JP4478761B2 - Fluid switching device with flat tube - Google Patents

Fluid switching device with flat tube Download PDF

Info

Publication number
JP4478761B2
JP4478761B2 JP2003390140A JP2003390140A JP4478761B2 JP 4478761 B2 JP4478761 B2 JP 4478761B2 JP 2003390140 A JP2003390140 A JP 2003390140A JP 2003390140 A JP2003390140 A JP 2003390140A JP 4478761 B2 JP4478761 B2 JP 4478761B2
Authority
JP
Japan
Prior art keywords
tube
fluid
tubes
pressure
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003390140A
Other languages
Japanese (ja)
Other versions
JP2005147375A (en
Inventor
秀行 塚越
圭祐 田圃
能 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2003390140A priority Critical patent/JP4478761B2/en
Publication of JP2005147375A publication Critical patent/JP2005147375A/en
Application granted granted Critical
Publication of JP4478761B2 publication Critical patent/JP4478761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)

Description

本発明は、扁平した複数本のチューブを重ねて結束させ、チューブ下流側に設けた例えば非接触可変絞りを調整することにより、絞ったチューブのみから流体を流出させることを可能とする扁平チューブによる流体切換え装置に関する。   The present invention is based on a flat tube that allows a plurality of flat tubes to be stacked and bound, and allows fluid to flow out only from the throttled tube by adjusting, for example, a non-contact variable throttle provided on the downstream side of the tube. The present invention relates to a fluid switching device.

流体を流す配管経路において、配管分岐部に切換え弁が設けられ、分岐配管経路を選択して状況に応じた流体経路を形成する。このような切換え弁システムが特許文献1に記載されている。この従来の切換え弁システムは、1つの入口ポートから第1、第2の2つの出口ポートを選択的に切換えるための切換え部材及びこれを動作させるための移送部材を備えたものである。   In the piping path through which the fluid flows, a switching valve is provided at the piping branch portion, and the branch piping path is selected to form a fluid path according to the situation. Such a switching valve system is described in Patent Document 1. This conventional switching valve system includes a switching member for selectively switching the first and second two outlet ports from one inlet port and a transfer member for operating the switching member.

しかしながら、このような特許文献1に記載の切換え弁システムは、切換え部材等が直接流体と接触するため腐食等の問題を生じやすく、また構造そのものが複雑化し、制御も煩雑化する。   However, the switching valve system described in Patent Document 1 is liable to cause problems such as corrosion because the switching member or the like is in direct contact with the fluid, and the structure itself is complicated and the control is complicated.

また、従来各種の流体アクチュエータの駆動方向を切換えるために、電磁弁あるいは手動切換え弁を用いていた。   Conventionally, an electromagnetic valve or a manual switching valve has been used to switch the driving directions of various fluid actuators.

しかしながら、電磁弁を用いた場合には、電気配線や制御回路が必要であり、複雑な構造となる。また、手動切換え弁の場合には、構造が複雑となるとともに信頼性の高い制御ができないという問題がある。さらに、弁の機械可動部が流体と接触するため、腐食や錆あるいは漏れ等の問題への対策が必要になる。   However, when a solenoid valve is used, electrical wiring and a control circuit are necessary, and the structure is complicated. In addition, in the case of a manual switching valve, there are problems that the structure is complicated and reliable control cannot be performed. Furthermore, since the mechanical moving part of the valve is in contact with the fluid, it is necessary to take measures against problems such as corrosion, rust or leakage.

特開平9−257138号公報Japanese Patent Laid-Open No. 9-257138

本発明は、上記従来技術を考慮したものであって、簡単な構造で自動的に確実に流体の流れ方向を切換えることができ、好ましくは流体に非接触で流体の流れ方向を切換えることができる流体切換え装置の提供を目的とする。   The present invention is based on the above prior art, and can automatically and reliably switch the flow direction of fluid with a simple structure, and preferably can switch the flow direction of fluid without contact with the fluid. An object is to provide a fluid switching device.

