JP4478242B2 - Method for producing amorphous aluminosilicate - Google Patents
Method for producing amorphous aluminosilicate Download PDFInfo
- Publication number
- JP4478242B2 JP4478242B2 JP16825799A JP16825799A JP4478242B2 JP 4478242 B2 JP4478242 B2 JP 4478242B2 JP 16825799 A JP16825799 A JP 16825799A JP 16825799 A JP16825799 A JP 16825799A JP 4478242 B2 JP4478242 B2 JP 4478242B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- alkali metal
- amorphous aluminosilicate
- mass
- seed particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非晶質アルミノ珪酸塩及びその製造方法に関する。
【0002】
【従来の技術】
非晶質アルミノ珪酸塩は高い吸油能を持つことから、洗剤用ビルダー、製紙用充填剤等に多用されており、高吸油能発現のための製造方法の改良が試みられている。高吸油能発現のためには非晶質アルミノ珪酸塩の凝集構造の制御、即ち一次粒子径の制御が重要となってくる。例えば、特開昭52-58099号公報には、珪酸アルカリ金属塩の水溶液に攪拌しながらアルミン酸アルカリ金属塩の希薄溶液を加え、その後も攪拌を続けながら前記二溶液の混合によって形成された反応系のpHを10.5以上に保つことによって、アルミノ珪酸塩の一次粒子径を40〜50 nm に制御し、75 mL/100g以上の吸油能を示す非晶質アルミノ珪酸塩が製造できることを開示している。しかし、この製造方法では一次粒子の数平均粒子径が40nm未満の非晶質アルミノ珪酸塩を製造することはできず、150 mL/100g 以上の高い吸油能を持つ非晶質アルミノ珪酸塩は得られない。
【0003】
【発明が解決しようとする課題】
本発明の目的は、高い吸油能を持つ非晶質アルミノ珪酸塩及びその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、
〔1〕一次粒子の数平均粒子径が40 nm 未満であり、一次粒子径の数分布の標準偏差が40%未満である非晶質アルミノ珪酸塩、及び
〔2〕珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液とを、少なくとも一方の水性溶液に種粒子を存在させて、混合し、反応させる非晶質アルミノ珪酸塩の製造方法に関する。
【0005】
【発明の実施の形態】
本発明は、非晶質アルミノ珪酸塩の一次粒子径と吸油能に相関性があり、非晶質アルミノ珪酸塩の一次粒子径が小さいほど凝集体の形成が促進され、また一次粒子径が揃っている(粒径分布幅が狭い)ほど均一な凝集体が形成される結果、細孔体積が増大し、より高い吸油能を発現するという現像の発見に基づくものである。
【0006】
即ち、本発明の非晶質アルミノ珪酸塩の一次粒子の数平均粒子径は、凝集体形成の観点から、40nm未満、好ましくは35nm未満である。該数平均粒子径は、後述の実施例に記載の方法に基づいて測定することができる。また、その一次粒子径の数分布の標準偏差は、凝集体の均一性の観点から、40%未満、好ましくは30%未満である。
【0007】
また、本発明の非晶質アルミノ珪酸塩の吸油能は、好ましくは150 mL/100g 以上、より好ましくは160 mL/100g 以上である。該吸油能は、JIS K 6220の吸油量測定法に基づいて測定できる。
【0008】
非晶質アルミノ珪酸塩は、X線回折において2θ=10〜50°にハローピークを有するものであり、該X線回折をX線回折装置(理学電機製、RAD-200 )を用いて、CuKα線、40 kV 、120 mA、スリット系は発散スリット1.00°、散乱スリット1.00°、受光スリット0.30mm、走査速度10°/分の条件下で行い、その時得られるハローピークの最大強度が300 cps 以上のものが特に優れている。また、その他の結晶性物質のピークが含まれていてもかまわない。
【0009】
非晶質アルミノ珪酸塩の組成としては、SiO2/Al2O3(モル比)= 0.5〜6、M2O/ Al2O3(モル比)= 0.2〜4(但し、M はアルカリ金属を示す)が好ましく、SiO2/Al2O3=1〜3、M2O/ Al2O3=1〜4がより好ましいが、上記組成以外に種粒子に含有される元素も含まれても良い。なおアルカリ金属は、単独又は二種以上の混合物として用いることができ、特に限定するものではないがナトリウムが好ましい。
【0010】
また、上記組成以外にアルカリ土類金属を含有させた場合、耐アルカリ性や耐熱性の面で優れたものが合成できる。ここで、アルカリ土類金属は、単独又は二種以上の混合物として用いることができ、中でもカルシウム又はマグネシウムが有利であり、例えば塩化カルシウム、塩化マグネシウム等が非晶質アルミノ珪酸塩の製造時に原料として好ましく用いられる。アルカリ土類金属の含有量として、特に制限されるものではないが、Al2O3 に対するモル比〔MeO/Al2O3 (但し、Meはアルカリ土類金属を表す)〕として0.001 〜0.1 が好ましい。
【0011】
かかる構成を有する非晶質アルミノ珪酸塩は、珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液とを、少なくとも一方の水性溶液に種粒子を存在させ、混合し、反応させることで製造することができる。これは珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液とを混合し、反応させて非晶質アルミノ珪酸塩を製造する反応初期、即ち非晶質アルミノ珪酸塩の核生成段階の反応場が、最終的な非晶質アルミノ珪酸塩の一次粒子径及び吸油能に大きく影響するという本発明における知見に基づくものであり、核生成反応場中に種粒子を存在させて非晶質アルミノ珪酸塩の一次粒子径の制御を行なう点に特徴を有する。
