the magnetic particles by the phenol resin tends to be weak. Considering the strength of the composite magnetic particles, it is preferably 97 wt% or less.

磁性体微粒子としては、マグネタイト、ガンマ酸化鉄等のスピネルフェライト、鉄以外の金属(Mn、Ni、Zn、Mg、Cu等)を一種又は二種以上含有するスピネルフェライト、バリウムフェライト等のマグネトプランバイト型フェライト、表面に酸化層を有する鉄や合金の微粒子粉末を用いることができる。その形状は、粒状、球状、針状のいずれであってもよい。特に、高磁化を要する場合には、鉄等の強磁性微粒子粉末を用いることができるが、化学的な安定性を考慮すると、マグネタイト、ガンマ酸化鉄を含むスピネルフェライトやバリウムフェライト等のマグネトプランバイト型フェライトの強磁性体微粒子粉末を用いることが好ましい。強磁性体微粒子粉末の種類及び含有量を適宜選択することにより、所望の飽和磁化を有する複合体粒子を得ることができる。   Magnetic fine particles include spinel ferrite such as magnetite and gamma iron oxide, and magnetoplumbites such as spinel ferrite and barium ferrite containing one or more metals other than iron (Mn, Ni, Zn, Mg, Cu, etc.). Type ferrite, fine particle powder of iron or alloy having an oxide layer on the surface can be used. The shape may be any of granular, spherical and acicular. In particular, when high magnetization is required, ferromagnetic fine particle powders such as iron can be used. However, in view of chemical stability, magnetoplumbites such as spinel ferrite and barium ferrite containing magnetite and gamma iron oxide are used. It is preferable to use ferromagnetic fine particle powder of type ferrite. By appropriately selecting the type and content of the ferromagnetic fine particle powder, composite particles having a desired saturation magnetization can be obtained.

1000エルステッド(79.57kA/m)の磁界下での測定において、磁化の強さが30〜70Am2/kg、好ましくは35〜60Am2/kgであり、残留磁化(σr)が0.1〜20Am2/kg、好ましくは0.1〜10Am2/kgであり、比抵抗値が1×106〜1×1014Ωcm、好ましくは5×106〜5×1013Ωcm、さらに好ましくは5×106〜5×109Ωcmであることが好ましい。 In measurement under a magnetic field of 1000 oersted (79.57 kA / m), the strength of magnetization is 30 to 70 Am 2 / kg, preferably 35 to 60 Am 2 / kg, and the residual magnetization (σr) is 0.1 to 20 Am 2 / kg, preferably 0.1 to 10 Am 2 / kg, specific resistance value of 1 × 10 6 to 1 × 10 14 Ωcm, preferably 5 × 10 6 to 5 × 10 13 Ωcm, more preferably 5 It is preferable that it is * 10 < 6 > -5 * 10 < 9 > ohm-cm.

本発明にかかるキャリアの製造方法においては、水性媒体中でフェノール類とアルデヒド類を塩基性触媒の存在下、磁性体粒子、懸濁安定剤を共存させて反応させる。   In the carrier production method according to the present invention, phenols and aldehydes are reacted in an aqueous medium in the presence of a basic catalyst in the presence of magnetic particles and a suspension stabilizer.

ここで使用されるフェノール類としては、フェノールの他、m−クレゾール、p−tert−ブチルフェノール、o−プロピルフェノール、レゾルシノール、ビスフェノールA等のアルキルフェノール類、及びベンゼン核又はアルキル基の一部又は全部が塩素原子又は臭素原子で置換されたハロゲン化フェノール類等のフェノール性水酸基を有する化合物が挙げられるが、この中でフェノールが最も好ましい。フェノール類としてフェノール以外の化合物を用いた場合には、粒子が生成し難かったり、粒子が生成したとしても不定形状であったりすることがあるので、形状性を考慮すれば、フェノールが最も好ましい。   As phenols used here, in addition to phenol, alkylphenols such as m-cresol, p-tert-butylphenol, o-propylphenol, resorcinol, bisphenol A, and a part or all of the benzene nucleus or alkyl group are included. Although the compound which has phenolic hydroxyl groups, such as halogenated phenol substituted by the chlorine atom or the bromine atom, is mentioned, Among these, phenol is the most preferable. When a compound other than phenol is used as the phenol, particles are difficult to form, or even if particles are formed, they may have an indeterminate shape. Therefore, phenol is most preferable in view of shape.

また、本発明における複合体粒子の製造法で用いられるアルデヒド類としては、ホルマリン又はパラホルムアルデヒドのいずれかの形態のホルムアルデヒド及びフルフラール等が挙げられるが、ホルムアルデヒドが特に好ましい。   The aldehydes used in the method for producing composite particles in the present invention include formaldehyde and furfural in the form of either formalin or paraformaldehyde, and formaldehyde is particularly preferable.

また、本発明の樹脂被覆層に用いる樹脂としては、フッ素変性シリコーン系樹脂が必須である。そのフッ素変性シリコーン系樹脂としては、パーフロロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとの反応から得られる架橋性フッ素変性シリコ−ン樹脂が好ましい。ポリオルガノシロキサンとパーフロロアルキル基含有の有機ケイ素化合物との配合比は、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下であることが好ましい。従来のフェライトコア粒子への被覆に比べて、硬化型樹脂中に磁性体粒子を分散した複合磁性粒子における接着性が強まり、後述する帯電性とともに、耐久性向上の効果が発揮される。   Moreover, as resin used for the resin coating layer of this invention, a fluorine-modified silicone resin is essential. The fluorine-modified silicone resin is preferably a crosslinkable fluorine-modified silicone resin obtained from a reaction between a perfluoroalkyl group-containing organosilicon compound and polyorganosiloxane. The compounding ratio of the polyorganosiloxane and the perfluoroalkyl group-containing organosilicon compound is 3 parts by weight or more and 20 parts by weight or less of the perfluoroalkyl group-containing organosilicon compound with respect to 100 parts by weight of the polyorganosiloxane. Is preferred. Compared to the conventional coating on ferrite core particles, the adhesiveness of the composite magnetic particles in which the magnetic particles are dispersed in the curable resin is strengthened, and the effect of improving the durability is exhibited together with the chargeability described later.

ポリオルガノシロキサンは下記式(化5)及び(化6)から選ばれる少なくとも一つの繰り返し単位を示すものが好ましい。   The polyorganosiloxane preferably exhibits at least one repeating unit selected from the following formulas (Chemical Formula 5) and (Chemical Formula 6).

Figure 0004482481
Figure 0004482481

(但し、R1,R2は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基またはフェニル基、R3,R4は炭素数1〜4のアルキル基またはフェニル基を示し、mは平均重合度であり正の整数(好ましくは2以上500以下の範囲、さらに好ましくは5以上200以下の範囲)を示す。) (However, R 1 and R 2 are hydrogen atoms, halogen atoms, hydroxy groups, methoxy groups, alkyl groups having 1 to 4 carbon atoms or phenyl groups, and R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms or phenyl groups. M represents an average degree of polymerization and represents a positive integer (preferably in the range of 2 to 500, more preferably in the range of 5 to 200).

Figure 0004482481
Figure 0004482481

(但し、R1,R2はそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基、フェニル基、R3,R4,R5,R6は炭素数1〜4のアルキル基またはフェニル基を示し、nは平均重合度であり正の整数(好ましくは2以上500以下の範囲、さらに好ましくは5以上200以下の範囲)を示す。)
パーフロロアルキル基含有の有機ケイ素化合物の例としては、CF3CH2CH2Si(OCH33、C49CH2CH2Si(CH3)(OCH32、C817CH2CH2Si(OCH33、C817CH2CH2Si(OC253、(CF32CF(CF28CH2CH2Si(OCH33等が挙げられるが、特にトリフロロプロピル基を有するものが好ましい。
(However, R 1 and R 2 are each a hydrogen atom, a halogen atom, a hydroxy group, a methoxy group, an alkyl group having 1 to 4 carbon atoms, a phenyl group, R 3 , R 4 , R 5 and R 6 are each having 1 to 1 carbon atoms. 4 represents an alkyl group or a phenyl group, and n represents an average degree of polymerization and represents a positive integer (preferably in the range of 2 to 500, more preferably in the range of 5 to 200).
Examples of perfluoroalkyl group-containing organosilicon compounds include CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (OCH 3 ) 2 , and C 8 F 17. CH 2 CH 2 Si (OCH 3 ) 3, C 8 F 17 CH 2 CH 2 Si (OC 2 H 5) 3, (CF 3) 2 CF (CF 2) 8 CH 2 CH 2 Si (OCH 3) 3 , etc. In particular, those having a trifluoropropyl group are preferred.

また、本実施形態においては、アミノシランカップリング剤を被覆樹脂層に含有させる。このアミノシランカップリング剤としては公知のものでよく、例えばγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、オクタデシルメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド(上からSH6020、SZ6023、AY43−021:共に東レダウコーニングシリコーン社製商品名)、KBM602、KBM603、KBE903、KBM573(信越シリコーン社製商品名)等が挙げられるが、特に、1級アミンが好ましい。メチル基、エチル基、フェニル基等で置換された2級又は3級のアミンでは極性が弱く、トナーとの帯電立ち上がり特性に対して効果が少ない。また、アミノ基の部分が、アミノメチル基、アミノエチル基、アミノフェニル基になると、シランカップリング剤の最先端は、1級アミンであるが、シランから伸びる直鎖の有機基中のアミノ基は、トナーとの帯電立ち上がり特性に寄与せず、逆に高湿時に水分の影響を受けるため、最先端のアミノ基により初期のトナーとの帯電付与能力は有するものの、耐刷時に帯電付与能力が下がり、最終的には寿命が短いものとなる。   Moreover, in this embodiment, an aminosilane coupling agent is contained in the coating resin layer. As this aminosilane coupling agent, known ones may be used. For example, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, octadecylmethyl [3- (trimethoxy Cyril) propyl] ammonium chloride (from the top SH6020, SZ6023, AY43-021: trade names manufactured by Toray Dow Corning Silicone), KBM602, KBM603, KBE903, KBM573 (trade names manufactured by Shin-Etsu Silicone), etc. Primary amines are preferred. A secondary or tertiary amine substituted with a methyl group, ethyl group, phenyl group or the like is weak in polarity and has little effect on the charge rising characteristics with the toner. When the amino group is an aminomethyl group, aminoethyl group, or aminophenyl group, the most advanced silane coupling agent is a primary amine, but the amino group in a linear organic group extending from the silane. Does not contribute to the charge start-up characteristics with the toner and, conversely, is affected by moisture at high humidity, so it has the charge imparting ability with the initial toner due to the state-of-the-art amino group, but it has the charge imparting ability during printing durability. It will eventually drop and its life will be short.

そこでこのようなアミノシランカップリング剤とフッ素変性シリコ−ン樹脂を併用して用いることにより、トナーに対して、シャ−プな帯電量分布を確保したまま、負帯電性を付与でき、かつ補給されたトナーに対し、早い帯電立ち上がり性を有し、トナー消費量を低減させることができる。さらに、アミノシランカップリング剤が架橋剤の如き効果を発現し、ベ−ス樹脂であるフッ素変性シリコ−ン樹脂層の架橋度を向上させ、被膜樹脂硬度をさらに向上させ、長期使用での摩耗・剥離等が低減でき、耐スペント性を向上させ、帯電付与能力の低下が抑えられて帯電の安定化が図られ、耐久性が向上する。   Therefore, by using such an aminosilane coupling agent and a fluorine-modified silicone resin in combination, negative chargeability can be imparted to the toner while ensuring a sharp charge amount distribution, and the toner is replenished. The toner has a quick charge rising property and can reduce the toner consumption. Furthermore, the aminosilane coupling agent expresses an effect like a crosslinking agent, improves the degree of crosslinking of the fluorine-modified silicone resin layer as the base resin, further improves the coating resin hardness, Separation and the like can be reduced, the spent resistance is improved, the decrease in charge imparting ability is suppressed, the charge is stabilized, and the durability is improved.

さらに前述したトナーの構成において、低融点のワックスを一定量以上添加したトナー表面は略樹脂のみであるため、帯電性がやや不安定な面がある。例えば帯電性が弱く、また帯電立ち上がり性が遅くなるケ−スが想定され、カブリ、全面ベタ画像の均一性が低下し、また転写時に文字飛び、中抜けが発生しやすくなるが、トナーと本キャリアを組合せて使用することにより、上記課題が改善され、現像器内でのハンドリング性が向上し、ベタ画像採取後に履歴が残るいわゆる現像メモリーも低減できる。   Further, in the toner configuration described above, the surface of the toner to which a certain amount or more of the low melting point wax is added is substantially resin, so that the chargeability is somewhat unstable. For example, a case where the charging property is weak and the charging start-up property is slow is assumed, and the uniformity of fog and the whole surface of the solid image is deteriorated. By using the carrier in combination, the above problems are improved, the handling property in the developing device is improved, and the so-called development memory in which a history remains after collecting a solid image can be reduced.

アミノシランカップリング剤の使用割合としては、樹脂に対して、5〜40重量%、好ましくは10〜30重量%である。5重量%未満であるとアミノシランカップリング剤の効果がなく、40重量%を越えると樹脂被覆層の架橋度が高くなり過ぎ、チャ−ジアップ現象を引き起こし易くなり、現像性不足等の画像欠陥の発生原因となることがある。   The use ratio of the aminosilane coupling agent is 5 to 40% by weight, preferably 10 to 30% by weight, based on the resin. If the amount is less than 5% by weight, the effect of the aminosilane coupling agent is not obtained. If the amount exceeds 40% by weight, the degree of crosslinking of the resin coating layer becomes too high, and the charge-up phenomenon is likely to occur. It may cause the occurrence.

また、帯電安定化のため,チャージアップを防止するため、樹脂被覆層には導電性微粒子を含有することも可能である。導電性微粒子としては、オイルファーネスカーボンやアセチレンブラックのカーボンブラック、酸化チタン、酸化亜鉛などの半導電性酸化物、酸化チタン、酸化亜鉛、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粉末表面を酸化スズやカーボンブラック、金属で被覆したもの等が挙げられ、その固有抵抗が1010Ω・cm以下のものが好ましい。導電性微粒子を用いる場合の含有量は1〜15重量%が好ましい。導電性微粒子は、樹脂被覆層に対し、ある程度の含有量であれば、フィラ−効果により樹脂被覆層の硬度の向上をもたらすが、15重量%を越えると、逆に樹脂被覆層の形成を阻害し、密着性・硬度の低下の原因となる。さらには、フルカラ−現像剤における導電性微粒子の過剰の含有量は、紙面上に転写・定着されたトナ−の色汚れの原因となる。 Further, in order to prevent charge-up in order to stabilize charging, the resin coating layer can contain conductive fine particles. Conductive fine particles include oil furnace carbon and acetylene black carbon black, semiconductive oxides such as titanium oxide and zinc oxide, powder surfaces such as titanium oxide, zinc oxide, barium sulfate, aluminum borate and potassium titanate. Examples thereof include tin oxide, carbon black, and those coated with metal, and those having a specific resistance of 10 10 Ω · cm or less are preferred. The content in the case of using conductive fine particles is preferably 1 to 15% by weight. If the conductive fine particles are contained in a certain amount with respect to the resin coating layer, the filler effect increases the hardness of the resin coating layer by the filler effect. However, if the content exceeds 15% by weight, the formation of the resin coating layer is inhibited. However, it causes a decrease in adhesion and hardness. Further, the excessive content of the conductive fine particles in the full color developer causes the color stain of the toner transferred and fixed on the paper surface.

複合磁性粒子上に被覆層を形成する方法には、特に制限はなく、公知の被覆方法、例えば、複合磁性粒子である粉末を、被膜層形成用溶液中に浸漬する浸漬法、被膜層形成用溶液を複合磁性粒子の表面に噴霧するスプレー法、複合磁性粒子を流動エアーにより浮遊させた状態で被膜層形成用溶液を噴霧する流動床法、ニーダーコーター中で複合磁性粒子と被膜層形成用溶液を混合し、溶剤を除去するニーダーコーター法等の湿式被覆方法の他、粉末状の樹脂と複合磁性粒子とを高速混合し、その摩擦熱を利用することで樹脂粉末を複合磁性粒子表面に融着被覆する乾式被覆方法等が挙げられ、いずれも適用することができるが、本発明におけるアミノシランカップリング剤を含有するフッ素変性シリコ−ン系樹脂の被覆においては、湿式被覆方法が特に好ましく用いられる。   The method for forming the coating layer on the composite magnetic particles is not particularly limited. For example, a known coating method, for example, an immersion method in which a powder that is a composite magnetic particle is immersed in a solution for forming a coating layer, or for forming a coating layer. Spray method of spraying the solution onto the surface of the composite magnetic particles, fluidized bed method of spraying the solution for forming the coating layer in a state where the composite magnetic particles are suspended by the flowing air, and the solution for forming the composite magnetic particles and the coating layer in a kneader coater In addition to wet coating methods such as the kneader coater method to remove the solvent, the powdered resin and composite magnetic particles are mixed at high speed, and the frictional heat is used to fuse the resin powder onto the surface of the composite magnetic particles. Any of these can be applied, and in the coating of a fluorine-modified silicone resin containing an aminosilane coupling agent in the present invention, wet coating is possible. The law is particularly preferably used.

被膜層形成用塗布液に使用する溶剤は、前記コート樹脂を溶解するものであれば特に限定されるものではなく、用いられるコート樹脂に適合するように選択することができる。一般的には、例えば、トルエン、キシレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類が使用できる。   The solvent used in the coating layer forming coating solution is not particularly limited as long as it dissolves the coating resin, and can be selected so as to be compatible with the coating resin used. In general, for example, aromatic hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, and ethers such as tetrahydrofuran and dioxane can be used.

樹脂被覆量は複合磁性粒子に対し、0.2〜6.0重量%が好ましく、より好ましくは0.5〜5.0重量%、さらに好ましくは0.6〜4.0重量%、0.7〜3重量%である。樹脂の被覆量が0.2重量%未満になると、複合磁性粒子表面に均一な被覆を形成することができず複合磁性粒子の特性の影響を大きく受けてしまい、本発明のフッ素変性シリコ−ン樹脂とアミノシランカップリング剤の効果を充分に発揮できない。6.0重量%を超えると被覆層が厚くなり過ぎ、複合磁性粒子同士の造粒が発生し、均一な複合磁性粒子が得られない傾向にある。   The resin coating amount is preferably 0.2 to 6.0% by weight, more preferably 0.5 to 5.0% by weight, still more preferably 0.6 to 4.0% by weight, and 0.0% by weight based on the composite magnetic particles. 7 to 3% by weight. If the coating amount of the resin is less than 0.2% by weight, a uniform coating cannot be formed on the surface of the composite magnetic particles, and the influence of the characteristics of the composite magnetic particles is greatly affected, and the fluorine-modified silicone of the present invention The effect of the resin and the aminosilane coupling agent cannot be fully exhibited. When the content exceeds 6.0% by weight, the coating layer becomes too thick, and the composite magnetic particles are granulated, and uniform composite magnetic particles tend not to be obtained.

このようにして、複合磁性粒子表面にアミノシランカップリング剤を含有するフッ素変性シリコ−ン樹脂を被覆した後には、焼き付け処理を施すことが好ましい。焼き付け処理を施す手段としては、特に制限はなく、外部加熱方式又は内部加熱方式のいずれでもよく、例えば、固定式又は流動式電気炉、ロ−タリ−キルン式電気炉、バ−ナ−炉でもよく、もしくはマイクロ波による焼き付けでもよい。ただし、焼き付け処理の温度に関しては、樹脂被覆層の耐スペント性を向上さるというフッ素シリコ−ンの効果を効率よく発現させるために、200〜350℃の高温で処理することが好ましく、より好ましくは、220〜280℃である。処理時間は1.5〜2.5時間が好ましい。処理温度が低いと被膜樹脂自体の硬度が低下する。処理温度が高すぎると帯電低下が生じる。   Thus, after coating the fluorine-modified silicone resin containing an aminosilane coupling agent on the surface of the composite magnetic particles, it is preferable to perform a baking treatment. The means for performing the baking process is not particularly limited, and may be either an external heating system or an internal heating system, for example, a fixed or fluid electric furnace, a rotary kiln electric furnace, or a burner furnace. Or it may be baked by microwave. However, with regard to the temperature of the baking treatment, in order to efficiently express the effect of the fluorine silicone that improves the spent resistance of the resin coating layer, the treatment is preferably performed at a high temperature of 200 to 350 ° C., more preferably 220-280 ° C. The treatment time is preferably 1.5 to 2.5 hours. When the treatment temperature is low, the hardness of the coating resin itself is lowered. If the processing temperature is too high, charge reduction occurs.

(9)二成分現像
現像プロセスでは、感光体と現像ローラ間には直流バイアスと共に交流バイアスを印加する。そのときの周波数が1〜10kHz、交流バイアスが1.0〜2.5kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.2〜1:2であることが好ましい。より好ましくは周波数が3.5〜8kHz、交流バイアスが1.2〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.5〜1:1.8である。更に好ましくは周波数が5.5〜7kHz、交流バイアスが1.5〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.6〜1:1.8である。
(9) Two-component development In the development process, an AC bias is applied between the photosensitive member and the developing roller together with a DC bias. The frequency at that time is 1 to 10 kHz, the AC bias is 1.0 to 2.5 kV (pp), and the peripheral speed ratio between the photoconductor and the developing roller is 1: 1.2 to 1: 2. It is preferable. More preferably, the frequency is 3.5 to 8 kHz, the AC bias is 1.2 to 2.0 kV (pp), and the peripheral speed ratio between the photosensitive member and the developing roller is 1: 1.5 to 1: 1. .8. More preferably, the frequency is 5.5 to 7 kHz, the AC bias is 1.5 to 2.0 kV (pp), and the peripheral speed ratio between the photosensitive member and the developing roller is 1: 1.6 to 1: 1. .8.

この現像プロセス構成と本実施形態のトナー又は二成分現像剤の使用により、ドットを忠実に再現でき、原稿濃度と出力された画像の濃度比例させる(現像γ特性をねかせる特性ともいう。)ことができる。高画質画像とオイルレス定着性を両立できる。また高抵抗キャリアでも低湿下でのチャージアップを防止でき、連続使用においても高画像濃度を得ることができる。   With this development process configuration and the use of the toner or the two-component developer of the present embodiment, dots can be faithfully reproduced, and the original density and the density of the output image are proportional (also referred to as a characteristic that repels development γ characteristics). it can. Both high-quality images and oilless fixability can be achieved. Further, even a high-resistance carrier can prevent charge-up under low humidity, and a high image density can be obtained even in continuous use.

トナー表面が略樹脂主体であっても、本キャリア組成と交流バイアスとの併用により、キャリアとの付着力を低減でき画像濃度を維持できると共にカブリを低減でき、ドットをも忠実に再現できるものと思われる。   Even if the toner surface is almost resin-based, the combined use of this carrier composition and AC bias can reduce adhesion to the carrier, maintain image density, reduce fog, and reproduce dots faithfully. Seem.

周波数が1kHzより小さいと、ドット再現性が悪化し、中間調再現性が悪化する。周波数が10kHzより大きくなると、現像領域での追随ができず、効果が現れない。この周波数の領域では高抵抗キャリアを使用した二成分現像において、現像ローラと感光体間よりもキャリアとトナー間での往復作用に働き、トナーをキャリアから微少に遊離させる効果があり、これによりドット再現性、中間調再現性が良好に行われ、かつ高画像濃度を出すことが可能になる。   If the frequency is smaller than 1 kHz, dot reproducibility is deteriorated and halftone reproducibility is deteriorated. When the frequency is higher than 10 kHz, the development region cannot be followed and the effect does not appear. In this frequency range, in the two-component development using a high resistance carrier, it works to reciprocate between the carrier and the toner rather than between the developing roller and the photosensitive member, and has the effect of slightly releasing the toner from the carrier. Good reproducibility and halftone reproducibility are achieved, and a high image density can be obtained.

交流バイアスが1.0kV(p−p)より小さくなると、チャージアップの抑制の効果が得られず、交流バイアスが2.5kV(p−p)より大きくなるとカブリが増大する。感光体と現像ローラ間の周速度比が1:1.2より小さいと(現像ローラが遅くなる)画像濃度が得にくい。感光体と現像ローラ間の周速度比が1:2より大きくなると(現像ローラ速度が上がる)とトナー飛散が多くなる。   When the AC bias is smaller than 1.0 kV (pp), the effect of suppressing charge-up cannot be obtained, and when the AC bias is larger than 2.5 kV (pp), the fog increases. If the peripheral speed ratio between the photoconductor and the developing roller is smaller than 1: 1.2 (the developing roller becomes slow), it is difficult to obtain image density. When the peripheral speed ratio between the photosensitive member and the developing roller is larger than 1: 2 (the developing roller speed is increased), toner scattering increases.

(10)タンデムカラープロセス
高速にカラー画像を形成するために、本実施形態では、感光体と帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、像担持体上に形成した静電潜像を顕像化したトナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成された転写プロセスにおいて、第1の一次転写位置から第2の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65となる転写位置構成を取る構成で、マシンの小型化と印字速度の両立を図るものである。毎分20枚(A4)以上処理でき、かつマシンがSOHO用途として使用できる大きさの小型化を実現するためには、複数のトナー像形成ステーション間を短く、かつプロセス速度を高める構成が必須である。その小型化と印字速度の両立のためには上記値が0.65以下とする構成がミニマムと考えられる。
(10) Tandem color process In order to form a color image at high speed, this embodiment has a plurality of toner image forming stations including a photoconductor, a charging means, and a toner carrier, and a static image formed on the image carrier. A primary transfer process in which a toner image obtained by developing an electrostatic latent image is transferred to the transfer member by bringing an endless transfer member into contact with the image carrier is sequentially executed, and a multilayer image is formed on the transfer member. A transfer process configured to execute a secondary transfer process in which a multi-layer toner image formed on the transfer body is then collectively transferred to a transfer medium such as paper or OHP. When the distance from the first primary transfer position to the second primary transfer position is d1 (mm) and the peripheral speed of the photosensitive member is v (mm / s), the transfer position satisfies d1 / v ≦ 0.65. In the configuration that takes the configuration, This is intended to achieve both downsizing of the printer and printing speed. In order to realize a reduction in size that can process 20 sheets per minute (A4) or more and the machine can be used for SOHO, it is essential to have a configuration in which a plurality of toner image forming stations are short and the process speed is increased. is there. In order to achieve both a reduction in size and a printing speed, a configuration in which the above value is 0.65 or less is considered a minimum.

しかし、このトナー像形成ステーション間を短い構成をとるとき、例えば1色目のイエロートナーが一次転写された後、次の2色目のマゼンタトナーが一次転写されるまでの時間が極めて短く、転写体の帯電緩和又は転写されたトナーの電荷緩和が殆ど生じず、イエロートナーの上にマゼンタトナーを転写する際に、マゼンタトナーがイエロートナーの電荷作用により反発され、転写効率の低下、転写時の文字の中抜けという問題が生じる。さらに第3色目のシアントナーの一次転写の時、前のイエロー、マゼンタトナーの上に転写される際にシアントナーの飛び散り、転写不良、転写中抜けが顕著に発生する。さらに繰り返し使用しているうちに特定粒径のトナーが選択的に現像され、トナー粒子個々の流動性が大きく異なると摩擦帯電する機会が異なるため、帯電量のバラツキが生じ、より転写性の劣化を招いてしまう。   However, when the configuration between the toner image forming stations is short, for example, the time from the primary transfer of the yellow toner of the first color to the primary transfer of the next magenta toner of the second color is extremely short. There is almost no charge relaxation or charge relaxation of the transferred toner, and when transferring the magenta toner onto the yellow toner, the magenta toner is repelled by the charge action of the yellow toner, the transfer efficiency decreases, The problem of hollowing out occurs. Further, during the primary transfer of the cyan toner of the third color, the cyan toner scatters, transfer failure, and transfer loss occur remarkably when transferred onto the previous yellow and magenta toners. Furthermore, during repeated use, toner of a specific particle size is selectively developed, and if the fluidity of each toner particle differs greatly, the chance of frictional charging differs, resulting in variation in charge amount and further deterioration in transferability. Will be invited.

そこで、本実施形態のトナー又は二成分現像剤を使用することにより、帯電分布が安定化しトナーの過帯電を抑えると共に、流動性変動を抑えることができる。そのため定着特性を犠牲にすることなく、転写効率の低下、転写時の文字の中抜け、逆転写を防止することができる。   Therefore, by using the toner or the two-component developer of the present embodiment, the charge distribution is stabilized, the toner can be prevented from being overcharged, and the fluidity fluctuation can be suppressed. For this reason, it is possible to prevent transfer efficiency from being lowered, character dropout during transfer, and reverse transfer without sacrificing fixing characteristics.

(11)クリーナレスプロセス
本実施形態では、転写プロセス後に感光体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とする電子写真装置にも好適に使用される。
(11) Cleanerless process In this embodiment, a cleanerless process that performs the following charging, exposure, and development processes without using a cleaning process that collects toner remaining on the photoreceptor after cleaning by cleaning is basically used. It is also suitably used for the electrophotographic apparatus having the configuration.

本実施形態のトナー又は二成分現像剤の使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、高転写効率を得ることが可能となる。また樹脂中での均一分散性の向上、良好な帯電性、材料の有する離型性により、非画像部に残留したトナーの現像での回収が良好に行える。そのため、非画像部の前の画像パターンが残る現像メモリーも発生もない。   By using the toner or the two-component developer of the present embodiment, toner aggregation is suppressed, overcharging is prevented, charging property is stabilized, and high transfer efficiency can be obtained. Further, the improvement in uniform dispersibility in the resin, good chargeability, and the releasability of the material make it possible to recover the toner remaining in the non-image area during development. For this reason, there is no development memory in which the image pattern in front of the non-image portion remains.

(12)オイルレスカラー定着
本実施形態では、トナーを定着する手段にオイルを使用しないオイルレス定着構成の定着プロセスを具備する電子写真装置に好適に使用される。その加熱手段としては電磁誘導加熱がウオームアップ時間の短縮、省エネの観点から好ましい構成である。磁場発生手段と、電磁誘導により発生する発熱層及び離型層を少なくとも有する回転加熱部材と、該回転加熱部材と一定のニップを形成している回転加圧部材とを少なくとも有する加熱加圧手段を使用して、回転加熱部材と回転加圧部材間にトナーが転写された複写紙等の転写媒体を通過させ、定着させる構成である。その特徴として、回転加熱部材のウオームアップ時間が従来のハロゲンランプを使用している場合に比べて、非常に早い立ち上がり性を示す。そのため回転加圧部材が十分に昇温していない状態で複写の動作に入るため、低温定着と広範囲な耐オフセット性が要求される。
(12) Oilless Color Fixation In this embodiment, the present invention is suitably used for an electrophotographic apparatus having a fixing process having an oilless fixing configuration in which oil is not used as a toner fixing unit. As the heating means, electromagnetic induction heating is a preferable configuration from the viewpoint of shortening the warm-up time and saving energy. A heating and pressurizing unit having at least a magnetic field generating unit, a rotary heating member having at least a heat generation layer and a release layer generated by electromagnetic induction, and a rotary pressurizing member forming a fixed nip with the rotary heating member; In this configuration, a transfer medium such as copy paper on which toner is transferred is passed between the rotary heating member and the rotary pressure member, and is fixed. As a feature thereof, the warm-up time of the rotary heating member is very fast compared to the case where a conventional halogen lamp is used. For this reason, since the copying operation is started in a state where the temperature of the rotary pressure member is not sufficiently raised, low temperature fixing and a wide range of offset resistance are required.

構成としては、加熱部材と定着部材を分離した定着ベルトを使用した構成も好ましく使用される。そのベルトとしては耐熱性と変形自在性とを有するニッケル電鋳ベルトやポリイミドベルトの耐熱ベルトが好適に用いられる。離形性を向上するために表面層としてシリコーンゴム、フッ素ゴム、フッ素樹脂を用いるのが好ましい。   As a configuration, a configuration using a fixing belt in which a heating member and a fixing member are separated is also preferably used. As the belt, a heat resistant belt such as a nickel electroformed belt or a polyimide belt having heat resistance and deformability is preferably used. In order to improve releasability, it is preferable to use silicone rubber, fluororubber, or fluororesin as the surface layer.

これらの定着においては、従来は離型オイルを塗布してオフセットを防止してきた。オイルを使用せずに離型性を有するトナーにより、離型オイルを塗布する必要はなくなった。しかし、離型オイルを塗布しないと帯電しやすく、未定着のトナー像が加熱部材又は定着部材と近接すると帯電の影響により、トナー飛びが生じる場合がある。特に低温低湿下において発生しやすい。   In such fixing, conventionally, release oil has been applied to prevent offset. It is no longer necessary to apply release oil with toner having releasability without using oil. However, if the release oil is not applied, it is easy to be charged, and if an unfixed toner image comes close to the heating member or the fixing member, toner jump may occur due to the influence of charging. It tends to occur especially at low temperatures and low humidity.

そこで、本実施形態のトナーの使用により、オイルを使用せずとも低温定着と広範囲な耐オフセット性を実現でき、カラー高透光性を得ることができる。またトナーの過帯電性を抑制でき加熱部材又は定着部材との帯電作用によるトナーの飛びを抑えられる。   Therefore, by using the toner of this embodiment, low temperature fixing and a wide range of offset resistance can be realized without using oil, and high color translucency can be obtained. Further, the toner can be prevented from being overcharged, and toner flying due to the charging action with the heating member or the fixing member can be suppressed.

(キャリア芯材製造例)
1リットルのフラスコに、フェノール52g、37%ホルマリン75g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子400g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。
(Example of carrier core material production)
A 1 liter flask was charged with 52 g of phenol, 75 g of 37% formalin, 400 g of spherical magnetite particles having an average particle size of 0.24 μm, 15 g of 28% ammonia water, 1.0 g of calcium fluoride and 50 g of water while stirring. After raising the temperature to 85 ° C. for 60 minutes, the composite magnetic particles composed of phenol resin and spherical magnetite particles were generated by reacting and curing at the same temperature for 120 minutes.

次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材A)を得た。   Next, after the contents in the flask were cooled to 30 ° C., 0.5 liter of water was added thereto, the supernatant was removed, and the lower layer precipitate was washed with water and air-dried. Subsequently, this was dried at 50-60 degreeC under pressure reduction (5 mmHg or less), and the composite magnetic particle (carrier core material A) was obtained.

1リットルのフラスコに、フェノール50g、37%ホルマリン65g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子450g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。   A 1 liter flask was charged with 50 g of phenol, 65 g of 37% formalin, 450 g of spherical magnetite particles having an average particle size of 0.24 μm, 15 g of 28% ammonia water, 1.0 g of calcium fluoride and 50 g of water while stirring. After raising the temperature to 85 ° C. for 60 minutes, the composite magnetic particles composed of phenol resin and spherical magnetite particles were generated by reacting and curing at the same temperature for 120 minutes.

次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材B)を得た。   Next, after the contents in the flask were cooled to 30 ° C., 0.5 liter of water was added thereto, the supernatant was removed, and the lower layer precipitate was washed with water and air-dried. Subsequently, this was dried at 50-60 degreeC under pressure reduction (5 mmHg or less), and the composite magnetic particle (carrier core material B) was obtained.

1リットルのフラスコに、フェノール47.5g、37%ホルマリン62g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子480g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。   A 1 liter flask is charged with 47.5 g of phenol, 62 g of 37% formalin, 480 g of spherical magnetite particles having an average particle size of 0.24 μm, 15 g of 28% ammonia water, 1.0 g of calcium fluoride and 50 g of water, and stirred. Then, the temperature was raised to 85 ° C. over 60 minutes, and then reacted and cured at the same temperature for 120 minutes to produce composite magnetic particles composed of phenol resin and spherical magnetite particles.

次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材C)を得た。   Next, after the contents in the flask were cooled to 30 ° C., 0.5 liter of water was added thereto, the supernatant was removed, and the lower layer precipitate was washed with water and air-dried. Next, this was dried at 50 to 60 ° C. under reduced pressure (5 mmHg or less) to obtain composite magnetic particles (carrier core material C).

比較例として、平均粒径80μm、印加磁場が238.74kA/m(3000エルステット)の時の飽和磁化が65Am2/kgであるフェライト粒子の芯材dを用いた。 As a comparative example, a core material d of ferrite particles having an average particle size of 80 μm and a saturation magnetization of 65 Am 2 / kg when the applied magnetic field is 238.74 kA / m (3000 oersted) was used.

(キャリア製造例1)
次に、下記式(化7)で示されるR1、R2がメチル基、すなわち(CH32SiO2/2単位が15.4mol%、下記式(化8)で示されるR3がメチル基、すなわちCH3SiO3/2単位が84.6mol%であるポリオルガノシロキサン250gと、CF3CH2CH2Si(OCH3321gとを反応させフッ素変性シリコーン樹脂を得た。さらにそのフッ素変性シリコーン樹脂を固形分換算で100gとアミノシランカップリング剤(γ−アミノプロピルトリエトキシシラン)10gとを秤量し、300ccのトルエン溶剤に溶解させた。
(Carrier production example 1)
Next, R 1 and R 2 represented by the following formula (Chemical Formula 7) are methyl groups, that is, 15.4 mol% of (CH 3 ) 2 SiO 2/2 units, and R 3 represented by the following formula (Chemical Formula 8) is A fluorine-modified silicone resin was obtained by reacting 250 g of a polyorganosiloxane having a methyl group, that is, 84.6 mol% of CH 3 SiO 3/2 unit, and 21 g of CF 3 CH 2 CH 2 Si (OCH 3 ) 3 . Further, 100 g of the fluorine-modified silicone resin in terms of solid content and 10 g of aminosilane coupling agent (γ-aminopropyltriethoxysilane) were weighed and dissolved in 300 cc of toluene solvent.

Figure 0004482481
Figure 0004482481

(但し、R1,R2,R3,R4はメチル基、mは平均重合度であり100である。) (However, R 1 , R 2 , R 3 , R 4 are methyl groups, m is the average degree of polymerization and is 100.)

Figure 0004482481
Figure 0004482481

(但し、R1,R2,R3,R4,R5,R6はメチル基、nは平均重合度であり80である。)
前記キャリア芯材A10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後260℃で1時間焼き付けを行い、キャリアA1を得た。
(However, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are methyl groups, and n is the average degree of polymerization and is 80.)
The carrier core material A10 kg was coated by using the immersion drying type coating apparatus and stirring the coating resin solution for 20 minutes. Thereafter, baking was performed at 260 ° C. for 1 hour to obtain carrier A1.

キャリアA1は、球状マグネタイト粒子の含有量が80.4質量%の球状粒子であり、平均粒子径が30μm、比重が3.05であって、磁化値が61Am2/kg、体積固有抵抗が3×109Ωcm、比表面積0.098m2/gであった。 The carrier A1 is a spherical particle having a spherical magnetite particle content of 80.4% by mass, an average particle diameter of 30 μm, a specific gravity of 3.05, a magnetization value of 61 Am 2 / kg, and a volume resistivity of 3 × 10 9 Ωcm, specific surface area was 0.098 m 2 / g.

(キャリア製造例2)
製造例1において、キャリア芯材Bを使用し、CF3CH2CH2Si(OCH33をC817CH2CH2Si(OCH33に変更した以外は、製造例1と同様の工程でキャリアB1を得た。
(Carrier production example 2)
Production Example 1 is the same as Production Example 1 except that the carrier core material B is used and CF 3 CH 2 CH 2 Si (OCH 3 ) 3 is changed to C 8 F 17 CH 2 CH 2 Si (OCH 3 ) 3. Carrier B1 was obtained in the same process.

キャリアB1は、球状マグネタイト粒子の含有量が88.4質量%の球状粒子であり、平均粒子径が45μm、比重が3.56であって、磁化値が65Am2/kg、体積固有抵抗が8×1010Ωcm、比表面積0.057m2/gであった。 The carrier B1 is a spherical particle having a spherical magnetite particle content of 88.4% by mass, an average particle diameter of 45 μm, a specific gravity of 3.56, a magnetization value of 65 Am 2 / kg, and a volume resistivity of 8 × 10 10 Ωcm and specific surface area 0.057 m 2 / g.

(キャリア製造例3)
製造例1において、キャリア芯材Cを使用し、導電性カーボン(ケッチェンブラックインタ−ナショナル社製 EC)を樹脂固形分に対し5wt%をボールミルにて分散した以外は、製造例1と同様の工程でキャリアC1を製造した。
(Carrier production example 3)
In Production Example 1, the same procedure as in Production Example 1 was conducted except that carrier core material C was used and conductive carbon (EC made by Ketjen Black International Co., Ltd.) was dispersed in a ball mill in an amount of 5 wt% based on the resin solid content. Carrier C1 was manufactured in the process.

キャリアC1は、球状マグネタイト粒子の含有量が92.5質量%の球状粒子であり、平均粒子径が48μm、比重が3.98であって、磁化値が69Am2/kg、体積固有抵抗が2×107Ωcm、比表面積0.043m2/gであった。 The carrier C1 is a spherical particle having a spherical magnetite particle content of 92.5% by mass, an average particle diameter of 48 μm, a specific gravity of 3.98, a magnetization value of 69 Am 2 / kg, and a volume resistivity of 2 × 10 7 Ωcm and specific surface area 0.043 m 2 / g.

(キャリア製造例4)
製造例1において、アミノシランカップリング剤の添加量を30gに変更した以外は、製造例1と同様の工程でキャリアA2を製造した。
(Carrier Production Example 4)
In Production Example 1, Carrier A2 was produced in the same process as Production Example 1 except that the amount of aminosilane coupling agent added was changed to 30 g.

キャリアA2は、球状マグネタイト粒子の含有量が80.4質量%の球状粒子であり、平均粒子径が30μm、比重が3.05であって、磁化値が61Am2/kg、体積固有抵抗が2×1010Ωcm、比表面積0.01m2/gであった。 The carrier A2 is a spherical particle having a spherical magnetite particle content of 80.4% by mass, an average particle diameter of 30 μm, a specific gravity of 3.05, a magnetization value of 61 Am 2 / kg, and a volume resistivity of 2 × 10 10 Ωcm and specific surface area 0.01 m 2 / g.

(キャリア製造例5)
アミノシランカップリング剤の添加量を50gに変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアa1を得た。
(Carrier Production Example 5)
Except having changed the addition amount of the aminosilane coupling agent into 50g, the core material was manufactured in the process similar to the manufacture example 1, it coated, and carrier a1 was obtained.

(キャリア製造例6)
被覆樹脂をストレートシリコーン(東レ・ダウコーニング社製 SR−2411)を固形分換算で100g、を秤量し、300ccのトルエン溶剤に溶解させた。フェライト粒子d10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアd2を得た。平均粒子径が80μm、比重が6であって、磁化値が75Am2/kg、体積固有抵抗が2×1012Ωcm、比表面積0.024m2/gであった。
(Carrier Production Example 6)
100 g of straight silicone (SR-2411 manufactured by Toray Dow Corning Co., Ltd.) as a solid content was weighed as a coating resin and dissolved in 300 cc of a toluene solvent. Coating was performed on the ferrite particles d10 kg by using an immersion drying type coating apparatus and stirring the coating resin solution for 20 minutes. Thereafter, baking was performed at 210 ° C. for 1 hour to obtain a carrier d2. The average particle diameter was 80 μm, the specific gravity was 6, the magnetization value was 75 Am 2 / kg, the volume resistivity was 2 × 10 12 Ωcm, and the specific surface area was 0.024 m 2 / g.

(キャリア製造例7)
被覆樹脂をアクリル変性シリコーン樹脂(信越化学社製 KR−9706)を固形分換算で100gを秤量し、300ccのトルエン溶剤に溶解させた。前記フェライト粒子d10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアd3を得た。平均粒子径が80μm、比重が6であって、磁化値が75Am2/kg、体積固有抵抗が2×1011Ωcm、比表面積0.022m2/gであった。
(Carrier Production Example 7)
100 g of an acrylic modified silicone resin (KR-9706, manufactured by Shin-Etsu Chemical Co., Ltd.) as a solid content was weighed and dissolved in a 300 cc toluene solvent. Coating was performed on the ferrite particles d10 kg by using an immersion drying type coating apparatus and stirring the coating resin solution for 20 minutes. Thereafter, baking was performed at 210 ° C. for 1 hour to obtain a carrier d3. The average particle diameter was 80 μm, the specific gravity was 6, the magnetization value was 75 Am 2 / kg, the volume resistivity was 2 × 10 11 Ωcm, and the specific surface area was 0.022 m 2 / g.

(実施例1)
次に本発明のトナーの実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(Example 1)
Next, examples of the toner of the present invention will be described, but the present invention is not limited to these examples.

[樹脂分散体の作成]
(表1)に使用した樹脂の特性を示す。Mnは数平均分子量、Mwは重量平均分子量,MzはZ平均分子量、Mpは分子量のピーク値、Tm(℃)は軟化点,Tg(℃)はガラス転移点を示す。スチレン、n−ブチルアクリレート、アクリル酸は配合量(g)を示す。
[Creation of resin dispersion]
Table 1 shows the characteristics of the resin used. Mn is a number average molecular weight, Mw is a weight average molecular weight, Mz is a Z average molecular weight, Mp is a molecular weight peak value, Tm (° C.) is a softening point, and Tg (° C.) is a glass transition point. Styrene, n-butyl acrylate, and acrylic acid indicate the amount (g).

Figure 0004482481
Figure 0004482481

(1)樹脂粒子分散液RL1の調製
スチレン96gと、n−ブチルアクリレート24gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で6時間乳化重合を行った。その後さらに90℃で3時間熟成処理を行い、Mnが3900、Mwが10900、Mzが37800、Mpが8100、Tmが115℃、Tgが43℃、中位径が0.12μmの樹脂粒子が分散した樹脂粒子分散液RL1を調製した。
(2)樹脂粒子分散液RL2の調製
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行った。その後さらに90℃で5時間熟成処理を行い、Mnが6600、Mwが60300、Mzが259000、Mpが8100、Tmが128℃、Tgが55℃、中位径が0.18μmの樹脂粒子が分散した樹脂粒子分散液RL2を調製した。
(3)樹脂粒子分散液RL3の調製
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール12g、四臭化炭素2.4gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行った。その後さらに90℃で2時間熟成処理を行い、Mnが2600、Mwが18300、Mzが96200、Mpが2700、Tmが109℃、Tgが45℃、中位径が0.18μmの樹脂粒子が分散した、樹脂粒子分散液RL3を調製した。
(4)樹脂粒子分散液RH4の調製
スチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが43300、Mwが262000、Mzが577000、Mpが182000、Tmが197℃、Tgが77℃、中位径が0.12μmの樹脂粒子が分散した樹脂粒子分散液RH4を調製した。
(5)樹脂粒子分散液RH5の調製
サリチル酸アルミニウム金属錯体(オリエント化学社製:E88)を4g溶融したスチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが41000、Mwが242000、Mzが575000、Mpが154000、Tmが193℃、Tgが76℃、中位径が0.22μmの樹脂粒子が分散した樹脂粒子分散液RH5を調製した。
(1) Preparation of resin particle dispersion RL1 A monomer liquid consisting of 96 g of styrene, 24 g of n-butyl acrylate, and 3.6 g of acrylic acid was added to an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd.) in 200 g of ion-exchanged water. (Product: Neogen RK) 3 g, dodecanethiol 6 g, carbon tetrabromide 1.2 g was dispersed, potassium persulfate 1.2 g was added thereto, and emulsion polymerization was performed at 70 ° C. for 6 hours. Thereafter, aging treatment is further performed at 90 ° C. for 3 hours, and resin particles having Mn of 3900, Mw of 10900, Mz of 37800, Mp of 8100, Tm of 115 ° C., Tg of 43 ° C., and median diameter of 0.12 μm are dispersed. A resin particle dispersion RL1 was prepared.
(2) Preparation of resin particle dispersion RL2 A monomer liquid consisting of 204 g of styrene, 36 g of n-butyl acrylate, and 3.6 g of acrylic acid was added to an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd.) in 400 g of ion-exchanged water. (Product: Neogen RK) 6 g, dodecanethiol 6 g, carbon tetrabromide 1.2 g was dispersed, potassium persulfate 1.2 g was added thereto, and emulsion polymerization was performed at 70 ° C. for 5 hours. Thereafter, aging treatment is further performed at 90 ° C. for 5 hours, and resin particles having Mn of 6600, Mw of 60300, Mz of 259000, Mp of 8100, Tm of 128 ° C., Tg of 55 ° C., and median diameter of 0.18 μm are dispersed. A resin particle dispersion RL2 was prepared.
(3) Preparation of resin particle dispersion RL3 A monomer liquid consisting of 204 g of styrene, 36 g of n-butyl acrylate, and 3.6 g of acrylic acid was added to an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd.) in 400 g of ion-exchanged water. (Product: Neogen RK) 6 g, dodecanethiol 12 g, and carbon tetrabromide 2.4 g were dispersed, and potassium persulfate 1.2 g was added thereto, followed by emulsion polymerization at 70 ° C. for 5 hours. Thereafter, aging treatment is further performed at 90 ° C. for 2 hours, and resin particles having Mn of 2600, Mw of 18300, Mz of 96200, Mp of 2700, Tm of 109 ° C., Tg of 45 ° C., and median diameter of 0.18 μm are dispersed. A resin particle dispersion RL3 was prepared.
(4) Preparation of resin particle dispersion RH4 A monomer liquid consisting of 102 g of styrene, 18 g of n-butyl acrylate, and 1.8 g of acrylic acid was added to an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd.) in 200 g of ion-exchanged water. Manufactured by: Neogen RK) 3 g, dodecanethiol 0 g, carbon tetrabromide 0 g, and potassium persulfate 1.2 g is added thereto, followed by emulsion polymerization at 70 ° C. for 5 hours. Mn is 43300, Mw is A resin particle dispersion RH4 was prepared in which resin particles having 262000, Mz of 577000, Mp of 182000, Tm of 197 ° C., Tg of 77 ° C., and median diameter of 0.12 μm were dispersed.
(5) Preparation of resin particle dispersion RH5 A monomer liquid consisting of 102 g of styrene in which 4 g of an aluminum salicylate metal complex (Orient Chemical Co., Ltd .: E88) was melted, 18 g of n-butyl acrylate, and 1.8 g of acrylic acid was ionized. In 200 g of exchange water, 3 g of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) was dispersed using 0 g of dodecanethiol and 0 g of carbon tetrabromide, and 1.2 g of potassium persulfate was added thereto. Resin in which resin particles are subjected to emulsion polymerization at 70 ° C. for 5 hours, and Mn is 41000, Mw is 242000, Mz is 575000, Mp is 154000, Tm is 193 ° C., Tg is 76 ° C., and the median diameter is 0.22 μm. A particle dispersion RH5 was prepared.

(実施例2)
[顔料分散体の作成]
(表2)に使用した顔料を示す。
(Example 2)
[Creation of pigment dispersion]
Table 2 shows the pigments used.

Figure 0004482481
Figure 0004482481

(1)着色剤粒子分散液PM1の調製
マゼンタ顔料20g(大日本インキ社製KETRED309)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PM1を調製した。
(2)着色剤粒子分散液PC1の調製
シアン顔料20g(大日本インキ社製KETBLUE111)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PC1を調製した。
(3)着色剤粒子分散液PY1の調製
イエロ顔料20g(山陽色素社製PY74)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PY1を調製した。
(4)着色剤粒子分散液PB1の調製
ブラック顔料20g(三菱化学社製MA100S)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PB1を調製した。
(1) Preparation of Colorant Particle Dispersion Liquid PM1 20 g of magenta pigment (KETRED 309 manufactured by Dainippon Ink & Co.), 2 g of anionic surfactant (Neogen R manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 78 g of ion-exchanged water are mixed and ultrasonically mixed. Using a disperser, dispersion was performed at an oscillation frequency of 30 kHz for 20 minutes to prepare a colorant particle dispersion liquid PM1 in which colorant particles having a median diameter of 0.12 μm were dispersed.
(2) Preparation of Colorant Particle Dispersion PC1 20 g of cyan pigment (KETBLUE111 manufactured by Dainippon Ink & Co., Ltd.), 2 g of anionic surfactant (Neogen R manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 78 g of ion-exchanged water are mixed and ultrasonicated. Dispersion was performed for 20 minutes at an oscillation frequency of 30 kHz using a disperser to prepare a colorant particle dispersion PC1 in which colorant particles having a median diameter of 0.12 μm were dispersed.
(3) Preparation of colorant particle dispersion PY1 20 g of yellow pigment (PY74 manufactured by Sanyo Dye), 2 g of anionic surfactant (Neogen R manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 78 g of ion-exchanged water are mixed and ultrasonically dispersed. A colorant particle dispersion PY1 in which colorant particles having a median diameter of 0.12 μm were dispersed was prepared by using a machine for 20 minutes at an oscillation frequency of 30 kHz.
(4) Preparation of colorant particle dispersion PB1 20 g of black pigment (MA100S manufactured by Mitsubishi Chemical Co., Ltd.), 2 g of anionic surfactant (Neogen R manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 78 g of ion-exchanged water are mixed and ultrasonically dispersed. Dispersion was performed for 20 minutes at an oscillation frequency of 30 kHz using a machine to prepare a colorant particle dispersion PB1 in which colorant particles having a median diameter of 0.12 μm were dispersed.

(実施例3)
[ワックス分散体の作成]
ワックス分散体に用いる界面活性剤のうち、イオン界面活性剤と非イオン界面活性剤を混合して使用することが好ましい。非イオン界面活性剤が界面活性剤全体に対して10〜90wt%有することが好ましい。より好ましくは30〜70wt%有することが好ましい。この構成により水系中で凝集にかかわらない浮遊した着色剤粒子やワックス粒子の存在をなくし、小粒径でかつ均一で狭い範囲でシャープな粒度分布を有する芯粒子を形成することができる。さらには第二の樹脂粒子の浮遊を低減し、凝集粒子に付着溶融を均一にして、シャープな粒度分布を作成することに効果が得られる。(表3)、(表4)、(表5)、(表6)に使用したワックスの特性を示す。
Example 3
[Creation of wax dispersion]
Of the surfactants used in the wax dispersion, it is preferable to use a mixture of an ionic surfactant and a nonionic surfactant. It is preferable that the nonionic surfactant has 10 to 90 wt% with respect to the entire surfactant. More preferably, it is 30 to 70 wt%. With this configuration, it is possible to eliminate the presence of suspended colorant particles and wax particles that are not involved in aggregation in an aqueous system, and to form core particles having a small particle size, a uniform and sharp particle size distribution in a narrow range. Further, it is possible to reduce the floating of the second resin particles, to make the adhesion and fusion uniform on the aggregated particles, and to produce a sharp particle size distribution. The properties of the waxes used are shown in (Table 3), (Table 4), (Table 5), and (Table 6).

Figure 0004482481
Figure 0004482481

Figure 0004482481
Figure 0004482481

Figure 0004482481
Figure 0004482481

Figure 0004482481
Figure 0004482481

(1)ワックス粒子分散液WA1の調製
図3に攪拌分散装置の概略図、図4に上から見た図を示す。801が外槽でその内部に冷却水を808から注入し、807から排出されるようにしている。802は被処理液がせき止める堰板で中央部に穴があけられており、ここから処理された液が順次805を通じて外部に取り出す。803が高速で回転する回転体でシャフト806に固定され、高速に回転できる。回転体の側面には、1〜5mm程度の穴があけられており、被処理液の移動を可能とする。槽は120mlで、被処理液はその2分の1程度投入する。回転体の速度MAXは50m/sまで可能である。回転体の径は52mm、槽の内径は56mmである。44は連続処理の場合の原料注入口である。高圧処理やバッチ式のときは封印している。
(1) Preparation of Wax Particle Dispersion WA1 FIG. 3 is a schematic view of a stirring and dispersing apparatus, and FIG. 4 is a view seen from above. Reference numeral 801 denotes an outer tank, in which cooling water is injected from 808 and discharged from 807. Reference numeral 802 denotes a dam plate that stops the liquid to be treated, and a hole is formed in the center portion. Reference numeral 803 denotes a rotating body that rotates at a high speed and is fixed to the shaft 806 and can rotate at a high speed. A hole of about 1 to 5 mm is formed on the side surface of the rotating body, and the liquid to be processed can be moved. The tank is 120 ml, and about half of the liquid to be treated is charged. The speed MAX of the rotating body can be up to 50 m / s. The diameter of the rotating body is 52 mm, and the inner diameter of the tank is 56 mm. Reference numeral 44 denotes a raw material inlet for continuous processing. Sealed for high-pressure processing or batch processing.

イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)0.8g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1.2g、ワックス(W−1)28gとを仕込み、回転体の速度は20m/sで5min、その後回転速度を50m/sに上げ、2min処理した。槽内の液温度は92℃に上昇した。その熱でワックスが溶融し、強いせん断力により微細なワックス粒子分散液WA1が形成された。
(2)ワックス粒子分散液WA2の調製
(1)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)0.5g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1.5g、ワックス(W−2)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、2min処理し、ワックス粒子分散液WA2が形成された。
(3)ワックス粒子分散液WA3の調製
(1)と同様の条件で、槽内を0.4Mpaまで加圧して状態で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−3)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、2min処理し、ワックス粒子分散液WA3が形成された。
(4)ワックス粒子分散液WA4の調製
(1)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−4)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、1min処理し、ワックス粒子分散液WA4が形成された。
(5)ワックス粒子分散液WA5の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−5)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA5が形成された。
(6)ワックス粒子分散液WA6の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−6)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA6が形成された。
(7)ワックス粒子分散液WA7の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−7)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA7が形成された。
(8)ワックス粒子分散液WA8の調製
図5に攪拌分散装置の概略図、図6に上から見た図を示す。850は原料投入口、852は固定体でフローティング構造としている。851のばねにより押し付けられ、回転体853の高速回転力との押し上げ力とにより約1μm〜10μm狭ギャップを形成している。854はモータ(図示せず)につながるシャフトである。850から投入された原料は固定体と回転体とのギャップ間で強いせん断力を受け、液中で微細粒子に分散される。その処理された原料液は856から排出される。図6に上から見た図を示す。排出される原料液855は放射状に飛ばされ、それを密閉した容器に回収される。回転体の外径は100mmである。
70 g of ion-exchanged water, 0.8 g of an anionic surfactant (SCF manufactured by Sanyo Chemical Industries, Ltd.), 1.2 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), and 28 g of wax (W-1) are charged. The speed of the rotating body was 20 m / s for 5 min, and then the rotating speed was increased to 50 m / s for 2 min. The liquid temperature in the tank rose to 92 ° C. The heat melted the wax, and a fine wax particle dispersion WA1 was formed by a strong shearing force.
(2) Preparation of wax particle dispersion WA2
Under the same conditions as in (1), 70 g of ion-exchanged water, 0.5 g of an anionic surfactant (SCF manufactured by Sanyo Chemical Industries, Ltd.), 1.5 g of a nonionic surfactant (Newcol 565C manufactured by Nippon Emulsifier Co., Ltd.), wax ( W-2) 28 g was charged, the speed of the rotating body was 3 m at 20 m / s, and then the rotating speed was increased to 45 m / s, followed by 2 min to form a wax particle dispersion WA2.
(3) Preparation of wax particle dispersion WA3
Under the same conditions as in (1), 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), nonionic surfactant (Nippon Emulsifier Co., Ltd.) with the inside pressurized to 0.4 MPa (New Coal 565C) 1 g and 28 g of wax (W-3) were charged, the speed of the rotating body was 3 min at 20 m / s, and then the rotating speed was increased to 50 m / s, followed by 2 min processing to form a wax particle dispersion WA3. It was.
(4) Preparation of wax particle dispersion WA4
Under the same conditions as in (1), 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Chemical Industries, Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), wax (W-4) 28 g was charged, the speed of the rotating body was 3 minutes at 20 m / s, and then the rotational speed was increased to 50 m / s, followed by treatment for 1 minute to form a wax particle dispersion WA4.
(5) Preparation of wax particle dispersion WA5
Under the same conditions as (3), 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), wax (W-5) 28 g was charged, and the speed of the rotating body was 20 m / s for 3 minutes, and then the rotational speed was increased to 45 m / s for 4 minutes to form a wax particle dispersion WA5.
(6) Preparation of wax particle dispersion WA6
Under the same conditions as (3), 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), wax (W-6) 28 g was charged, the speed of the rotating body was 3 minutes at 20 m / s, and then the rotational speed was increased to 45 m / s, followed by treatment for 4 minutes to form a wax particle dispersion WA6.
(7) Preparation of wax particle dispersion WA7
Under the same conditions as (3), 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), wax (W-7) 28 g was charged, and the speed of the rotating body was 20 m / s for 3 min, and then the rotating speed was increased to 45 m / s for 4 min to form a wax particle dispersion WA7.
(8) Preparation of Wax Particle Dispersion WA8 FIG. 5 shows a schematic view of a stirring and dispersing apparatus, and FIG. 6 shows a view from above. Reference numeral 850 denotes a raw material inlet, and reference numeral 852 denotes a fixed body having a floating structure. A narrow gap of about 1 μm to 10 μm is formed by the pressing force of the rotating body 853 and the pushing force of the rotating body 853. Reference numeral 854 denotes a shaft connected to a motor (not shown). The raw material charged from 850 receives a strong shearing force between the gap between the stationary body and the rotating body and is dispersed into fine particles in the liquid. The processed raw material liquid is discharged from 856. FIG. 6 shows a view from above. The discharged raw material liquid 855 is blown radially and collected in a sealed container. The outer diameter of the rotating body is 100 mm.

原料液はあらかじめ加圧加熱された水媒体中にワックスと界面活性剤をプレ分散させておき、それを投入口80から投入して、瞬時に微細化処理される。供給量は1kg/h、回転体の速度はMAX100m/sで回転させた。   The raw material liquid is pre-dispersed with a wax and a surfactant in an aqueous medium that has been heated under pressure in advance, and is introduced into the inlet 80 to be instantly refined. The supply amount was 1 kg / h, and the rotating body was rotated at a maximum speed of 100 m / s.

イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−8)28gとを仕込み、回転体の速度は100m/s、供給量は1kg/hで処理し、ワックス粒子分散液WA8が形成された。
(10)ワックス粒子分散液wa10の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、パラフィンワックス(日本精鑞社製HNP−10、融点75℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa10が形成された。
(11)ワックス粒子分散液wa11の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、フィッシャートロプッシュワックス(日本精鑞社製FT0070、融点72℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa11が形成された。
(12)ワックス粒子分散液wa12の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、炭化水素系ワックス(日本精鑞社製LUVAX2191、融点83℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa12が形成された。
70 g of ion exchange water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), and 28 g of wax (W-8) were charged, and the speed of the rotating body Was processed at 100 m / s and the supply rate was 1 kg / h, and a wax particle dispersion WA8 was formed.
(10) Preparation of Wax Particle Dispersion Wa10 70 g of ion-exchanged water, 1 g of anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), paraffin wax (Nippon Seiki) HNP-10 (manufactured by Sakai Co., Ltd., melting point: 75 ° C.) (28 g) was charged and treated with a homogenizer for 30 minutes to form a wax particle dispersion wa10.
(11) Preparation of Wax Particle Dispersion Wa11 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Kasei Kogyo Co., Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.) FT0070 (manufactured by Nippon Seisaku Co., Ltd., melting point: 72 ° C.) (28 g) was charged and treated with a homogenizer for 30 minutes to form a wax particle dispersion wa11.
(12) Preparation of Wax Particle Dispersion Wa12 70 g of ion-exchanged water, 1 g of an anionic surfactant (SCF manufactured by Sanyo Chemical Industries, Ltd.), 1 g of a nonionic surfactant (New Coal 565C manufactured by Nippon Emulsifier Co., Ltd.), a hydrocarbon wax ( 28 g of LUVAX 2191 manufactured by Nippon Seiki Co., Ltd., melting point 83 ° C.) was charged and treated with a homogenizer for 30 min to form a wax particle dispersion wa12.

(実施例4)
[トナー母体の作成]
作製したトナーの組成を(表7)に示す。
d50(μm)はトナー母体粒子の体積平均粒径、P2は個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有個数%量、V46は、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の含有体積%量P46は、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の含有個数%量、P8は、体積分布における8μm以上の粒径を有するトナ−母体粒子の含有体積%量を示す。
Example 4
[Create toner base]
The composition of the produced toner is shown in (Table 7).
d50 (μm) is the volume average particle diameter of the toner base particles, P2 is the number% content of toner base particles having a particle diameter of 2.52 to 4 μm in the number distribution, and V46 is 4 to 6.06 μm in the volume distribution. The volume% content P46 of toner base particles having a particle size is the content% content of toner base particles having a particle size of 4 to 6.06 μm in the number distribution, and P8 is the particle size of 8 μm or more in the volume distribution. The content volume% amount of toner mother particles having

Figure 0004482481
Figure 0004482481

(1)トナー母体M1の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA1を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは5.8であった。
(1) Preparation of toner base M1 A 2000 ml four-necked flask equipped with a thermometer, a cooling tube, a stirrer, and a pH meter was charged with 204 g of the first resin particle dispersion RL2 and 20 g of the colorant particle dispersion PM1 and wax. 50 g of particle dispersion WA1 and 200 ml of ion-exchanged water were added, and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 5.8.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、3時間加熱処理した。得られた凝集粒子分散液のpHは9.3であった。コールターカウンター(コールター社製:マルチサイザー2)にて観察すると体積平均粒径4.0μm、変動係数19.7であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.9, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C., and heat treatment was performed for 3 hours. The obtained aggregated particle dispersion had a pH of 9.3. When observed with a Coulter counter (manufactured by Coulter Inc .: Multisizer 2), the volume average particle diameter was 4.0 μm and the coefficient of variation was 19.7.

その後、さらにpHを6.6に調整し、90℃で、2時間加熱処理し凝集粒子を得た。   Thereafter, the pH was further adjusted to 6.6, and heat treatment was performed at 90 ° C. for 2 hours to obtain aggregated particles.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M1を得た。体積平均粒径4.3μm、変動係数18.1であった。   After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. The toner base thus obtained was dried at 40 ° C. for 6 hours with a fluid dryer to obtain toner base M1. The volume average particle size was 4.3 μm, and the coefficient of variation was 18.1.

このとき混合分散液を作成したときのpHが6.0よりも高いと、加熱して着色樹脂粒子を形成する際に、液中のpH変動(減少現象)が大きくなり、粒子が粗大化してしまう。   At this time, if the pH at the time of preparing the mixed dispersion is higher than 6.0, when the colored resin particles are formed by heating, the pH fluctuation (decrease phenomenon) in the liquid becomes large and the particles become coarse. End up.

水溶性無機塩の添加前及び加熱前の混合分散液のpHを調製する際、9.5よりも低いと形成された着色樹脂粒子が粗大化してしまう。またpHを12.5とすると遊離ワックスが多くなりワックスを均一に内包化することが困難になった。凝集粒子が形成されたときの液のpHが9.5よりも高くなると凝集不良で遊離ワックスが多くなる。   When adjusting the pH of the mixed dispersion before addition of the water-soluble inorganic salt and before heating, if it is lower than 9.5, the formed colored resin particles become coarse. When the pH was 12.5, the amount of free wax increased, making it difficult to encapsulate the wax uniformly. If the pH of the liquid when the aggregated particles are formed is higher than 9.5, the aggregation is poor and free wax increases.

また、5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、3時間加熱処理し、その後、pHを調整せずに、または調整をしてもpHが6.8よりも大きい値で加熱処理すると粒子は粗大化する傾向にある。pHを2.2未満にまで下げると、界面活性剤の効果が消失し粒子径が粗大化する傾向にある。
(2)トナー母体M2の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA2を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは2.8であった。
The temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature is raised to 85 ° C. and heat-treated for 3 hours, and then the particles tend to be coarsened if the heat treatment is carried out without adjusting the pH, or even when the pH is higher than 6.8. It is in. When the pH is lowered to less than 2.2, the effect of the surfactant tends to disappear and the particle diameter tends to become coarse.
(2) Preparation of toner base M2 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL2 and 20 g of the colorant particle dispersion PM1 are waxed. 50 g of particle dispersion WA2 and 200 ml of ion-exchanged water were added, and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Tarrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 2.8.

その後、得られた混合分散液に1N NaOHを投入し、pHを9.7とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子分散液のpHは7.2であった。体積平均粒径5.7μm、変動係数18.9であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 9.7, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours to obtain aggregated particles. The obtained aggregated particle dispersion had a pH of 7.2. The volume average particle size was 5.7 μm, and the coefficient of variation was 18.9.

その後、さらにpHを2.5に調整し、90℃で、2時間加熱処理し凝集粒子を得た。   Thereafter, the pH was further adjusted to 2.5, and heat treatment was performed at 90 ° C. for 2 hours to obtain aggregated particles.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M2を得た。体積平均粒径6.0μm、変動係数16.9であった。
(3)トナー母体M3の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA3を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. The toner base thus obtained was dried at 40 ° C. for 6 hours with a fluid-type dryer to obtain a toner base M2. The volume average particle size was 6.0 μm, and the coefficient of variation was 16.9.
(3) Preparation of toner base M3 In a 4-ml flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 204 g of the first resin particle dispersion RL2 and 20 g of the colorant particle dispersion PM1 and wax 50 g of particle dispersion WA3 and 200 ml of ion-exchanged water were added, and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 4.2.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子分散液のpHは8.5であった。体積平均粒径4.7μm、変動係数19.9であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.2, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours to obtain aggregated particles. The obtained aggregated particle dispersion had a pH of 8.5. The volume average particle size was 4.7 μm, and the coefficient of variation was 19.9.

その後、さらにpHを4.5に調整し、90℃で、2時間加熱処理し凝集粒子を得た。   Thereafter, the pH was further adjusted to 4.5, and heat treatment was performed at 90 ° C. for 2 hours to obtain aggregated particles.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M3を得た。体積平均粒径4.9μm、変動係数18.1であった。
(4)トナー母体M4の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA4を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは5.8であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. The toner base thus obtained was dried at 40 ° C. for 6 hours with a fluid-type dryer to obtain a toner base M3. The volume average particle size was 4.9 μm and the coefficient of variation was 18.1.
(4) Preparation of toner matrix M4 In a four-necked flask equipped with a thermometer, cooling tube, stirring rod, and pH meter, 2000 ml, 204 g of the first resin particle dispersion RL1, 24 g of the colorant particle dispersion PM1, and wax 50 g of particle dispersion WA4 and 250 ml of ion-exchanged water were added, and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 5.8.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。そのときの分散液のpHは9.3であった。生成された粒子の体積平均粒径3.7μm、変動係数21.4であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.9, and then 264 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours. The pH of the dispersion at that time was 9.3. The produced particles had a volume average particle size of 3.7 μm and a coefficient of variation of 21.4.

その後、さらにpHを6.6に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径3.9μm、変動係数19.8であった。   Thereafter, the pH was further adjusted to 6.6, and heat treatment was performed at 90 ° C. for 2 hours to obtain core particles. The volume average particle size was 3.9 μm, and the coefficient of variation was 19.8.

その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを8.6とした。   Thereafter, the water temperature was 60 ° C., 43 g of the second shell resin particle dispersion RH4 was added, 1N NaOH was added, and the pH was adjusted to 8.6.

水温を80℃の条件で0.5時間加熱し、その後1N HClを添加し、PHを6.6とした。   The water temperature was heated at 80 ° C. for 0.5 hour, and then 1N HCl was added to adjust the pH to 6.6.

その後、さらに90℃の条件で2時間加熱した。   Thereafter, the mixture was further heated at 90 ° C. for 2 hours.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後、得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径4.8μm、変動係数20.1のトナー母体M4を得た。   After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid dryer, thereby obtaining a toner base M4 having a volume average particle size of 4.8 μm and a coefficient of variation of 20.1.

第二の樹脂粒子分散液(本実施例ではRH4)を添加したときのpHが5.0とすると、第二の樹脂粒子の付着が起こりにくく、遊離樹脂粒子が増加した。またpHを9.0とすると、芯粒子同士の二次凝集が発生し、粒子が粗大化した。   When the pH when the second resin particle dispersion (RH4 in this example) was added was 5.0, adhesion of the second resin particles hardly occurred and free resin particles increased. Moreover, when pH was set to 9.0, secondary aggregation of core particles occurred, and the particles became coarse.

加熱処理後のpHを3.0とすると、一旦付着した樹脂粒子が一部遊離し、微細粒子が発生した。7.0とすると、芯粒子の二次凝集が発生し、粒子が粗大化した。
(5)トナー母体M5の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA5を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは2.2であった。
When the pH after the heat treatment was 3.0, some of the resin particles once adhered were released and fine particles were generated. When 7.0, secondary aggregation of the core particles occurred and the particles became coarse.
(5) Preparation of toner base M5 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL3, 24 g of the colorant particle dispersion PM1, and wax 50 g of particle dispersion WA5 and 250 ml of ion-exchanged water were added and mixed for 10 minutes using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 2.2.

その後得られた混合分散液に1N NaOHを投入し、pHを9.7とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後、70℃で2時間加熱した。その後、温度を85℃に昇温し、5時間処理した。得られた分散液のpHは7.2であった。生成された粒子の体積平均粒径4.7μm、変動係数17.4であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 9.7, and then 264 g of a 23% strength magnesium sulfate aqueous solution was added, followed by stirring for 10 minutes. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours. The pH of the obtained dispersion was 7.2. The produced particles had a volume average particle size of 4.7 μm and a coefficient of variation of 17.4.

その後、さらにpHを2.5に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.9μm、変動係数16.8であった。   Thereafter, the pH was further adjusted to 2.5, and heat treatment was performed at 90 ° C. for 2 hours to obtain core particles. The volume average particle size was 4.9 μm, and the coefficient of variation was 16.8.

その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを5.0とした。   Thereafter, the water temperature was 60 ° C., 43 g of the second shell resin particle dispersion RH4 was added, 1N NaOH was added, and the pH was adjusted to 5.0.

水温を80℃の条件で2時間加熱し、その後1N HClを添加し、PHを3.4とした。その後さらに90℃の条件で2時間加熱した。   The water temperature was heated at 80 ° C. for 2 hours, and then 1N HCl was added to adjust the pH to 3.4. Thereafter, the mixture was further heated at 90 ° C. for 2 hours.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.9μm、変動係数15.9のトナー母体M5を得た。
(6)トナー母体M6の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA6を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは3.8であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid drier to obtain a toner base M5 having a volume average particle size of 5.9 μm and a coefficient of variation of 15.9.
(6) Preparation of toner base M6 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL1 and 24 g of the colorant particle dispersion PM1 are waxed. 50 g of particle dispersion WA6 and 250 ml of ion-exchanged water were added and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 3.8.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.0μm、変動係数19.6であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.2, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours. The pH of the obtained dispersion was 8.5. The produced particles had a volume average particle size of 4.0 μm and a coefficient of variation of 19.6.

その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.3μm、変動係数18.1であった。   Thereafter, the pH was further adjusted to 4.8, and heat treatment was performed at 90 ° C. for 2 hours to obtain core particles. The volume average particle size was 4.3 μm, and the coefficient of variation was 18.1.

その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを6.8とした。   Thereafter, the water temperature was 60 ° C., 43 g of the second shell resin particle dispersion RH4 was added, 1N NaOH was added, and the pH was adjusted to 6.8.

水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。   The water temperature was heated at 80 ° C. for 1 hour, and then 1N HCl was added to adjust the pH to 5.0. Thereafter, the mixture was further heated at 90 ° C. for 5 hours.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.2μm、変動係数16.8のトナー母体M6を得た。
(7)トナー母体M7の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA7を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid drier to obtain a toner base M6 having a volume average particle size of 5.2 μm and a coefficient of variation of 16.8.
(7) Preparation of toner matrix M7 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL3, 24 g of the colorant particle dispersion PM1, and wax 50 g of particle dispersion WA7 and 250 ml of ion-exchanged water were added and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Turrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 4.2.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.0μm、変動係数19.2であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.2, and then 264 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours. The pH of the obtained dispersion was 8.5. The produced particles had a volume average particle size of 4.0 μm and a coefficient of variation of 19.2.

その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.2μm、変動係数17.8であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH5を43g添加し、1N NaOHを投入し、pHを6.8とした。
Thereafter, the pH was further adjusted to 4.8, and heat treatment was performed at 90 ° C. for 2 hours to obtain core particles. The volume average particle diameter was 4.2 μm, and the coefficient of variation was 17.8.
Thereafter, the water temperature was set to 60 ° C., 43 g of the second shell resin particle dispersion RH5 was added, and 1N NaOH was added to adjust the pH to 6.8.

水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。   The water temperature was heated at 80 ° C. for 1 hour, and then 1N HCl was added to adjust the pH to 5.0. Thereafter, the mixture was further heated at 90 ° C. for 5 hours.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.2μm、変動係数17.1のトナー母体M7を得た。
(8)トナー母体M8の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA8を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. The toner base thus obtained was dried at 40 ° C. for 6 hours with a fluid dryer, thereby obtaining a toner base M7 having a volume average particle size of 5.2 μm and a coefficient of variation of 17.1.
(8) Preparation of toner base M8 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL3, 24 g of the colorant particle dispersion PM1, and wax 50 g of particle dispersion WA8 and 250 ml of ion-exchanged water were added, and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Tarrax T50) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 4.2.

その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.7μm、変動係数21.8であった。   Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.2, and then 264 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours. The pH of the obtained dispersion was 8.5. The produced particles had a volume average particle size of 4.7 μm and a coefficient of variation of 21.8.

その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.9μm、変動係数19.8であった。   Thereafter, the pH was further adjusted to 4.8, and heat treatment was performed at 90 ° C. for 2 hours to obtain core particles. The volume average particle size was 4.9 μm, and the coefficient of variation was 19.8.

その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH5を43g添加し、1N NaOHを投入し、pHを6.8とした。   Thereafter, the water temperature was set to 60 ° C., 43 g of the second shell resin particle dispersion RH5 was added, and 1N NaOH was added to adjust the pH to 6.8.

水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。   The water temperature was heated at 80 ° C. for 1 hour, and then 1N HCl was added to adjust the pH to 5.0. Thereafter, the mixture was further heated at 90 ° C. for 5 hours.

冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径6.0μm、変動係数18.1のトナー母体M8を得た。
(9)トナー母体M9の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA2を60g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT25)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは3.8であった。
After cooling, the reaction product (toner matrix) was filtered and washed three times with ion exchange water. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid drier to obtain a toner base M8 having a volume average particle size of 6.0 μm and a coefficient of variation of 18.1.
(9) Preparation of toner base M9 In a four-necked flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 2000 ml, 204 g of the first resin particle dispersion RL1, 24 g of the colorant particle dispersion PM1, and wax 60 g of the particle dispersion WA2 and 250 ml of ion-exchanged water were added, and mixed for 10 minutes using a homogenizer (manufactured by IKA: Ultra Turrax T25) to prepare a mixed particle dispersion. The pH of the obtained mixed dispersion was 3.8.

その後得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を273g添加し、10min攪拌した。その後1℃/minの速度で20℃から90℃まで昇温し、その後3時間加熱処理し、pH9.3の凝集粒子分散液を得た。その後さらにpHを6.6に調整し、90℃で1時間加熱処理し芯粒子を得た。得られた芯粒子分散液のpHは6.3であった。
その後、水温を90℃とした状態で、pHを5.5に調整した第二の樹脂粒子分散液RH4を1g/minの滴下速度で43g添加し、滴下終了後90℃の条件で2時間加熱処理して第二の樹脂粒子が融着した粒子を得た。2時間程度の加熱処理により、第二の樹脂粒子が均一に融着し、処理時間を短縮できる効果が確認できた。
そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径4.2μm、変動係数16.7のトナー母体M9cを得た。
(表8)に混合後、凝集粒子生成工程での時間経過後に対する槽内温度と、液のpH、体積平均粒径(d50(μm))、第二の樹脂粒子付着溶融工程での第二の樹脂粒子分散液滴下終了後、滴下後の時間経過に対する槽内温度と、体積平均粒径(d50(μm))、第二の樹脂粒子分散液滴下終了の欄に記載する「R:(数値) 」は第二の樹脂粒子分散液の調整後のpH値を示す。M9a〜jは、その第二の樹脂粒子分散液の調整後のpH値を10.5、9.5、8.5、7.5、6.5、5.5、4.5、3.5、11としたときの状態を示し、滴下終了時2h時の体積平均粒径と、形状係数を示す。
Thereafter, 1N NaOH was added to the obtained mixed dispersion to adjust the pH to 11.9, and then 273 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 20 ° C. to 90 ° C. at a rate of 1 ° C./min, followed by heat treatment for 3 hours to obtain an aggregated particle dispersion having a pH of 9.3. Thereafter, the pH was further adjusted to 6.6, and heat treatment was performed at 90 ° C. for 1 hour to obtain core particles. The obtained core particle dispersion had a pH of 6.3.
Thereafter, 43 g of the second resin particle dispersion RH4 having a pH adjusted to 5.5 was added at a dropping rate of 1 g / min while the water temperature was 90 ° C., and the mixture was heated at 90 ° C. for 2 hours after the completion of the dropping. It processed and obtained the particle | grains which the 2nd resin particle fuse | melted. By the heat treatment for about 2 hours, the second resin particles were uniformly fused, and the effect of shortening the treatment time was confirmed.
Then, after cooling, the reaction product (toner base material) was filtered and washed with ion-exchanged water three times. The toner base thus obtained was dried at 40 ° C. for 6 hours with a fluid dryer, thereby obtaining a toner base M9c having a volume average particle diameter of 4.2 μm and a coefficient of variation of 16.7.
After mixing in (Table 8), the temperature in the tank and the pH of the liquid, the volume average particle diameter (d50 (μm)) after the lapse of time in the aggregated particle generation step, the second in the second resin particle adhesion melting step After completion of the resin particle-dispersed droplets, “R: (numerical value) described in the column of the temperature inside the tank with respect to the time elapsed after the dropping, the volume average particle diameter (d50 (μm)), and the second resin particle-dispersed droplets end. ")" Indicates the pH value after adjustment of the second resin particle dispersion. M9a to j have pH values after adjustment of the second resin particle dispersion of 10.5, 9.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3. 5 and 11 are shown, and the volume average particle size and shape factor at the end of dropping at 2 h are shown.

Figure 0004482481
Figure 0004482481

pH値を8.5から10.5へと調整することにより、形状が不定形にシフトする傾向がある。
pH値が3.5では、第二の樹脂粒子分散液を滴下すると、第二の樹脂粒子は凝集粒子にまったく付着せず、第二の樹脂粒子のみが凝集を生じて体積変動係数が40以上とかなりブロードな粒度分布になり、分散液は白濁したままであった。pH値を11では、生成する粒子が体積平均粒径で15μm以上にまで粗大化した。
(10)トナー母体m10の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa10を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
By adjusting the pH value from 8.5 to 10.5, the shape tends to shift to an irregular shape.
When the second resin particle dispersion is dropped at a pH value of 3.5, the second resin particles do not adhere to the agglomerated particles at all, and only the second resin particles agglomerate, resulting in a volume variation coefficient of 40 or more. The particle size distribution was quite broad, and the dispersion remained cloudy. When the pH value was 11, the generated particles were coarsened to a volume average particle size of 15 μm or more.
(10) Preparation of toner base m10 A 2000 ml four-necked flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 204 g of resin particle dispersion RL2, 20 g of colorant particle dispersion PM1, and wax particle dispersion 30 g of wa10 and 200 ml of ion-exchanged water were added and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Tarrax T50) to prepare a mixed particle dispersion.

得られた混合粒子分散液に1N NaOHを投入し、pHを9.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を90℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.7であった。   1N NaOH was added to the obtained mixed particle dispersion to adjust the pH to 9.2, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 90 ° C. and treated for 5 hours to obtain aggregated particles. The pH of the obtained aggregated particles was 6.7.

そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径9.1μm、変動係数31.2のトナー母体m10を得た。
(11)トナー母体m11の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa11を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
Then, after cooling, the reaction product (toner base material) was filtered and washed with ion-exchanged water three times. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid drier to obtain a toner base m10 having a volume average particle size of 9.1 μm and a coefficient of variation of 31.2.
(11) Preparation of toner base m11 A 2000 ml four-necked flask equipped with a thermometer, a cooling tube, a stirring rod, and a pH meter, 204 g of resin particle dispersion RL2, 20 g of colorant particle dispersion PM1, and wax particle dispersion 30 g of wa11 and 200 ml of ion-exchanged water were added and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Tarrax T50) to prepare a mixed particle dispersion.

得られた混合粒子分散液に1N NaOHを投入し、pHを9.3とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.8であった。   1N NaOH was added to the obtained mixed particle dispersion to adjust the pH to 9.3, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours to obtain aggregated particles. The pH of the obtained aggregated particles was 6.8.

そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径8.1μm、変動係数31.8のトナー母体m11を得た。
(12)トナー母体m12の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa12を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
Then, after cooling, the reaction product (toner base material) was filtered and washed with ion-exchanged water three times. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours by a fluid drier to obtain a toner base m11 having a volume average particle size of 8.1 μm and a variation coefficient of 31.8.
(12) Preparation of toner base m12 A 2000 ml four-necked flask equipped with a thermometer, a cooling tube, a stirring rod and a pH meter, 204 g of resin particle dispersion RL2, 20 g of colorant particle dispersion PM1, and wax particle dispersion wa12. 30 g and 200 ml of ion-exchanged water were added and mixed for 10 min using a homogenizer (manufactured by IKA: Ultra Tarrax T50) to prepare a mixed particle dispersion.

得られた混合粒子分散液に1N NaOHを投入し、pHを9.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.7であった。   1N NaOH was added to the obtained mixed particle dispersion to adjust the pH to 9.2, and then 260 g of a 23% strength magnesium sulfate aqueous solution was added and stirred for 10 min. Thereafter, the temperature was raised from 22 ° C. to 70 ° C. at a rate of 5 ° C./min, and then heated at 70 ° C. for 2 hours. Thereafter, the temperature was raised to 85 ° C. and treated for 5 hours to obtain aggregated particles. The pH of the obtained aggregated particles was 6.7.

そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径7.5μm、変動係数42.9のトナー母体m12を得た。   Then, after cooling, the reaction product (toner base material) was filtered and washed with ion-exchanged water three times. Thereafter, the obtained toner base was dried at 40 ° C. for 6 hours with a fluid dryer to obtain a toner base m12 having a volume average particle size of 7.5 μm and a coefficient of variation of 42.9.

(表9)に本実施例で使用する外添剤を示す。その帯電量はノンコートのフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45RH%の環境下で、100mlのポリエチレン容器にキャリア50gとシリカ等0.1gを混合し、縦回転にて100min-1の速度で5分、30分間攪拌した後、0.3g採取し、窒素ガス1.96×104(Pa)で1分間ブローした。負帯電性では5分値が−100〜−800μC/gで、30分の値が−50〜−600μC/gであることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。 Table 9 shows the external additives used in this example. The amount of charge was measured by the blow-off method of frictional charging with an uncoated ferrite carrier. In an environment of 25 ° C. and 45 RH%, 50 g of carrier and 0.1 g of silica, etc. are mixed in a 100 ml polyethylene container, and stirred for 5 minutes and 30 minutes at a speed of 100 min −1 by longitudinal rotation. Then, nitrogen gas was blown with 1.96 × 10 4 (Pa) for 1 minute. For negative chargeability, the 5-minute value is preferably −100 to −800 μC / g, and the 30-minute value is preferably −50 to −600 μC / g. Highly charged silica can function with a small amount of addition.

Figure 0004482481
Figure 0004482481

(表10)に本実施例に本実施例で使用したトナー材料組成を示す。他の黒トナー、シアントナー、イエロートナーは顔料にPB1,PC1,PY1を使用して、他の組成はマゼンタトナー組成と同様とした。   Table 10 shows the toner material composition used in this example. Other black toner, cyan toner, and yellow toner used PB1, PC1, and PY1 as pigments, and other compositions were the same as the magenta toner composition.

Figure 0004482481
Figure 0004482481

外添剤はトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、攪拌羽根Z0S0型、回転数2000min-1、処理時間5min、投入量1kgで行った。 The external additive indicates the blending amount (part by weight) with respect to 100 parts by weight of the toner base. The external addition process was performed in FM20B with a stirring blade Z0S0 type, a rotational speed of 2000 min −1 , a processing time of 5 min, and an input amount of 1 kg.

図1は本実施例で使用したフルカラー画像形成用の画像形成装置の構成を示す断面図である。図1において、カラー電子写真プリンタの外装筐は省略している。転写ベルトユニット17は、転写ベルト12、弾性体よりなる第1色(イエロー)転写ローラ10Y、第2色(マゼンタ)転写ローラ10M、第3色(シアン)転写ローラ10C、第4色(ブラック)転写ローラ10K、アルミローラよりなる駆動ローラ11、弾性体よりなる第2転写ローラ14、第2転写従動ローラ13、転写ベルト12上に残ったトナー像をクリーニングするベルトクリーナブレード16、クリーナブレードに対向する位置にローラ15を設けている。このとき、第1色(Y)転写位置から第2色(M)転写位置までの距離は70mm(第2色(M)転写位置から第3色(C)転写位置、第3色(C)転写位置から第4色(K)転写位置も同様距離)、感光体の周速度は125mm/sである。   FIG. 1 is a cross-sectional view showing a configuration of an image forming apparatus for forming a full-color image used in this embodiment. In FIG. 1, the outer casing of the color electrophotographic printer is omitted. The transfer belt unit 17 includes a transfer belt 12, a first color (yellow) transfer roller 10Y made of an elastic body, a second color (magenta) transfer roller 10M, a third color (cyan) transfer roller 10C, and a fourth color (black). Transfer roller 10K, drive roller 11 made of aluminum roller, second transfer roller 14 made of elastic body, second transfer driven roller 13, belt cleaner blade 16 for cleaning the toner image remaining on the transfer belt 12, and opposed to the cleaner blade A roller 15 is provided at a position to be used. At this time, the distance from the first color (Y) transfer position to the second color (M) transfer position is 70 mm (second color (M) transfer position to third color (C) transfer position, third color (C). The fourth color (K) transfer position is the same distance from the transfer position), and the peripheral speed of the photoconductor is 125 mm / s.

転写ベルト12は、絶縁性ポリカーボネート樹脂中に導電性のフィラーを混練して押出機にてフィルム化して用いる。本実施例では、絶縁性樹脂としてポリカーボネート樹脂(たとえば三菱ガス化学製,ユーピロンZ300)95重量部に、導電性カーボン(たとえばケッチェンブラック)5重量部を加えてフィルム化したものを用いた。また、表面にフッ素樹脂をコートし、厚みは約100μm、体積抵抗は107〜1012Ω・cm、表面抵抗は107〜1012Ω/□である。ドット再現性を向上させるためもある。転写ベルト12の長期使用による弛みや,電荷の蓄積を有効に防止できるようにするためであり、表面をフッ素樹脂でコートしているのは、長期使用による転写ベルト表面へのトナーフィルミングを有効に防止できるようにするためである。体積抵抗が107Ω・cmよりも小さいと、再転写が生じ易く、1012Ω・cmよりも大きいと転写効率が悪化する。 The transfer belt 12 is used by kneading a conductive filler in an insulating polycarbonate resin and forming a film with an extruder. In the present example, a film obtained by adding 5 parts by weight of conductive carbon (for example, ketjen black) to 95 parts by weight of polycarbonate resin (for example, Iupilon Z300, manufactured by Mitsubishi Gas Chemical) as the insulating resin was used. Further, the surface is coated with a fluororesin, the thickness is about 100 μm, the volume resistance is 10 7 to 10 12 Ω · cm, and the surface resistance is 10 7 to 10 12 Ω / □. This is also for improving dot reproducibility. This is to effectively prevent slack and charge accumulation due to long-term use of the transfer belt 12, and the coating of the surface with a fluororesin is effective for toner filming on the surface of the transfer belt after long-term use. This is to prevent it. If the volume resistance is less than 10 7 Ω · cm, retransfer is likely to occur, and if it is greater than 10 12 Ω · cm, the transfer efficiency deteriorates.

第1転写ローラは外径8mmのカーボン導電性の発泡ウレタンローラで、抵抗値は102〜106Ωである。第1転写動作時には、第1転写ローラ10は、転写ベルト12を介して感光体1に1.0〜9.8(N)の押圧力で圧接され、感光体上のトナーがベルト上に転写される。抵抗値が102Ωよりも小さいと、再転写が生じ易い。106Ωよりもおおきと転写不良が生じ易くなる。1.0(N)よりも小さいと転写不良を生じ、9.8(N)よりも大きいと転写文字抜けが生じる。 The first transfer roller is a carbon conductive urethane foam roller having an outer diameter of 8 mm, and the resistance value is 10 2 to 10 6 Ω. During the first transfer operation, the first transfer roller 10 is pressed against the photoreceptor 1 with a pressing force of 1.0 to 9.8 (N) via the transfer belt 12, and the toner on the photoreceptor is transferred onto the belt. Is done. When the resistance value is smaller than 10 2 Ω, retransfer is likely to occur. Larger transfer defects are more likely to occur than 10 6 Ω. If it is less than 1.0 (N), transfer defects occur, and if it is greater than 9.8 (N), transfer character omission occurs.

第2転写ローラ14は外径10mmのカーボン導電性の発泡ウレタンローラで、抵抗値は102〜106Ωである。第2転写ローラ14は、転写ベルト12及び紙、OHP等の転写媒体19とを介して転写ローラ13に圧接される。この転写ローラ13は転写ベルト12に従動回転可能に構成している。第2次転写での第2転写ローラ14と対向転写ローラ13とは5.0〜21.8(N)の押圧力で圧接され、紙等の記録材上19に転写ベルトからトナーが転写される。抵抗値が102Ωよりも小さいと、再転写が生じ易い。106Ωよりもおおきと転写不良が生じ易くなる。5.0(N)よりも小さいと転写不良となり、21.8(N)よりも大きいと負荷が大きくなり、ジッタが出やすくなる。 The second transfer roller 14 is a carbon conductive foamed urethane roller having an outer diameter of 10 mm, and the resistance value is 10 2 to 10 6 Ω. The second transfer roller 14 is pressed against the transfer roller 13 via the transfer belt 12 and a transfer medium 19 such as paper or OHP. The transfer roller 13 is configured to be driven to rotate by the transfer belt 12. In the second transfer, the second transfer roller 14 and the counter transfer roller 13 are pressed against each other with a pressing force of 5.0 to 21.8 (N), and the toner is transferred from the transfer belt onto the recording material 19 such as paper. The When the resistance value is smaller than 10 2 Ω, retransfer is likely to occur. Larger transfer defects are more likely to occur than 10 6 Ω. If it is smaller than 5.0 (N), transfer failure occurs. If it is larger than 21.8 (N), the load increases and jitter tends to occur.

イエロー(Y)、マゼンタ(M)、シアン(C)、黒(B)の各色用の4組の像形成ユニット18Y、18M、18C、18Kが、図のように直列状に配置されている。   Four sets of image forming units 18Y, 18M, 18C, and 18K for each color of yellow (Y), magenta (M), cyan (C), and black (B) are arranged in series as shown in the figure.

各像形成ユニット18Y、18M、18C、18K、中に入れた現像剤を除きそれぞれ同じ構成部材よりなるので、説明を簡略化するためY用の像形成ユニット18Yについて説明し、他色用のユニットの説明については省略する。   Each of the image forming units 18Y, 18M, 18C, and 18K is composed of the same constituent members except for the developer contained therein, so that the Y image forming unit 18Y will be described to simplify the description, and the units for other colors The description of is omitted.

像形成ユニットは以下のように構成されている。1は感光体、3は画素レーザ信号光、4は内部に1200ガウスの磁力を有する磁石を有するアルミよりなる外径10mmの現像ロ−ラで、感光体とギャップ0.3mmで対向し、矢印の方向に回転する。6は攪拌ローラで現像器内のトナーとキャリアを攪拌し、現像ローラへ供給する。キャリアとトナーの配合比を透磁率センサーにより読み取り(図示せず)、トナーホッパー(図示せず)から適時供給される構成である。5は金属製の磁性ブレードで現像ローラ上に現像剤の磁気フ゛ラシ層を規制する。現像剤量は150g投入している。ギャップは0.4mmとした。電源は、省略しているが、現像ローラ4には−500Vの直流と、1.5kV(p−p)、周波数6kHzの交流電圧が印加される。感光体と現像ローラ間の周速度比は1:1.6とした。またトナーとキャリアの混合比は93:7とし、現像器中の現像剤量は150gで行った。   The image forming unit is configured as follows. 1 is a photosensitive member, 3 is a pixel laser signal light, 4 is a developing roller having an outer diameter of 10 mm made of aluminum having a magnet having a magnetic force of 1200 gauss, and is opposed to the photosensitive member with a gap of 0.3 mm. Rotate in the direction of. 6 is a stirring roller that stirs the toner and carrier in the developing device and supplies them to the developing roller. The composition ratio of the carrier and the toner is read by a magnetic permeability sensor (not shown) and is supplied from a toner hopper (not shown) in a timely manner. A metal magnetic blade 5 regulates the magnetic brush layer of the developer on the developing roller. The developer amount is 150 g. The gap was 0.4 mm. Although the power supply is omitted, a DC voltage of −500 V and an AC voltage of 1.5 kV (pp) and a frequency of 6 kHz are applied to the developing roller 4. The peripheral speed ratio between the photoreceptor and the developing roller was 1: 1.6. The mixing ratio of toner and carrier was 93: 7, and the developer amount in the developing unit was 150 g.

2はエピクロルヒドリンゴムよりなる外径10mmの帯電ローラで直流バイアス−1.2kVが印加される。感光体1表面を−600Vに帯電する。8はクリーナ、9は廃トナーボックス、7は現像剤である。   A charging roller 2 having an outer diameter of 10 mm made of epichlorohydrin rubber is applied with a DC bias of -1.2 kV. The surface of the photoreceptor 1 is charged to −600V. 8 is a cleaner, 9 is a waste toner box, and 7 is a developer.

紙搬送は転写ユニット17の下方から搬送され、転写ベルト12と第2転写ローラ14との圧接されたニップ部に紙給送ローラ(図示せず)により紙19が送られてくるように、紙搬送路が形成されている。   The paper is transported from below the transfer unit 17 so that the paper 19 is fed by a paper feed roller (not shown) to the nip portion where the transfer belt 12 and the second transfer roller 14 are pressed. A conveyance path is formed.

転写ベルト12上のトナーは第2転写ローラ14に印加された+1000Vにより紙19に転写され、定着ローラ201、加圧ローラ202、定着ベルト203、加熱媒体ローラ204、インダクションヒータ部205から構成される定着部に搬送され、ここで定着される。   The toner on the transfer belt 12 is transferred to the paper 19 by +1000 V applied to the second transfer roller 14, and includes a fixing roller 201, a pressure roller 202, a fixing belt 203, a heating medium roller 204, and an induction heater unit 205. It is conveyed to the fixing unit and fixed there.

図2にその定着プロセス図を示す。定着ローラ201とヒートローラ204との間にベルト203がかけられている。定着ローラ201と加圧ローラ202との間に所定の加重がかけられており、ベルト203と加圧ローラ202との間でニップが形成される。ヒートローラ204の外部周面にはフェライトコア206とコイル207よりなるインダクションヒータ部205が設けられ、外面には温度センサー208が配置されている。   FIG. 2 shows the fixing process. A belt 203 is placed between the fixing roller 201 and the heat roller 204. A predetermined load is applied between the fixing roller 201 and the pressure roller 202, and a nip is formed between the belt 203 and the pressure roller 202. An induction heater unit 205 including a ferrite core 206 and a coil 207 is provided on the outer peripheral surface of the heat roller 204, and a temperature sensor 208 is arranged on the outer surface.

ベルトは30μmのNiを基体としてその上にシリコーンゴムを150μm、さらにその上にフッ素樹脂(PFA)チューブ30μmの重ねあわせた構成である。   The belt has a structure in which 30 μm of Ni is used as a base, silicone rubber is 150 μm thereon, and further a fluororesin (PFA) tube is 30 μm.

加圧ローラ202は加圧バネ209により定着ローラ201に押しつけられている。トナー210を有する記録材19は、案内板211に沿って動く。   The pressure roller 202 is pressed against the fixing roller 201 by a pressure spring 209. The recording material 19 having the toner 210 moves along the guide plate 211.

定着部材としての定着ローラ201は、長さが250mm、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金213の表面に、JIS規格によるゴム硬度(JIS−A)が20度のシリコーンゴムからなる厚さ3mmの弾性層214を設けている。この上にシリコーンゴム層215が3mmの厚みで形成され外径が約20mmとなっている。図示しない駆動モータから駆動力を受けて125mm/sで回転する。   A fixing roller 201 as a fixing member is a silicone rubber having a rubber hardness (JIS-A) of 20 degrees according to JIS standard on the surface of an aluminum hollow roller metal core 213 having a length of 250 mm, an outer diameter of 14 mm, and a thickness of 1 mm. An elastic layer 214 having a thickness of 3 mm is provided. A silicone rubber layer 215 is formed thereon with a thickness of 3 mm and has an outer diameter of about 20 mm. It receives a driving force from a driving motor (not shown) and rotates at 125 mm / s.

ヒートローラ204は肉厚1mm、外径20mmの中空パイプからなっている。定着ベルト表面温度はサーミスタを用いて表面温度170度に制御した。   The heat roller 204 is a hollow pipe having a thickness of 1 mm and an outer diameter of 20 mm. The surface temperature of the fixing belt was controlled to 170 ° using a thermistor.

加圧部材としての加圧ローラ202は、長さが250mm、外径20mmである。これは外径16mm、厚さ1mmのアルミニウムからなる中空ローラ芯金216の表面にJIS規格によるゴム硬度(JIS−A)が55度のシリコーンゴムからなる厚さ2mmの弾性層217を設けている。この加圧ローラ202は、回転可能に設置されており、片側147Nのバネ加重のバネ209によって定着ローラ201との間で幅5.0mmのニップ幅を形成している。   The pressure roller 202 as a pressure member has a length of 250 mm and an outer diameter of 20 mm. This is provided with a 2 mm thick elastic layer 217 made of silicone rubber having a rubber hardness (JIS-A) of 55 degrees according to JIS standards on the surface of a hollow roller metal core 216 made of aluminum having an outer diameter of 16 mm and a thickness of 1 mm. . The pressure roller 202 is rotatably installed, and a nip width of 5.0 mm is formed between the pressure roller 202 and the fixing roller 201 by a spring-loaded spring 209 on one side 147N.

以下、動作について説明する。フルカラーモードではY,M,C,Kのすべての第一転写ローラ10が押し上げられ、転写ベルト12を介して像形成ユニットの感光体1を押圧している。この時第一転写ローラには+800Vの直流バイアスが印加される。画像信号がレーザ光3から送られ、帯電ローラ2により表面が帯電された感光体1に入射し、静電潜像が形成される。感光体1と接触し回転する現像ローラ4上のトナーが感光体1に形成された静電潜像を顕像化する。   The operation will be described below. In the full color mode, all of the first transfer rollers 10 of Y, M, C, and K are pushed up and press the photoreceptor 1 of the image forming unit via the transfer belt 12. At this time, a DC bias of +800 V is applied to the first transfer roller. An image signal is sent from the laser beam 3 and is incident on the photoreceptor 1 whose surface is charged by the charging roller 2 to form an electrostatic latent image. The toner on the developing roller 4 that rotates in contact with the photoreceptor 1 visualizes the electrostatic latent image formed on the photoreceptor 1.

このとき像形成ユニット18Yの像形成の速度(感光体の周速に等しい125mm/s)と転写ベルト12の移動速度は感光体速度が転写ベルト速度よりも0.5〜1.5%遅くなるように設定されている。   At this time, the image forming speed of the image forming unit 18Y (125 mm / s equal to the peripheral speed of the photoconductor) and the moving speed of the transfer belt 12 are 0.5 to 1.5% slower than the transfer belt speed. Is set to

像形成工程により、Yの信号光3Yが像形成ユニット18Yに入力され、Yトナーによる像形成が行われる。像形成と同時に第1転写ローラ10Yの作用で、Yトナー像が感光体1Yから転写ベルト12に転写される。このとき第1転写ローラ10Yには+800Vの直流電圧を印加した。   In the image forming process, the Y signal light 3Y is input to the image forming unit 18Y, and image formation with Y toner is performed. Simultaneously with the image formation, the first transfer roller 10Y causes the Y toner image to be transferred from the photoreceptor 1Y to the transfer belt 12. At this time, a DC voltage of +800 V was applied to the first transfer roller 10Y.

第1色(Y)第一転写と第2色(M)第一転写間のタイムラグを持たせて、Mの信号光3Mが像形成ユニット18Mに入力され、Mトナーによる像形成が行われ、像形成と同時に第1転写ローラ10Mの作用で、Mトナー像が感光体1Mから転写ベルト12に転写される。このとき第一色(Y)トナーが形成されている上にMトナーが転写される。同様にC(シアン)、K(ブラック)トナーによる像形成が行われ、像形成と同時に第1転写ローラ10C、10Bの作用で、YMCKトナー像が転写ベルト12上に形成される。いわゆるタンデム方式と呼ばれる方式である。   With a time lag between the first color (Y) first transfer and the second color (M) first transfer, M signal light 3M is input to the image forming unit 18M, and image formation with M toner is performed. Simultaneously with the image formation, the M toner image is transferred from the photosensitive member 1M to the transfer belt 12 by the action of the first transfer roller 10M. At this time, the first color (Y) toner is formed and the M toner is transferred. Similarly, image formation with C (cyan) and K (black) toners is performed, and a YMCK toner image is formed on the transfer belt 12 by the action of the first transfer rollers 10C and 10B simultaneously with the image formation. This is a so-called tandem method.

転写ベルト12上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のBトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット(図示せず)から送られる紙19に、第2転写ローラ14の作用で一括転写される。このとき転写ローラ13は接地し、第2転写ローラ14には+1kVの直流電圧を印加した。紙に転写されたトナー像は定着ローラ対201・202により定着された。紙はその後排出ローラ対(図示せず)を経て装置外に排出された。中間転写ベルト12上に残った転写残りのトナーは、クリーニングブレード16の作用で清掃され次の像形成に備えた。   On the transfer belt 12, toner images of four colors are positioned and overlapped to form a color image. After the transfer of the final B toner image, the four color toner images are collectively transferred to the paper 19 fed from a paper feed cassette (not shown) at the same time by the action of the second transfer roller 14. At this time, the transfer roller 13 was grounded, and a DC voltage of +1 kV was applied to the second transfer roller 14. The toner image transferred to the paper was fixed by a pair of fixing rollers 201 and 202. The paper was then discharged out of the apparatus through a pair of discharge rollers (not shown). The residual transfer toner remaining on the intermediate transfer belt 12 was cleaned by the action of the cleaning blade 16 to prepare for the next image formation.

(表11)に図1の電子写真装置により、画像出しを行った結果を示す。感光体上へのトナー成分のフィルミングの発生状態、耐久テスト前後での画像濃度、非画像部へのトナー付着であるかぶり、べた画像を全面にとった場合の濃度の均一性、マゼンタ、シアン、イエロートナーの3色重なったフルカラー画像における文字部での転写時の飛散りや一部が転写されずに感光体に残るいわゆる中抜けの状態、イエロ又はマゼンタトナーが転写された後、次のマゼンタ、シアン又はブラックトナーの転写の際にすでに転写されたイエロ又はマゼンタトナーが逆に感光体に付着して戻ってします逆転写の状態を示す。   Table 11 shows the results of image output using the electrophotographic apparatus shown in FIG. Occurrence of toner component filming on the photoreceptor, image density before and after the durability test, fogging due to toner adhesion to non-image areas, uniformity of density when a solid image is taken over the entire surface, magenta, cyan In the full-color image in which three colors of yellow toner are superimposed, scattering at the time of transfer in a character portion or a so-called hollow state where a part of the full-color image remains on the photoconductor without being transferred, after yellow or magenta toner is transferred, the next magenta The yellow or magenta toner already transferred at the time of transferring the cyan or black toner, on the contrary, adheres to the photosensitive member and returns to the reverse transfer state.

Figure 0004482481
Figure 0004482481

帯電量はフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45%RHの環境下で、耐久性評価のサンプルを0.3g採取し、窒素ガス1.96×104(Pa)で1分間ブローした。 The charge amount is measured by the blow-off method of frictional charging with the ferrite carrier. In an environment of 25 ° C. and 45% RH, 0.3 g of a sample for durability evaluation was collected and blown with nitrogen gas 1.96 × 10 4 (Pa) for 1 minute.

現像剤を用いて画像出しを行ったところ、高画像濃度で非画像部の地かぶりの発生もなく、トナーの飛び散りなどがなく、高解像度で画像濃度1.3以上の高濃度の画像が得られた。更に、A4用紙10万枚の長期耐久テストにおいても、流動性、画像濃度とも変化が少なく安定した特性を示した。また現像時の全面ベタ画像を取ったときの均一性も良好であった。現像メモリーも発生していない。   When an image was produced using a developer, a high-density image with a high image density of 1.3 or higher was obtained with a high resolution, with no non-image area fogging, no toner scattering, etc. It was. Further, even in the long-term durability test of 100,000 A4 sheets, both the fluidity and the image density showed a stable characteristic with little change. In addition, the uniformity when the entire solid image was taken at the time of development was also good. There is no development memory.

連続使用時においても、縦筋の異常画像は発生しなかった。キャリアへのトナー成分のスペントもほとんど生じていない。キャリア抵抗の変化、帯電量の低下も少なく、トナー急速補給時の帯電立ち上がり性も良好であり、高湿環境下でかぶりが増大する現象はみられなかった。また長期使用時、高い飽和帯電量が得られ長期間維持できた。低温低湿下での帯電量の変動はほとんど生じていない。またトナーとキャリアとの混合比率を5〜20wt%まで変えても画像濃度、地カフ゛リ等の画質の変化は少なく、広いトナー濃度制御が可能となった。   Even during continuous use, no abnormal image of the vertical muscles occurred. There is almost no spent toner component on the carrier. There was little change in carrier resistance and a decrease in charge amount, good charge rising property upon rapid toner replenishment, and no phenomenon of fog increase under a high humidity environment. Also, when used for a long time, a high saturation charge amount was obtained and could be maintained for a long time. Fluctuations in charge amount under low temperature and low humidity hardly occur. Further, even if the mixing ratio of the toner and the carrier is changed from 5 to 20 wt%, the image density and the image quality such as ground cover are hardly changed, and a wide toner density control is possible.

また転写においても中抜けは実用上問題ないレベルであり、転写効率は95%程度を示した。また、感光体、転写ベルトへのトナーのフィルミングも実用上問題ないレベルであった。転写ベルトのクリーニング不良も未発生であった。また定着時のトナーの乱れやトナー飛びもほとんど生じていない。また3色の重なったフルカラー画像においても、逆転写の転写不良は問題ないレベルであり、定着時において、定着ベルトへの紙の巻付きは発生しなかった。   Also, in the transfer, the void is at a level that causes no problem in practical use, and the transfer efficiency is about 95%. Further, the filming of the toner on the photosensitive member and the transfer belt was at a level where there was no practical problem. There was no defective cleaning of the transfer belt. Also, there is almost no toner disturbance or toner skipping during fixing. Also, even in the full-color image in which the three colors overlap each other, there is no problem with reverse transfer transfer, and no paper wraps around the fixing belt during fixing.

cm1、cm2、cm3では帯電上昇が発生し、カブリも目立った。また二成分現像で全面ベタ画像をとり続けてトナーを急速に補給したときに、帯電低下が生じ、かぶりが増大した。高湿環境下でその現象が特に悪化した。トナーとキャリアとの混合比率は、5〜8wt%の範囲では濃度を変化させても画像濃度、地カフ゛リ等の画質の変化は少なかったが、これより小さい値となると画像濃度の低下が生じ、また大きい値となると地カフ゛リが増大した。   At cm1, cm2, and cm3, charge increase occurred and fog was conspicuous. Further, when a solid image was continuously taken with two-component development and the toner was replenished rapidly, charge reduction occurred and fogging increased. The phenomenon worsened particularly in a high humidity environment. The mixing ratio of the toner and the carrier was in the range of 5 to 8 wt%, even if the density was changed, there was little change in image quality such as image density and ground cover. When the value is large, the ground cover increases.

(表12)に付着量1.2mg/cm2のベタ画像を図2に示したプロセス速度125mm/s、オイルを塗布しないベルトを用いた定着装置にて、OHP透過率(定着温度160℃)、高温でのオフセット性(高温オフセットが発生する温度)、60℃、5時間の放置後の貯蔵安定性の結果、及び定着での定着ベルトへの紙の巻付性や定着時にトナーが飛散るトナーの乱れの状態を評価した。OHP透過率は、分光光度計U−3200(日立製作所)で、700nmの光の透過率を測定した。 In Table 12, a solid image with an adhesion amount of 1.2 mg / cm 2 was processed at a process speed of 125 mm / s shown in FIG. 2 and the OHP transmittance (fixing temperature: 160 ° C.) using a belt not coated with oil. , Offset property at high temperature (temperature at which high temperature offset occurs), storage stability after leaving at 60 ° C. for 5 hours, and wrapping property of the paper around the fixing belt during fixing and toner scattering during fixing The state of toner disturbance was evaluated. The OHP transmittance was measured with a spectrophotometer U-3200 (Hitachi, Ltd.) for the transmittance of 700 nm light.

Figure 0004482481
Figure 0004482481

定着ニップ部でOHPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは20万枚では全く発生しなかった。シリコーン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられない。OHP透光性が80%以上を示しており、またオイルを使用しない定着ローラにおいて非オフセット温度幅も広い範囲で得られた。また60℃、5時間の貯蔵安定性においても凝集はほとんど見られなかった(○レベル)。tm10、tm11、tm12トナーではワックスの分散不良、ブロードな粒度分布に起因すると思われる貯蔵安定性の悪化、定着ベルトへの紙の巻付が発生した。   No OHP jam occurred at the fixing nip. In the full-solid image of plain paper, no offset occurred at 200,000 sheets. Even if the oil is not applied with a silicone or fluorine-based fixing belt, the surface deterioration phenomenon of the belt is not observed. The OHP translucency was 80% or more, and the non-offset temperature range was obtained in a wide range in the fixing roller not using oil. In addition, almost no aggregation was observed in the storage stability at 60 ° C. for 5 hours (◯ level). In the toners of tm10, tm11, and tm12, the wax was poorly dispersed, the storage stability was deteriorated, which seems to be caused by the broad particle size distribution, and the paper was wound around the fixing belt.

本発明は、感光体を使用した電子写真方式以外でも、ダイレクトに紙にトナーを付着させて印写する方式等にも有用である。   The present invention is useful not only for an electrophotographic system using a photoconductor but also for a system in which toner is directly attached to paper for printing.

本発明の一実施例で使用した画像形成装置の構成を示す断面図。1 is a cross-sectional view illustrating a configuration of an image forming apparatus used in an embodiment of the present invention. 本発明の一実施例で使用した定着ユニットの構成を示す断面図。FIG. 3 is a cross-sectional view illustrating a configuration of a fixing unit used in one embodiment of the present invention. 本発明の一実施例で使用した攪拌分散装置の概略図。1 is a schematic view of a stirring and dispersing device used in one embodiment of the present invention. 本発明の一実施例で使用した攪拌分散装置の上から見た図。The figure seen from the stirring dispersion | distribution apparatus used in one Example of this invention. 本発明の一実施例で使用した攪拌分散装置の概略図。1 is a schematic view of a stirring and dispersing device used in one embodiment of the present invention. 本発明の一実施例で使用した攪拌分散装置の上から見た図。The figure seen from the stirring dispersion | distribution apparatus used in one Example of this invention.

符号の説明Explanation of symbols

1Y,1M,1C,1K 感光体
2Y,2M,2C,2K 帯電ローラ
3Y,3M,3C,3K レーザ信号光
4Y,4M,4C,4K 現像ローラ
5Y,5M,5C,5K ブレード
6Y,6M,6C,6K 攪拌ローラ
7Y,7M,7C,7K 現像剤
8Y,8M,8C,8K クリーナ
9Y,9M,9C,9K 廃トナーボックス
10Y,10M,10C,10K 第1転写ローラ
11 駆動ローラ
12 転写ベルト
13 駆動テンションローラ
14 第2転写ローラ
15 ローラ
16 ベルトクリーナブレード
17 転写ベルトユニット
18B,18C,18M,18Y 像形成ユニット
19 転写媒体
201 定着ローラ
202 加圧ローラ
203 定着ベルト
204 加熱媒体ローラ
205 インダクションヒータ部
206 フェライトコア
207 コイル
801 外槽
802 堰板
803 回転体
806 シャフト
807 冷却水排出口
808 冷却水注入口
850 原料投入口
852 固定体
853 回転体
854 シャフト
856 原料液排出
1Y, 1M, 1C, 1K Photoconductors 2Y, 2M, 2C, 2K Charging rollers 3Y, 3M, 3C, 3K Laser signal light 4Y, 4M, 4C, 4K Developing rollers 5Y, 5M, 5C, 5K Blades 6Y, 6M, 6C , 6K Agitating rollers 7Y, 7M, 7C, 7K Developers 8Y, 8M, 8C, 8K Cleaners 9Y, 9M, 9C, 9K Waste toner boxes 10Y, 10M, 10C, 10K First transfer roller 11 Drive roller 12 Transfer belt 13 Drive Tension roller 14 Second transfer roller 15 Roller 16 Belt cleaner blade 17 Transfer belt unit 18B, 18C, 18M, 18Y Image forming unit 19 Transfer medium 201 Fixing roller 202 Pressure roller 203 Fixing belt 204 Heating medium roller 205 Induction heater section 206 Ferrite Core 207 Outside coil 801 802 dam 803 rotating body 806 shaft 807 cooling water discharge port 808 cooling water inlet 850 raw material inlet 852 fixed body 853 rotating member 854 shaft 856 material liquid discharged

Claims (23)

水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、凝集加熱により水系中でトナーを作成するトナー製造方法であって、
少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
その後pHを2.2〜6.8の範囲に調整し、加熱処理する工程とを含むことを特徴とするトナーの製造方法。
In an aqueous medium, at least the resin particle dispersion in which the resin particles are dispersed, the colorant particle dispersion in which the colorant particles are dispersed, and the wax particle dispersion in which the wax particles are dispersed are mixed, and the aqueous system is obtained by aggregation heating. A toner manufacturing method for producing toner in
Creating a mixed dispersion of at least a resin particle dispersion in which the resin particles are dispersed, a colorant particle dispersion in which the colorant particles are dispersed, and a wax particle dispersion in which the wax particles are dispersed; and
At least a part of the resin particles, the colorant particles and the wax particles aggregated by adjusting the pH of the mixed dispersion to a range of 9.5 to 12.2, adding a water-soluble inorganic salt, and heat-treating. Forming molten aggregated particles, and the pH when the aggregated particles are formed is in the range of 7.0 to 9.5;
And a step of adjusting the pH to a range of 2.2 to 6.8, followed by heat treatment.
水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、
少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した芯粒子を形成し、前記芯粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、
前記芯粒子が分散した芯粒子分散液に、さらに第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加する工程と、
pHを5.2〜8.8の範囲に調整する工程と、
前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理する工程と、
pHを2.2〜6.8の範囲に調整する工程と、
さらに、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して前記芯粒子に、前記第二の樹脂粒子を融着する工程とを含むことを特徴とするトナーの製造方法。
In an aqueous medium, at least the first resin particle dispersion in which the first resin particles are dispersed, the colorant particle dispersion in which the colorant particles are dispersed, and the wax particle dispersion in which the wax particles are dispersed are mixed. And a toner production method for producing toner in an aqueous system by heat aggregation,
A mixed dispersion of at least a first resin particle dispersion in which the first resin particles are dispersed, a colorant particle dispersion in which the colorant particles are dispersed, and a wax particle dispersion in which the wax particles are dispersed. Creating a process;
The pH of the mixed dispersion is adjusted to a range of 9.5 to 12.2, a water-soluble inorganic salt is added, and heat treatment is performed to aggregate the first resin particles, the colorant particles, and the wax particles. Forming a core particle at least partially melted, and a step in which the pH when the core particle is formed is in a range of 7.0 to 9.5;
Thereafter, adjusting the pH to a range of 2.2 to 6.8, and heat-treating to form core particles;
Adding the second resin particle dispersion in which the second resin particles are further dispersed to the core particle dispersion in which the core particles are dispersed;
adjusting the pH to a range of 5.2 to 8.8;
Heat treatment at a temperature equal to or higher than the glass transition temperature of the second resin particles;
adjusting the pH to a range of 2.2 to 6.8;
And a step of fusing the second resin particles to the core particles by heat treatment at a temperature equal to or higher than the glass transition temperature of the second resin particles.
水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、
少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した芯粒子を形成し、前記芯粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、
前記芯粒子が分散した芯粒子分散液のpH値をHSとすると、分散液のpH値をHS+2〜HS−5の範囲に調整した第ニの樹脂粒子を分散させた第二の樹脂粒子分散液を、前記芯粒子が分散した芯粒子分散液に添加混合する工程とを含むことを特徴とするトナーの製造方法。
In an aqueous medium, at least the first resin particle dispersion in which the first resin particles are dispersed, the colorant particle dispersion in which the colorant particles are dispersed, and the wax particle dispersion in which the wax particles are dispersed are mixed. And a toner production method for producing toner in an aqueous system by heat aggregation,
A mixed dispersion of at least a first resin particle dispersion in which the first resin particles are dispersed, a colorant particle dispersion in which the colorant particles are dispersed, and a wax particle dispersion in which the wax particles are dispersed. Creating a process;
The pH of the mixed dispersion is adjusted to a range of 9.5 to 12.2, a water-soluble inorganic salt is added, and heat treatment is performed to aggregate the first resin particles, the colorant particles, and the wax particles. Forming a core particle at least partially melted, and a step in which the pH when the core particle is formed is in a range of 7.0 to 9.5;
Thereafter, adjusting the pH to a range of 2.2 to 6.8, and heat-treating to form core particles;
When the pH value of the core particle dispersion in which the core particles are dispersed is HS, the second resin particle dispersion in which the second resin particles in which the pH value of the dispersion is adjusted to the range of HS + 2 to HS-5 is dispersed. And a step of adding and mixing to a core particle dispersion in which the core particles are dispersed.
前記第ニの樹脂粒子が分散された第二の樹脂粒子分散液のpHを3.5〜10.5の範囲に調整して添加する請求項3に記載のトナーの製造方法。   The method for producing a toner according to claim 3, wherein the second resin particle dispersion in which the second resin particles are dispersed is added after adjusting the pH to a range of 3.5 to 10.5. 前記トナーの体積平均粒径は3〜7μmの範囲、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量は10〜75個数%の範囲、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が25〜75体積%の範囲であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%以下で含有し、
体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.5の範囲にある請求項1〜4のいずれかに記載のトナーの製造方法。
The toner has a volume average particle size in the range of 3 to 7 μm, the content of toner base particles having a particle size of 2.52 to 4 μm in the number distribution is in the range of 10 to 75% by number, and 4 to 6.06 μm in the volume distribution. Toner mother particles having a particle size of 25 to 75% by volume, toner mother particles having a particle size of 8 μm or more in the volume distribution are contained at 5% by volume or less,
When the volume% of toner base particles having a particle diameter of 4 to 6.06 μm in the volume distribution is V46, and the number% of toner base particles having a particle diameter of 4 to 6.06 μm in the number distribution is P46, The toner production method according to claim 1, wherein P46 / V46 is in the range of 0.5 to 1.5.
前記ワックスは、ヨウ素価が25以下、けん化価が30〜300、DSC法による吸熱ピーク温度(融点)が50〜100℃のエステル系ワックスを含む請求項1〜4いずれかに記載のトナーの製造方法。   The toner according to any one of claims 1 to 4, wherein the wax includes an ester wax having an iodine value of 25 or less, a saponification value of 30 to 300, and an endothermic peak temperature (melting point) by DSC method of 50 to 100 ° C. Method. ワックスが、少なくとも長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び合成炭化水素系ワックスとの反応により得られる酸価10〜80mgKOH/gのワックスを含む請求項1〜4いずれかに記載のトナーの製造方法。   The wax according to any one of claims 1 to 4, wherein the wax contains at least a wax having an acid value of 10 to 80 mg KOH / g obtained by a reaction with a long-chain alkyl alcohol, an unsaturated polyvalent carboxylic acid or an anhydride thereof, and a synthetic hydrocarbon wax. A method for producing the toner according to the description. 前記ワックスは、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル及びソルビタン脂肪酸エステルの群から選択される1種以上のワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。   The toner manufacturing method according to claim 1, wherein the wax includes one or more waxes selected from the group consisting of a hydroxy stearic acid derivative, a glycerin fatty acid ester, a glycol fatty acid ester, and a sorbitan fatty acid ester. 前記ワックスは、炭素数4〜30を有する脂肪族アミド系のワックス又は飽和または1〜2価の不飽和のアルキレンビス脂肪酸アミド系のワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。   The toner according to claim 1, wherein the wax comprises an aliphatic amide wax having 4 to 30 carbon atoms or a saturated or divalent unsaturated alkylene bis fatty acid amide wax. Production method. 前記ワックスは、少なくとも炭素数4〜30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスである請求項7に記載のトナーの製造方法。   The toner according to claim 7, wherein the wax is a wax obtained by a reaction with a long-chain alkyl alcohol having at least 4 to 30 carbon atoms, an unsaturated polycarboxylic acid or an anhydride thereof, and an unsaturated hydrocarbon wax. Production method. 前記ワックスは、ゲル浸透クロマトグラフィー(GPC)における分子量分布において、数平均分子量が100〜5000、重量平均分子量が200〜10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜10、分子量5×102〜1×104の領域に少なくとも一つの分子量極大ピークを有し、220℃における加熱減量が8重量%以下であるエステル系ワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。 The wax has a number average molecular weight of 100 to 5000, a weight average molecular weight of 200 to 10,000, and a ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight) in the molecular weight distribution in gel permeation chromatography (GPC). Is 1.01 to 8, the ratio of the Z average molecular weight to the number average molecular weight (Z average molecular weight / number average molecular weight) is 1.02 to 10, and the molecular weight is 5 × 10 2 to 1 × 10 4. The method for producing a toner according to any one of claims 1 to 4, comprising an ester-based wax having a peak and having a heat loss at 220 ° C of 8% by weight or less. 請求項1〜11のいずれか1項で製造されたトナーを母体粒子とし、平均粒子径が6nm〜200nmの範囲の無機微粉末を前記トナー母体粒子100重量部に対し1〜6重量部の範囲で添加し、
硬化させたバインダー樹脂と磁性体微粒子とからなる磁性粒子であり、前記磁性体微粒子の含有量が80〜99wt%、数平均粒子径が10〜60μmであり、かつ前記磁性粒子の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとを含むことを特徴とする二成分現像剤。
The toner produced in any one of claims 1 to 11 is used as base particles, and an inorganic fine powder having an average particle size in the range of 6 nm to 200 nm is in the range of 1 to 6 parts by weight with respect to 100 parts by weight of the toner base particles. Add in
Magnetic particles comprising a cured binder resin and magnetic fine particles, wherein the content of the magnetic fine particles is 80 to 99 wt%, the number average particle diameter is 10 to 60 μm, and the surface of the magnetic particles is an aminosilane cup And a carrier containing magnetic particles coated with a fluorine-modified silicone resin containing a ring agent.
前記磁性粒子は、磁性体微粒子と、アルデヒド類をフェノール類に対して反応させることにより硬化させたフェノール樹脂とからなる請求項12に記載のニ成分現像剤。   The two-component developer according to claim 12, wherein the magnetic particles comprise magnetic fine particles and a phenol resin cured by reacting an aldehyde with a phenol. 表面を被覆された磁性粒子を含むキャリアのBET比表面積が0.03〜0.3m2/gである請求項12に記載のニ成分現像剤。 The two- component developer according to claim 12, wherein the BET specific surface area of the carrier containing the magnetic particles coated on the surface is 0.03 to 0.3 m 2 / g. 磁性粒子の被覆樹脂に、アミノシランカップリング剤が被覆樹脂100重量部中5〜40重量部含有されている請求項12に記載の二成分現像剤。   The two-component developer according to claim 12, wherein the magnetic particle coating resin contains 5 to 40 parts by weight of an aminosilane coupling agent in 100 parts by weight of the coating resin. 被覆樹脂層に導電性微粉末が被覆樹脂100重量部に対して1〜15重量部含有されている請求項12に記載の二成分現像剤。   The two-component developer according to claim 12, wherein the coating resin layer contains 1 to 15 parts by weight of conductive fine powder with respect to 100 parts by weight of the coating resin. 前記フッ素変性シリコーン系樹脂が、パーフロロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとの反応から得られた架橋性フッ素変性シリコ−ン樹脂である請求項12に記載の二成分現像剤。   13. The two-component developer according to claim 12, wherein the fluorine-modified silicone resin is a crosslinkable fluorine-modified silicone resin obtained from a reaction between a perfluoroalkyl group-containing organosilicon compound and polyorganosiloxane. 前記パーフロロアルキル基含有の有機ケイ素化合物が、CF3CH2CH2Si(OCH33、C49CH2CH2Si(CH3)(OCH32、C817CH2CH2Si(OCH33、C817CH2CH2Si(OC253、及び(CF32CF(CF28CH2CH2Si(OCH33から選ばれる少なくとも一つである請求項17に記載の二成分現像剤。 The perfluoroalkyl group-containing organosilicon compound is CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (OCH 3 ) 2 , C 8 F 17 CH 2. Selected from CH 2 Si (OCH 3 ) 3 , C 8 F 17 CH 2 CH 2 Si (OC 2 H 5 ) 3 , and (CF 3 ) 2 CF (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 The two-component developer according to claim 17, which is at least one selected from the group consisting of: 前記ポリオルガノシロキサンは下記(化1)及び(化2)から選ばれる少なくとも一つである請求項17に記載の二成分現像剤。
Figure 0004482481
(但し、R1,R2は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基またはフェニル基、R3,R4は炭素数1〜4のアルキル基またはフェニル基を示し、mは平均重合度であり正の整数を示す。)
Figure 0004482481
(但し、R1,R2はそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基、フェニル基、R3,R4,R5,R6は炭素数1〜4のアルキル基またはフェニル基を示し、nは平均重合度であり正の整数を示す。)
The two-component developer according to claim 17, wherein the polyorganosiloxane is at least one selected from the following (Chemical Formula 1) and (Chemical Formula 2).
Figure 0004482481
(However, R 1 and R 2 are hydrogen atoms, halogen atoms, hydroxy groups, methoxy groups, alkyl groups having 1 to 4 carbon atoms or phenyl groups, and R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms or phenyl groups. M represents the average degree of polymerization and represents a positive integer.)
Figure 0004482481
(However, R 1 and R 2 are each a hydrogen atom, a halogen atom, a hydroxy group, a methoxy group, an alkyl group having 1 to 4 carbon atoms, a phenyl group, R 3 , R 4 , R 5 and R 6 are each having 1 to 1 carbon atoms. 4 represents an alkyl group or a phenyl group, and n represents an average degree of polymerization and represents a positive integer.)
前記フッ素変性シリコーン系樹脂が、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下である範囲の反応から得られる架橋性フッ素変性シリコ−ン樹脂である請求項17記載の二成分現像剤。   Crosslinkable fluorine-modified silicone obtained by a reaction in which the fluorine-modified silicone resin is a reaction in which the organosilicon compound containing a perfluoroalkyl group is 3 to 20 parts by weight with respect to 100 parts by weight of the polyorganosiloxane. The two-component developer according to claim 17, which is a resin. 平均粒子径が6nm〜20nmである無機微粉末をトナー母体100重量部に対し0.5〜2.5重量部、平均粒子径が20nm〜200nmである無機微粉末をトナー母体100重量部に対し0.5〜3.5重量部外添した請求項12に記載の二成分現像剤。   The inorganic fine powder having an average particle diameter of 6 nm to 20 nm is 0.5 to 2.5 parts by weight based on 100 parts by weight of the toner base, and the inorganic fine powder having an average particle diameter of 20 nm to 200 nm is based on 100 parts by weight of the toner base. The two-component developer according to claim 12, wherein 0.5 to 3.5 parts by weight are externally added. 平均粒子径が6nm〜20nm、強熱減量が1.5〜25wt%である無機微粉末をトナー母体100重量部に対し0.5〜2.5重量部、平均粒子径が20nm〜200nm、強熱減量が0.5〜23wt%である無機微粉末をトナー母体100重量部に対し0.5〜3.5重量部を外添処理した請求項12に記載の二成分現像剤。   An inorganic fine powder having an average particle size of 6 nm to 20 nm and an ignition loss of 1.5 to 25 wt% is 0.5 to 2.5 parts by weight with respect to 100 parts by weight of the toner base, an average particle size of 20 nm to 200 nm, strong The two-component developer according to claim 12, wherein 0.5 to 3.5 parts by weight of an inorganic fine powder having a heat loss of 0.5 to 23 wt% is externally added to 100 parts by weight of the toner base. 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項1〜11のいずれかに記載の製造方法にて製造されたトナー、又は請求項12〜22のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65(sec)の条件を満足することを特徴とする画像形成装置。   And a plurality of toner image forming stations including at least an image carrier, a charging unit for forming an electrostatic latent image on the image carrier and a toner carrier, and an electrostatic latent image formed on the image carrier. The toner produced by the production method according to any one of claims 1 to 11, or the toner that has been visualized by the two-component developer according to any one of claims 12 to 22 to visualize an electrostatic latent image. A transfer system configured to execute a transfer process for sequentially transferring images onto a transfer medium, wherein the transfer process is a distance from a first transfer position to a second transfer position; When the distance from the second transfer position to the third transfer position or the distance from the third transfer position to the fourth transfer position is d1 (mm) and the peripheral speed of the photosensitive member is v (mm / s) , D1 / v ≦ 0.65 (sec) is satisfied Image forming apparatus characterized by.
JP2005137639A 2004-05-26 2005-05-10 Toner production method, two-component developer and image forming apparatus using the same Active JP4482481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137639A JP4482481B2 (en) 2004-05-26 2005-05-10 Toner production method, two-component developer and image forming apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004156683 2004-05-26
JP2005137639A JP4482481B2 (en) 2004-05-26 2005-05-10 Toner production method, two-component developer and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006011385A JP2006011385A (en) 2006-01-12
JP4482481B2 true JP4482481B2 (en) 2010-06-16

Family

ID=35778673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137639A Active JP4482481B2 (en) 2004-05-26 2005-05-10 Toner production method, two-component developer and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4482481B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501736B2 (en) * 2005-03-15 2010-07-14 住友ベークライト株式会社 Phenolic resin molding material
US7691552B2 (en) * 2006-08-15 2010-04-06 Xerox Corporation Toner composition
WO2008056519A1 (en) * 2006-11-07 2008-05-15 Panasonic Corporation Toner and process for producing toner
US20090130579A1 (en) * 2007-11-15 2009-05-21 Kabushiki Kaisha Toshiba Developing agent and method for manufacturing the same
US7973186B1 (en) * 2009-12-18 2011-07-05 Xerox Corporation Low molecular weight pigment dispersants for phase change ink

Also Published As

Publication number Publication date
JP2006011385A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7569322B2 (en) Toner, method for producing toner, two-component developer, and image forming apparatus
JP4197516B2 (en) Toner, two-component developer and image forming method
JP4485382B2 (en) Toner production method
JP2009064038A (en) Method for manufacturing toner
US7560214B2 (en) Toner, process for producing toner, two-component developer and image forming apparatus
JP4209888B2 (en) Toner, toner manufacturing method, two-component developer, and image forming method
JP4149998B2 (en) Two-component developer and image forming method using the same
JP4449826B2 (en) Toner, toner manufacturing method, two-component developer, and image forming apparatus
JP4181603B2 (en) Toner and method for producing the same
JP4449810B2 (en) Toner production method
JP4482481B2 (en) Toner production method, two-component developer and image forming apparatus using the same
JP4508004B2 (en) Toner and toner production method
JP4597143B2 (en) Toner, toner production method and two-component developer
EP1992992A1 (en) Toner and process for producing the same
JP4633786B2 (en) Toner, toner production method and two-component developer
JP4186735B2 (en) Toner, toner manufacturing method, two-component developer, and image forming apparatus
JP2005309184A (en) Method for manufacturing toner, two-component developer, and image forming apparatus
JP2005250154A (en) Toner, its manufacturing method, two-component developer, and image forming apparatus
JP4483629B2 (en) Toner, toner manufacturing method, two-component developer, and image forming apparatus
JP4035040B2 (en) Toner and two-component developer
JP2006084923A (en) Toner, method for manufacturing toner, two-component developer and image forming apparatus
US20090053640A1 (en) Toner and method for producing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150