前記目的を達成するため、請求項1の発明では、複数本の可撓性チューブと、該チューブが接続される共通の流体供給源と、前記複数本のチューブを扁平状態で重ねて結束し扁平面に垂直な方向の動作範囲を規制する結束部とを有し、前記結束部の下流側での各チューブ内の流体圧の変化に基づいて前記結束部を通るチューブの流量割合を変化させることを特徴とする扁平チューブによる流体切換え装置を提供する。   In order to achieve the above object, according to the first aspect of the present invention, a plurality of flexible tubes, a common fluid supply source to which the tubes are connected, and the plurality of tubes are stacked and bundled in a flat state. A bundling portion that regulates an operating range in a direction perpendicular to the surface, and changes a flow rate of the tube passing through the bundling portion based on a change in fluid pressure in each tube on the downstream side of the bundling portion. A fluid switching device using a flat tube is provided.

請求項2の発明では、前記結束部の下流側に設けた流体に非接触な可変絞りにより、各チューブ内の流体圧を変化させ、絞ったチューブのみから流体を流出させることを特徴としている。
請求項3の発明では、前記複数本のチューブを水道管に接続して使用可能としたことを特徴としている。
The invention according to claim 2 is characterized in that the fluid pressure in each tube is changed by a variable throttle that is not in contact with the fluid provided on the downstream side of the bundling portion, and the fluid flows out only from the throttled tube.
The invention of claim 3 is characterized in that the plurality of tubes can be used by being connected to a water pipe.

請求項1の発明によれば、扁平状態で重ねて結束した複数本のチューブのうち、下流側で絞られる等により圧力が高くなったチューブが膨らんで、低圧のチューブを押し潰すため、低圧チューブの流路が遮断され、高圧チューブにのみ流体が流れる。これにより、下流側の流体圧の変化に応じて、流路を高圧になったチューブに切換えて高圧チューブにのみ流体を確実に流すことができる。   According to the first aspect of the present invention, among the plurality of tubes stacked and bound in a flat state, the tube whose pressure is increased by being squeezed on the downstream side swells and crushes the low-pressure tube. And the fluid flows only through the high-pressure tube. Thereby, according to the change of the fluid pressure on the downstream side, the flow path can be switched to the tube having a high pressure, and the fluid can be reliably flowed only to the high pressure tube.

請求項2の発明によれば、流体に非接触な可変絞りにより流体を流したいチューブを絞り、この絞ったチューブにのみ流体を流すため、絞り機構が流体による腐食や錆等の問題を生ずることなくチューブを切換えることができる。
請求項3の発明によれば、家庭用の水道の蛇口にホースを接続してこのホースから複数本のチューブを分岐させて用いることにより、特別な専用配管設備を用いることなく、簡単に使用することができ、利便性が向上する。
According to the second aspect of the present invention, the tube to which the fluid is to be flowed is squeezed by the variable throttle that is not in contact with the fluid, and the fluid is caused to flow only to the throttled tube, so that the throttle mechanism causes problems such as corrosion and rust by the fluid. Without switching the tube.
According to the invention of claim 3, a hose is connected to a faucet for domestic use and a plurality of tubes are branched from the hose, so that it can be used easily without using a special dedicated piping facility. Can improve convenience.

図1は、本発明の実施例の原理説明図である。
(A)に示すように、共通の入口チューブ13から第1系統チューブ11と第2系統チューブ12の2本のチューブに分岐する。この場合、そのままの状態では、(A)に示すように、流体は第1系統及び第2系統のチューブ11,12に同等に流れる。本発明では、(B)に示すように、2本のチューブ11,12を結束部14で扁平な状態で重ね、例えば剛性の強い紐で縛ったり、剛体で拘束して両チューブ11,12同士を結束して絞る。したがって、扁平面に垂直方向の動作範囲、すなわち両チューブの膨らみ量が規制され、2本のチューブ全体の流路面積が広がらないように規制される。この状態で、一方のチューブ(例えば第1系統チューブ)11の下流側で、加圧部15の力が作用してチューブ11を塞ぐ方向に加圧した場合、チューブ11内の圧力が上昇してチューブ11が膨らむ。したがって、結束部14において、第1系統チューブ11が膨らむため、第2系統チューブ12が扁平に押し潰されてチューブが塞がれ、流体が流れなくなる。これにより、流体は、加圧された側のチューブ11にのみ流れて加圧力に対抗して流体を供給する。なお、一方のチューブが完全に閉じることなく、圧力差に応じて、両チューブ11,12を流れる流量の割合が変わるように、加圧部15の圧力を調整してもよい。
FIG. 1 is a diagram illustrating the principle of an embodiment of the present invention.
As shown to (A), it branches into two tubes, the 1st system tube 11 and the 2nd system tube 12, from the common inlet tube 13. FIG. In this case, in the state as it is, as shown to (A), the fluid flows equally into the tubes 11 and 12 of the 1st system and the 2nd system. In the present invention, as shown in (B), the two tubes 11 and 12 are overlapped in a flat state at the bundling portion 14 and, for example, tied with a strong string or restrained with a rigid body, Squeeze together. Therefore, the operation range in the direction perpendicular to the flat surface, that is, the amount of swelling of both tubes is restricted, and the flow passage area of the entire two tubes is restricted so as not to increase. In this state, when the force of the pressurizing unit 15 acts on the downstream side of one tube (for example, the first system tube) 11 to pressurize the tube 11 in the closing direction, the pressure in the tube 11 increases. Tube 11 swells. Accordingly, since the first system tube 11 swells in the bundling portion 14, the second system tube 12 is flattened and closed, and the fluid does not flow. As a result, the fluid flows only in the pressurized tube 11 and supplies the fluid against the applied pressure. In addition, you may adjust the pressure of the pressurization part 15 so that the ratio of the flow volume which flows through both the tubes 11 and 12 may change according to a pressure difference, without one tube closing completely.

図2は、本発明の別の実施例の基本構成図である。この実施例は3系統のチューブを切換えるものである。
(A)に示すように、共通の入口チューブ13から、ヘッダ18を介して3系統のチューブ19,20,21が分岐する。3本のチューブ19,20,21は、結束部22で、扁平な状態で重ねられ、扁平面に垂直方向の動作範囲が規制されるとともに、3本のチューブの合計の流路面積が拡大しないように膨らみが規制される。この結束部22の下流側に、加圧部23,24,25が備わる。各加圧部23,24,25は、例えば各種動作の流体アクチュエータであって、動作に応じてチューブ内の流体圧が変化したり、あるいはチューブを外側から絞って又はバルブ等により流路を絞って内圧を上げることにより、各チューブの流体圧を変化させ、結束部22における各チューブの背圧を変化させる部分である。
なお、図の例は、加圧部23,24,25が絞り弁構造であって、弁体が流体に接触する構造を示すが、このような構造に代えて、各チューブを外側から絞ってチューブ内圧力を高める構造として、絞り機構が流体と非接触な構造とすれば、流体による腐食や錆等の問題や漏れの問題が生じにくいため好ましい。
FIG. 2 is a basic configuration diagram of another embodiment of the present invention. In this embodiment, three tubes are switched.
As shown in (A), three systems of tubes 19, 20, 21 branch from a common inlet tube 13 via a header 18. The three tubes 19, 20, and 21 are overlapped at the bundling portion 22 in a flat state, the operation range in the direction perpendicular to the flat surface is restricted, and the total flow area of the three tubes does not increase. So that the bulge is regulated. Pressure units 23, 24, and 25 are provided on the downstream side of the binding unit 22. Each pressurizing unit 23, 24, 25 is, for example, a fluid actuator for various operations. The fluid pressure in the tube changes according to the operation, or the tube is squeezed from the outside or the flow path is squeezed by a valve or the like. By increasing the internal pressure, the fluid pressure of each tube is changed, and the back pressure of each tube in the binding portion 22 is changed.
In the example shown in the figure, the pressurizing portions 23, 24, and 25 have a throttle valve structure, and the valve body is in contact with the fluid. Instead of such a structure, each tube is squeezed from the outside. As a structure for increasing the pressure in the tube, it is preferable to use a structure in which the throttle mechanism is not in contact with a fluid because problems such as corrosion and rust caused by the fluid and leakage problems are unlikely to occur.

(A)の状態では、加圧部23,24,25の圧力が等しいため、各チューブ19,20,21を通る流量は等しい。この状態から、(B)に示すように、チューブ19の加圧部23が動作してチューブ19内の圧力が上昇すると、このチューブ19が膨らみ、結束部22において、膨らんだチューブ19が他の2本のチューブ20,21を押し潰し、これらのチューブ20,21の流路を遮断する。したがって、入口チューブ13から供給される流体は、高圧になったチューブ19に流れる。なお、各チューブの圧力に応じて、各チューブに流れる流量の割合が変わるように加圧部での圧力を調整してもよい。   In the state of (A), since the pressures of the pressurizing units 23, 24, and 25 are equal, the flow rates through the tubes 19, 20, and 21 are equal. From this state, as shown in (B), when the pressure part 23 of the tube 19 operates and the pressure in the tube 19 rises, the tube 19 swells, and in the binding part 22, the swelled tube 19 becomes another part. The two tubes 20 and 21 are crushed and the flow paths of these tubes 20 and 21 are blocked. Therefore, the fluid supplied from the inlet tube 13 flows into the tube 19 that has become high pressure. Note that the pressure in the pressurizing unit may be adjusted so that the ratio of the flow rate flowing through each tube changes according to the pressure in each tube.

図3は、本発明の適用例の基本構成説明図である。この例は、本発明の流体切換え装置を流体圧モータに適用したものである。
(A)に示すように、固定外枠を構成するドラム1の円筒状内周面2に、軸方向に平行に可撓性材料からなる複数の(図では2本の)チューブ3が固定される。このドラム1の内面に回転体(図2)が同軸的に嵌め込まれる。回転体の外面には螺旋状の突起が形成されている。この螺旋突起4は(B)に示すように、複数の回転可能なローラ5からなり、各チューブ3に圧接する。
FIG. 3 is an explanatory diagram of a basic configuration of an application example of the present invention. In this example, the fluid switching device of the present invention is applied to a fluid pressure motor.
As shown in (A), a plurality of (two in the figure) tubes 3 made of a flexible material are fixed in parallel to the axial direction on the cylindrical inner peripheral surface 2 of the drum 1 constituting the fixed outer frame. The A rotating body (FIG. 2) is coaxially fitted on the inner surface of the drum 1. A spiral protrusion is formed on the outer surface of the rotating body. As shown in FIG. 5B, the spiral protrusion 4 is composed of a plurality of rotatable rollers 5 and presses against each tube 3.

各チューブ3に流体(例えば水道水)が矢印Wのように供給されると、螺旋突起4の手前側のチューブ3が水圧により膨らみ、螺旋突起4を図の左側に押圧して回転体を回転させる。   When a fluid (for example, tap water) is supplied to each tube 3 as indicated by an arrow W, the tube 3 on the front side of the spiral protrusion 4 expands due to water pressure, and the rotating protrusion is rotated by pressing the spiral protrusion 4 to the left side in the figure. Let

図4は、図3のドラムに嵌め込まれる回転体の基本構成図であり、(A)は正面図、(B)は側面図である。
回転軸6に回転体7が装着される。この回転体7は、薄板回転板8を積層して形成される。各薄板回転板8は、同厚の薄板ローラ5を外周に沿って複数個(この例では4個)備える。各ローラ5は、その半円以上の部分が回転板8の円弧状切欠き8a内に回転可能に保持され、残りの一部の円弧部分が回転板8の外面に突出する。このローラ5の突出部が、軸方向から見て位相が徐々にずれるように回転板8を積層し、全体として回転体7の外面にネジ状の螺旋突起4を形成する(図3(B)参照)。
4 is a basic configuration diagram of a rotating body fitted into the drum of FIG. 3, (A) is a front view, and (B) is a side view.
A rotating body 7 is attached to the rotating shaft 6. The rotating body 7 is formed by laminating thin plate rotating plates 8. Each thin plate rotating plate 8 includes a plurality (four in this example) of thin plate rollers 5 having the same thickness along the outer periphery. Each roller 5 has a semicircle or more portion rotatably held in the arc-shaped notch 8 a of the rotating plate 8, and the remaining part of the arc portion protrudes from the outer surface of the rotating plate 8. The rotating plate 8 is laminated so that the projecting portion of the roller 5 is gradually shifted in phase when viewed from the axial direction, and the screw-like spiral protrusion 4 is formed on the outer surface of the rotating body 7 as a whole (FIG. 3B). reference).

図5は、本発明の適用例に係る流体圧モータのチューブに対する圧力状態の説明図である。
ドラム1の内周面に、第1系統のチューブ11と第2系統のチューブ12がそれぞれ4本ずつ交互に装着される。このドラム1の内面に回転体7が嵌め込まれ、矢印方向に回転する。回転体7は、外面に4つのローラ5が突出して前述のように螺旋突起4(図3,4参照)を形成する。
FIG. 5 is an explanatory diagram of a pressure state with respect to a tube of a fluid pressure motor according to an application example of the present invention.
Four tubes 11 of the first system and four tubes 12 of the second system are alternately mounted on the inner peripheral surface of the drum 1. A rotating body 7 is fitted on the inner surface of the drum 1 and rotates in the direction of the arrow. In the rotating body 7, the four rollers 5 protrude from the outer surface to form the spiral protrusion 4 (see FIGS. 3 and 4) as described above.

(A)の状態では、矢印方向に回転するローラ5の前側の第2系統チューブ12が低圧でチューブが扁平に潰れ、ローラ5が乗越え中又は乗越え直後の第1系統チューブ11が高圧状態でチューブが膨らんでいる。この状態からローラ5が回転して第2系統チューブ12を乗越えるとき及び乗越えた後は、(B)に示すように、第2系統チューブ11が高圧で膨らみ、第1系統チューブ11は低圧となって扁平に潰れる。この(A)(B)の状態を、前述の流体圧の自動切換え作用により、交互に繰り返すことによって、回転体7は、ドラム1内で2系統のチューブ11,12を円滑に乗越えながら回転する。   In the state of (A), the second system tube 12 on the front side of the roller 5 rotating in the direction of the arrow is low-pressure and the tube is flattened, and the first system tube 11 while the roller 5 is getting over or just after getting over is in a high-pressure state. Is inflated. From this state, when the roller 5 rotates to get over and over the second system tube 12, as shown in (B), the second system tube 11 swells at a high pressure, and the first system tube 11 has a low pressure. It will be flattened. By alternately repeating the states (A) and (B) by the above-described automatic switching action of the fluid pressure, the rotating body 7 rotates in the drum 1 while getting over the two systems of tubes 11 and 12 smoothly. .

図6は、本発明の適用例に係る流体圧モータの配管系統図である。
水道の蛇口に接続された入口チューブ13は、前述のように、第1系統チューブ11と第2系統チューブ12の2系統に分岐し、結束部14で重ねて絞られる。この結束部14の下流側で、さらにそれぞれ4本に分岐してドラム1内に装着される。チューブはポリオレフィン系樹脂からなる柔軟な可撓性チューブである。
FIG. 6 is a piping system diagram of a fluid pressure motor according to an application example of the present invention.
As described above, the inlet tube 13 connected to the faucet branches into two systems, the first system tube 11 and the second system tube 12, and is squeezed by the bundling portion 14. On the downstream side of the bundling portion 14, the branch portion 14 is further branched into four pieces and mounted in the drum 1. The tube is a flexible flexible tube made of polyolefin resin.

このような配管構成において、結束部14の上流側では2本のチューブ内の圧力は等しく、下流側の背圧が異なる。すなわち、ドラム1内で回転体のローラがチューブを乗越えるときに高圧になるため、前述のように、第1系統及び第2系統のチューブ内の圧力が交互に高低を繰り返す。この第1チューブ11と第2チューブ12の圧力差により、結束部14において、高圧チューブが低圧チューブを押し潰し、低圧チューブの流れが遮断される。   In such a piping configuration, the pressure in the two tubes is equal on the upstream side of the bundling portion 14, and the back pressure on the downstream side is different. That is, since a high pressure is generated when the roller of the rotating body passes over the tube in the drum 1, as described above, the pressure in the tubes of the first system and the second system alternately repeats high and low. Due to the pressure difference between the first tube 11 and the second tube 12, the high pressure tube crushes the low pressure tube in the binding portion 14, and the flow of the low pressure tube is interrupted.

これにより、ドラム1内で第1系統チューブ11と第2系統チューブ12の自動切換え動作が行われる。すなわち、ローラに潰されているチューブ(例えば第1系統)は高圧になり、これから潰されようとしているチューブ(第2系統)は低圧状態にある。このため、結束部14では、第1系統チューブ11が第2系統チューブ12の流路を遮断し(図示した状態)、第2系統チューブ12の圧力がさらに低下する。その結果、ドラム内で第2系統のチューブ12をローラが押し潰して回転し、第2系統が高圧化する。逆に第1系統ではローラが離れて低圧化する。すると結束部14において今度は逆に第2系統チューブ12が第1系統チューブ11の流路を遮断して再びローラが回転する。以上の繰り返しにより、切換え動作が自励的に行われる。   As a result, the automatic switching operation of the first system tube 11 and the second system tube 12 is performed in the drum 1. That is, the tube crushed by the roller (for example, the first system) is at a high pressure, and the tube (second system) to be crushed from now on is in a low pressure state. For this reason, in the binding part 14, the 1st system tube 11 interrupts | blocks the flow path of the 2nd system tube 12 (state shown in figure), and the pressure of the 2nd system tube 12 falls further. As a result, the roller crushes and rotates the tube 12 of the second system in the drum, and the second system increases in pressure. Conversely, in the first system, the rollers are separated and the pressure is reduced. Then, conversely, in the binding unit 14, the second system tube 12 blocks the flow path of the first system tube 11 and the roller rotates again. By repeating the above, the switching operation is carried out by self-excitation.

この場合、結束部14の位置を変化させることにより圧力伝達の時定数が変化するため、切換えの振動数を調節することができる。   In this case, since the time constant of pressure transmission changes by changing the position of the binding part 14, the switching frequency can be adjusted.

本発明は、流体に直接接触せずに流出方向を切換えられるため、例えば漏れの許されない危険試薬流体の容器詰め作業、あるいは原子炉冷却水の制御、もしくは工場汚水の流量センサ等の分野で利用できる。   Since the present invention can switch the outflow direction without directly contacting the fluid, for example, it can be used in the field of dangerous reagent fluid container filling operation that does not allow leakage, reactor cooling water control, factory wastewater flow sensor, etc. it can.

本発明の実施例の動作原理説明図。FIG. 3 is an explanatory diagram of the operation principle of the embodiment of the present invention. 本発明の別の実施例の動作説明図。Operation | movement explanatory drawing of another Example of this invention. 本発明の適用例の構成図。The block diagram of the example of application of this invention. 本発明の適用例の構成図。The block diagram of the example of application of this invention. 本発明の実施例の動作説明図。Operation | movement explanatory drawing of the Example of this invention. 本発明の実施例の配管系統図。The piping system figure of the Example of this invention.

符号の説明Explanation of symbols

1:ドラム、2:内周面、3,3a,3b:チューブ、4:螺旋突起、
5:ローラ、6:回転軸、7:回転体、8:薄板回転板、8a:切欠き、
11:第1系統チューブ、12:第2系統チューブ、13:入口チューブ、
14:結束部、15:加圧部、18:ヘッダ、19,20,21:チューブ、
22:結束部、23,24,25:加圧部。
1: drum, 2: inner peripheral surface, 3, 3a, 3b: tube, 4: spiral protrusion,
5: roller, 6: rotating shaft, 7: rotating body, 8: thin plate rotating plate, 8a: notch,
11: 1st system tube, 12: 2nd system tube, 13: Inlet tube,
14: Bundling part, 15: Pressurizing part, 18: Header, 19, 20, 21: Tube,
22: Bundling part, 23, 24, 25: Pressurizing part.

Claims (3)

複数本の可撓性チューブと、
該チューブが接続される共通の流体供給源と、
前記複数本のチューブを扁平状態で重ねて結束し扁平面に垂直な方向の動作範囲を規制する結束部と、
前記可撓性チューブを流れる流体の流れに対して前記結束部の下流側に配置された加圧部と、
該加圧部により前記各チューブ内の流体圧を選択的に上昇させることで、前記結束部を通る前記各チューブの流量割合を変化させることを特徴とする扁平チューブによる流体切換え装置。
A plurality of flexible tubes;
A common fluid source to which the tubes are connected;
A bundling portion that stacks and bundles the plurality of tubes in a flat state and regulates an operation range in a direction perpendicular to the flat surface ;
A pressurizing unit disposed on the downstream side of the binding unit with respect to the flow of fluid flowing through the flexible tube;
A fluid switching device using a flat tube , wherein the flow rate of each tube passing through the binding portion is changed by selectively increasing the fluid pressure in each tube by the pressurizing unit.
前記加圧部が流体に非接触な可変絞りであり、該可変絞りによって各チューブ内の流体圧を変化させ、絞ったチューブのみから流体を流出させることを特徴とする請求項1に記載の扁平チューブによる流体切換え装置。 The flatness according to claim 1, wherein the pressurizing unit is a variable throttle that is not in contact with a fluid, and the fluid pressure in each tube is changed by the variable throttle so that the fluid flows out only from the throttled tube. Fluid switching device using tubes. 前記複数本のチューブを水道管に接続して使用可能としたことを特徴とする請求項1又は2に記載の扁平チューブによる流体切換え装置。   The fluid switching device using a flat tube according to claim 1 or 2, wherein the plurality of tubes can be used by being connected to a water pipe.
JP2003390140A 2003-11-20 2003-11-20 Fluid switching device with flat tube Expired - Fee Related JP4478761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390140A JP4478761B2 (en) 2003-11-20 2003-11-20 Fluid switching device with flat tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390140A JP4478761B2 (en) 2003-11-20 2003-11-20 Fluid switching device with flat tube

Publications (2)

Publication Number Publication Date
JP2005147375A JP2005147375A (en) 2005-06-09
JP4478761B2 true JP4478761B2 (en) 2010-06-09

Family

ID=34696621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390140A Expired - Fee Related JP4478761B2 (en) 2003-11-20 2003-11-20 Fluid switching device with flat tube

Country Status (1)

Country Link
JP (1) JP4478761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007914B2 (en) * 2004-05-14 2006-03-07 United States Gypsum Company Slurry mixer constrictor valve
JP5480431B1 (en) * 2013-07-16 2014-04-23 アルテア技研株式会社 Tube valve and injection system
US10537863B2 (en) 2015-12-31 2020-01-21 United States Gypsum Company Constrictor valve with webbing, cementitious slurry mixing and dispensing assembly, and method for making cementitious product

Also Published As

Publication number Publication date
JP2005147375A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
EP3532755B1 (en) Reversing valve and household water purifier including same technical field
US7152620B2 (en) Flow-reversing valve
US9416795B2 (en) Reverse osmosis system
CN1862031B (en) Anti jerk valve
US9821273B2 (en) Reverse osmosis system
JP6044721B2 (en) Fuel system
JP4478761B2 (en) Fluid switching device with flat tube
CN101389869A (en) Control device and hydraulic pilot control
US8365768B2 (en) Fluidic device unit structure
JP2002154653A (en) Pipeline switching device
US7735618B2 (en) Clutch control device
US7788914B2 (en) Apparatus operating hydraulic actuator for valve
WO2005069853A2 (en) Redundant valve system
US8051650B2 (en) Hydraulic system
CN108368864B (en) Hydraulic device and motor vehicle drive train
KR100594851B1 (en) Hydraulic breaking circuit
JP4555922B2 (en) Fluid pressure motor
RU2206005C1 (en) Valve unit, for example for heating radiator
JPH109425A (en) Hydraulic circuit selector
JP4143042B2 (en) Cylinder device with damper function
JP6087992B2 (en) Quarter turn valve hydraulic actuator
JP2006064137A (en) Brake device for motor
KR200235302Y1 (en) valve have a turnover of a course for cold-water and hot-water
JP7064872B2 (en) Hydraulic drive
RU2089772C1 (en) Valving control unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees