JP4480600B2 - Manufacturing method of polylactic acid resin foam sheet - Google Patents

Manufacturing method of polylactic acid resin foam sheet Download PDF

Info

Publication number
JP4480600B2
JP4480600B2 JP2005044509A JP2005044509A JP4480600B2 JP 4480600 B2 JP4480600 B2 JP 4480600B2 JP 2005044509 A JP2005044509 A JP 2005044509A JP 2005044509 A JP2005044509 A JP 2005044509A JP 4480600 B2 JP4480600 B2 JP 4480600B2
Authority
JP
Japan
Prior art keywords
resin
polylactic acid
flow path
resin flow
circular mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005044509A
Other languages
Japanese (ja)
Other versions
JP2006224628A (en
Inventor
孝明 平井
伸幸 辻脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2005044509A priority Critical patent/JP4480600B2/en
Publication of JP2006224628A publication Critical patent/JP2006224628A/en
Application granted granted Critical
Publication of JP4480600B2 publication Critical patent/JP4480600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/507Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through an annular die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Description

本発明は、ポリ乳酸系樹脂発泡シートの製造方法に関する。   The present invention relates to a method for producing a polylactic acid resin foam sheet.

ポリ乳酸系樹脂は、天然に存在する乳酸系樹脂を重合されて得られた樹脂であり、自然界に存在する微生物によって分解可能な生分解性樹脂であると共に、常温での機械的特性についても優れていることから注目を集めている。   Polylactic acid resin is a resin obtained by polymerizing lactic acid resin that exists in nature. It is a biodegradable resin that can be decomposed by microorganisms that exist in nature and has excellent mechanical properties at room temperature. It attracts attention from being.

ポリ乳酸系樹脂の原料となる乳酸は、分子中に不斉炭素原子を有するために光学活性を示し、D体、L体、及び、D体とL体とが等量混合してなるラセミ体の三種類が存在する。   Lactic acid, which is a raw material for polylactic acid-based resins, exhibits optical activity because it has an asymmetric carbon atom in the molecule, and racemates in which D-form, L-form, and D-form and L-form are mixed in equal amounts There are three types.

そのために、乳酸を重合させて得られるポリ乳酸系樹脂は、上記三種類の乳酸の混合割合と重合方法を調整することによって種々の性質を有するものとすることができ、現実に、ポリ乳酸系樹脂には、結晶性のものから非結晶性のものまで多種多様存在し、融点又は軟化点も様々である。   Therefore, the polylactic acid resin obtained by polymerizing lactic acid can have various properties by adjusting the mixing ratio of the above three kinds of lactic acid and the polymerization method. There are a wide variety of resins ranging from crystalline to non-crystalline, and the melting point or softening point varies.

一方、合成樹脂から発泡体を得る方法として、合成樹脂及び物理発泡剤を押出機に供給して溶融混練し押出機から押出発泡させる方法が挙げられるが、押出発泡時に合成樹脂が発泡ガスを保持し得る程度の張力を有している必要がある。   On the other hand, as a method for obtaining a foam from a synthetic resin, there is a method in which a synthetic resin and a physical foaming agent are supplied to an extruder and melt-kneaded and then extruded and foamed from the extruder. It is necessary to have enough tension.

ところが、上記ポリ乳酸系樹脂は、これを固化状態から加熱すると、ある温度を境にして大きく軟化又は溶融して粘度の低い状態となってしまい、そのために、ポリ乳酸系樹脂は、発泡ガスを保持し得る張力を発現させる温度領域が極めて狭く、発泡させ難い樹脂とされている。   However, when the polylactic acid-based resin is heated from a solidified state, the polylactic acid-based resin is greatly softened or melted at a certain temperature to become a low-viscosity state. The temperature range for expressing the tension that can be maintained is extremely narrow, and the resin is difficult to foam.

そこで、ポリ乳酸系樹脂を変性させて発泡性を向上させることなど、種々の方法が試みられており、特許文献1には、D−体とL−体とが、重量でそれぞれ2〜13%及び98〜87%の割合で共重合してなる結晶性ポリ乳酸系樹脂を押出機内で加熱し、溶融された樹脂に発泡剤として、ジメチルエーテルと炭化水素とが重量比で95/5ないし5/95の割合で混合されてなる混合物を圧入し、得られた溶融樹脂を押出機から押し出して発泡させる結晶性ポリ乳酸系樹脂発泡体の製造方法が開示されている。   Therefore, various methods such as modifying the polylactic acid-based resin to improve foaming properties have been attempted. Patent Document 1 discloses that D-form and L-form are 2 to 13% by weight, respectively. And a crystalline polylactic acid-based resin obtained by copolymerization at a ratio of 98 to 87% is heated in an extruder, and dimethyl ether and hydrocarbon are used as a blowing agent in the molten resin in a weight ratio of 95/5 to 5 /. A method for producing a crystalline polylactic acid resin foam is disclosed in which a mixture obtained by mixing at a ratio of 95 is press-fitted, and the resulting molten resin is extruded from an extruder and foamed.

しかしながら、上記製造方法で得られた結晶性ポリ乳酸系樹脂発泡体は、その連続気泡率が20%よりも高く、連続気泡率を低下させるために金型温度を低くすると、金型内を流通する溶融樹脂の流れが低下し、その結果、得られる結晶性ポリ乳酸系樹脂発泡体の外観が低下するといった問題点があった。   However, the crystalline polylactic acid-based resin foam obtained by the above production method has an open cell ratio higher than 20%, and if the mold temperature is lowered in order to reduce the open cell ratio, it circulates in the mold. As a result, there is a problem that the flow of the molten resin is lowered, and as a result, the appearance of the obtained crystalline polylactic acid resin foam is lowered.

又、特許文献2には、ポリ乳酸系樹脂を主体成分とする熱可塑性樹脂と、(メタ)アクリル酸エステル及びグリシジルエーテルとを有機過酸化物の存在下に架橋反応させて得られる発泡用樹脂組成物を発泡成形してなる発泡体が提案されている。   Patent Document 2 discloses a foaming resin obtained by a cross-linking reaction between a thermoplastic resin mainly composed of a polylactic acid-based resin, (meth) acrylic acid ester and glycidyl ether in the presence of an organic peroxide. A foam formed by foam-molding the composition has been proposed.

しかしながら、上記発泡体は、(メタ)アクリル酸エステル及びグリシジルエーテルを用いていることから製造工程が煩雑となるばかりか、得られるポリ乳酸系樹脂発泡体の生分解性が低下するといった問題点があった。   However, since the foam uses (meth) acrylic acid ester and glycidyl ether, the production process becomes complicated, and the biodegradability of the resulting polylactic acid resin foam is reduced. there were.

特開2004−307662号公報Japanese Patent Laid-Open No. 2004-307661 特開2004−51803号公報JP 2004-51803 A

本発明は、連続気泡率が低くてポリ乳酸系樹脂の本来有する生分解性を維持し且つ外観に優れたポリ乳酸系樹脂発泡シートの製造方法を提供する。   The present invention provides a method for producing a polylactic acid resin foam sheet having a low open cell ratio, maintaining the inherent biodegradability of a polylactic acid resin and having an excellent appearance.

本発明のポリ乳酸系樹脂発泡シートの製造方法は、ポリ乳酸系樹脂及び発泡剤を押出機に供給して溶融混練し、押出機の先端に取り付けたサーキュラ金型から円筒状に押出発泡して円筒状発泡体を製造し、この円筒状発泡体を展開してポリ乳酸系樹脂発泡シートを製造するポリ乳酸系樹脂発泡シートの製造方法であって、上記サーキュラ金型の出口部を構成している内側ダイ及び外側ダイとの対向面間に形成された円環状の樹脂流路は、上記押出機側の一定径を有する第一樹脂流路部と、この第一樹脂流路部に連通して押出方向に向かって徐々に樹脂流通断面積を狭めながら拡径する第二樹脂流路部とからなり、上記第二樹脂流路部における外側ダイ側の樹脂流路面が、第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度αが10〜70°であると共に、上記第二樹脂流路部における内側ダイ側の樹脂流路面が第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度βが、上記外側ダイ側の樹脂流路面が有する開き角度αよりも1〜15°だけ大きくなっていると共に、上記第一、第二樹脂流路部の表面のうち少なくとも、上記第一、第二樹脂流路部の連設部及び第二樹脂流路部の表面が、炭窒化チタンからなる被覆層で全面的に被覆されており、上記サーキュラ金型の出口部の第二樹脂流路部から剪断速度300〜8000sec-1で押出すことを特徴とする。 The method for producing a polylactic acid resin foamed sheet of the present invention is to supply a polylactic acid resin and a foaming agent to an extruder, melt and knead, and then extrude and foam into a cylindrical shape from a circular mold attached to the tip of the extruder. A method for producing a polylactic acid-based resin foamed sheet by producing a cylindrical foam and developing the cylindrical foam to produce a polylactic acid-based resin foamed sheet, comprising an outlet portion of the circular mold. An annular resin flow path formed between the opposed surfaces of the inner die and the outer die is in communication with the first resin flow path portion having a constant diameter on the extruder side and the first resin flow path portion. A second resin flow path portion that expands in diameter while gradually reducing the resin flow cross-sectional area in the extrusion direction, and the resin flow path surface on the outer die side in the second resin flow path portion is the first resin flow path. Opening angle with respect to the flow direction of the molten resin flowing in the section Is an opening angle β formed by the resin flow surface on the inner die side in the second resin flow channel portion with respect to the flow direction of the molten resin flowing in the first resin flow channel portion. The opening angle α of the resin flow path surface on the die side is larger by 1 to 15 °, and at least the first and second resin flow path portions among the surfaces of the first and second resin flow path portions The surface of the continuous part and the surface of the second resin flow path part are entirely covered with a coating layer made of titanium carbonitride , and a shear rate of 300 to from the second resin flow path part at the outlet part of the circular mold. It is characterized by extruding at 8000 sec- 1 .

上記ポリ乳酸系樹脂は下記式1で示される。このポリ乳酸系樹脂は、L−乳酸及び/又はD−乳酸を重合させるか、或いは、L−ラクチド、D−ラクチド及びDL−ラクチドからなる群より選ばれた一又は二以上のラクチドを開環重合させることによって得ることができ、何れのポリ乳酸系樹脂であってもよい。   The polylactic acid-based resin is represented by the following formula 1. This polylactic acid resin polymerizes L-lactic acid and / or D-lactic acid, or opens one or two or more lactides selected from the group consisting of L-lactide, D-lactide and DL-lactide. Any polylactic acid resin can be used.