【0012】
珪酸アルカリ金属塩の水性溶液は、市販の水ガラスを用いることができ、それを適宜水や水酸化アルカリ金属塩水溶液で希釈して用いても良い。
【0013】
アルミン酸アルカリ金属塩の水性溶液は、市販品を用いても良く、また水酸化アルミニウムと水酸化アルカリ金属塩とを含有する水溶液の加熱溶解により得られるものを用いても良い。
【0014】
種粒子は、珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液とを混合し、反応させる時に、少なくとも一方の水性溶液に存在すれば良く、また両方の水性溶液に存在していても良い。ここで、種粒子とは、固液界面の不均一反応場を提供するものである。
【0015】
珪酸アルカリ金属塩の水性溶液又はアルミン酸アルカリ金属塩の水性溶液中の種粒子の有無は、各水性溶液の濁度を測定することにより判断でき、種粒子が存在しない各水性溶液に比べて、その濁度が大きい場合に種粒子が存在していると判断できる。例えば、珪酸アルカリ金属塩の水性溶液の場合、その水性溶液の濁度が5%以上、アルミン酸アルカリ金属塩の水性溶液の場合、その水性溶液の濁度が15%以上であれば種粒子が存在していると判断できる。
【0016】
種粒子は、各水性溶液に種粒子形成物質を滴下させて析出させたものでも良く、また各水性溶液に予め調製した種粒子を外部から添加しても良い。種粒子を析出させる具体例として、水ガラス原料に種粒子形成物質として塩化カルシウムや塩化マグネシウム等のアルカリ土類金属塩を滴下し加熱することにより、珪酸アルカリ土類金属と考えられる白色物を珪酸アルカリ金属塩の水性溶液中に析出させる方法が挙げられる。また、アルミン酸ナトリウムに水を添加、長時間50℃程度に加熱することにより、水酸化アルミニウムと考えられる白色物をアルミン酸アルカリ金属塩の水性溶液中に析出させる方法が挙げられる。
【0017】
外部から種粒子となるものを添加する場合、種粒子は、無機化合物や有機化合物に関わらず、また乾燥状態でも湿潤状態でも良い。種粒子が無機化合物の場合、結晶性化合物でも非晶質化合物でもまたそれら両混合物でも良い。
【0018】
無機化合物としては、結晶性シリカ、無定形シリカ、珪酸カルシウム、珪藻土、白土、ゼオライト、非晶質アルミノ珪酸塩、ムライト、カオリン、タルク、酸化アルミニウム、水酸化アルミニウム等のケイ素化合物やアルミニウム化合物、炭酸カルシウム、硫酸カルシウム、硝酸カルシウム等の炭酸塩、硫酸塩、硝酸塩各種金属酸化物等が挙げられ、有機化合物としては、各種イオン交換樹脂、アクリル酸及びこれらの誘導体ポリマー等が挙げられるが、これらに限定されるものでない。
【0019】
特に、珪酸アルカリ金属塩の水性溶液に存在させる種粒子としてケイ素化合物、アルミン酸アルカリ金属塩の水性溶液に存在させる種粒子としてアルミニウム化合物を用いるのが、生成する非晶質アルミノ珪酸塩の純度、特性の面から好ましい。
【0020】
珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液との混合、反応は、珪酸アルカリ金属塩の水性溶液を攪拌している中にアルミン酸アルカリ金属塩の水性溶液を混合して反応させても良く、逆にアルミン酸アルカリ金属塩の水性溶液を攪拌している中に珪酸アルカリ金属塩の水性溶液を混合して反応させても良く、また水を攪拌している中に珪酸アルカリ金属塩の水性溶液とアルミン酸アルカリ金属塩の水性溶液とを同時に混合して反応させても良い。
【0021】
珪酸アルカリ金属塩の水性溶液中の珪酸アルカリ金属塩の濃度は、1〜80重量%が好ましく、5〜60重量%がより好ましい。また、アルミン酸アルカリ金属塩の水性溶液中のアルミン酸アルカリ金属塩の濃度は、10〜90重量%が好ましく、20〜70重量%がより好ましい。
【0022】
珪酸アルカリ金属塩の水性溶液(a)とアルミン酸アルカリ金属塩(b)の水性溶液との混合比率(重量比、a:b)は、0.1:1〜10:1が好ましく、0.5:1〜8:1がより好ましい。
また、混合液のpHは12〜14が好ましい。
【0023】
反応温度は通常10〜100 ℃、好ましくは20〜100 ℃である。反応時間は反応温度によっても異なるが通常0〜120 分間、好ましくは1〜60分間である。反応終了後は、常法により処理され生成物を得ることができる。例えば、通常1〜300 分間、30〜100 ℃の温度で加熱熟成を行い、非晶質アルミノ珪酸塩の水性溶液を得ることができる。得られた水性溶液にさらに炭酸や硫酸等の酸剤を添加し、水性溶液のpHを8〜12として遊離のアルカリイオン量を減少させて使用しても良い。
【0024】
得られた水性溶液中の固形物濃度は、10 mass%以上であることが好ましく、15mass% 以上であることがより好ましい。固形物濃度は、強熱減量に基づいて測定することができる。
【0025】
上記水性溶液をろ過又は遠心分離により非晶質アルミノ珪酸塩の沈殿物を分離し、洗浄及び乾燥後、粉砕することにより非晶質アルミノ珪酸塩粉末を得ることができる。なお、乾燥が不充分で含水率が高すぎると高吸油能が発現されないことから、含水率は30 mass%以下が好ましく、15 mass%以下がより好ましい。このようにして得られた非晶質アルミノ珪酸塩の水性溶液及び粉末は、洗剤組成物中に含有させて用いることができる。
【0026】
【実施例】
実施例1〜6及び比較例1における物性は、次に示す方法により測定した。
(1)吸油能
乾燥した試料をクッキングカッターで粉砕し、JIS K 6220の吸油量測定法によって測定した。
【0027】
(2)濁度
混合、反応直前の珪酸アルカリ金属塩の水性溶液及びアルミン酸アルカリ金属塩の水性溶液の濁度を濁度計(村上色材研究所製、「反射透過計HR-100」)を用いて測定した。
【0028】
(3)含水率
予め600 ℃、1 時間電気炉で空焼きをし、デシケータ中で恒量に達した磁性ルツボに、試料を入れ、精秤する。次いで600 ℃、1 時間電気炉で強熱し、デシケータ中で恒量に達した重量を精秤して含水率を求めた。
【0029】
(4)一次粒径