ポリ乳酸系樹脂を製造するに際して、モノマーとしてL体又はD体のみ、或いは、モノマーとしてL体とD体とを併用した場合においてL体又はD体の何れか一方を他方に比して多量に用いた時は、得られるポリ乳酸系樹脂は結晶性となる一方、モノマーとしてL体とD体とを略同量づつ用いた場合には、得られるポリ乳酸系樹脂は非結晶性となる。そして、耐熱性に優れたポリ乳酸系樹脂発泡シートを製造したい場合には結晶性のポリ乳酸系樹脂が好ましく、又、緩衝性及び靱性に優れたポリ乳酸系樹脂発泡シートを製造したい場合には非結晶性のポリ乳酸系樹脂が好ましい。   When producing a polylactic acid-based resin, only L-form or D-form is used as a monomer, or when L-form and D-form are used in combination as a monomer, either L-form or D-form is larger than the other. When used, the resulting polylactic acid-based resin becomes crystalline. On the other hand, when the L-form and D-form are used as monomers in substantially the same amount, the resulting polylactic acid-based resin becomes amorphous. And when producing a polylactic acid resin foam sheet having excellent heat resistance, a crystalline polylactic acid resin is preferred, and when producing a polylactic acid resin foam sheet having excellent buffering and toughness. An amorphous polylactic acid resin is preferred.

そして、上記ポリ乳酸系樹脂のメルトフローレートは、低いと、サーキュラ金型内におけるポリ乳酸系樹脂の流動性が低下してメルトフラクチャーが発生して得られるポリ乳酸系樹脂発泡シートの外観が低下することがある一方、高いと、ポリ乳酸系樹脂が破泡して良好なポリ乳酸系樹脂発泡シートを製造することができないことがあるので、0.1〜20g/10分が好ましい。なお、ポリ乳酸系樹脂のメルトフローレートは、JIS K7210に準拠して190℃にて公称荷重2.16kgの条件下にて測定したものをいう。   If the melt flow rate of the polylactic acid-based resin is low, the flowability of the polylactic acid-based resin in the circular mold is reduced and the melt appearance of the polylactic acid-based resin foam sheet is reduced. On the other hand, if it is high, the polylactic acid-based resin may break, and a good polylactic acid-based resin foam sheet may not be produced, so 0.1 to 20 g / 10 min is preferable. In addition, the melt flow rate of a polylactic acid-type resin means what was measured on 190 degreeC and the conditions of the nominal load 2.16kg based on JISK7210.

そして、上記発泡剤としては、特に限定されず、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウムなどの熱分解型発泡剤;プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ヘキサンなどの飽和脂肪族炭化水素、ベンゼン、キシレン、トルエンなどの芳香族炭化水素、塩化メチル、1,1,1,2−テトラフルオロエタン、1,1−ジフルオロエタン、モノクロロジフルオロメタンなどのハロゲン化炭化水素、ジメチルエーテル、二酸化炭素、窒素などの物理発泡剤などが挙げられ、ジメチルエーテル、プロパン、n−ブタン、i−ブタンが好ましく、ジメチルエーテル、n−ブタン、i−ブタンがより好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。   The foaming agent is not particularly limited, and is a pyrolytic foaming agent such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyl dicarbonamide, sodium bicarbonate; propane, n-butane, i-butane, n -Saturated aliphatic hydrocarbons such as pentane, i-pentane, hexane, aromatic hydrocarbons such as benzene, xylene, toluene, methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, monochloro Examples include halogenated hydrocarbons such as difluoromethane, physical foaming agents such as dimethyl ether, carbon dioxide, and nitrogen. Dimethyl ether, propane, n-butane, and i-butane are preferable, and dimethyl ether, n-butane, and i-butane are more preferable. preferable. In addition, a foaming agent may be used independently or 2 or more types may be used together.

又、発泡剤の量は、少ないと、得られるポリ乳酸系樹脂発泡シートの発泡倍率が低下する虞れがある一方、多いと、ポリ乳酸系樹脂が破泡してしまう虞れがあるので、ポリ乳酸系樹脂100重量部に対して0.1〜10重量部が好ましく、0.2〜8重量部がより好ましく、0.3〜6重量部が特に好ましい。   Also, if the amount of the foaming agent is small, the foaming ratio of the resulting polylactic acid-based resin foam sheet may be reduced, whereas if it is large, the polylactic acid-based resin may be broken. 0.1-10 weight part is preferable with respect to 100 weight part of polylactic acid-type resin, 0.2-8 weight part is more preferable, 0.3-6 weight part is especially preferable.

なお、ポリ乳酸系樹脂には、気泡調整剤、結晶核剤、帯電防止剤、難燃剤、着色剤などの添加剤を添加してもよい。上記気泡調整剤としては、ポリテトラフルオロエチレン、アクリル樹脂で変性されたポリテトラフルオロエチレン、タルク、炭酸カルシウム、硼砂、硼酸亜鉛、水酸化アルミニウム、シリカ、炭酸ナトリウム、重炭酸ナトリウム、炭酸リチウム、炭酸カリウムなどが挙げられ、溶融状態のポリ乳酸系樹脂を分解させることなく優れた気泡微細化効果を発揮する点で、ポリテトラフルオロエチレンやアクリル樹脂で変性されたポリテトラフルオロエチレンが好ましく、又、結晶性ポリ乳酸系樹脂の結晶化を促進する点でタルクが好ましい。   In addition, you may add additives, such as a bubble regulator, a crystal nucleating agent, an antistatic agent, a flame retardant, and a coloring agent, to a polylactic acid-type resin. Examples of the bubble regulator include polytetrafluoroethylene, polytetrafluoroethylene modified with acrylic resin, talc, calcium carbonate, borax, zinc borate, aluminum hydroxide, silica, sodium carbonate, sodium bicarbonate, lithium carbonate, carbonate Potassium and the like can be mentioned, and polytetrafluoroethylene modified with polytetrafluoroethylene or acrylic resin is preferable in that it exhibits an excellent bubble refining effect without decomposing the molten polylactic acid resin, Talc is preferred because it promotes crystallization of the crystalline polylactic acid resin.

上記気泡調整剤の添加量は、少ないと、気泡調整剤を添加した効果が発現しないことがある一方、多いと、ポリ乳酸系樹脂の押出発泡時に破泡を生じる虞れがあるので、ポリ乳酸系樹脂100重量部に対して0.01〜5重量部が好ましく、0.05〜4重量部がより好ましく、0.1〜3重量部が特に好ましい。   If the added amount of the above-mentioned air conditioner is small, the effect of adding the air conditioner may not be exhibited. On the other hand, if it is large, there is a possibility that foam breakage may occur during extrusion foaming of the polylactic acid resin. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight, and particularly preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the system resin.

そして、上記ポリ乳酸系樹脂及び発泡剤を、必要に応じて上記添加剤と共に押出機に供給して溶融混練して押出機の先端に取り付けたサーキュラ金型から円筒状に押出発泡して円筒状発泡体を製造する。   The polylactic acid-based resin and the foaming agent are supplied to the extruder together with the additives as necessary, melt-kneaded, and extruded and foamed into a cylindrical shape from a circular mold attached to the tip of the extruder. A foam is produced.

なお、上記押出機としては、従来から押出発泡に用いられていたものであれば、特に限定されず、単軸押出機、二軸押出機、複数機の押出機を直列状に接続してなるタンデム型押出機などが挙げられる。   The extruder is not particularly limited as long as it has been conventionally used for extrusion foaming. A single-screw extruder, a twin-screw extruder, and a plurality of extruders are connected in series. Examples include tandem extruders.

ここで、ポリ乳酸系樹脂発泡シートの連続気泡率を抑制するために、溶融状態のポリ乳酸系樹脂をサーキュラ金型から押出発泡させる際の樹脂温度を下げることが有効な方法の一つである。   Here, in order to suppress the open cell ratio of the polylactic acid resin foamed sheet, it is one of effective methods to lower the resin temperature when the molten polylactic acid resin is extruded and foamed from a circular mold. .

しかしながら、ポリ乳酸系樹脂は、上述のように、温度の変化に伴って溶融粘度が大きく変化することから、ポリ乳酸系樹脂の溶融粘度を樹脂温度の調整のみで行うことは難しく、サーキュラ金型から押出発泡させる際のポリ乳酸系樹脂の温度を下げ過ぎた場合には、ポリ乳酸系樹脂の溶融粘度が必要以上に高くなり過ぎて、サーキュラ金型内におけるポリ乳酸系樹脂の流れが悪くなり、外観の低下したポリ乳酸系樹脂発泡シートしか得ることができず、押出発泡も不安定となる虞れがある。   However, as described above, since the melt viscosity of polylactic acid resin greatly changes with temperature, it is difficult to adjust the melt viscosity of polylactic acid resin only by adjusting the resin temperature. If the temperature of the polylactic acid resin during extrusion foaming is lowered too much, the melt viscosity of the polylactic acid resin becomes excessively high and the flow of the polylactic acid resin in the circular mold becomes worse. Only a polylactic acid resin foam sheet having a reduced appearance can be obtained, and extrusion foaming may be unstable.

特に、結晶性のポリ乳酸系樹脂の場合には、サーキュラ金型内におけるポリ乳酸系樹脂の流れの悪化に伴ってサーキュラ金型の樹脂流路内に滞留したポリ乳酸系樹脂が、過度に結晶化してしまうと、得られるポリ乳酸系樹脂発泡シートの外観が低下したり或いは押出発泡が不安定となる虞れがある。   In particular, in the case of a crystalline polylactic acid resin, the polylactic acid resin staying in the resin flow path of the circular mold is excessively crystallized as the flow of the polylactic acid resin in the circular mold deteriorates. If this is the case, the appearance of the resulting polylactic acid resin foamed sheet may be deteriorated, or extrusion foaming may become unstable.

そこで、本発明では、サーキュラ金型の出口部の円環状樹脂流路の表面を、炭窒化チタンからなる被覆層で被覆して、サーキュラ金型の出口部の樹脂流路と、この樹脂流路を流通する溶融状態のポリ乳酸系樹脂との間の摩擦抵抗を低減させることによって、ポリ乳酸系樹脂がサーキュラ金型内の樹脂流路を円滑に流通できるようにし、押出発泡時のポリ乳酸系樹脂の温度を下げてポリ乳酸系樹脂の溶融粘度を高くした場合にあっても対応できるようにし、サーキュラ金型からポリ乳酸系樹脂を円滑に押出発泡することができるように構成している。 Therefore, in the present invention, the surface of the annular resin flow path at the outlet of the circular mold is covered with a coating layer made of titanium carbonitride , and the resin flow path at the outlet of the circular mold and the resin flow path By reducing the frictional resistance between the molten polylactic acid resin flowing through the polylactic acid resin, the polylactic acid resin can smoothly flow through the resin flow path in the circular mold, and the polylactic acid system during extrusion foaming Even if the temperature of the resin is lowered to increase the melt viscosity of the polylactic acid-based resin, it can be accommodated, and the polylactic acid-based resin can be smoothly extruded and foamed from a circular mold.

具体的に説明すると、本発明で用いられるサーキュラ金型1は、図1に示したように、押出機の先端に着脱自在に取り付けられる流入部2と、この流入部2の先端にボルト及びナット(図示せず)によって着脱自在に取り付けられる出口部3とからなる。   More specifically, as shown in FIG. 1, the circular mold 1 used in the present invention includes an inflow portion 2 that is detachably attached to the end of the extruder, and a bolt and a nut at the end of the inflow portion 2. It comprises an outlet portion 3 that is detachably attached by means (not shown).

上記流入部2における外側ダイ21と内側ダイ22との対向面間には円環状の樹脂流路23が形成されていると共に、上記出口部3の外側ダイ4と内側ダイ5との対向面間にも円環状の樹脂流路6が形成されている。   An annular resin flow path 23 is formed between the opposing surfaces of the outer die 21 and the inner die 22 in the inflow portion 2, and between the opposing surfaces of the outer die 4 and the inner die 5 of the outlet portion 3. In addition, an annular resin flow path 6 is formed.

そして、上記出口部3の円環状の樹脂流路6は、押出機側(流入部2側)の一定径を有し且つ上記流入部2の樹脂流路23の先端側開口端に連通する円環状の第一樹脂流路部61と、この第一樹脂流路部61に連通して押出方向に向かって徐々に樹脂流路断面積を狭めながら拡径する円環状の第二樹脂流路部62とからなる。   And the annular resin flow path 6 of the said outlet part 3 has a fixed diameter by the side of an extruder (inflow part 2 side), and is a circle connected to the front end side opening end of the resin flow path 23 of the said inflow part 2. An annular first resin flow channel portion 61 and an annular second resin flow channel portion communicating with the first resin flow channel portion 61 and gradually expanding in diameter while gradually reducing the resin flow channel cross-sectional area in the extrusion direction. 62.

更に、図1に示したように、上記出口部3の第一、第二樹脂流路部61、62の表面611a、611b、621a、621bが全面的に被覆層7で被覆されている。そして、この被覆層7は、耐摩耗性及び耐蝕性に優れ、発泡剤を含有する溶融状態のポリ乳酸系樹脂との摩擦抵抗が低く、溶融状態のポリ乳酸系樹脂との滑り性及び耐久性の点から、炭窒化チタンから形成されている。なお、上記流入部2と上記出口部3とを接続した状態において、上記出口部3の樹脂流路6の表面に形成された被覆層7と、上記流入部2の樹脂流路23の樹脂流路面23aとがそれらの接続部において全周に亘って滑らかに面一状に連なった状態となるように調整されている。 Further, as shown in FIG. 1, the surfaces 611 a, 611 b, 621 a, and 621 b of the first and second resin flow path portions 61 and 62 of the outlet portion 3 are entirely covered with the coating layer 7. And this coating layer 7 is excellent in abrasion resistance and corrosion resistance, has low frictional resistance with a molten polylactic acid resin containing a foaming agent, and slipperiness and durability with a molten polylactic acid resin. From this point, it is formed from titanium carbonitride. In the state where the inflow part 2 and the outlet part 3 are connected, the coating layer 7 formed on the surface of the resin flow path 6 of the outlet part 3 and the resin flow of the resin flow path 23 of the inflow part 2 The road surface 23a is adjusted so as to be in a state where the road surface 23a is smoothly and continuously connected over the entire circumference.

そして、サーキュラ金型1の出口部3の樹脂流路6内を流通するポリ乳酸系樹脂と樹脂流路部6との間における摩擦が原因となって静電気が発生することがある一方、上述に例示した発泡剤のうち、可燃性を有する発泡剤を用いた場合であっても、窒化チタン、炭化チタン又は炭窒化チタンから形成された被覆層7は電気伝導性に優れていることから、生じた静電気を被覆層7を介して押出機に設けたアースを通じて外部に円滑に放散させることができ、サーキュラ金型から押出された、可燃性を有する発泡剤を含むポリ乳酸系樹脂が発火するのを略防止することができる。   Static electricity may be generated due to friction between the polylactic acid resin flowing through the resin flow path 6 in the outlet 3 of the circular mold 1 and the resin flow path 6. Even when a flammable foaming agent is used among the exemplified foaming agents, the coating layer 7 formed from titanium nitride, titanium carbide, or titanium carbonitride is excellent in electrical conductivity, and thus occurs. The static electricity can be smoothly dissipated to the outside through the ground provided in the extruder through the coating layer 7, and the polylactic acid resin extruded from the circular mold and containing the flammable foaming agent ignites. Can be substantially prevented.

上記出口部3の第一、第二樹脂流路部61、62の表面611a、611b、621a、621bに被覆層7を形成する方法としては、気相法、融液法、溶融塩法、溶液法などが挙げられるが、緻密で高純度の被覆層が得られ、複雑な形状でも均一な膜厚を有する被覆層を得ることができるので、気相法が好ましい。   As a method for forming the coating layer 7 on the surfaces 611a, 611b, 621a, 621b of the first and second resin flow passage portions 61, 62 of the outlet portion 3, a gas phase method, a melt method, a molten salt method, a solution Although a dense and high-purity coating layer can be obtained and a coating layer having a uniform film thickness can be obtained even in a complicated shape, a gas phase method is preferable.

更に、上記気相法には、拡散法と蒸着法とがあり、蒸着法は、PVD法(物理蒸着法)とCDV法(化学蒸着法)とに分けられる。そして、PVD法のうち、低温で処理することからダイに歪みが発生しにくいイオンプレーティングによるPVD法が好ましく、同様の理由で、CVD法のうち、プラズマCVD法が好ましい。   Further, the vapor phase method includes a diffusion method and a vapor deposition method, and the vapor deposition method is divided into a PVD method (physical vapor deposition method) and a CDV method (chemical vapor deposition method). Of the PVD methods, the PVD method based on ion plating, which is less likely to cause distortion in the die because of processing at a low temperature, is preferable. For the same reason, the plasma CVD method is preferable among the CVD methods.

又、上記被覆層7の厚みは、薄いと、耐久性が低下することがある一方、厚いと、放熱性が低下する虞れがあるので、0.05〜5μmが好ましく、0.1〜4μmがより好ましく、0.2〜3μmが特に好ましい。   In addition, if the thickness of the coating layer 7 is thin, the durability may be lowered. On the other hand, if it is thick, the heat dissipation may be lowered. Therefore, the thickness is preferably 0.05 to 5 μm, preferably 0.1 to 4 μm. Is more preferable, and 0.2 to 3 μm is particularly preferable.

そして、上記被覆層7の表面は、粗いと、樹脂流路を通過する溶融状態のポリ乳酸系樹脂との間の摩擦抵抗が大きくなり、得られるポリ乳酸系樹脂発泡シートの外観が低下したり或いは押出発泡の安定性が低下する虞れがあるので、仕上げ記号で▽▽▽(粗さの区分1.6S)以上が好ましく、仕上げ記号で▽▽▽▽(粗さの区分0.8S)以上がより好ましい。ここで、粗さの区分とは、基準長さに対する最大高さ(Rmax )を意味し、具体的には、粗さの区分1.6Sとは、基準長さ0.8mmに対して最大高さが1.6μmの粗さを表し、粗さの区分0.8Sとは、基準長さ0.25mmに対して最大高さが0.8μmの粗さを表す。なお、仕上げ記号及び粗さの区分は、理工学社から発行されている「JISにもとづく機械設計製図便覧 第8版」の第17章(17−12)に記載されている。 And if the surface of the said coating layer 7 is rough, the frictional resistance between the molten polylactic acid-type resin which passes a resin flow path will become large, and the external appearance of the polylactic acid-type resin foam sheet obtained may fall. Or, the stability of extrusion foaming may be reduced, so the finish symbol is preferably ▽▽▽ (roughness category 1.6S), and the finish symbol is ▽▽▽▽ (roughness category 0.8S) The above is more preferable. Here, the roughness section means the maximum height (R max ) with respect to the reference length, and specifically, the roughness section 1.6S is the maximum with respect to the reference length of 0.8 mm. The height represents a roughness of 1.6 μm, and the roughness classification 0.8S represents a roughness having a maximum height of 0.8 μm with respect to a reference length of 0.25 mm. The classification of finish symbols and roughness is described in Chapter 17 (17-12) of “Handbook of Mechanical Design and Drawing based on JIS Eighth Edition” issued by Rigaku Corporation.

又、図2に示したように、サーキュラ金型1の出口部3の第二樹脂流路部62における外側ダイ4側の樹脂流路面620bが、第一樹脂流路部61を流通する溶融樹脂の流通方向に対してなす開き角度αは、小さいと、サーキュラ金型1から押出発泡させた円筒状発泡体に波打ち現象が生じる虞れがある一方、大きいと、サーキュラ金型1における第二樹脂流路部62の開口端にポリ乳酸系樹脂のカスが溜まり、このカスが円筒状発泡体に付着したり或いは円筒状発泡体に接触することによって、得られるポリ乳酸系樹脂発泡シートの外観が低下することがあるので、10〜70°に限定され、20〜60°が好ましい。   Further, as shown in FIG. 2, the resin flow path surface 620b on the outer die 4 side in the second resin flow path portion 62 of the outlet portion 3 of the circular mold 1 is a molten resin flowing through the first resin flow path portion 61. If the opening angle α with respect to the flow direction of the resin is small, there is a possibility that the cylindrical foam extruded and foamed from the circular mold 1 may be wavy. On the other hand, if the opening angle α is large, the second resin in the circular mold 1 is present. Residue of polylactic acid resin accumulates at the opening end of the flow path portion 62, and the appearance of the resulting polylactic acid resin foam sheet is obtained by adhering to or contacting the cylindrical foam. Since it may fall, it is limited to 10-70 degrees and 20-60 degrees is preferable.

更に、サーキュラ金型1の出口部3の第二樹脂流路部62における内側ダイ5側の樹脂流路面620aが第一樹脂流路部61内を流通する溶融樹脂の流通方向に対してなす開き角度βが、上記外側ダイ4の樹脂流路面620bが有する開き角度αよりも1〜15°だけ大きくなっており、2〜10°だけ大きくなっていることが好ましく、2.5〜8°だけ大きくなっていることがより好ましい。   Further, the opening formed by the resin flow passage surface 620a on the inner die 5 side in the second resin flow passage portion 62 of the outlet portion 3 of the circular mold 1 with respect to the flow direction of the molten resin flowing in the first resin flow passage portion 61. The angle β is larger by 1 to 15 ° than the opening angle α of the resin flow path surface 620b of the outer die 4, and is preferably larger by 2 to 10 °, and only 2.5 to 8 °. More preferably, it is larger.

これは、開き角度βと開き角度αとの差が小さ過ぎると、溶融状態のポリ乳酸系樹脂の発泡力を維持することが困難となる虞れがある一方、大き過ぎると、メルトフラクチャーを生じてしまい、得られるポリ乳酸系樹脂発泡シートの外観が低下することがあるからである。   This is because if the difference between the opening angle β and the opening angle α is too small, it may be difficult to maintain the foaming power of the molten polylactic acid resin, while if too large, melt fracture will occur. This is because the appearance of the resulting polylactic acid-based resin foam sheet may deteriorate.

そして、押出機に供給され溶融混練された溶融状態のポリ乳酸系樹脂は、上記サーキュラ金型1の樹脂流路6を流通し、出口部3の第二樹脂流路部62における円環状の先端開口部から円筒状に押出発泡されるが、上述のように、サーキュラ金型1の第一、第二樹脂流路部61、62の表面611a、611b、621a、621bは被覆層7によって全面的に被覆されていることから、溶融状態のポリ乳酸系樹脂とサーキュラ金型1の被覆層7との間の摩擦抵抗が低減させられている。   The molten polylactic acid resin supplied to the extruder and melt-kneaded flows through the resin flow path 6 of the circular mold 1 and has an annular tip in the second resin flow path 62 of the outlet 3. Although it is extruded and foamed in a cylindrical shape from the opening, the surfaces 611a, 611b, 621a, and 621b of the first and second resin flow channel portions 61 and 62 of the circular mold 1 are entirely covered by the coating layer 7 as described above. Thus, the frictional resistance between the molten polylactic acid resin and the coating layer 7 of the circular mold 1 is reduced.

一方、溶融状態のポリ乳酸系樹脂をサーキュラ金型1の第二樹脂流路部62から押出発泡させた際に、ポリ乳酸系樹脂の気泡膜の張力が発泡力に負けると破泡が発生し、得られるポリ乳酸系樹脂発泡シートは連続気泡率の高いものとなってしまう。   On the other hand, when the molten polylactic acid resin is extruded and foamed from the second resin flow path portion 62 of the circular mold 1, foam breakage occurs when the tension of the cell membrane of the polylactic acid resin loses the foaming force. The resulting polylactic acid-based resin foam sheet has a high open cell ratio.

このような押出発泡時の破泡を防止するために、通常、サーキュラ金型の金型温度を、押出機から押出されるポリ乳酸系樹脂の温度よりも低い温度に設定して、サーキュラ金型でポリ乳酸系樹脂を冷却することによりポリ乳酸系樹脂の溶融粘度を調整している。   In order to prevent such bubble breakage during extrusion foaming, the circular mold is usually set to a temperature lower than the temperature of the polylactic acid resin extruded from the extruder. The melt viscosity of the polylactic acid-based resin is adjusted by cooling the polylactic acid-based resin.

ところが、サーキュラ金型を低い温度に設定し過ぎると、ポリ乳酸系樹脂の溶融粘度が高くなり過ぎて、サーキュラ金型内にてポリ乳酸系樹脂の滞留が生じ、この滞留によってサーキュラ金型の樹脂流路が狭くなり、サーキュラ金型内における樹脂圧力が許容範囲を越えて上昇したり、或いは、結晶性のポリ乳酸系樹脂の場合には、ポリ乳酸系樹脂の結晶化が進んでポリ乳酸系樹脂発泡シートの製造が不安定となる。   However, if the temperature of the circular mold is set too low, the melt viscosity of the polylactic acid resin becomes too high, and the retention of the polylactic acid resin occurs in the circular mold. The flow path is narrowed and the resin pressure in the circular mold rises beyond the allowable range, or in the case of a crystalline polylactic acid resin, the crystallization of the polylactic acid resin proceeds and the polylactic acid resin The production of the resin foam sheet becomes unstable.

特に、結晶性のポリ乳酸系樹脂の場合には、押出発泡に適した温度幅が狭く、押出機でのポリ乳酸系樹脂の温度調整では、ポリ乳酸系樹脂の樹脂温度を過度に下げてしまう虞れがあることから、安全をみて、押出機によるポリ乳酸系樹脂の温度調整はやや高めに設定しており、その分、ポリ乳酸系樹脂の押出発泡時の樹脂温度を、サーキュラ金型により微調整する必要がある。   In particular, in the case of a crystalline polylactic acid-based resin, the temperature range suitable for extrusion foaming is narrow, and adjusting the temperature of the polylactic acid-based resin in an extruder excessively lowers the resin temperature of the polylactic acid-based resin. For safety reasons, the temperature adjustment of the polylactic acid resin by the extruder is set slightly higher for safety reasons, and the resin temperature at the time of extrusion foaming of the polylactic acid resin is set accordingly by the circular mold. Need to fine tune.

しかるに、本発明では、上述のように、溶融状態のポリ乳酸系樹脂とサーキュラ金型1の被覆層7との間の摩擦抵抗を低減させていることから、ポリ乳酸系樹脂の温度を下げて、ポリ乳酸系樹脂の溶融粘度を少々高くしても、ポリ乳酸系樹脂は、摩擦抵抗によりサーキュラ金型1の樹脂流路6内に不測に滞留することはなく、サーキュラ金型1の樹脂流路6内を円滑に流通する。   However, in the present invention, as described above, since the frictional resistance between the molten polylactic acid resin and the coating layer 7 of the circular mold 1 is reduced, the temperature of the polylactic acid resin is lowered. Even if the melt viscosity of the polylactic acid resin is slightly increased, the polylactic acid resin does not stay in the resin flow path 6 of the circular mold 1 due to frictional resistance, and the resin flow of the circular mold 1 does not occur. Smoothly circulates in the road 6.

従って、ポリ乳酸系樹脂を発泡に適した温度に冷却するためのサーキュラ金型1の温度範囲を広くとることができ、ポリ乳酸系樹脂の溶融粘度が押出発泡に適した温度となるように容易に調整することができる。   Therefore, the temperature range of the circular mold 1 for cooling the polylactic acid resin to a temperature suitable for foaming can be widened, and the melt viscosity of the polylactic acid resin can be easily set to a temperature suitable for extrusion foaming. Can be adjusted.

しかも、ポリ乳酸系樹脂の押出発泡時における樹脂温度を下げて溶融粘度を低くして気泡膜の張力を強固なものとすることができ、押出発泡時の破泡を防止し、得られるポリ乳酸系樹脂発泡シートの連続気泡率を低く抑えることができると共に、ポリ乳酸系樹脂に更に大きな発泡力を付与して、発泡倍率が3倍以上の高発泡倍率のポリ乳酸系樹脂発泡シートを製造することができる。   Moreover, the resin temperature at the time of extrusion foaming of the polylactic acid-based resin can be lowered to lower the melt viscosity, thereby strengthening the tension of the cell membrane, preventing foam breakage at the time of extrusion foaming, and the resulting polylactic acid The continuous cell ratio of the resin-based resin foamed sheet can be kept low, and a greater foaming force is imparted to the polylactic acid-based resin to produce a polylactic acid-based resin foamed sheet having a high expansion ratio of 3 times or more. be able to.

又、サーキュラ金型1の第二樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度は、小さいと、第二樹脂流路部62の先端開口部から押出発泡させる際にポリ乳酸系樹脂に充分な発泡圧を付与することができず、得られるポリ乳酸系樹脂発泡シートの外観が低下する一方、大きいと、第二樹脂流路部62の先端開口部から押出発泡させる際にメルトフラクチャーが発生して、得られるポリ乳酸系樹脂発泡シートの外観及び品質が低下するので、300〜8000sec-1に限定される。 In addition, when the shear rate of the molten polylactic acid resin in the tip opening of the second resin flow path portion 62 of the circular mold 1 is small, the foam is extruded from the tip opening of the second resin flow path portion 62. In this case, sufficient foaming pressure cannot be applied to the polylactic acid resin, and the appearance of the resulting polylactic acid resin foam sheet deteriorates. When melted, melt fracture occurs and the appearance and quality of the resulting polylactic acid-based resin foamed sheet are lowered, so that it is limited to 300 to 8000 sec −1 .

なお、サーキュラ金型1の第二樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度は、下記二重管での計算式に基づいて算出されたものをいう。
剪断速度(sec-1)=6Q/〔π(L2 2−L1 2)(L2 −L1 )〕
但し、Qは、ポリ乳酸系樹脂の体積押出量(cm3 /sec)(Qを質量押出量(g/sec)から算出する場合は、ポリ乳酸系樹脂の密度は1.0g/cm3 とし、L1 (cm)は(r0 −t0 /2)であり、L2 (cm)は(r0 +t0 /2)である。
In addition, the shear rate of the molten polylactic acid resin in the distal end opening portion of the second resin flow path portion 62 of the circular mold 1 is calculated based on the following double pipe calculation formula.
Shear rate (sec −1 ) = 6Q / [π (L 2 2 −L 1 2 ) (L 2 −L 1 )]
However, Q is the volume extrusion rate (cm 3 / sec) of the polylactic acid resin (when Q is calculated from the mass extrusion rate (g / sec), the density of the polylactic acid resin is 1.0 g / cm 3. a L 1 (cm) is (r 0 -t 0/2) , L 2 (cm) is (r 0 + t 0/2 ).

なお、r0 ,t0 は下記の通りの要領で定められる。先ず、サーキュラ金型1の出口部3における外側ダイ4のリング状先端縁4a上の任意の点Aから最も近接した距離にある内側ダイ5の表面上の点を点Bと定め、上記リング状先端縁4a上の点Aを周方向に連続的に移動させながら内側ダイ5の表面上に点Bを連続的に特定し、点Bが連続することによって内側ダイ5上に形成された円を仮想円5aとする。 R 0 and t 0 are determined as follows. First, a point on the surface of the inner die 5 at the closest distance from an arbitrary point A on the ring-shaped tip edge 4a of the outer die 4 at the outlet portion 3 of the circular mold 1 is defined as a point B, and the ring shape described above. A point B is continuously specified on the surface of the inner die 5 while continuously moving the point A on the leading edge 4a in the circumferential direction, and a circle formed on the inner die 5 by the continuous point B is obtained. The virtual circle 5a is assumed.

そして、上記リング状先端縁4a上の任意の点Aと、この点Aに対応する内側ダイ5の仮想円5a上の点Bとの距離をt0 とすると共に、点Aと点Bとの中間点Cと、内側ダイ5の軸芯Dとの距離をr0 とする。 The distance between an arbitrary point A on the ring-shaped tip edge 4a and a point B on the virtual circle 5a of the inner die 5 corresponding to the point A is t 0, and the point A and the point B The distance between the intermediate point C and the axis D of the inner die 5 is r 0 .

又、外側ダイ4のリング状先端円4aと、内側ダイ5の仮想円5aとの距離が一定でない場合には、図3に示したように、リング状先端円4a上において任意に点A1 〜A8 を周方向に45°の位相差毎に定め、各点A1 〜A8 に対応する点B1 〜B8 をそれぞれ特定し、点A1 〜A8 とこれに対応する点B1 〜B8 との距離t1 〜t8 の相加平均値をt0 とすると共に、各点A1 〜A8 とこれに対応する点B1 〜B8 との中間点C1 〜C8 を定め、この中間点C1 〜C8 と、内側ダイ5の軸芯Dとの距離r1 〜r8 の相加平均値をr0 とする。 Further, when the distance between the ring-shaped tip circle 4a of the outer die 4 and the virtual circle 5a of the inner die 5 is not constant, as shown in FIG. 3, the point A 1 is arbitrarily set on the ring-shaped tip circle 4a. ~A set 8 in the circumferential direction for each phase difference of 45 °, a point B 1 .about.B 8 corresponding to the points a 1 ~A 8 identifies each point corresponding thereto and the point a 1 ~A 8 B the arithmetic mean value of the distance t 1 ~t 8 with 1 .about.B 8 with a t 0, the midpoint C 1 -C between points B 1 .about.B 8 corresponding thereto with each point a 1 to a 8 8 is defined, and an arithmetic average value of distances r 1 to r 8 between the intermediate points C 1 to C 8 and the axis D of the inner die 5 is defined as r 0 .

このように、サーキュラ金型1の第二樹脂流路部61の先端開口部から溶融状態のポリ乳酸系樹脂を円筒状に押出発泡させて円筒状発泡体を製造し、この円筒状発泡体を徐々に拡径させた後に円柱状のマンドレルに供給して冷却した後、この円筒状発泡体を任意の箇所にて押出方向に内外面間に亘って連続的に切断することによって展開してポリ乳酸系樹脂発泡シートを製造することができる。   Thus, a cylindrical foam is manufactured by extruding and foaming a molten polylactic acid resin into a cylindrical shape from the tip opening of the second resin flow path portion 61 of the circular mold 1. After gradually expanding the diameter, it is supplied to a cylindrical mandrel and cooled, and then this cylindrical foam is developed by continuously cutting the inner and outer surfaces in the extrusion direction at an arbitrary position. A lactic acid resin foam sheet can be produced.

又、サーキュラ金型1の第二樹脂流路部62上の仮想円5aの直径と、マンドレルの押出機側端縁の外径との比(マンドレルの押出機側端縁の外径/仮想円5aの直径)は、2〜5が好ましく、2.5〜4.5がより好ましい。   Further, the ratio of the diameter of the virtual circle 5a on the second resin flow path portion 62 of the circular mold 1 to the outer diameter of the mandrel extruder side edge (outer diameter of the mandrel extruder side edge / virtual circle) The diameter of 5a is preferably 2 to 5, and more preferably 2.5 to 4.5.

更に、サーキュラ金型1から押出発泡された直後の円筒状発泡体の表面に冷却風を吹きつけることによって円筒状発泡体の表面にスキン層を形成し、得られるポリ乳酸系樹脂発泡シートの外観を向上させることができる。   Furthermore, a skin layer is formed on the surface of the cylindrical foam by blowing cooling air onto the surface of the cylindrical foam immediately after being extruded and foamed from the circular mold 1, and the appearance of the resulting polylactic acid resin foam sheet Can be improved.

上記冷却風の温度は、低いと、円筒状発泡体が固化してしまって発泡体の伸びが低下し、円筒状発泡体の表面に亀裂が入る虞れがある一方、高いと、円筒状発泡体の表面にスキン層を形成させることができないことがあるので、0〜60℃が好ましい。   When the temperature of the cooling air is low, the cylindrical foam is solidified and the elongation of the foam is reduced, and there is a possibility that the surface of the cylindrical foam is cracked. Since a skin layer may not be formed on the surface of the body, 0 to 60 ° C. is preferable.

上記では、サーキュラ金型1における第一、第二樹脂流路部61、62の表面611a、611b、621a、621bを全面的に被覆層7にて被覆した場合を説明したが、サーキュラ金型1内を流通するポリ乳酸系樹脂に最も負荷が加わるのは、第一、第二樹脂流路部61、62との連設部のような屈曲部や、第二樹脂流路部62のような徐々に樹脂流通断面積が狭まる部分を通過する時である。   Although the case where the surfaces 611a, 611b, 621a, and 621b of the first and second resin flow channel portions 61 and 62 in the circular mold 1 are entirely covered with the coating layer 7 has been described above, the circular mold 1 The load that is most applied to the polylactic acid-based resin that flows through the inside is such as a bent portion such as a connection portion with the first and second resin flow passage portions 61 and 62, and the second resin flow passage portion 62. This is when the resin cross-sectional area gradually passes through the narrowed area.

従って、図4に示したように、第一、第二樹脂流路部61、62の表面のうち、上記第一、第二樹脂流路部61、62の連設部及び第二樹脂流路部62の表面6a、6b、621a、621bのみを被覆部7で全面的に被覆した場合であってもよい。なお、被覆部7とこの被覆部7で被覆されていない第一樹脂流路部61の樹脂流路面610とはそれらの境界において全周に亘って段差のない滑らかな面一状に形成されている。   Therefore, as shown in FIG. 4, among the surfaces of the first and second resin flow channel portions 61 and 62, the connecting portion of the first and second resin flow channel portions 61 and 62 and the second resin flow channel. Only the surfaces 6a, 6b, 621a, 621b of the part 62 may be entirely covered with the covering part 7. Note that the covering portion 7 and the resin flow passage surface 610 of the first resin flow passage portion 61 not covered with the covering portion 7 are formed in a smooth flat surface having no step over the entire circumference at the boundary between them. Yes.

本発明のポリ乳酸系樹脂発泡シートの製造方法は、上述のように、押出機の先端に取り付けているサーキュラ金型の出口部を構成している内側ダイ及び外側ダイとの対向面間に形成された円環状の樹脂流路を、上記押出機側の一定径を有する第一樹脂流路部と、この第一流路部に連通して押出方向に向かって徐々に樹脂流通断面積を狭めながら拡径する第二樹脂流路部とから構成し、この第一、第二樹脂流路部の表面のうち少なくとも、上記第一、第二樹脂流路部の連設部及び第二樹脂流路部の表面を、炭窒化チタンからなる被覆層で全面的に被覆しており、サーキュラ金型の出口部の樹脂流路と、この樹脂流路を流通する溶融状態のポリ乳酸系樹脂との摩擦抵抗を低減させている。 As described above, the method for producing a polylactic acid resin foam sheet of the present invention is formed between the opposed surfaces of the inner die and the outer die constituting the outlet portion of the circular mold attached to the tip of the extruder. The annular resin flow path communicated with the first resin flow path portion having a constant diameter on the extruder side and the first flow path portion while gradually narrowing the resin flow cross-sectional area in the extrusion direction A second resin flow path portion that expands the diameter, and at least of the surfaces of the first and second resin flow path portions, the continuous portion of the first and second resin flow path portions and the second resin flow path The surface of the surface is entirely covered with a coating layer made of titanium carbonitride , and the friction between the resin flow path at the outlet of the circular mold and the molten polylactic acid resin flowing through the resin flow path The resistance is reduced.

従って、ポリ乳酸系樹脂の樹脂温度を下げて溶融粘度を高くしたポリ乳酸系樹脂であってもサーキュラ金型内を円滑に流通させることができ、このように溶融粘度を高くしたポリ乳酸系樹脂は発泡時における気泡膜の張力が強いため容易には破泡せず、得られるポリ乳酸系樹脂の連続気泡率は20%以下といった低いものである。   Accordingly, even a polylactic acid resin having a high melt viscosity by lowering the resin temperature of the polylactic acid resin can be smoothly circulated in the circular mold, and thus the polylactic acid resin having a high melt viscosity. Is not easily broken due to the strong tension of the cell membrane during foaming, and the resulting polylactic acid resin has a low open cell ratio of 20% or less.

しかも、上述のように、発泡時におけるポリ乳酸系樹脂の気泡膜の張力が強いことから、ポリ乳酸系樹脂に大きな発泡力を付与することができ、高発泡倍率のポリ乳酸系樹脂発泡シートを得ることができる。   In addition, as described above, since the cell membrane tension of the polylactic acid resin during foaming is strong, a large foaming force can be imparted to the polylactic acid resin, and a polylactic acid resin foam sheet having a high expansion ratio can be obtained. Obtainable.

このように、本発明のポリ乳酸系樹脂発泡シートの製造方法によって製造されるポリ乳酸系樹脂発泡シートは、連続気泡率が低いことから、成形時における二次発泡性に優れており、食品包装材、緩衝材、工業用部材、建材、土木資材、農業用資材などとして好適に用いることができる。   As described above, the polylactic acid resin foam sheet produced by the method for producing a polylactic acid resin foam sheet of the present invention has a low open cell ratio, and therefore has excellent secondary foamability at the time of molding. It can be suitably used as a material, cushioning material, industrial member, building material, civil engineering material, agricultural material, and the like.

そして、本発明のポリ乳酸系樹脂発泡シートの製造方法では、サーキュラ金型の出口部の第二樹脂流路部から剪断速度300〜8000sec-1で押出していることから、ポリ乳酸系樹脂をより安定した状態にて押出発泡させることができ、連続気泡率の低く高発泡倍率のポリ乳酸系樹脂発泡シートを確実に製造することができる。 And in the manufacturing method of the polylactic acid-type resin foam sheet of this invention, since it extrudes from the 2nd resin flow-path part of the exit part of a circular mold | die at the shear rate of 300-8000 sec- 1 , more polylactic acid-type resin is used. It can be extruded and foamed in a stable state, and a polylactic acid-based resin foam sheet having a low open cell ratio and a high expansion ratio can be reliably produced.

又、上記ポリ乳酸系樹脂発泡シートの製造方法、第二樹脂流路部における外側ダイ側の樹脂流路面が、第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度αが10〜70°であると共に、第二樹脂流路部における内側ダイ側の樹脂流路面が第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度βが、上記外側ダイ側の樹脂流路面が有する開き角度αよりも1〜15°だけ大きくなっているので、サーキュラ金型内にポリ乳酸系樹脂を滞留させることなく、ポリ乳酸系樹脂に適度な発泡力を付与することができ、円筒状発泡体に波打ち現象やメルトフラクチャーを生じさせることなく、更に連続気泡率の低く高発泡倍率のポリ乳酸系樹脂発泡シートを製造することができる。 In addition, the polylactic acid-based resin foam sheet manufacturing method includes an opening angle formed by a resin flow path surface on the outer die side in the second resin flow path section with respect to a flow direction of the molten resin flowing in the first resin flow path section. α is 10 to 70 °, and an opening angle β formed by the resin flow path surface on the inner die side in the second resin flow path section with respect to the flow direction of the molten resin flowing in the first resin flow path section is Since the opening angle α of the resin flow path surface on the die side is larger by 1 to 15 °, an appropriate foaming force is given to the polylactic acid resin without retaining the polylactic acid resin in the circular mold. In addition, a polylactic acid resin foam sheet having a low open cell ratio and a high foaming ratio can be produced without causing a wavy phenomenon or melt fracture in the cylindrical foam.

更に、上記ポリ乳酸系樹脂発泡シートの製造方法、被覆層が炭窒化チタンから形成されているので、溶融状態にあるポリ乳酸系樹脂と被覆層との摩擦抵抗を更に低減させることができると共に、被覆層の耐久性に優れており、長期間に亘って安定的にポリ乳酸系樹脂発泡シートの製造を行うことができる。 Moreover, the production method of the polylactic acid-based resin foam sheet, since the coating layer is formed from titanium carbonitride, it is possible to further reduce the frictional resistance between the polylactic acid resin in a molten state coating layer The durability of the coating layer is excellent, and a polylactic acid resin foamed sheet can be produced stably over a long period of time.

(実施例1)
結晶性のポリ乳酸系樹脂(ユニチカ社製 商品名「HV−6100」、融点:167.8℃、メルトフローレート:1.2g/10分)100重量部及び気泡調整剤としてタルク2重量部を、一段目となる口径50mmの単軸押出機と二段目となる口径65mmの単軸押出機とを接続管を介して接続してなるタンデム型の押出機の一段目の押出機に供給した。
Example 1
Crystalline polylactic acid resin (trade name “ HV- 6100 ” manufactured by Unitika Ltd., melting point: 167.8 ° C., melt flow rate: 1.2 g / 10 minutes) 100 parts by weight and 2 parts by weight of talc as a foam regulator Is supplied to a first stage extruder of a tandem type extruder in which a single-screw extruder having a diameter of 50 mm as a first stage and a single-screw extruder having a diameter of 65 mm as a second stage are connected via a connecting pipe. did.

そして、ポリ乳酸系樹脂を一段目の押出機にて始めは190℃に加熱し、220℃まで徐々に加熱しながら溶融、混練すると共に、一段目の押出機の途中からブタン(イソブタン:ノルマルブタン(重量比)=35:65)をポリ乳酸系樹脂100重量部に対して1.7重量部の割合で圧入して、ポリ乳酸系樹脂中にブタンを均一に分散させた。   The polylactic acid resin is first heated to 190 ° C. in the first stage extruder, melted and kneaded while gradually heating to 220 ° C., and butane (isobutane: normal butane) from the middle of the first stage extruder. (Weight ratio) = 35: 65) was press-fitted at a ratio of 1.7 parts by weight with respect to 100 parts by weight of the polylactic acid resin, and butane was uniformly dispersed in the polylactic acid resin.

しかる後、溶融状態のポリ乳酸系樹脂を一段目の押出機から接続管を介して二段目の押出機に連続的に供給した。二段目の押出機にて溶融状態のポリ乳酸系樹脂を163℃に冷却した後、二段目の押出機の先端に取り付けられたサーキュラ金型から剪断速度713sec-1、押出速度20kg/時間にて円筒状に押出発泡した。なお、上記樹脂温度は、二段目の押出機とサーキュラ金型との間にブレーカープレートを挿入し、そのブレーカープレートの中心部に熱電対を挿入することにより測定した。 Thereafter, the molten polylactic acid-based resin was continuously supplied from the first-stage extruder to the second-stage extruder via a connecting pipe. After the molten polylactic acid resin is cooled to 163 ° C. in the second stage extruder, the shear rate is 713 sec −1 and the extrusion speed is 20 kg / hour from the circular mold attached to the tip of the second stage extruder. And extruded and foamed into a cylindrical shape. The resin temperature was measured by inserting a breaker plate between the second stage extruder and the circular mold, and inserting a thermocouple in the center of the breaker plate.

ここで、サーキュラ金型1は、図1に示したように、第一、第二樹脂流路部61、62の表面611a、611b、621a、621bが、イオンプレーティングによるPVD法によって形成された、厚さが1μmの炭窒化チタンからなる被覆層7で全面的に被覆されていた。なお、炭化チタンの表面は仕上げ記号で▽▽▽▽(粗さの区分0.8S)であった。 Here, as shown in FIG. 1 , in the circular mold 1, the surfaces 611a, 611b, 621a, and 621b of the first and second resin flow channel portions 61 and 62 are formed by the PVD method using ion plating. The coating layer 7 made of titanium carbonitride having a thickness of 1 μm was entirely covered. In addition, the surface of titanium carbide was ▽▽▽▽ (roughness classification 0.8S) with a finish symbol.

又、第二樹脂流路部62における外側ダイ4側の樹脂流路面620bの開き角度αは30°で、第二樹脂流路部62における内側ダイ5側の樹脂流路面620aの開き角度βは35°であった。   The opening angle α of the resin flow path surface 620b on the outer die 4 side in the second resin flow path portion 62 is 30 °, and the opening angle β of the resin flow path surface 620a on the inner die 5 side in the second resin flow path portion 62 is It was 35 °.

更に、サーキュラ金型1は、そのr0 が2.980cm、t0 が0.05cm、ポリ乳酸系樹脂の体積押出量Qは5.56cm3 /secであり、樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度は、713sec-1であった。又、サーキュラ金型1の第二樹脂流路部62上の仮想円5aの直径は60mmであった。 Further, the circular mold 1 has r 0 of 2.980 cm, t 0 of 0.05 cm, and the volume extrusion amount Q of the polylactic acid resin is 5.56 cm 3 / sec. The shear rate of the molten polylactic acid resin in the part was 713 sec −1 . The diameter of the virtual circle 5a on the second resin flow path portion 62 of the circular mold 1 was 60 mm.

そして、上記円筒状発泡体を徐々に拡径した後、冷却水で冷却され且つ長さ方向の全長に亘って一定の外径を有する円柱状の冷却用マンドレル(外径:205mm、長さ:400mm)に連続的に供給し冷却した上で、円筒状発泡体をその任意の部分において押出方向に連続的に切断し展開することによって長尺状のポリ乳酸系樹脂発泡シートを連続的に製造し、巻き取り機によってロール状に巻き取った。なお、サーキュラ金型から押出発泡された直後の円筒状発泡体の内外周面に35℃の冷風を吹き付けた。   Then, after gradually expanding the diameter of the cylindrical foam, a cylindrical cooling mandrel (outer diameter: 205 mm, length: cooled by cooling water and having a constant outer diameter over the entire length in the length direction). 400mm) is continuously supplied and cooled, and then a long foamed polylactic acid resin foam is continuously produced by continuously cutting and developing the cylindrical foam in the extrusion direction at any part of the cylindrical foam. And wound into a roll with a winder. In addition, 35 degreeC cold air was sprayed on the inner peripheral surface of the cylindrical foam immediately after extrusion foaming from the circular metal mold | die.

なお、ポリ乳酸系樹脂発泡シートは、その密度が0.18g/cm3 、厚みが2.0mm、連続気泡率が16%であり、均一で且つ微細な気泡を有し、外観も優れており均質なものであった。 The polylactic acid resin foam sheet has a density of 0.18 g / cm 3 , a thickness of 2.0 mm, an open cell ratio of 16 %, uniform and fine bubbles, and an excellent appearance. It was homogeneous.

(実施例
結晶性のポリ乳酸系樹脂(島津製作所社製 商品名「LACTY 9031」、融点:138.8℃、メルトフローレート:2.6g/10分)100重量部及び気泡調整剤としてタルク2重量部を、一段目となる口径50mmの単軸押出機と二段目となる口径65mmの単軸押出機とを接続管を介して接続してなるタンデム型の押出機の一段目の押出機に供給した。
(Example 2 )
Crystalline polylactic acid resin (trade name “LACTY 9031” manufactured by Shimadzu Corporation, melting point: 138.8 ° C., melt flow rate: 2.6 g / 10 minutes) 100 parts by weight and 2 parts by weight of talc as a foam regulator The first-stage extruder of a tandem type extruder in which a single-screw extruder with a diameter of 50 mm as the first stage and a single-screw extruder with a diameter of 65 mm as a second stage are connected via a connecting pipe is supplied. .

そして、ポリ乳酸系樹脂を一段目の押出機にて始めは150℃に加熱し、180℃まで徐々に加熱しながら溶融、混練すると共に、一段目の押出機の途中からジメチルエーテルをポリ乳酸系樹脂100重量部に対して6.2重量部の割合で圧入して、ポリ乳酸系樹脂中にジメチルエーテルを均一に分散させた。   The polylactic acid resin is first heated to 150 ° C. in the first stage extruder, melted and kneaded while gradually heating to 180 ° C., and dimethyl ether is added from the middle of the first stage extruder to the polylactic acid resin. By press-fitting at a ratio of 6.2 parts by weight with respect to 100 parts by weight, dimethyl ether was uniformly dispersed in the polylactic acid resin.

しかる後、溶融状態のポリ乳酸系樹脂を一段目の押出機から接続管を介して二段目の押出機に連続的に供給した。二段目の押出機にて溶融状態のポリ乳酸系樹脂を111℃に冷却した後、二段目の押出機の先端に取り付けられたサーキュラ金型から剪断速度455sec-1、押出速度25kg/時間にて円筒状に押出発泡した。なお、上記樹脂温度は、二段目の押出機とサーキュラ金型との間にブレーカープレートを挿入し、そのブレーカープレートの中心部に熱電対を挿入することにより測定した。 Thereafter, the molten polylactic acid-based resin was continuously supplied from the first-stage extruder to the second-stage extruder via a connecting pipe. After the molten polylactic acid resin is cooled to 111 ° C. in the second stage extruder, the shear rate is 455 sec −1 and the extrusion speed is 25 kg / hour from the circular mold attached to the tip of the second stage extruder. And extruded and foamed into a cylindrical shape. The resin temperature was measured by inserting a breaker plate between the second stage extruder and the circular mold, and inserting a thermocouple in the center of the breaker plate.

ここで、サーキュラ金型1は、図1に示したように、第一、第二樹脂流路部61、62の表面611a、611b、612a、612bが、イオンプレーティングによるPVD法によって形成された、厚さが1μmの炭窒化チタンからなる被覆層7で全面的に被覆されていた。なお、炭窒化チタンの表面は仕上げ記号で▽▽▽▽(粗さの区分0.8S)であった。   Here, in the circular mold 1, as shown in FIG. 1, the surfaces 611 a, 611 b, 612 a, and 612 b of the first and second resin flow path portions 61 and 62 are formed by the PVD method using ion plating. The coating layer 7 made of titanium carbonitride having a thickness of 1 μm was entirely covered. In addition, the surface of the titanium carbonitride was ▽▽▽▽ (roughness classification 0.8S) with a finish symbol.

又、第二樹脂流路部62における外側ダイ4側の樹脂流路面620bの開き角度αは30°で、第二樹脂流路部62における内側ダイ5側の樹脂流路面620aの開き角度βは35°であった。   The opening angle α of the resin flow path surface 620b on the outer die 4 side in the second resin flow path portion 62 is 30 °, and the opening angle β of the resin flow path surface 620a on the inner die 5 side in the second resin flow path portion 62 is It was 35 °.

更に、サーキュラ金型1は、そのr0 が2.971cm、t0 が0.07cm、ポリ乳酸系樹脂の体積押出量Qは6.94cm3 /secであり、樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度は、455sec-1であった。又、サーキュラ金型1の第二樹脂流路部62上の仮想円5aの直径は60mmであった。 Further, the circular mold 1 has r 0 of 2.971 cm, t 0 of 0.07 cm, and the volume extrusion amount Q of the polylactic acid resin is 6.94 cm 3 / sec. The shear rate of the molten polylactic acid resin in the part was 455 sec −1 . The diameter of the virtual circle 5a on the second resin flow path portion 62 of the circular mold 1 was 60 mm.

そして、上記円筒状発泡体を徐々に拡径した後、冷却水で冷却され且つ長さ方向の全長に亘って一定の外径を有する円柱状の冷却用マンドレル(外径:205mm、長さ:400mm)に連続的に供給し冷却した上で、円筒状発泡体をその任意の部分において押出方向に連続的に切断し展開することによって長尺状のポリ乳酸系樹脂発泡シートを連続的に製造し、巻き取り機によってロール状に巻き取った。なお、サーキュラ金型から押出発泡された直後の円筒状発泡体の内外周面に15℃の冷風を吹き付けた。   Then, after gradually expanding the diameter of the cylindrical foam, a cylindrical cooling mandrel (outer diameter: 205 mm, length: cooled by cooling water and having a constant outer diameter over the entire length in the length direction). 400mm) is continuously supplied and cooled, and then a long foamed polylactic acid resin foam is continuously produced by continuously cutting and developing the cylindrical foam in the extrusion direction at any part of the cylindrical foam. And wound into a roll with a winder. In addition, 15 degreeC cold air was sprayed on the inner peripheral surface of the cylindrical foam immediately after extrusion foaming from the circular metal mold | die.

上記ポリ乳酸系樹脂発泡シートは、その密度が0.047g/cm3 、厚みが2.0mm、連続気泡率が17%であり、均一で且つ微細な気泡を有し、外観も優れており均質なものであった。 The polylactic acid-based resin foam sheet has a density of 0.047 g / cm 3 , a thickness of 2.0 mm, an open cell ratio of 17%, uniform and fine bubbles, excellent appearance, and homogeneity. It was something.

(比較例1)
ポリ乳酸系樹脂として、ユニチカ社から商品名「TE−6200」で販売されているポリ乳酸系樹脂(融点:167.4℃、メルトフローレート1.5g/10分)を用いたこと、第二押出機にて163℃の代わりに161℃に冷却したこと、上記サーキュラ金型1として、第一、第二樹脂流路部61、62の表面611a、611b、621a、621bが、厚さが30μmのクロムメッキ層で全面的に被覆されていたこと以外は、実施例1と同様の構造を有するサーキュラ金型を用いたこと以外は実施例1と同様の要領でポリ乳酸系樹脂発泡シートを製造したところ、ポリ乳酸系樹脂発泡シートの表面に外観ムラが発生した。
(Comparative Example 1)
The use of a polylactic acid resin (melting point: 167.4 ° C., melt flow rate 1.5 g / 10 min) sold by Unitika under the trade name “TE-6200” as the polylactic acid resin, It was cooled to 161 ° C. instead of 163 ° C. in the extruder, and as the circular mold 1, the surfaces 611a, 611b, 621a, 621b of the first and second resin flow channel portions 61, 62 had a thickness of 30 μm. A polylactic acid resin foam sheet was produced in the same manner as in Example 1 except that a circular mold having the same structure as in Example 1 was used, except that it was entirely covered with a chromium plating layer. As a result, the appearance unevenness occurred on the surface of the polylactic acid resin foam sheet.

そこで、第二押出機にて161℃の代わりに164℃に冷却したこと以外は、上述と同様の要領でポリ乳酸系樹脂発泡シートを製造した。なお、ポリ乳酸系樹脂発泡シートは、その密度が0.18g/cm3 で、厚みが2.0mmで、連続気泡率が22%であった。 Therefore, a polylactic acid-based resin foam sheet was produced in the same manner as described above except that the second extruder was cooled to 164 ° C. instead of 161 ° C. The polylactic acid-based resin foamed sheet had a density of 0.18 g / cm 3 , a thickness of 2.0 mm, and an open cell ratio of 22%.

(比較例2)
ポリ乳酸系樹脂として、ユニチカ社から商品名「TE−6200」で販売されているポリ乳酸系樹脂(融点:167.4℃、メルトフローレート1.5g/10分)を用いたこと、タルクを2重量部の代わりに1重量部とし、ブタンを1.7重量部の代わりに1.5重量部とし、第二押出機にて163℃の代わりに162℃に冷却したこと、樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度を713sec -1 の代わりに2221sec -1 としたこと、サーキュラ金型1として、第一、第二樹脂流路部61、62の表面611a、611b、621a、621bが、厚さが30μmのクロムメッキ層で全面的に被覆されており、r 0 が2.984cm、t 0 が0.04cmであったこと以外は、実施例1で用いられたサーキュラ金型と同様の構造を有するサーキュラ金型を用いたこと、押出速度を20kg/時間の代わりに40kg/時間としたこと以外は実施例1と同様の要領でポリ乳酸系樹脂発泡シートを製造したところ、ポリ乳酸系樹脂発泡シートの表面に外観ムラが発生した。
(Comparative Example 2)
As a polylactic acid resin, a polylactic acid resin (melting point: 167.4 ° C., melt flow rate 1.5 g / 10 minutes) sold by Unitika under the trade name “TE-6200” was used. 1 part by weight instead of 2 parts by weight, 1.5 parts by weight of butane instead of 1.7 parts by weight, and cooled to 162 ° C. instead of 163 ° C. in the second extruder, resin flow path part The shear rate of the polylactic acid resin in the molten state at the tip opening of 62 is set to 2221 sec -1 instead of 713 sec -1, and the surface of the first and second resin flow passages 61 and 62 is used as the circular mold 1. Example 1 except that 611a, 611b, 621a, 621b are entirely covered with a 30 μm thick chromium plating layer, r 0 is 2.984 cm and t 0 is 0.04 cm. Has the same structure as the circular mold used A polylactic acid resin foam sheet was produced in the same manner as in Example 1 except that a circular mold was used and the extrusion rate was 40 kg / hour instead of 20 kg / hour. Appearance unevenness occurred on the surface of the sheet.

そこで、第二押出機にて162℃の代わりに166℃に冷却したこと以外は、上述と同様の要領でポリ乳酸系樹脂発泡シートを製造した。なお、ポリ乳酸系樹脂発泡シートは、その密度が0.18g/cm3 で、厚みが2.0mmで、連続気泡率が21%であった。 Therefore, a polylactic acid-based resin foam sheet was produced in the same manner as described above except that the second extruder was cooled to 166 ° C. instead of 162 ° C. The polylactic acid-based resin foam sheet had a density of 0.18 g / cm 3 , a thickness of 2.0 mm, and an open cell ratio of 21%.

(比較例3)
ポリ乳酸系樹脂として、ユニチカ社から商品名「TE−6200」で販売されているポリ乳酸系樹脂(融点:167.4℃、メルトフローレート1.5g/10分)を用いたこと、第二押出機にて163℃の代わりに161℃に冷却したこと、サーキュラ金型1として、下記サーキュラ金型を用い、樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度を279sec-1に調整したこと以外は実施例1と同様にしてポリ乳酸系樹脂発泡シートを得た。得られたポリ乳酸系樹脂発泡シートは、その密度が0.20g/cm3 で、厚みが2.0mmで、連続気泡率が30%であった。
(Comparative Example 3)
The use of a polylactic acid resin (melting point: 167.4 ° C., melt flow rate 1.5 g / 10 min) sold by Unitika under the trade name “TE-6200” as the polylactic acid resin, it was cooled to 161 ° C. instead of 163 ° C. in an extruder, as a circular die 1, using the following circular die, the shear rate of the polylactic acid-based resin in the molten state at the distal end opening portion of the resin flow path 62 A polylactic acid-based resin foam sheet was obtained in the same manner as in Example 1 except for adjusting to 279 sec −1 . The resulting polylactic acid-based resin foam sheet had a density of 0.20 g / cm 3 , a thickness of 2.0 mm, and an open cell ratio of 30%.

ここで、サーキュラ金型は、図1に示したように、第一、第二樹脂流路部61、62における内側ダイ5側の表面611a、621aが、イオンプレーティングによるPVD法によって形成された、厚さが1μmの炭窒化チタンからなる被覆層7で全面的に被覆されていると共に、第一、第二樹脂流路部61、62における外側ダイ4側の樹脂流路面611b、621bが、厚さが30μmのクロムメッキ層で全面的に被覆されていた。なお、炭窒化チタンの表面は仕上げ記号で▽▽▽▽(粗さの区分0.8S)であった。Here, as shown in FIG. 1, in the circular mold, the surfaces 611a and 621a on the inner die 5 side in the first and second resin flow channel portions 61 and 62 are formed by the PVD method using ion plating. , The resin flow channel surfaces 611b and 621b on the outer die 4 side in the first and second resin flow channel portions 61 and 62 are covered entirely with the coating layer 7 made of titanium carbonitride having a thickness of 1 μm. The entire surface was covered with a chromium plating layer having a thickness of 30 μm. In addition, the surface of the titanium carbonitride was ▽▽▽▽ (roughness classification 0.8S) with a finish symbol.

又、第二樹脂流路部62における外側ダイ4側の樹脂流路面620bの開き角度αは30°で、第二樹脂流路部62における内側ダイ5側の樹脂流路面620aの開き角度βは35°であった。The opening angle α of the resin flow path surface 620b on the outer die 4 side in the second resin flow path portion 62 is 30 °, and the opening angle β of the resin flow path surface 620a on the inner die 5 side in the second resin flow path portion 62 is It was 35 °.

更に、サーキュラ金型1は、そのrFurthermore, the circular mold 1 has its r 0 0 が2.973cm、tIs 2.973 cm, t 0 0 が0.08cmであった。又、サーキュラ金型1の第二樹脂流路部62上の仮想円5aの直径は60mmであった。Was 0.08 cm. The diameter of the virtual circle 5a on the second resin flow path portion 62 of the circular mold 1 was 60 mm.

(比較例4)
ポリ乳酸系樹脂として、ユニチカ社から商品名「TE−6200」で販売されているポリ乳酸系樹脂(融点:167.4℃、メルトフローレート1.5g/10分)を用いたこと、タルクを2重量部の代わりに1重量部とし、ブタンを1.7重量部の代わりに1.5重量部とし、第二押出機にて163℃の代わりに162℃に冷却したこと、サーキュラ金型1として下記サーキュラ金型を用い、ポリ乳酸系樹脂の体積押出量Qを11.1cm3 /secとし、樹脂流路部62の先端開口部における溶融状態のポリ乳酸系樹脂の剪断速度を8861sec-1に調整したこと以外は実施例と同様にしてポリ乳酸系樹脂発泡シートを得た。得られたポリ乳酸系樹脂発泡シートは、その密度が0.20g/cm3 で、厚みが2.0mmで、連続気泡率が32%であった。
(Comparative Example 4)
As a polylactic acid resin, a polylactic acid resin (melting point: 167.4 ° C., melt flow rate 1.5 g / 10 minutes) sold by Unitika under the trade name “TE-6200” was used. 1 part by weight instead of 2 parts by weight, 1.5 parts by weight of butane instead of 1.7 parts by weight, and cooled to 162 ° C. instead of 163 ° C. by the second extruder, circular mold 1 The following circular mold is used , the volume extrusion rate Q of the polylactic acid resin is 11.1 cm 3 / sec, and the shear rate of the polylactic acid resin in the molten state at the tip opening of the resin flow path portion 62 is 8861 sec −1. A polylactic acid-based resin foam sheet was obtained in the same manner as in Example 1 except that it was adjusted to. The obtained polylactic acid-based resin foam sheet had a density of 0.20 g / cm 3 , a thickness of 2.0 mm, and an open cell ratio of 32%.

上記サーキュラ金型1は、図1に示したように、第一、第二樹脂流路部61、62の表面611a、611b、621a、621bが、イオンプレーティングによるPVD法によって形成された、厚さが1μmの窒化チタンからなる被覆層7で全面的に被覆されていた。なお、窒化チタンの表面は仕上げ記号で▽▽▽▽(粗さの区分0.8S)であった。As shown in FIG. 1, the circular mold 1 has a thickness in which the surfaces 611a, 611b, 621a, 621b of the first and second resin flow channel portions 61, 62 are formed by a PVD method using ion plating. Was covered with a coating layer 7 made of titanium nitride having a thickness of 1 μm. In addition, the surface of the titanium nitride was ▽▽▽▽ (roughness classification 0.8S) by a finishing symbol.

又、第二樹脂流路部62における外側ダイ4側の樹脂流路面620bの開き角度αは30°で、第二樹脂流路部62における内側ダイ5側の樹脂流路面620aの開き角度βは35°であった。The opening angle α of the resin flow path surface 620b on the outer die 4 side in the second resin flow path portion 62 is 30 °, and the opening angle β of the resin flow path surface 620a on the inner die 5 side in the second resin flow path portion 62 is It was 35 °.

更に、サーキュラ金型1は、そのrFurthermore, the circular mold 1 has its r 0 0 が2.992cm、tIs 2.992 cm, t 0 0 が0.02cmであった。又、サーキュラ金型1の第二樹脂流路部62上の仮想円5aの直径は60mmであった。Was 0.02 cm. The diameter of the virtual circle 5a on the second resin flow path portion 62 of the circular mold 1 was 60 mm.

本発明で用いられるサーキュラ金型を示した模式縦断面図である。It is the model longitudinal cross-sectional view which showed the circular metal mold | die used by this invention. サーキュラ金型の出口部を示した模式縦断面図である。It is the model longitudinal cross-sectional view which showed the exit part of the circular mold. サーキュラ金型の出口部における第二樹脂流路部の先端開口部を示した模式図である。It is the schematic diagram which showed the front-end | tip opening part of the 2nd resin flow-path part in the exit part of a circular mold. 本発明で用いられるサーキュラ金型の他の一例を示した模式縦断面図である。It is the model longitudinal cross-sectional view which showed another example of the circular metal mold | die used by this invention.

1 サーキュラ金型
2 流入部
21 外側ダイ
22 内側ダイ
23 樹脂流路
3 出口部
4 外側ダイ
5 内側ダイ
6 樹脂流路
61 第一樹脂流路部
610 樹脂流路面
611a、611b 第一樹脂流路部の表面
62 第二樹脂流路部
621a、621b 第二樹脂流路部の表面
620a、620b 樹脂流路面
1 Circular mold 2 Inflow part
21 outer die
22 Inside die
23 resin flow path 3 outlet 4 outer die 5 inner die 6 resin flow path
61 First resin flow path
610 Resin channel surface
611a, 611b First resin flow path surface
62 Second resin flow path
621a, 621b Second resin flow path surface
620a, 620b Resin channel surface

Claims (1)

ポリ乳酸系樹脂及び発泡剤を押出機に供給して溶融混練し、押出機の先端に取り付けたサーキュラ金型から円筒状に押出発泡して円筒状発泡体を製造し、この円筒状発泡体を展開してポリ乳酸系樹脂発泡シートを製造するポリ乳酸系樹脂発泡シートの製造方法であって、上記サーキュラ金型の出口部を構成している内側ダイ及び外側ダイとの対向面間に形成された円環状の樹脂流路は、上記押出機側の一定径を有する第一樹脂流路部と、この第一樹脂流路部に連通して押出方向に向かって徐々に樹脂流通断面積を狭めながら拡径する第二樹脂流路部とからなり、上記第二樹脂流路部における外側ダイ側の樹脂流路面が、第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度αが10〜70°であると共に、上記第二樹脂流路部における内側ダイ側の樹脂流路面が第一樹脂流路部内を流通する溶融樹脂の流通方向に対してなす開き角度βが、上記外側ダイ側の樹脂流路面が有する開き角度αよりも1〜15°だけ大きくなっていると共に、上記第一、第二樹脂流路部の表面のうち少なくとも、上記第一、第二樹脂流路部の連設部及び第二樹脂流路部の表面が、炭窒化チタンからなる被覆層で全面的に被覆されており、上記サーキュラ金型の出口部の第二樹脂流路部から剪断速度300〜8000sec-1で押出すことを特徴とするポリ乳酸系樹脂発泡シートの製造方法。 A polylactic acid-based resin and a foaming agent are supplied to an extruder and melt-kneaded, and a cylindrical foam is produced by extrusion foaming from a circular mold attached to the tip of the extruder into a cylindrical shape. A method for producing a polylactic acid resin foam sheet, which is expanded to produce a polylactic acid resin foam sheet, which is formed between opposing surfaces of an inner die and an outer die constituting the outlet portion of the circular mold. The annular resin flow path has a first resin flow path portion having a constant diameter on the extruder side, and communicates with the first resin flow path portion to gradually narrow the resin flow cross-sectional area in the extrusion direction. The second resin flow path portion that expands in diameter while the resin flow path surface on the outer die side in the second resin flow path portion opens with respect to the flow direction of the molten resin flowing in the first resin flow path portion. The angle α is 10 to 70 °, and the second resin flow path portion The opening angle β formed by the resin flow path surface on the inner die side with respect to the flow direction of the molten resin flowing in the first resin flow path portion is 1 to 15 than the opening angle α of the resin flow path surface on the outer die side. ° with is larger only, the first, at least of the surface of the second resin flow passage portion, the first, the connecting portion and the surface of the second resin flow passage portion of the second resin flow passage portion, coal Polylactic acid-based resin foam, which is entirely covered with a coating layer made of titanium nitride and is extruded at a shear rate of 300 to 8000 sec −1 from the second resin flow passage at the outlet of the circular mold. Sheet manufacturing method.
JP2005044509A 2005-02-21 2005-02-21 Manufacturing method of polylactic acid resin foam sheet Active JP4480600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044509A JP4480600B2 (en) 2005-02-21 2005-02-21 Manufacturing method of polylactic acid resin foam sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044509A JP4480600B2 (en) 2005-02-21 2005-02-21 Manufacturing method of polylactic acid resin foam sheet

Publications (2)

Publication Number Publication Date
JP2006224628A JP2006224628A (en) 2006-08-31
JP4480600B2 true JP4480600B2 (en) 2010-06-16

Family

ID=36986374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044509A Active JP4480600B2 (en) 2005-02-21 2005-02-21 Manufacturing method of polylactic acid resin foam sheet

Country Status (1)

Country Link
JP (1) JP4480600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249208A1 (en) * 2022-03-23 2023-09-27 Ricoh Company, Ltd. Flow path forming device and extrusion molding device
EP4249209A1 (en) * 2022-03-23 2023-09-27 Ricoh Company, Ltd. Flow path forming device and extrusion molding device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221473A (en) * 2008-02-22 2009-10-01 Prime Polymer Co Ltd Polypropylene-based extrusion foamed article and its production method
WO2011122626A1 (en) * 2010-03-29 2011-10-06 Uchiyama Kosuke Polylactic acid composition, foam-molded article thereof and method for producing same
JP5695994B2 (en) * 2011-03-24 2015-04-08 積水化成品工業株式会社 Method for producing biodegradable aliphatic polyester resin foam sheet
US9511523B2 (en) 2012-03-28 2016-12-06 Sabic Global Technologies B.V. Static-dissipative foam extrusion calibration with minimized expansion loss
JP5877111B2 (en) * 2012-03-29 2016-03-02 積水化成品工業株式会社 Manufacturing method of polylactic acid resin foam sheet for thermoforming, and manufacturing method of sheet molded product
CN109762313B (en) * 2018-12-29 2020-09-22 恒天纤维集团有限公司 Preparation method of high-rate polylactic acid foamed sheet
CN112315605B (en) * 2020-11-03 2021-12-21 吉林大学 Implantable bone cyst windowing drainage system
JP7402439B2 (en) * 2021-04-16 2023-12-21 株式会社リコー Extrusion molds, plastic manufacturing equipment, and plastic manufacturing methods
US20230302708A1 (en) * 2022-03-22 2023-09-28 Ricoh Company, Ltd. Resin foam production apparatus and method of producing resin foam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986906B2 (en) * 1990-11-29 1999-12-06 三菱化学株式会社 Molten resin film or sheet forming die
JP3080208B2 (en) * 1993-10-29 2000-08-21 積水化成品工業株式会社 Method for producing polyester resin foam sheet
JP3564926B2 (en) * 1997-03-25 2004-09-15 東レ株式会社 Extrusion die, extrusion molding method, and film production method
JP2000246782A (en) * 1999-03-01 2000-09-12 Sekisui Plastics Co Ltd Die for resin expanded sheet manufacturing device, and manufacture of resin expanded sheet using the die
JP2004262217A (en) * 2003-03-04 2004-09-24 Jsp Corp Composite, ester-modified starch resin foam board and manufacturing method
JP4011512B2 (en) * 2003-04-08 2007-11-21 積水化成品工業株式会社 Method for producing crystalline polylactic acid resin foam
JP3958751B2 (en) * 2004-03-05 2007-08-15 株式会社日本製鋼所 Dies for resin foam sheet molding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249208A1 (en) * 2022-03-23 2023-09-27 Ricoh Company, Ltd. Flow path forming device and extrusion molding device
EP4249209A1 (en) * 2022-03-23 2023-09-27 Ricoh Company, Ltd. Flow path forming device and extrusion molding device

Also Published As

Publication number Publication date
JP2006224628A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4480600B2 (en) Manufacturing method of polylactic acid resin foam sheet
JP4578309B2 (en) Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
JP2003292663A (en) Extrusion-foamed sheet of polypropylene resin and molded article thereof
JP2019104931A (en) Polyethylene-based resin extrusion foam sheet
JP2005138508A (en) Method for producing foamed polypropylene resin sheet
JP5707048B2 (en) Resin foam sheet and method for producing resin foam sheet
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
US6946090B2 (en) Process for making a corrugation-free foam
WO2010103771A1 (en) Polyvinylidene fluoride resin expanded beads, and molded articles of polyvinylidene fluoride resin expanded beads
JP2005028817A (en) Manufacturing method of polystyrene resin foamed sheet for thermoforming, polystyrene resin foamed sheet for thermoforming, and formed article obtained by thermoforming the foamed sheet
JP4299490B2 (en) Lightweight structural material with good decomposability, heat insulating material, and manufacturing method thereof
JP2007100016A (en) Method for producing polypropylene-based resin extrusion-foamed sheet
JP2000273232A (en) Heat-insulating foamed material composed of polypropylene resin
JP6568798B2 (en) Modified polypropylene resin, resin foam and foamed resin container, and method for producing modified polypropylene resin
JP2006089637A (en) Production process of polyproylene resin foamed sheet
JP4928920B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP3892745B2 (en) Method for producing polylactic acid resin foam
JP2004269611A (en) Production method for styrenic resin foam sheet
JP4577883B2 (en) Polyethylene resin open cell foam
JPH11156910A (en) Production of polyethylenic resin foam, polyethylenic resin foam, and molded article thereof
CA2536115C (en) Apparatus and process for making a corrugation-free foam
JPH11147968A (en) Foamed thermoplastic resin sheet and its production
JP4134323B2 (en) Foamable resin composition and propylene-based resin foam
JPH09118769A (en) Polyolefin resin foam and its production
KR20100073745A (en) Manufacturing methode for foaming particle of polypropylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4