電解放射型高分解能走査電子顕微鏡(FE-SEM、日立製作所製「S-4000」)により撮影したSEM 写真(倍率10万倍)を更に拡大した写真(倍率30万倍)からデジタイザー(グラフテック製、「デジタイザーKW3300」)を用いて一次粒子径(粒子数100 個以上)を測定し、その数平均値及び標準偏差値をとった。
【0030】
(5)粉末X線回折
粉末X線回折装置(理学電機製「RAD-C 」、光源CuKα、管電圧40 kV 、管電流120 mA)を用い、2θ=5〜70°の範囲を10°/minの走査速度で測定した。
【0031】
実施例1(参考例)
2L ステンレス容器に入れた3号水ガラス(Na2O; 9.82 mass%, SiO2 ; 29.87mass%)354gにテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300 rpm) 、CaCl2 水溶液(CaCl23.92 g)823 g を約10分かけてゆっくり添加した。これをマントルヒーターで50℃に加熱し白濁させた溶液を、50℃に加熱したNaAlO2水溶液(Na2O; 21.24 mass%, Al2O3 ; 28.12 mass%)320 g にテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、ローラーポンプを用いて20分かけて滴下した。滴下終了後、更に10分攪拌(300rpm)した後、約20分かけて80℃まで昇温後、更に10分間熟成を行った。得られた非晶質アルミノ珪酸塩の水性溶液(固形分濃度20 mass%)をろ過、水洗(ろ液pH<12になるまで)したものを100 ℃、13時間乾燥し、クッキングカッターで1分間粉砕したものを物性評価に用いた。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩であることが確認された。
【0032】
実施例2(参考例)
添加したCaCl2 量を0.98g とした以外は実施例1と同様に非晶質アルミノ珪酸塩を合成した。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩であることが確認された。
【0033】
実施例3
2 L ステンレス容器に入れた3号水ガラス(Na2O; 9.82 mass%, SiO2; 29.87 mass%)354gにテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、CaCl2 水溶液(CaCl2 0.98g )83g をゆっくり添加した。NaAlO2水溶液(Na2O; 21.24 mass%, Al2O3 ; 28.12 mass%)320 g と水740 g を混合した水性溶液をマントルヒーターで50℃で1時間加熱することにより白濁させた溶液に、テフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、50℃に加熱した上記CaCl2 含有水ガラス水溶液をローラーポンプを用いて20分かけて滴下した。以下、実施例1と同様の操作を行い非晶質アルミノ珪酸塩粉末を得た。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩と水酸化アルミニウムの混合物であった。
【0034】
実施例4
CaCl2 を添加しない以外は実施例3と同様に非晶質アルミノ珪酸塩を合成した。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩と水酸化アルミニウムの混合物であった。
【0035】
実施例5(参考例)
2L ステンレス容器に入れた3号水ガラス(Na2O; 9.82 mass%, SiO2 ; 29.87mass%)354gにテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、CaCl2 水溶液(CaCl20.98 g)823 g を約10分かけてゆっくり添加後、マントルヒーターで50℃に加熱し白濁させた。この溶液にテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、50℃に加熱したNaAlO2水溶液(Na2O; 21.24 mass%, Al2O3 ; 28.12 mass%)320 g をローラーポンプを用いて20分かけて滴下した。以下、実施例1と同様の操作を行い非晶質アルミノ珪酸塩粉末を得た。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩であることを確認した。
【0036】
実施例6(参考例)
2L ステンレス容器に入れた3号水ガラス(Na2O; 9.82 mass%, SiO2 ; 29.87mass%)354 g にテフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、CaCl2 水溶液(CaCl20.98g )40g を添加後、マントルヒーターで50℃に加熱し白濁させた。50℃に加熱したイオン交換水783gが入っている2L ステンレス容器に、テフロン製攪拌羽根(長さ11cm)で攪拌しながら(300rpm)、50℃に加熱したNaAlO2水溶液(Na2 O; 21.24 mass%, Al2O3 ; 28.12 mass%)320gと上記Ca含有水ガラス水溶液の各溶液を同時にローラーポンプを用いて20分かけて滴下した。以下、実施例1と同様の操作を行い非晶質アルミノ珪酸塩粉末を得た。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩であることを確認した。
【0037】
比較例1
CaCl2 を添加しない以外は実施例1と同様に非晶質アルミノ珪酸塩を合成した。なお粉末X線回折測定より、得られた試料は非晶質アルミノ珪酸塩であることが確認された。
【0038】
実施例1〜6及び比較例1で得られた非晶質アルミノ珪酸塩の組成、物性等を表1に示す。
【0039】
【表1】
【0040】
表1の結果より、実施例1〜6で得られた非晶質アルミノ珪酸塩は、いずれも一次粒子の数平均粒子径が40nm未満であり、一次粒子の数分布の標準偏差が40%未満であり、比較例1と比べて、吸油能が高いことがわかる。
【0041】
【発明の効果】
本発明の製造方法により、一次粒子の数平均粒子径が40nm未満、一次粒子径の標準偏差が40%未満で、150 mL/100g 以上の吸油能を持つ非晶質アルミノ珪酸塩が製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amorphous aluminosilicate and a method for producing the same.
[0002]
[Prior art]
Since amorphous aluminosilicate has a high oil-absorbing ability, it is frequently used in detergent builders, paper-making fillers, and the like, and attempts have been made to improve the production method for achieving high oil-absorbing ability. Control of the agglomeration structure of amorphous aluminosilicate, that is, control of the primary particle size is important for high oil absorption. For example, in JP-A-52-58099, a dilute solution of an alkali metal aluminate salt is added to an aqueous solution of an alkali metal silicate salt while stirring, and then the reaction formed by mixing the two solutions while continuing stirring. It is disclosed that by maintaining the pH of the system at 10.5 or higher, the primary particle size of aluminosilicate can be controlled to 40-50 nm and an amorphous aluminosilicate having an oil absorption capacity of 75 mL / 100 g or more can be produced. Yes. However, this production method cannot produce an amorphous aluminosilicate with a primary particle number average particle size of less than 40 nm, and an amorphous aluminosilicate with a high oil absorption capacity of 150 mL / 100 g or more cannot be obtained. I can't.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an amorphous aluminosilicate having a high oil absorption capacity and a method for producing the same.
[0004]
[Means for Solving the Problems]
The present invention
[1] Amorphous aluminosilicate in which the number average particle diameter of primary particles is less than 40 nm and the standard deviation of the number distribution of primary particle diameter is less than 40%, and [2] an aqueous solution of alkali metal silicate The present invention relates to a method for producing an amorphous aluminosilicate in which seed particles are present in at least one aqueous solution and mixed and reacted with an aqueous solution of an alkali metal aluminate salt.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, there is a correlation between the primary particle size of the amorphous aluminosilicate and the oil absorption capacity. The smaller the primary particle size of the amorphous aluminosilicate, the more the formation of aggregates is promoted, and the primary particle size is uniform. This is based on the discovery of development that the smaller the particle size (the narrower the particle size distribution width), the more uniform aggregates are formed, resulting in an increase in pore volume and higher oil absorption.
[0006]
That is, the number average particle diameter of the primary particles of the amorphous aluminosilicate of the present invention is less than 40 nm, preferably less than 35 nm, from the viewpoint of aggregate formation. The number average particle diameter can be measured based on the method described in Examples described later. The standard deviation of the number distribution of the primary particle diameter is less than 40%, preferably less than 30%, from the viewpoint of the homogeneity of the aggregate.
[0007]
The oil absorption capacity of the amorphous aluminosilicate of the present invention is preferably 150 mL / 100 g or more, more preferably 160 mL / 100 g or more. The oil absorption capacity can be measured based on the oil absorption measurement method of JIS K 6220.
[0008]
Amorphous aluminosilicate has a halo peak at 2θ = 10 to 50 ° in X-ray diffraction, and this X-ray diffraction is measured using CuKα using an X-ray diffractometer (manufactured by Rigaku Corporation, RAD-200). Line, 40 kV, 120 mA, slit system is divergence slit 1.00 °, scattering slit 1.00 °, light receiving slit 0.30mm, scanning speed 10 ° / min. Maximum halo peak intensity obtained is 300 cps or more The ones are particularly good. Moreover, the peak of other crystalline substances may be included.
[0009]
The composition of the amorphous aluminosilicate is SiO 2 / Al 2 O 3 (molar ratio) = 0.5-6, M 2 O / Al 2 O 3 (molar ratio) = 0.2-4 (where M is an alkali metal) SiO 2 / Al 2 O 3 = 1 to 3 and M 2 O / Al 2 O 3 = 1 to 4 are more preferable, but the elements contained in the seed particles are also included in addition to the above composition Also good. In addition, although an alkali metal can be used individually or in mixture of 2 or more types, Although it does not specifically limit, sodium is preferable.
[0010]
In addition, when an alkaline earth metal is contained in addition to the above composition, a material excellent in alkali resistance and heat resistance can be synthesized. Here, the alkaline earth metal can be used alone or as a mixture of two or more thereof, among which calcium or magnesium is advantageous. For example, calcium chloride, magnesium chloride and the like are used as raw materials during the production of amorphous aluminosilicate. Preferably used. The content of the alkaline earth metal is not particularly limited, but is 0.001 to 0.1 as the molar ratio to Al 2 O 3 [MeO / Al 2 O 3 (where Me represents an alkaline earth metal)]. preferable.
[0011]
An amorphous aluminosilicate having such a structure is obtained by mixing an aqueous solution of an alkali metal silicate salt and an aqueous solution of an alkali metal aluminate salt in the presence of seed particles in at least one aqueous solution. Can be manufactured. This is because an aqueous solution of an alkali metal silicate and an aqueous solution of an alkali metal aluminate are mixed and reacted to produce an amorphous aluminosilicate, that is, in the nucleation stage of the amorphous aluminosilicate. The reaction field is based on the knowledge in the present invention that the final amorphous aluminosilicate has a large influence on the primary particle size and oil absorption capacity. It is characterized in that the primary particle size of the aluminosilicate is controlled.
[0012]
A commercially available water glass can be used as the aqueous solution of the alkali metal silicate, and it may be appropriately diluted with water or an aqueous alkali metal hydroxide solution.
[0013]
As the aqueous solution of the alkali metal aluminate salt, a commercially available product may be used, or a solution obtained by heating and dissolving an aqueous solution containing aluminum hydroxide and an alkali metal hydroxide salt may be used.
[0014]
The seed particles may be present in at least one of the aqueous solutions when the aqueous solution of the alkali metal silicate and the aqueous solution of the alkali metal aluminate are mixed and reacted. Also good. Here, the seed particles provide a heterogeneous reaction field at the solid-liquid interface.
[0015]
The presence or absence of seed particles in an aqueous solution of alkali metal silicate or alkali metal aluminate can be determined by measuring the turbidity of each aqueous solution, compared to each aqueous solution in which no seed particles exist, If the turbidity is large, it can be determined that seed particles are present. For example, in the case of an aqueous solution of an alkali metal silicate, the turbidity of the aqueous solution is 5% or more. In the case of an aqueous solution of an alkali metal aluminate salt, the seed particles are formed if the turbidity of the aqueous solution is 15% or more. It can be judged that it exists.
[0016]
The seed particles may be prepared by dropping a seed particle-forming substance into each aqueous solution, and seed particles prepared in advance may be added to each aqueous solution from the outside. As a specific example of precipitating seed particles, by adding alkaline earth metal salt such as calcium chloride or magnesium chloride as a seed particle-forming substance to water glass raw material and heating it, a white material considered to be an alkaline earth metal silicate is silicic acid. The method of making it precipitate in the aqueous solution of an alkali metal salt is mentioned. Moreover, the method of depositing the white thing considered to be aluminum hydroxide in the aqueous solution of an alkali metal aluminate by adding water to sodium aluminate and heating at about 50 degreeC for a long time is mentioned.
[0017]
When the seed particles are added from the outside, the seed particles may be in a dry state or a wet state regardless of the inorganic compound or the organic compound. When the seed particle is an inorganic compound, it may be a crystalline compound, an amorphous compound, or a mixture of both.
[0018]
Inorganic compounds include crystalline silica, amorphous silica, calcium silicate, diatomaceous earth, white clay, zeolite, amorphous aluminosilicate, mullite, kaolin, talc, aluminum oxide, aluminum hydroxide and other silicon compounds, aluminum compounds, carbonic acid Examples of the organic compounds include carbonates such as calcium, calcium sulfate, and calcium nitrate, sulfates, various metal oxides of nitrates, and the organic compounds include various ion exchange resins, acrylic acid, and derivative polymers thereof. It is not limited.
[0019]
In particular, the purity of the resulting amorphous aluminosilicate is obtained by using a silicon compound as a seed particle to be present in an aqueous solution of an alkali metal silicate salt and an aluminum compound as a seed particle to be present in an aqueous solution of an alkali metal aluminate salt. It is preferable in terms of characteristics.
[0020]
Mixing and reaction of an aqueous solution of an alkali metal silicate and an aqueous solution of an alkali metal aluminate is performed by mixing an aqueous solution of an alkali metal aluminate while stirring the aqueous solution of an alkali metal silicate. Conversely, while stirring an aqueous solution of an alkali metal aluminate salt, the aqueous solution of the alkali metal silicate salt may be mixed and reacted, or while stirring the water, the alkali silicate alkali solution may be used. An aqueous solution of a metal salt and an aqueous solution of an alkali metal aluminate salt may be mixed and reacted at the same time.
[0021]
The concentration of the alkali metal silicate in the aqueous solution of the alkali metal silicate is preferably 1 to 80% by weight, and more preferably 5 to 60% by weight. The concentration of the alkali metal aluminate salt in the aqueous solution of the alkali metal aluminate salt is preferably 10 to 90% by weight, and more preferably 20 to 70% by weight.
[0022]
The mixing ratio (weight ratio, a: b) of the aqueous solution of the alkali metal silicate (a) and the aqueous solution of the alkali metal aluminate (b) is preferably 0.1: 1 to 10: 1. 5: 1 to 8: 1 are more preferable.
The pH of the mixed solution is preferably 12-14.
[0023]
The reaction temperature is usually 10-100 ° C, preferably 20-100 ° C. While the reaction time varies depending on the reaction temperature, it is generally 0 to 120 minutes, preferably 1 to 60 minutes. After completion of the reaction, the product can be obtained by a conventional method. For example, it is possible to obtain an aqueous solution of amorphous aluminosilicate by heating and aging usually at a temperature of 30 to 100 ° C. for 1 to 300 minutes. An acid agent such as carbonic acid or sulfuric acid may be further added to the obtained aqueous solution to adjust the pH of the aqueous solution to 8 to 12 and reduce the amount of free alkali ions.
[0024]
The solid concentration in the obtained aqueous solution is preferably 10 mass% or more, and more preferably 15 mass% or more. The solid concentration can be measured based on the loss on ignition.
[0025]
An amorphous aluminosilicate powder can be obtained by separating the precipitate of the amorphous aluminosilicate by filtering or centrifuging the aqueous solution, and washing and drying, followed by pulverization. In addition, if the drying is insufficient and the water content is too high, a high oil absorption capacity is not exhibited, and therefore the water content is preferably 30 mass% or less, more preferably 15 mass% or less. The aqueous solution and powder of amorphous aluminosilicate thus obtained can be used by being contained in a detergent composition.
[0026]
【Example】
The physical properties in Examples 1 to 6 and Comparative Example 1 were measured by the following methods.
(1) Oil absorption ability The dried sample was pulverized with a cooking cutter and measured by the oil absorption measurement method of JIS K 6220.
[0027]
(2) Turbidity mixing, turbidity of aqueous solution of alkali metal silicate and aqueous solution of alkali metal aluminate just before reaction is measured by turbidimeter (Murakami Color Materials Laboratory, "Reflective Transmitter HR-100") It measured using.
[0028]
(3) Moisture content is pre-baked in an electric furnace at 600 ° C for 1 hour, and the sample is placed in a magnetic crucible that has reached a constant weight in a desiccator and weighed accurately. Next, the mixture was ignited in an electric furnace at 600 ° C. for 1 hour, and the water content was determined by accurately weighing the weight that reached a constant weight in a desiccator.
[0029]
(4) SEM photograph (magnification: 100,000 times) taken with primary particle size electrolytic emission type high resolution scanning electron microscope (FE-SEM, Hitachi, Ltd. “S-4000”) (magnification: 300,000 times) The primary particle diameter (100 or more particles) was measured using a digitizer (manufactured by Graphtec, “Digitizer KW3300”), and the number average value and standard deviation value were taken.
[0030]
(5) Powder X-ray diffraction Using a powder X-ray diffractometer (“RAD-C” manufactured by Rigaku Corporation, light source CuKα, tube voltage 40 kV, tube current 120 mA), the range of 2θ = 5 to 70 ° is 10 ° / Measured at a scanning speed of min.
[0031]
Example 1 (Reference Example)
While stirring with No. 3 water glass (Na 2 O; 9.82 mass%, SiO 2 ; 29.87 mass%) 354 g in a 2 L stainless steel vessel with a Teflon stirring blade (length 11 cm) (300 rpm), a CaCl 2 aqueous solution ( 823 g of CaCl 2 ( 3.92 g) was slowly added over about 10 minutes. A solution obtained by heating this to 50 ° C. with a mantle heater to make it cloudy was added to 320 g of NaAlO 2 aqueous solution (Na 2 O; 21.24 mass%, Al 2 O 3 ; 28.12 mass%) heated to 50 ° C. with a Teflon stirring blade ( While stirring at a length of 11 cm) (300 rpm), the solution was added dropwise over 20 minutes using a roller pump. After completion of the dropwise addition, the mixture was further stirred for 10 minutes (300 rpm), then heated to 80 ° C. over about 20 minutes, and further aged for 10 minutes. The obtained amorphous aluminosilicate aqueous solution (solid concentration 20 mass%) was filtered, washed with water (until the filtrate pH was <12), dried at 100 ° C for 13 hours, and cooked for 1 minute with a cooking cutter. The pulverized product was used for evaluation of physical properties. The obtained sample was confirmed to be amorphous aluminosilicate by powder X-ray diffraction measurement.
[0032]
Example 2 (Reference Example)
An amorphous aluminosilicate was synthesized in the same manner as in Example 1 except that the amount of added CaCl 2 was 0.98 g. The obtained sample was confirmed to be amorphous aluminosilicate by powder X-ray diffraction measurement.
[0033]
Example 3
While stirring with No. 3 water glass (Na 2 O; 9.82 mass%, SiO 2 ; 29.87 mass%) 354 g in a 2 L stainless steel vessel with a Teflon stirring blade (length 11 cm) (300 rpm), a CaCl 2 aqueous solution ( 83 g of CaCl 2 ( 0.98 g) was slowly added. An aqueous solution obtained by mixing 320 g of NaAlO 2 aqueous solution (Na 2 O; 21.24 mass%, Al 2 O 3 ; 28.12 mass%) and 740 g of water with a mantle heater at 50 ° C. for 1 hour was used to make the solution cloudy. While stirring with a Teflon stirring blade (length: 11 cm) (300 rpm), the CaCl 2 -containing water glass aqueous solution heated to 50 ° C. was dropped over 20 minutes using a roller pump. Thereafter, the same operation as in Example 1 was performed to obtain an amorphous aluminosilicate powder. From the powder X-ray diffraction measurement, the obtained sample was a mixture of amorphous aluminosilicate and aluminum hydroxide.
[0034]
Example 4
An amorphous aluminosilicate was synthesized in the same manner as in Example 3 except that CaCl 2 was not added. From the powder X-ray diffraction measurement, the obtained sample was a mixture of amorphous aluminosilicate and aluminum hydroxide.
[0035]
Example 5 (Reference Example)
While stirring with No. 3 water glass (Na 2 O; 9.82 mass%, SiO 2 ; 29.87 mass%) 354g in a 2L stainless steel container with a Teflon stirring blade (length 11cm) (300rpm), a CaCl 2 aqueous solution (CaCl 2 0.98 g) After slowly adding 823 g over about 10 minutes, the mixture was heated to 50 ° C. with a mantle heater to make it cloudy. While stirring this solution with a Teflon stirring blade (length: 11 cm) (300 rpm), 320 g of NaAlO 2 aqueous solution (Na 2 O; 21.24 mass%, Al 2 O 3 ; 28.12 mass%) heated to 50 ° C was rolled. It was added dropwise over 20 minutes using a pump. Thereafter, the same operation as in Example 1 was performed to obtain an amorphous aluminosilicate powder. The obtained sample was confirmed to be amorphous aluminosilicate by powder X-ray diffraction measurement.
[0036]
Example 6 (Reference Example)
No. 3 water glass (Na 2 O; 9.82 mass%, SiO 2 ; 29.87 mass%) in a 2 L stainless steel container was stirred with a Teflon stirring blade (11 cm in length) (300 rpm), and a CaCl 2 aqueous solution ( After adding 40 g of CaCl 2 ( 0.98 g), the mixture was heated to 50 ° C. with a mantle heater to make it cloudy. NaAlO 2 aqueous solution (Na 2 O; 21.24 mass) heated to 50 ° C. while stirring with a Teflon stirring blade (11 cm in length) (300 rpm) in a 2 L stainless steel container containing 783 g of ion-exchanged water heated to 50 ° C. %, Al 2 O 3 ; 28.12 mass%) and each of the above Ca-containing aqueous water glass solutions were simultaneously added dropwise over 20 minutes using a roller pump. Thereafter, the same operation as in Example 1 was performed to obtain an amorphous aluminosilicate powder. The obtained sample was confirmed to be amorphous aluminosilicate by powder X-ray diffraction measurement.
[0037]
Comparative Example 1
An amorphous aluminosilicate was synthesized in the same manner as in Example 1 except that CaCl 2 was not added. The obtained sample was confirmed to be amorphous aluminosilicate by powder X-ray diffraction measurement.
[0038]
Table 1 shows the compositions and physical properties of the amorphous aluminosilicates obtained in Examples 1 to 6 and Comparative Example 1.
[0039]
[Table 1]
[0040]
From the results in Table 1, the amorphous aluminosilicates obtained in Examples 1 to 6 each have a primary particle number average particle size of less than 40 nm and a primary particle number distribution standard deviation of less than 40%. It can be seen that the oil absorption capacity is higher than that of Comparative Example 1.
[0041]
【The invention's effect】
According to the production method of the present invention, an amorphous aluminosilicate having a primary particle number average particle diameter of less than 40 nm, a primary particle diameter standard deviation of less than 40%, and an oil absorption capacity of 150 mL / 100 g or more can be produced.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16825799A JP4478242B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing amorphous aluminosilicate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16825799A JP4478242B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing amorphous aluminosilicate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002412A JP2001002412A (en) | 2001-01-09 |
JP4478242B2 true JP4478242B2 (en) | 2010-06-09 |
Family
ID=15864665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16825799A Expired - Fee Related JP4478242B2 (en) | 1999-06-15 | 1999-06-15 | Method for producing amorphous aluminosilicate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4478242B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6210698B2 (en) * | 2013-03-18 | 2017-10-11 | 戸田工業株式会社 | Purification method for waste water contaminated with adsorbents and toxic substances, and purification method for soil contaminated with toxic substances |
-
1999
- 1999-06-15 JP JP16825799A patent/JP4478242B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001002412A (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08277107A (en) | Crystalline lamellar sodium silicate | |
JP3299763B2 (en) | Method for producing modified sodium disilicate | |
JP2022513266A (en) | Zeolites and their manufacturing methods | |
CN108706614B (en) | Active silicon-aluminum powder and preparation method thereof | |
JP4478242B2 (en) | Method for producing amorphous aluminosilicate | |
JPH0258204B2 (en) | ||
AU6843194A (en) | Aluminosilicates | |
JP2883114B2 (en) | Modified layered crystalline sodium silicate and method for producing the same | |
JP4016118B2 (en) | Aluminosilicate | |
RU2603800C1 (en) | METHOD OF PRODUCING ZEOLITE NaA AS DETERGENT | |
HUT58650A (en) | Process for hydrothermal producing sodium-silicate solutions of high sio2:na2o molar ratio | |
JP3270156B2 (en) | Inorganic builder | |
JPH064484B2 (en) | Method for producing amorphous aluminosilicate | |
JP3611185B2 (en) | Method for producing fine particle zeolite | |
KR20200133467A (en) | Manufaturing method of zeolite using lithium residue | |
JPH0764550B2 (en) | Method for producing amorphous aluminosilicate | |
RU2305665C1 (en) | Synthetic raw material for production of glass and method of production of such material | |
SU975573A1 (en) | Process for producing zeolite of the faujasite type | |
JPH09202613A (en) | Noncrystalline aluminosilicate and its production | |
JPS62191419A (en) | Production of amorphous aluminosilicate | |
JPH0621026B2 (en) | Fluorine mica production method | |
JPH04202009A (en) | Metal substituted body of crystalline laminar silicic acid and its production | |
JP2921958B2 (en) | Method for producing δ-type alkali metal disilicate | |
EP0005992A1 (en) | Method of preparing microfibrous tricalcium silicate dihydrate | |
EP0821655B1 (en) | Method for producing crystalline, inorganic ion exchange material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100304 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100315 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |