JP4473591B2 - Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus - Google Patents

Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus Download PDF

Info

Publication number
JP4473591B2
JP4473591B2 JP2004023571A JP2004023571A JP4473591B2 JP 4473591 B2 JP4473591 B2 JP 4473591B2 JP 2004023571 A JP2004023571 A JP 2004023571A JP 2004023571 A JP2004023571 A JP 2004023571A JP 4473591 B2 JP4473591 B2 JP 4473591B2
Authority
JP
Japan
Prior art keywords
light beam
light
recording medium
irradiated
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004023571A
Other languages
Japanese (ja)
Other versions
JP2005215456A (en
Inventor
義久 窪田
昭弘 橘
充生 坂野
道一 橋本
善尚 伊藤
覚 田中
和男 黒田
聡 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2004023571A priority Critical patent/JP4473591B2/en
Publication of JP2005215456A publication Critical patent/JP2005215456A/en
Application granted granted Critical
Publication of JP4473591B2 publication Critical patent/JP4473591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

本発明はフォトリフラクティブ材料などの光透過性の感光材料からなる記録媒体いわゆるホログラフィックメモリに関し、特にホログラフィックメモリを利用するホログラム記録再生方法及び光情報記録再生装置に関する。   The present invention relates to a recording medium made of a light-transmissive photosensitive material such as a photorefractive material, a so-called holographic memory, and more particularly to a hologram recording / reproducing method and an optical information recording / reproducing apparatus using the holographic memory.

ホログラムの原理を利用したデジタル情報記録システムとして、体積ホログラフィック記録システムが知られている。このシステムの特徴は、記録情報をフォトリフラクティブ材料などの感光材料からなる記録媒体に屈折率の変化として記録することである。   A volume holographic recording system is known as a digital information recording system using the principle of hologram. A feature of this system is that recording information is recorded as a change in refractive index on a recording medium made of a photosensitive material such as a photorefractive material.

従来のホログラム記録再生方法の1つにフーリエ変換を用いて記録再生する方法がある。   One of the conventional hologram recording / reproducing methods is a method of recording / reproducing using Fourier transform.

図1に示すように、従来の4f系ホログラム記録再生装置において、レーザ光源LEDから発せられたレーザ光ビーム12の参照光ビームは、ビームスプリッタ13において光12a、12bとに分割される。光12aは、ビームエキスパンダBXでビーム径を拡大されて、平行光として、透過型のTFT液晶表示装置(LCD)のパネルなどの空間光変調器SLMに照射される。空間光変調器SLMは、エンコーダーで信号変換された記録すべき情報を電気信号として受け取って、2次元データすなわち平面上に明暗の2次元ドットパターンなどの記録情報を形成する。光12aは、空間光変調器SLMを透過すると、光変調されて、データ信号成分を含む信号光ビームとなる。ドットパターン信号成分を含んだ信号光ビーム12aは、その焦点距離fだけ離しておいたフーリエ変換レンズ16を通過してドットパターン信号成分がフーリエ変換されて、記録媒体10内に集光される。一方、ビームスプリッタ13において分割された参照光ビーム12bは、参照光としてミラー18、19によって記録媒体10内に導かれて、信号光ビーム12aの光路と記録媒体10の内部で交差し干渉して光干渉パターンを形成し、光干渉パターン全体を屈折率の変化などの回折格子として記録する。   As shown in FIG. 1, in a conventional 4f hologram recording / reproducing apparatus, a reference light beam of a laser light beam 12 emitted from a laser light source LED is split into light 12a and 12b by a beam splitter 13. The light 12a is expanded in beam diameter by the beam expander BX, and is applied as parallel light to a spatial light modulator SLM such as a transmissive TFT liquid crystal display (LCD) panel. The spatial light modulator SLM receives the information to be recorded, which has been signal-converted by the encoder, as an electric signal, and forms two-dimensional data, that is, recording information such as a bright and dark two-dimensional dot pattern on a plane. When the light 12a passes through the spatial light modulator SLM, the light 12a is optically modulated to become a signal light beam including a data signal component. The signal light beam 12 a containing the dot pattern signal component passes through the Fourier transform lens 16 separated by the focal length f, the dot pattern signal component is Fourier transformed, and is condensed in the recording medium 10. On the other hand, the reference light beam 12b split by the beam splitter 13 is guided as reference light into the recording medium 10 by mirrors 18 and 19, and crosses and interferes with the optical path of the signal light beam 12a inside the recording medium 10. An optical interference pattern is formed, and the entire optical interference pattern is recorded as a diffraction grating such as a change in refractive index.

このように、コヒーレントな平行光で照明されたドットパターンデータからの回折光をフーリエ変換レンズで結像し、その焦点面すなわちフーリエ面上の分布に直してフーリエ変換の結果の分布をコヒーレントな参照光と干渉させてその干渉縞を焦点近傍の記録媒体に記録する。1ページ目の記録が終了したら、回動ミラー19を所定量回転し、かつ、その位置を所定量平行移動させ記録媒体10に対する参照光ビーム12bの入射角度を変化させ、2ページ目を同じ手順で記録する。このように逐次記録を行うことにより角度多重記録を行う。   In this way, diffracted light from dot pattern data illuminated with coherent parallel light is imaged with a Fourier transform lens, and the distribution on the focal plane, that is, the Fourier plane, is converted into a coherent reference to the result of the Fourier transform. The interference fringes are recorded on a recording medium near the focal point by interference with light. When the recording of the first page is completed, the rotation mirror 19 is rotated by a predetermined amount, the position is translated by a predetermined amount, and the incident angle of the reference light beam 12b with respect to the recording medium 10 is changed, and the same procedure is performed on the second page. Record with. In this way, angle multiplex recording is performed by performing sequential recording.

一方で、再生時には逆フーリエ変換を行いドットパターン像を再生する。情報再生においては、図1に示すように、例えば、空間光変調器SLMによって信号光ビーム12aの光路を遮断して、参照光ビーム12bのみを記録媒体10へ照射する。再生時には、再生するページを記録した時の参照光と同じ入射角度になるように、ミラーの位置と角度をミラーの回動と直線移動を組み合わせで変化させ制御する。参照光ビーム12bが照射された記録媒体10の信号光ビーム12aの入射側の反対側には、記録された信号光を再現した再生波が現れる。この再生波を逆フーリエ変換レンズ16aに導いて、逆フーリエ変換するとドットパターン信号を再現することができる。さらに、このドットパターン信号を焦点距離位置の像検出センサ20によって受光して、電気的なデジタルデータ信号に再変換した後、デコーダ26に送ると、元のデータが再生される。   On the other hand, at the time of reproduction, an inverse Fourier transform is performed to reproduce a dot pattern image. In information reproduction, as shown in FIG. 1, for example, the optical path of the signal light beam 12 a is blocked by the spatial light modulator SLM, and only the reference light beam 12 b is irradiated onto the recording medium 10. At the time of reproduction, the mirror position and angle are controlled by changing the combination of rotation and linear movement of the mirror so as to have the same incident angle as the reference light when the page to be reproduced is recorded. On the side opposite to the incident side of the signal light beam 12a of the recording medium 10 irradiated with the reference light beam 12b, a reproduction wave reproducing the recorded signal light appears. When this reproduced wave is guided to the inverse Fourier transform lens 16a and inverse Fourier transformed, the dot pattern signal can be reproduced. Further, the dot pattern signal is received by the image detection sensor 20 at the focal length position, reconverted into an electrical digital data signal, and then sent to the decoder 26, the original data is reproduced.

従来は記録媒体内のある体積中に情報を高密度で記録するために角度多重や、波長多重を用いて数mm角程度の体積中に多重記録を行なっていた(特許文献1参照)。参照光及び信号光が同じ側から所定角度で交差して入射するような記録媒体システムでは、情報の再生時において、再生用参照光と再生光との分離が困難である。そのため再生信号の読み取り性能が劣化してしまう問題がある。また、迷光防止手段が必要になりシステムの小型化に不利である。
特開2001−184637号公報。
Conventionally, in order to record information at a high density in a certain volume in a recording medium, multiplex recording is performed in a volume of about several square mm using angle multiplexing or wavelength multiplexing (see Patent Document 1). In a recording medium system in which the reference light and the signal light are incident at a predetermined angle from the same side, it is difficult to separate the reproduction reference light and the reproduction light during information reproduction. Therefore, there is a problem that the read performance of the reproduction signal is deteriorated. Also, stray light prevention means is required, which is disadvantageous for system miniaturization.
Japanese Patent Laid-Open No. 2001-184637.

そこで、本発明の解決しようとする課題には、小型化が可能なホログラム記録媒体へのホログラム記録及び再生方法並びにホログラムの記録及び/又は再生の装置を提供することが一例として挙げられる。   Therefore, the problem to be solved by the present invention includes, as an example, providing a hologram recording and reproducing method and a hologram recording and / or reproducing apparatus that can be miniaturized.

請求項1記載のホログラム記録媒体は、可干渉性の光ビームの0次光および回折光の照射により生じる回折格子によって情報の記録又は再生が行われるホログラム記録媒体であって、光透過性の第1感光材料からなる記録媒体部と、前記記録媒体部の前記光ビームの0次光および回折光の入射側の反対側に設けられかつ前記記録媒体部を透過して入射された前記次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部と、を有し、前記光ビームが前記記録媒体部を通過し、その入射側と反対側に焦点を結ぶように集光され、前記入射光処理領域部が前記光ビームの光軸上のビームウエストの位置又は近傍に位置し、前記記録媒体部内では前記光ビームの前記入射光処理領域部で反射する前の前記0次光と及び前記入射光処理領域部で反射する前、又は、反射した後の前記回折光との光干渉に対応した回折格子によって情報の記録又は再生が行われることを特徴とする。 The hologram recording medium according to claim 1 is a hologram recording medium recording or reproducing information by the diffraction grating arising Ri by the irradiation of the zeroth-order light and diffracted light coherent light beam is carried out, the light transmittance A recording medium portion made of a first photosensitive material having a magnetic property, and the recording medium portion provided on the opposite side of the incident side of the zero-order light and diffracted light of the light beam of the recording medium portion and transmitted through the recording medium portion reflectance depending on the intensity of the 0-order light, and the second consisting of the photosensitive material incident light processing area portion of at least one characteristic value of the absorption and transmittance changes, have a, the light beam the recording medium The incident light processing region portion is located at or near the position of the beam waist on the optical axis of the light beam, and is focused on the opposite side to the incident side. In the incident light processing of the light beam Information is recorded or reproduced by a diffraction grating corresponding to optical interference between the zero-order light before being reflected by the area and the diffracted light before being reflected by the incident light processing area or after being reflected. and wherein the dividing.

請求項6記載のホログラム記録方法は、可干渉性の参照光ビームを記録情報に応じて空間的に変調して信号光ビームを生成し、前記信号光ビームを、光透過性の第1感光材料からなる記録媒体部から前記入射光処理領域部へ通過するように、前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成する記録工程と、を含むホログラム記録方法であって、前記記録媒体部の前記信号光ビームの入射側の反対側において前記記録媒体部を透過して入射された前記信号光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部を設けたことを特徴とする。   7. The hologram recording method according to claim 6, wherein a coherent reference light beam is spatially modulated in accordance with recording information to generate a signal light beam, and the signal light beam is converted into a light transmissive first photosensitive material. The recording medium unit is irradiated so that the recording medium unit passes from the recording medium unit to the incident light processing region unit, and light interference occurs at a portion of the recording medium unit where the 0th-order light and diffracted light interfere with each other. A hologram recording method comprising: forming a diffraction grating region by a pattern, wherein the recording medium portion is incident on the recording medium portion through the recording medium portion on the opposite side of the signal light beam incidence side. An incident light processing region portion made of a second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance changes depending on the intensity of the 0th-order light of the signal light beam is provided.

請求項9記載のホログラム再生方法は、可干渉性の参照光ビームを記録情報に応じて空間的に変調して信号光ビームを生成し、前記信号光ビームを、光透過性の第1感光材料からなる記録媒体部から前記入射光処理領域部へ通過するように、前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成する記録工程により記録された記録情報を再生するホログラム再生方法であって、
前記記録工程において、前記記録媒体部を透過する光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部を設けること、並びに
形成された前記回折格子の領域に、前記参照光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめるとともに前記参照光ビームに対する反射率、吸収率及び透過率の少なくとも1つの特性値が変化した領域を前記入射光処理領域部に形成する再生工程を含むことを特徴とする。
10. The hologram reproducing method according to claim 9, wherein a signal light beam is generated by spatially modulating a coherent reference light beam according to recording information, and the signal light beam is converted into a light-transmitting first photosensitive material. The recording medium unit is irradiated so that the recording medium unit passes from the recording medium unit to the incident light processing region unit, and light interference occurs at a portion of the recording medium unit where the 0th-order light and diffracted light interfere with each other. A hologram reproducing method for reproducing recorded information recorded by a recording step of forming a diffraction grating region by a pattern,
In the recording step, incident light processing comprising a second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance varies depending on the intensity of the 0th-order light of the light beam transmitted through the recording medium portion Providing the region portion; and irradiating the region of the diffraction grating so that the reference light beam passes from the recording medium portion to the incident light processing region portion in the region of the diffraction grating formed. A reproducing step of generating a reproduction wave corresponding to the light beam and forming a region in which at least one characteristic value of reflectance, absorptance, and transmittance with respect to the reference light beam is changed in the incident light processing region part. Features.

請求項12記載のホログラム装置は、回折格子の領域として記録情報を記録及び/又は前記回折格子の領域から記録情報を再生するホログラム装置であって、
光透過性の第1感光材料からなる記録媒体部とこれを透過する光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部とを有するホログラム記録媒体を、装着自在に保持する支持部と、
可干渉性の参照光ビームを発生する光源と、
記録情報に応じて前記参照光ビームを空間的に変調して信号光ビームを生成する空間光変調器を含む信号光生成部と、
前記信号光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成し、並びに、前記参照光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめる干渉部と、
前記再生波により結像された記録情報を検出する検出部と、を有することを特徴とする。
The hologram device according to claim 12 is a hologram device for recording record information as a region of a diffraction grating and / or reproducing record information from the region of the diffraction grating,
A second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance varies depending on the intensity of the 0th-order light of the recording medium portion made of the light-transmissive first photosensitive material and the light beam transmitted therethrough. A holographic recording medium having an incident light processing region portion made of a material, a support portion for holding the holographic recording medium, and a mounting portion;
A light source for generating a coherent reference light beam;
A signal light generation unit including a spatial light modulator that spatially modulates the reference light beam according to recording information to generate a signal light beam;
The signal light beam is applied to the recording medium unit so as to pass from the recording medium unit to the incident light processing region, and the 0th-order light and the diffracted light of the signal light beam in the recording medium unit interfere with each other. A region of a diffraction grating by an optical interference pattern is formed in a part, and the signal light is irradiated to the region of the diffraction grating so that the reference light beam passes from the recording medium unit to the incident light processing region unit. An interference unit that generates a reproduction wave corresponding to the beam;
And a detector for detecting recording information imaged by the reproduction wave.

請求項15記載のホログラム装置は、回折格子の領域として記録情報を記録及び/又は前記回折格子の領域から記録情報を再生するホログラム装置であって、
光透過性の第1感光材料からなる記録媒体部を装着自在に保持する支持部と、
可干渉性の参照光ビームを発生する光源と、
記録情報に応じて前記参照光ビームを空間的に変調して信号光ビームを生成する空間光変調器を含む信号光生成部と、
前記信号光ビームを前記記録媒体部に照射して、前記記録媒体部内に入射かつ通過させ、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成し、並びに、前記参照光ビームを前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめる干渉部と、
前記記録媒体部の前記信号光ビームの入射側の反対側に配置され、入射光の0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部と、
前記再生波により結像された記録情報を検出する検出部と、を有することを特徴とする。
The hologram apparatus according to claim 15, wherein the recording information is recorded and / or reproduced from the diffraction grating area as a diffraction grating area,
A support portion for holding a recording medium portion made of a light-transmitting first photosensitive material in a freely attachable manner;
A light source for generating a coherent reference light beam;
A signal light generation unit including a spatial light modulator that spatially modulates the reference light beam according to recording information to generate a signal light beam;
The signal light beam is irradiated onto the recording medium unit to enter and pass through the recording medium unit, and diffraction is caused by a light interference pattern at a portion of the recording medium unit where the 0th-order light and diffracted light of the signal light beam interfere. An interference unit that forms a region of a grating, and irradiates the region of the diffraction grating with the reference light beam to generate a reproduction wave corresponding to the signal light beam;
The second recording medium portion is disposed on the opposite side to the incident side of the signal light beam, and has at least one characteristic value of reflectance, absorptance, and transmittance depending on the intensity of the 0th-order light of the incident light. An incident light processing region made of a photosensitive material;
And a detector for detecting recording information imaged by the reproduction wave.

以下、本発明の実施形態を添付図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<ホログラム記録媒体>
図2は、実施形態の一例である矩形状平行平板のカード型のホログラム記録媒体11を示す。ホログラム記録媒体11は、記録媒体部10と、光入射側の反対側に設けられた入射光処理領域部Rとが一体化して結合して構成されている。なお、記録媒体部10と入射光処理領域部Rとが別体化して、入射光処理領域部Rを装置側に設けてもよい。
<Hologram recording medium>
FIG. 2 shows a rectangular parallel plate card-type hologram recording medium 11 as an example of the embodiment. The hologram recording medium 11 is configured by integrally coupling a recording medium unit 10 and an incident light processing region R provided on the opposite side of the light incident side. The recording medium unit 10 and the incident light processing region R may be separated and the incident light processing region R may be provided on the apparatus side.

ホログラム記録媒体11は、可干渉性光ビームが記録媒体部10を通過し、その入射側と反対側に焦点を結ぶように集光され、入射光処理領域部Rが光ビームのビームウエストの位置又は近傍(光軸上)に位置するように用いられる。記録媒体部10内では、信号光ビーム(0次光及び回折光)の照射により生じる光干渉分布に対応した回折格子によって情報の記録又は再生が行われる。   In the hologram recording medium 11, the coherent light beam passes through the recording medium unit 10 and is condensed so as to focus on the opposite side to the incident side, and the incident light processing region R is positioned at the beam waist of the light beam. Or it is used so that it may be located in the vicinity (on an optical axis). In the recording medium unit 10, information is recorded or reproduced by a diffraction grating corresponding to an optical interference distribution generated by irradiation of a signal light beam (0th order light and diffracted light).

記録媒体部10は光透過性の第1感光材料からなる。第1感光材料は、光伝導性と電気光学効果(印加電場の1次項に比例した屈折率変化を示す)とを持ち、ドナー準位とアクセプター準位がバンドギャップの深いレベルに存在するような材料いわゆるフォトリフラクティブ材料や、ホールバーニング材料、フォトクロミック材料などが用いられる。すなわち、第1感光材料は光強度分布を保存できる材料が用いられる。フォトリフラクティブ材料は化学反応などを用いずに内部に屈折率格子を書き込むことができるので、可逆的に書き換え可能なメモリに適している。フォトリフラクティブ材料には、半導体材料では、AlGaAs/GaAs、InGaN/InGaN量子井戸など、誘電体材料ではLiNbO3など、有機材料ではPVK(ポリビニルカルバゾール)/TNF(トリニトロフルオレノン)などを含む電荷移動錯体系有機感光材料(有色のものも含む)などがある。   The recording medium unit 10 is made of a light transmissive first photosensitive material. The first photosensitive material has photoconductivity and electro-optic effect (shows a change in refractive index proportional to the first order term of the applied electric field), and the donor level and the acceptor level exist at a deep band gap level. Materials So-called photorefractive materials, hole burning materials, photochromic materials, and the like are used. That is, a material capable of preserving the light intensity distribution is used for the first photosensitive material. Since the photorefractive material can write a refractive index grating inside without using a chemical reaction or the like, it is suitable for a reversibly rewritable memory. Photorefractive materials include semiconductor materials such as AlGaAs / GaAs, InGaN / InGaN quantum wells, dielectric materials such as LiNbO3, and organic materials such as PVK (polyvinylcarbazole) / TNF (trinitrofluorenone). There are organic photosensitive materials (including colored ones).

入射光処理領域部Rは、可干渉性の入射光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる。   The incident light processing region R is made of a second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance changes depending on the intensity of the 0th-order light of the coherent incident light beam.

使用する第2感光材料には、大別して、光ビームの照射時の透過率が非照射時の透過率より低い特性値を有する感光性の透過材料と、光ビームの照射時の反射率が非照射時の反射率より低い特性値を有する感光性の反射材料と、がある。   The second photosensitive material to be used is roughly classified into a photosensitive transmissive material having a characteristic value that is lower than the transmittance at the time of non-irradiation and the reflectance at the time of irradiation of the light beam. And a photosensitive reflective material having a characteristic value lower than the reflectance at the time of irradiation.

先ず、感光性の透過材料としては、相変化材料、フォトクロミック材料及び量子井戸構造を備えた量子閉じ込め層などがある。   First, examples of the photosensitive transmissive material include a phase change material, a photochromic material, and a quantum confinement layer having a quantum well structure.

相変化材料は、通常(非照射又は所定光強度未満の照射時)は不透明であるが、光ビーム中心の温度が高く、一定の温度を越えた領域で相変化して透明になり、温度が下がれば再び相変化して元の不透明な状態に戻る。例えばアンチモンなどが挙げられる。   The phase change material is usually opaque (when it is not irradiated or irradiated below a predetermined light intensity), but the temperature at the center of the light beam is high, and the phase changes in a region exceeding a certain temperature and becomes transparent. If it falls, it will change again and return to the original opaque state. An example is antimony.

フォトクロミック材料は、通常(非照射又は所定光強度未満の照射時)は透明だが、照射光ビーム(強度が強い中心部分)の吸収により不安定な不透明状態へ変化し、光ビームの強度が弱くなれば元の透明な状態に戻る。   Photochromic materials are usually transparent (non-irradiated or when irradiated with less than a predetermined light intensity), but change to an unstable opaque state due to absorption of the irradiated light beam (the central part where the intensity is strong), and the intensity of the light beam becomes weaker. Return to the original transparent state.

量子井戸構造を備えた量子閉じ込め層は、量子閉じ込め効果により光ビームの強度が強い中心部分では反射率が高くなるが、光ビーム強度が弱い周囲領域では反射率が低く抑えられる。   The quantum confinement layer having the quantum well structure has a high reflectance in the central portion where the intensity of the light beam is strong due to the quantum confinement effect, but the reflectance is kept low in the surrounding region where the light beam intensity is weak.

かかる感光性の透過材料を入射光処理領域部Rに用いて、透過タイプのホログラム記録媒体が構成できる。透過タイプのホログラム記録媒体においては、照射光ビームの強度が強い箇所において、入射光処理領域部Rの反射率もしくは吸収率が通常より高くなり、光ビームの透過強度が減少する。よって、参照光ビーム(0次光)によって透過タイプのホログラム記録媒体から情報再生する時、参照光ビームと再生波との分離に貢献する。   By using such a photosensitive transmission material for the incident light processing region R, a transmission type hologram recording medium can be configured. In the transmission type hologram recording medium, the reflectance or the absorptance of the incident light processing region R is higher than usual at a portion where the intensity of the irradiation light beam is strong, and the transmission intensity of the light beam is reduced. Therefore, when information is reproduced from the transmission type hologram recording medium by the reference light beam (0th order light), it contributes to separation of the reference light beam and the reproduction wave.

次に、感光性の反射材料としては、酸化物材料、半導体微粒子材料及び逆フォトクロミック材料などがある。   Next, examples of the photosensitive reflective material include an oxide material, a semiconductor fine particle material, and an inverse photochromic material.

酸化物材料は、通常(非照射又は所定光強度未満の照射時)は透明だが、光ビーム中心の温度が高く一定の温度を越えた領域で還元反応を起して金属粒子が析出して不透明に変わるが、温度が下がると再び酸化して透明に戻る。例えば酸化銀などが挙げられる。   Oxide material is normally transparent (when it is not irradiated or irradiated at a light intensity below a certain level), but it is opaque due to the reduction reaction in the region where the temperature at the center of the light beam is high and the temperature exceeds a certain temperature. However, when the temperature drops, it will oxidize again and become transparent. Examples thereof include silver oxide.

半導体微粒子材料は、通常(非照射又は所定光強度未満の照射時)は不透明だが、光ビーム中心の温度が高く、一定の温度を越えた領域だけ透明になり、温度が下がれば元の不透明な状態に戻る。   The semiconductor fine particle material is usually opaque (when it is not irradiated or irradiated with less than a predetermined light intensity), but the temperature at the center of the light beam is high, and only the region above a certain temperature becomes transparent. Return to state.

逆フォトクロミック材料は、通常(非照射又は所定光強度未満の照射時)は不透明だが、照射光ビーム(強度が強い中心部分)の吸収により不安定な透明状態へ変化し、光ビームの強度が弱くなれば元の不透明な状態に戻る。   Inverse photochromic materials are usually opaque (non-irradiated or when irradiated with less than a predetermined light intensity), but change to an unstable transparent state due to absorption of the irradiated light beam (strong central part), and the intensity of the light beam is weak If it becomes, it will return to the original opaque state.

サーモクロミック材料は、通常(非照射又は所定光強度未満の照射時)は不透明だが、光ビーム中心の温度が高く、一定の温度を越えた領域だけが透明になり、温度が下がれば元の不透明状態に戻る。あるいはサーモクロミック材料には、通常(非照射又は所定光強度未満の照射時)は透明だが、一定の温度を越えた領域だけが不透明になり、温度が下がれば元の透明状態に戻る。   Thermochromic materials are usually opaque (non-irradiated or under irradiation below a certain light intensity), but the temperature at the center of the light beam is high and only the region above a certain temperature becomes transparent, and the original opaque when the temperature decreases Return to state. Alternatively, the thermochromic material is usually transparent (non-irradiated or irradiated with less than a predetermined light intensity), but only the region above a certain temperature becomes opaque and returns to its original transparent state when the temperature decreases.

かかる感光性の反射材料を入射光処理領域部Rに用いて、反射タイプのホログラム記録媒体が構成できる。反射タイプのホログラム記録媒体においては、照射光ビームの強度が強い箇所において、入射光処理領域部Rの透過率が通常より高くなり、光ビームの反射強度が減少する。よって、参照光ビーム(0次光)によって反射タイプのホログラム記録媒体から情報再生する時、参照光ビームと再生波との分離に貢献する。   By using such a photosensitive reflective material for the incident light processing region R, a reflection type hologram recording medium can be constructed. In the reflection type hologram recording medium, the transmittance of the incident light processing region R is higher than usual at the portion where the intensity of the irradiation light beam is strong, and the reflection intensity of the light beam is reduced. Therefore, when information is reproduced from the reflection type hologram recording medium by the reference light beam (0th order light), it contributes to separation of the reference light beam and the reproduced wave.

透過又は反射タイプのホログラム記録媒体のいずれにおいても、入射光処理領域部Rに予め画定した0次光と回折光とを別個に処理する領域は設けず、入射光処理領域部Rには、入射された光の強度により光学特性が変化する感光材料を用い、ビーム照射時に参照光ビーム(0次光)のみを処理(作用)する領域(0次光処理領域)を形成する。すなわち、ビーム照射時に、入射光処理領域部Rに空間的に分離された0次光処理領域を形成する。   In any of the transmission type and reflection type hologram recording media, the incident light processing region R is not provided with a region for separately processing the 0th-order light and the diffracted light separately. Using a photosensitive material whose optical characteristics change depending on the intensity of the emitted light, a region (zero-order light processing region) for processing (acting) only the reference light beam (zero-order light) at the time of beam irradiation is formed. That is, a zero-order light processing region that is spatially separated is formed in the incident light processing region R during beam irradiation.

<実施例1>
本実施形態のホログラム記録媒体の情報の記録及び/又は再生用のホログラム装置の一例であるホログラム記録再生装置を図3に示す。これは、入射光処理領域部が入射光をほとんど透過させるホログラム記録媒体から情報を再生する。すなわち、0次光の照射部分を他の部分より光透過性を低くして、回折光(再生波も含む)と0次光とを分離する。
<Example 1>
FIG. 3 shows a hologram recording / reproducing apparatus which is an example of a hologram apparatus for recording and / or reproducing information on the hologram recording medium of the present embodiment. This reproduces information from a hologram recording medium in which the incident light processing region transmits almost all incident light. That is, the irradiating portion of the 0th-order light is made lower in light transmittance than the other portions, and the diffracted light (including the reproduction wave) and the 0th-order light are separated.

光源LEDには、例えば近赤外レーザ光波長850nmのDBR(Distributed Bragg
Reflector)レーザを用いる。参照光ビーム12の光路上には、シャッタSHs、ビームエキスパンダBX、空間光変調器SLM、フーリエ変換レンズ16が干渉用として配置されている。シャッタSHsはコントローラ32に制御され、記録媒体部への光ビームの照射時間を制御する。
For the light source LED, for example, a DBR (Distributed Bragg) with a near infrared laser beam wavelength of 850 nm is used.
(Reflector) laser is used. On the optical path of the reference light beam 12, a shutter SHs, a beam expander BX, a spatial light modulator SLM, and a Fourier transform lens 16 are arranged for interference. The shutter SHs is controlled by the controller 32 to control the irradiation time of the light beam to the recording medium unit.

ビームエキスパンダBXは、シャッタSHsを通過した参照光ビーム12の径を拡大して平行光線とし空間光変調器SLMに入射するように照射する。   The beam expander BX irradiates the reference light beam 12 having passed through the shutter SHs so that the diameter of the reference light beam 12 is enlarged to be a parallel light beam and incident on the spatial light modulator SLM.

空間光変調器SLMは、エンコーダ25より供給され電気的なデータ(2次元ドットパターンデータ)を受けて、明暗のドットマトリクス信号を表示する。参照光ビームは、データが表示されている空間光変調器SLMを通過すると光変調されて、データをドットマトリクス成分として含む信号光ビーム12aとなる。   The spatial light modulator SLM receives electrical data (two-dimensional dot pattern data) supplied from the encoder 25 and displays a light and dark dot matrix signal. When the reference light beam passes through the spatial light modulator SLM on which data is displayed, the reference light beam is optically modulated to become a signal light beam 12a including data as a dot matrix component.

フーリエ変換レンズ16は、信号光ビーム12aのドットマトリクス成分をフーリエ変換するとともに、ホログラム記録媒体11の記録媒体部10の装着位置の後方(入射光処理領域部)に焦点を結ぶように集光する。フーリエ変換レンズ16により、シャッタSHsが開いたとき、信号光ビーム12a又は参照光ビーム12は記録媒体部10の入射面に所定入射角度例えば零度で照射される。空間光変調器SLMは、フーリエ変換レンズ16の焦点距離に配置されている。   The Fourier transform lens 16 performs Fourier transform on the dot matrix component of the signal light beam 12a, and condenses the focal point behind the mounting position of the recording medium unit 10 of the hologram recording medium 11 (incident light processing region). . When the shutter SHs is opened by the Fourier transform lens 16, the signal light beam 12a or the reference light beam 12 is irradiated onto the incident surface of the recording medium unit 10 at a predetermined incident angle, for example, zero degree. The spatial light modulator SLM is disposed at the focal length of the Fourier transform lens 16.

逆フーリエ変換レンズ16aは、フーリエ変換レンズ16と共焦点となるように共軸に配置されている。像検出センサ20は、逆フーリエ変換レンズ16aの焦点距離に配置され、電荷結合素子CCDや相補型金属酸化膜半導体装置などのアレイなどから構成される。   The inverse Fourier transform lens 16 a is disposed on the same axis so as to be confocal with the Fourier transform lens 16. The image detection sensor 20 is disposed at the focal length of the inverse Fourier transform lens 16a, and includes an array such as a charge coupled device CCD and a complementary metal oxide semiconductor device.

さらに、像検出センサ20にはデコーダ26が接続されてる。デコーダ26はコントローラ32へ接続される。なお、あらかじめホログラム記録媒体11に第2感光材料の種類に対応した標識を付してある場合、ホログラム記録媒体11がこれを移動させる支持部である可動ステージ60上に装着されると、コントローラ32は適当なセンサにより自動的にこの標識を読み取り、ホログラム記録媒体11の移動制御や記録媒体部10に適した記録再生制御を行うこともできる。   Furthermore, a decoder 26 is connected to the image detection sensor 20. The decoder 26 is connected to the controller 32. When the hologram recording medium 11 is previously labeled according to the type of the second photosensitive material, the controller 32 is mounted when the hologram recording medium 11 is mounted on the movable stage 60 that is a support unit for moving the hologram recording medium 11. Can automatically read this mark by an appropriate sensor and perform movement control of the hologram recording medium 11 and recording / reproduction control suitable for the recording medium unit 10.

記録は以下のように行う。光源光は、空間光変調器SLMを透過すると、光変調されて信号光ビーム12a(0次光及び回折光)となり、フーリエ変換レンズ16でフーリエ変換されて、記録媒体部10内で0次光及び回折光が光干渉パターンを形成し、その強度分布に応じて屈折率の変化などの回折格子として記録される。ホログラムの記録は記録媒体部10内での0次光と回折光の偏光面の方向が同一偏光成分間の干渉により行われる。   Recording is performed as follows. When the light source light passes through the spatial light modulator SLM, it is light-modulated to become a signal light beam 12a (0th-order light and diffracted light), Fourier-transformed by the Fourier transform lens 16, and 0th-order light in the recording medium unit 10. The diffracted light forms a light interference pattern and is recorded as a diffraction grating such as a change in refractive index according to the intensity distribution. Hologram recording is performed by interference between the polarization components of the same order in the directions of the polarization planes of the zero-order light and the diffracted light in the recording medium unit 10.

一方で、再生においては、空間光変調器SLMによって無変調の参照光ビーム(0次光)をそのまま記録媒体部10へ照射する。参照光ビームが照射された記録媒体部10の入射側の反対側に設けられた入射光処理領域部Rに、記録された信号光に対応した再生波(再現された回折光)が現れる。この再生波を逆フーリエ変換レンズ16aに導いて、逆フーリエ変換し、像検出センサ20が再生波によるドットパターン像の受光して、電気的なデジタルデータ信号に再変換した後、デコーダ26に送ると、元のデータが再生される。   On the other hand, during reproduction, the spatial light modulator SLM directly irradiates the recording medium unit 10 with a non-modulated reference light beam (0th-order light). A reproduction wave (reproduced diffracted light) corresponding to the recorded signal light appears in the incident light processing region R provided on the opposite side of the incident side of the recording medium portion 10 irradiated with the reference light beam. The reproduced wave is guided to the inverse Fourier transform lens 16a and inverse Fourier transformed. The image detection sensor 20 receives the dot pattern image by the reproduced wave and reconverts it into an electrical digital data signal, which is then sent to the decoder 26. The original data is reproduced.

照射時の透過率が非照射時の透過率より低い特性値(非照射時の透過率が照射時の透過率より高い特性値)を有する第2感光材料からなる入射光処理領域部Rを有する透過タイプのホログラム記録媒体での記録再生時の第2感光材料の動作を図4(a)(b)に示す。   It has an incident light processing region R made of a second photosensitive material having a characteristic value that is lower than the transmittance at the time of non-irradiation (characteristic value at which the transmittance at the time of non-irradiation is higher than the transmittance at the time of irradiation). FIGS. 4A and 4B show the operation of the second photosensitive material at the time of recording / reproducing on the transmission type hologram recording medium.

記録時前の入射光処理領域部Rでは(図4(a))、入射光処理領域部Rは一様に高い透過率を有している。記録時の信号光ビーム(0次光と回折光)の照射により、信号光ビームの0次光中心部及びその近傍で所定しきい値TH(信号光ビームの0次光の透過を阻止する程度の低い透過率が第2感光材料に発現する値)より強い強度の光照射を受けた入射光処理領域部のR1部分では(図4(b))、透過率が下がる。一方、信号光ビームの回折光は、入射光処理領域部Rに照射される。入射光処理領域部Rの信号光ビームの回折光が照射された範囲は、信号光ビームの0次光に比べて信号光ビームの回折光の光強度が弱いため、透過率は高いままとなり、信号光ビームの回折光はほとんど減衰せずに入射光処理領域部Rを透過する。したがって、信号光ビームの0次光と回折光との光干渉により、すくなくとも記録媒体部10内にはこれに対応した回折格子が保存される。   In the incident light processing region R before recording (FIG. 4A), the incident light processing region R has a uniformly high transmittance. By irradiation with a signal light beam (0th order light and diffracted light) at the time of recording, a predetermined threshold value TH (a degree of blocking transmission of the 0th order light of the signal light beam at and around the 0th order light center portion of the signal light beam) In the R1 portion of the incident light processing region that has been irradiated with light having a stronger intensity (a value at which the low transmittance of the second photosensitive material is expressed) (FIG. 4B), the transmittance is lowered. On the other hand, the diffracted light of the signal light beam is applied to the incident light processing region R. In the range where the diffracted light of the signal light beam in the incident light processing region R is irradiated, the light intensity of the diffracted light of the signal light beam is weaker than the 0th order light of the signal light beam, so the transmittance remains high, The diffracted light of the signal light beam passes through the incident light processing region R without being attenuated. Accordingly, at least a diffraction grating corresponding to this is stored in the recording medium unit 10 due to optical interference between the 0th-order light and the diffracted light of the signal light beam.

再生時前の入射光処理領域部Rでは(図4(a))、入射光処理領域部Rは一様に高い透過率を有している。再生時の参照光ビーム(0次光)の照射により、参照光ビーム中心部及びその近傍で所定しきい値TH(参照光の透過を阻止する程度の低い透過率が第2感光材料に発現する値)より強い強度の光照射を受けた入射光処理領域部のR1部分では(図4(b))、透過率が下がることで、逆フーリエ変換レンズ16aに到達する参照光の光量は低下する。一方、記録媒体部10内の回折格子に参照光が照射された際に発生した再生波は、入射光処理領域部Rに照射される。入射光処理領域部Rの再生波が照射された範囲は、参照光ビームに比べて再生の光強度が弱いため、透過率は高いままとなり、再生波はほとんど減衰せずに入射光処理領域部Rを透過し、逆フーリエ変換レンズ16aを介して像検出センサ20に導かれる。このような入射光処理領域部Rの動作により、像検出センサ20で再生に不要な参照光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。 In the incident light processing region R before reproduction (FIG. 4A), the incident light processing region R has a uniformly high transmittance. By irradiation with the reference light beam (0th order light) at the time of reproduction, the second photosensitive material exhibits a predetermined threshold value TH (a low transmittance enough to prevent transmission of the reference light) at and near the center of the reference light beam. (Value) In the R1 portion of the incident light processing region that has been irradiated with light having a stronger intensity (FIG. 4B), the amount of reference light reaching the inverse Fourier transform lens 16a decreases due to the decrease in transmittance. . On the other hand, the reproduction wave generated when the reference light is applied to the diffraction grating in the recording medium unit 10 is applied to the incident light processing region R. In the range irradiated with the reproduction wave in the incident light processing region R, the light intensity of the reproduction wave is weaker than that of the reference light beam, so that the transmittance remains high, and the reproduction wave is hardly attenuated and the incident light processing region. The light passes through the portion R and is guided to the image detection sensor 20 through the inverse Fourier transform lens 16a. Such an operation of the incident light processing region R makes it possible to reduce the amount of reference light unnecessary for reproduction by the image detection sensor 20 and facilitate the detection of reproduction information.

この実施形態では、非照射時の透過率が照射時の透過率より高い特性値を有する第2感光材料を入射光処理領域部Rに用いているが、光透過性の第2感光材料であって、非照射時と比較して照射時の反射率及び吸収率の少なくとも1つが上昇する材料も使用できることは明らかである。   In this embodiment, the second photosensitive material having a higher characteristic value than the transmittance at the time of non-irradiation is used for the incident light processing region R. However, the light-transmissive second photosensitive material is used. It is apparent that a material that increases at least one of the reflectance and the absorptance at the time of irradiation as compared with that at the time of non-irradiation can also be used.

<実施例2>
実施例2は、図5に示すように、記録媒体部10と入射光処理領域部Rを離し入射光処理領域部Rを装置側に設けた以外、実施例1と同一の構成である。記録再生工程も同一である。
<Example 2>
As shown in FIG. 5, Example 2 has the same configuration as Example 1 except that the recording medium unit 10 and the incident light processing region R are separated and the incident light processing region R is provided on the apparatus side. The recording / reproducing process is the same.

<実施例3A>
上記実施形態では入射光処理領域部Rが入射光を透過させる形態でのホログラム記録再生を示したが、入射光処理領域部Rが入射光を反射する形態で用いても同等の効果を発揮できる。
<Example 3A>
In the above embodiment, the hologram recording / reproduction is shown in the form in which the incident light processing region R transmits the incident light. However, even if the incident light processing region R reflects the incident light, the same effect can be exhibited. .

図6は第3実施例のホログラム記録再生装置を示す。第3実施例は、入射光処理領域部Rが入射光をほとんど反射するホログラム記録媒体から情報を再生する。すなわち、0次光の照射部分を他の部分より光透過性を高くして、回折光(再生波も含む)と0次光とを分離する。   FIG. 6 shows a hologram recording / reproducing apparatus according to the third embodiment. In the third embodiment, information is reproduced from a hologram recording medium in which the incident light processing region R reflects most of the incident light. That is, the irradiating portion of the 0th order light is made more light transmissive than the other portions, and the diffracted light (including the reproduction wave) and the 0th order light are separated.

図6の第3実施例は、図3に示す、再生波を生成する光学系側にある逆フーリエ変換レンズ16aを省略し、照射側光学系にビームスプリッタ15を追加して、ビームスプリッタ15により反射された再生波の結像位置に像検出センサ20を整列させ、入射光処理領域部Rが反射する再生波(再現された回折光)を参照光の光路から分岐して検出する構成とした以外、図3に示す装置と同一である。   In the third embodiment of FIG. 6, the inverse Fourier transform lens 16a on the optical system side that generates the reproduction wave shown in FIG. 3 is omitted, and the beam splitter 15 is added to the irradiation side optical system. The image detection sensor 20 is aligned at the imaging position of the reflected reproduction wave, and the reproduction wave (reproduced diffracted light) reflected by the incident light processing region R is branched from the optical path of the reference light and detected. Otherwise, the apparatus is the same as that shown in FIG.

照射時の反射率が非照射時の反射率より低い特性値(非照射時の反射率が照射時の反射率より高い特性値)を有する第2感光材料からなる入射光処理領域部Rを有する反射タイプのホログラム記録媒体での記録再生時の第2感光材料の動作を図7(a)(b)に示す。   It has an incident light processing region R made of a second photosensitive material having a characteristic value that is lower in reflectance than that in non-irradiation (a characteristic value in which reflectance during non-irradiation is higher than that during irradiation). FIGS. 7A and 7B show the operation of the second photosensitive material at the time of recording / reproducing on the reflection type hologram recording medium.

記録時前の入射光処理領域部Rでは(図7(a))、入射光処理領域部Rは一様に高い反射率を有している。記録時の信号光ビーム(0次光と回折光)の照射により、信号光ビームの0次光中心部及びその近傍で所定しきい値TH(信号光ビームの0次光の反射を阻止する程度の低い反射率が第2感光材料に発現する値)より強い強度の光照射を受けた入射光処理領域部のR1部分では(図7(b))、反射率が下がる。一方、信号光ビームの回折光は、入射光処理領域部Rに照射される。入射光処理領域部Rの信号光ビームの回折光が照射された範囲は、信号光ビームの0次光に比べて信号光ビームの回折光の光強度が弱いため、反射率は高いままとなり、信号光ビームの回折光のほとんどが反射される。したがって、信号光ビームの入射光処理領域部Rで反射する前の0次光と入射光処理領域部Rで反射する前の回折光との光干渉、信号光ビームの入射光処理領域部Rで反射する前の0次光と入射光処理領域部Rで反射した信号光ビームの回折光との光干渉により、すくなくとも記録媒体部10内にはこれらに対応した回折格子が保存される。 In the incident light processing region R before recording (FIG. 7A), the incident light processing region R has a uniformly high reflectance. By irradiation with the signal light beam (0th-order light and diffracted light) during recording, a predetermined threshold TH (a degree that prevents reflection of the 0th-order light of the signal light beam at and near the center of the 0th-order light of the signal light beam) In the R1 portion of the incident light processing region that has been irradiated with light having a stronger intensity (a value at which a low reflectance is expressed in the second photosensitive material) (FIG. 7B), the reflectance decreases. On the other hand, the diffracted light of the signal light beam is applied to the incident light processing region R. In the range where the diffracted light of the signal light beam in the incident light processing region R is irradiated, the light intensity of the diffracted light of the signal light beam is weaker than the 0th order light of the signal light beam, so the reflectance remains high, Most of the diffracted light of the signal light beam is reflected. Accordingly, the light interference between the front of the diffracted light reflected by the 0 order light and the incident light processing area portion R of the front that reflects the incident light processing area portion R of the signal light beam, the incident light processing area portion R of the signal light beam Due to optical interference between the zero-order light before reflection and the diffracted light of the signal light beam reflected by the incident light processing region R, at least a diffraction grating corresponding to these is stored in the recording medium unit 10.

再生時前の入射光処理領域部Rでは(図7(a))、入射光処理領域部Rは一様に高い反射率を有している。再生時の参照光ビーム(0次光)の照射により、参照光ビーム中心部及びその近傍で所定しきい値TH(参照光の反射を阻止する程度の低い反射率が第2感光材料に発現する値)より強い強度の光照射を受けた入射光処理領域部のR1部分では(図7(b))、反射率が下がることで、フーリエ変換レンズ16に到達する参照光の光量は低下し、ビームスプリッタ15到達する光量が減る。一方、記録媒体部10内の回折格子に参照光が照射された際に発生した再生波は、入射光処理領域部Rに照射される。入射光処理領域部Rの再生波が照射された範囲は、参照光ビームに比べて再生の光強度が弱いため、反射率は高いままとなり、再生波のほとんどが反射され、フーリエ変換レンズ16とビームスプリッタ15を介し像検出センサ20に導かれる。このような入射光処理領域部Rの動作により、像検出センサ20で再生に不要な参照光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。 In the incident light processing region R before reproduction (FIG. 7A), the incident light processing region R has a uniformly high reflectance. By irradiation with the reference light beam (0th order light) at the time of reproduction, the second photosensitive material exhibits a predetermined threshold value TH (reflectance low enough to prevent reflection of the reference light) at and near the center of the reference light beam. (Value) In the R1 portion of the incident light processing region that has received light irradiation with a stronger intensity (FIG. 7B), the amount of reference light that reaches the Fourier transform lens 16 is reduced due to a decrease in reflectance. The amount of light reaching the beam splitter 15 is reduced. On the other hand, the reproduction wave generated when the reference light is applied to the diffraction grating in the recording medium unit 10 is applied to the incident light processing region R. In the range irradiated with the reproduction wave in the incident light processing region R, since the light intensity of the reproduction wave is weaker than that of the reference light beam, the reflectance remains high, and most of the reproduction wave is reflected. And is guided to the image detection sensor 20 via the beam splitter 15. Such an operation of the incident light processing region R makes it possible to reduce the amount of reference light unnecessary for reproduction by the image detection sensor 20 and facilitate the detection of reproduction information.

この実施形態では、非照射時の反射率が照射時の反射率より高い特性値を有する第2感光材料を入射光処理領域部Rに用いているが、反射性の第2感光材料であって、非照射時の反射率に影響する非照射時と比較して照射時の透過率及び吸収率の少なくとも1つが上昇する材料も使用できることは明らかである。   In this embodiment, the second photosensitive material having a higher characteristic value than the reflectance at the time of non-irradiation is used for the incident light processing region R, but this is a reflective second photosensitive material. Obviously, a material in which at least one of the transmittance and the absorptance at the time of irradiation is increased as compared with the non-irradiation that affects the reflectance at the time of non-irradiation.

<実施例3B>
実施例3Bは、図8に示すように、図6のビームスプリッタ15を偏光ビームスプリッタPBSに置換し、偏光ビームスプリッタPBSとフーリエ変換レンズ16の間に1/4波長板λ/4を設けた以外、実施例3Aと同一の構成である。記録再生工程も同一である。
偏光ビームスプリッタPBSと1/4波長板λ/4とからなる参照光ビームの光路から再生波を分離する分離部を設けることにより、光ビームの利用効率が向上する。
<Example 3B>
In Example 3B, as shown in FIG. 8, the beam splitter 15 in FIG. 6 is replaced with a polarizing beam splitter PBS, and a quarter-wave plate λ / 4 is provided between the polarizing beam splitter PBS and the Fourier transform lens 16. Otherwise, the configuration is the same as in Example 3A. The recording / reproducing process is the same.
The use efficiency of the light beam is improved by providing a separation unit that separates the reproduction wave from the optical path of the reference light beam composed of the polarization beam splitter PBS and the quarter wavelength plate λ / 4.

<実施例4A>
実施例4Aは、図9に示すように、記録媒体部10と入射光処理領域部Rを離し入射光処理領域部Rを装置側に設けた以外、実施例3Aと同一の構成である。記録再生工程も同一である。
<Example 4A>
As shown in FIG. 9, Example 4A has the same configuration as Example 3A except that the recording medium unit 10 and the incident light processing region R are separated and the incident light processing region R is provided on the apparatus side. The recording / reproducing process is the same.

<実施例4B>
実施例4Bは、図10に示すように、記録媒体部10と入射光処理領域部Rを離し入射光処理領域部Rを装置側に設けた以外、実施例3Bと同一の構成である。記録再生工程も同一である。
<Example 4B>
Example 4B has the same configuration as Example 3B except that recording medium unit 10 and incident light processing region R are separated from each other and incident light processing region R is provided on the apparatus side, as shown in FIG. The recording / reproducing process is the same.

このように、基本的に、いずれの実施形態においても、入射光処理領域部Rは、光ビーム強度が高い領域で透過タイプの場合は透過率が下がり、反射タイプの場合は反射率が下がる動作をする。記録媒体部で信号を再生した参照光と再生波は、記録媒体部Rから入射処理領域へ照射される。このとき、参照光と再生波との光強度差があり、すなわち、光強度は参照光の方が再生波よりも大きいことにより、入射光処理領域部Rは参照光と再生波とでは異なる作用をする。
反射タイプの場合(実施例3A、実施例3B、実施例4A、実施例4B)
入射光処理領域部Rでは、参照光が照射された範囲は反射率が下がることで、フーリエ変換レンズに到達する光量は低下する。一方、再生波で照射された範囲は反射率が高いままなので、ほとんど減衰せずにフーリエ変換レンズに導かれる。このような入射光処理領域部Rの動作により、像検出センサで再生に不要な参照光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。さらに、入射光処理領域部Rに予め画定された領域が無いので、微細構造の加工が必要なくなるとともに、境界での回折や散乱による再生信号へのノイズが減らせる。
As described above, basically, in any of the embodiments, the incident light processing region R is an operation in which the transmittance decreases in the case of the transmission type in the region where the light beam intensity is high, and the reflectance decreases in the case of the reflection type. do. The reference light and the reproduction wave that are reproduced from the recording medium part are irradiated from the recording medium part R to the incident processing area. At this time, there is a light intensity difference between the reference light and the reproduction wave, that is, the light intensity of the reference light is larger than that of the reproduction wave, so that the incident light processing region R has a different action between the reference light and the reproduction wave. do.
In the case of a reflection type (Example 3A, Example 3B, Example 4A, Example 4B)
In the incident light processing region R, the amount of light that reaches the Fourier transform lens decreases as the reflectance decreases in the range irradiated with the reference light. On the other hand, since the reflectance of the range irradiated with the reproduction wave remains high, it is guided to the Fourier transform lens with almost no attenuation. By such an operation of the incident light processing region R, it is possible to reduce the amount of reference light unnecessary for reproduction by the image detection sensor, and it becomes easy to detect reproduction information. Further, since there is no region defined in advance in the incident light processing region R, it is not necessary to process the fine structure, and noise to the reproduction signal due to diffraction or scattering at the boundary can be reduced.

<その他実施例>
また、記録媒体部10の形態はカードなど種々の形状で構成できるが、図11に示すように、ディスク状の記録媒体部10をカートリッジCRに収納してそのケース内壁面に入射光処理領域部Rを設けることもできる。ディスク状の記録媒体部10中央のクランプ接合部にクランプに嵌合する媒体側位置マーカや、装置への固定用のカートリッジ側位置マーカを設けることにより、的確なアライメントが可能となる。
<Other examples>
Further, the form of the recording medium unit 10 can be configured in various shapes such as a card. As shown in FIG. 11, the disc-shaped recording medium unit 10 is accommodated in the cartridge CR, and the incident light processing area unit is formed on the inner wall surface of the case. R can also be provided. By providing a medium side position marker fitted to the clamp and a cartridge side position marker for fixing to the apparatus at the clamp joint at the center of the disk-shaped recording medium unit 10, accurate alignment is possible.

なお、上記実施形態では、ホログラム記録再生方法及びホログラム記録再生装置を例に説明したが、本発明は、明らかに、ホログラム記録方法、ホログラム再生方法、ホログラム記録装置及びホログラム再生装置を含む。また、上記実施形態では、2次元データに応じて空間的に変調したいわゆる2次元変調の実施例を説明したが、本発明は1次元データに応じて空間的に変調した1次元変調のホログラム記録再生にも応用できる。   In the above embodiment, the hologram recording / reproducing method and the hologram recording / reproducing apparatus have been described as examples. However, the present invention clearly includes a hologram recording method, a hologram reproducing method, a hologram recording apparatus, and a hologram reproducing apparatus. In the above embodiment, an example of so-called two-dimensional modulation in which spatial modulation is performed according to two-dimensional data has been described. However, the present invention is a one-dimensional modulation hologram recording that is spatially modulated according to one-dimensional data. It can also be applied to playback.

従来のホログラム記録再生システムを示す概略構成図である。It is a schematic block diagram which shows the conventional hologram recording / reproducing system. 本発明によるホログラム記録媒体の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the hologram recording medium by this invention. 本発明による実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of embodiment by this invention. 本発明による実施形態のホログラム記録再生装置におけるホログラム記録媒体の記録再生工程を説明するグラフ及び線図である。It is the graph and diagram explaining the recording / reproducing process of the hologram recording medium in the hologram recording / reproducing apparatus of embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention. 本発明による実施形態のホログラム記録再生装置におけるホログラム記録媒体の記録再生工程を説明するグラフ及び線図である。It is the graph and diagram explaining the recording / reproducing process of the hologram recording medium in the hologram recording / reproducing apparatus of embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention. 本発明による他の実施形態のホログラム記録再生装置を説明する概略構成図である。It is a schematic block diagram explaining the hologram recording / reproducing apparatus of other embodiment by this invention.

符号の説明Explanation of symbols

10 記録媒体部
11 ホログラム記録媒体
15 ビームスプリッタ
20 像検出センサ
25 エンコーダ
26 デコーダ
32 コントローラ
16a,16 レンズ
LED 光源
SHs シャッタ
BX ビームエキスパンダ
SLM 空間光変調器
DESCRIPTION OF SYMBOLS 10 Recording medium part 11 Hologram recording medium 15 Beam splitter 20 Image detection sensor 25 Encoder 26 Decoder 32 Controller 16a, 16 Lens LED light source SHs Shutter BX Beam expander SLM Spatial light modulator

Claims (19)

可干渉性の光ビームの0次光および回折光の照射により生じる回折格子によって情報の記録又は再生が行われるホログラム記録媒体であって、
光透過性の第1感光材料からなる記録媒体部と、
前記記録媒体部の前記光ビームの0次光および回折光の入射側の反対側に設けられかつ前記記録媒体部を透過して入射された前記次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部と、を有し、
前記光ビームが前記記録媒体部を通過し、その入射側と反対側に焦点を結ぶように集光され、前記入射光処理領域部が前記光ビームの光軸上のビームウエストの位置又は近傍に位置し、前記記録媒体部内では前記光ビームの前記入射光処理領域部で反射する前の前記0次光と及び前記入射光処理領域部で反射する前、又は、反射した後の前記回折光との光干渉に対応した回折格子によって情報の記録又は再生が行われることを特徴とするホログラム記録媒体。
A coherent light beam of the 0th order light and the holographic recording medium recording or reproducing of information is performed by the I Ri resulting Ru grating irradiation of the diffracted light,
A recording medium portion made of a light-transmitting first photosensitive material;
Reflectance and absorption depending on the intensity of the 0th- order light that is provided on the opposite side of the light beam on the recording medium portion from the incident side of the 0th-order light and diffracted light and is transmitted through the recording medium portion. a second a photosensitive material incident light processing area portion of at least one characteristic value of the rate and transmittance changes, was closed,
The light beam passes through the recording medium part and is condensed so as to focus on the opposite side to the incident side, and the incident light processing region part is positioned at or near the position of the beam waist on the optical axis of the light beam. In the recording medium unit, the zero-order light before the light beam is reflected by the incident light processing region and the diffracted light before or after being reflected by the incident light processing region. A hologram recording medium , wherein information is recorded or reproduced by a diffraction grating corresponding to the optical interference .
前記第2感光材料は前記光ビームの照射時の透過率が非照射時の透過率より低い特性値を有することを特徴とする請求項1記載のホログラム記録媒体。   2. The hologram recording medium according to claim 1, wherein the second photosensitive material has a characteristic value in which the transmittance when irradiated with the light beam is lower than the transmittance when not irradiated. 前記第2感光材料は前記光ビームの照射時の反射率が非照射時の反射率より低い特性値を有することを特徴とする請求項1記載のホログラム記録媒体。   2. The hologram recording medium according to claim 1, wherein the second photosensitive material has a characteristic value in which the reflectance when irradiated with the light beam is lower than the reflectance when not irradiated. 前記入射光処理領域部はその一部に線状のトラックを有することを特徴とする請求項1〜3記載のホログラム記録媒体。 The hologram recording medium according to claim 1, wherein the incident light processing region has a linear track in a part thereof. 前記トラックは、前記記録媒体部における前記入射光処理領域部の位置情報を有することを特徴とする請求項4記載のホログラム記録媒体。   The hologram recording medium according to claim 4, wherein the track has position information of the incident light processing region portion in the recording medium portion. 可干渉性の参照光ビームを記録情報に応じて空間的に変調して信号光ビームを生成し、前記信号光ビームを、光透過性の第1感光材料からなる記録媒体部から前記入射光処理領域部へ通過するように、前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成する記録工程と、を含むホログラム記録方法であって、前記記録媒体部の前記信号光ビームの入射側の反対側において前記記録媒体部を透過して入射された前記信号光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部を設けたことを特徴とするホログラム記録方法。   A coherent reference light beam is spatially modulated according to recording information to generate a signal light beam, and the signal light beam is processed from the recording medium portion made of a light-transmissive first photosensitive material into the incident light processing unit. The recording medium unit is irradiated so as to pass through the region unit, and a diffraction grating region based on an optical interference pattern is formed in a portion of the recording medium unit where the 0th-order light and diffracted light of the signal light beam interfere. A hologram recording method including a step, wherein the intensity of the 0th-order light of the signal light beam transmitted through the recording medium part and incident on the opposite side of the recording medium part from the incident side of the signal light beam A hologram recording method, comprising: an incident light processing region portion made of a second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance varies depending on the second photosensitive material. 前記第2感光材料は前記光ビームの照射時の透過率が非照射時の透過率より低い特性値を有することを特徴とする請求項6記載のホログラム記録方法。   7. The hologram recording method according to claim 6, wherein the second photosensitive material has a characteristic value in which the transmittance when irradiated with the light beam is lower than the transmittance when not irradiated. 前記第2感光材料は前記光ビームの照射時の反射率が非照射時の反射率より低い特性値を有することを特徴とする請求項6記載のホログラム記録方法。   7. The hologram recording method according to claim 6, wherein the second photosensitive material has a characteristic value in which the reflectance when irradiated with the light beam is lower than the reflectance when not irradiated. 可干渉性の参照光ビームを記録情報に応じて空間的に変調して信号光ビームを生成し、前記信号光ビームを、光透過性の第1感光材料からなる記録媒体部から前記入射光処理領域部へ通過するように、前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成する記録工程により記録された記録情報を再生するホログラム再生方法であって、
前記記録工程において、前記記録媒体部を透過する光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部を設けること、並びに
形成された前記回折格子の領域に、前記参照光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめるとともに前記参照光ビームに対する反射率、吸収率及び透過率の少なくとも1つの特性値が変化した領域を前記入射光処理領域部に形成する再生工程を含むことを特徴とするホログラム再生方法。
A coherent reference light beam is spatially modulated according to recording information to generate a signal light beam, and the signal light beam is processed from the recording medium portion made of a light-transmissive first photosensitive material into the incident light processing unit. The recording medium unit is irradiated so as to pass through the region unit, and a diffraction grating region based on an optical interference pattern is formed in a portion of the recording medium unit where the 0th-order light and diffracted light of the signal light beam interfere. A hologram reproducing method for reproducing recorded information recorded by a process,
In the recording step, incident light processing comprising a second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance varies depending on the intensity of the 0th-order light of the light beam transmitted through the recording medium portion Providing the region portion, and irradiating the region of the diffraction grating so that the reference light beam passes from the recording medium portion to the incident light processing region portion in the region of the diffraction grating formed. A reproducing step of generating a reproduction wave corresponding to the light beam and forming a region in which at least one characteristic value of reflectance, absorptance, and transmittance with respect to the reference light beam is changed in the incident light processing region part. A hologram reproducing method characterized by the above.
前記第2感光材料は前記光ビームの照射時の透過率が非照射時の透過率より低い特性値を有することを特徴とする請求項9記載のホログラム再生方法。   10. The hologram reproducing method according to claim 9, wherein the second photosensitive material has a characteristic value in which the transmittance when irradiated with the light beam is lower than the transmittance when not irradiated. 前記第2感光材料は前記光ビームの照射時の反射率が非照射時の反射率より低い特性値を有することを特徴とする請求項9記載のホログラム再生方法。   10. The hologram reproducing method according to claim 9, wherein the second photosensitive material has a characteristic value in which the reflectance when irradiated with the light beam is lower than the reflectance when not irradiated. 回折格子の領域として記録情報を記録及び/又は前記回折格子の領域から記録情報を再生するホログラム装置であって、
光透過性の第1感光材料からなる記録媒体部とこれを透過する光ビームの0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部とを有するホログラム記録媒体を、装着自在に保持する支持部と、
可干渉性の参照光ビームを発生する光源と、
記録情報に応じて前記参照光ビームを空間的に変調して信号光ビームを生成する空間光変調器を含む信号光生成部と、
前記信号光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記記録媒体部に照射して、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成し、並びに、前記参照光ビームを、前記記録媒体部から前記入射光処理領域部へ通過するように前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめる干渉部と、
前記再生波により結像された記録情報を検出する検出部と、を有することを特徴とするホログラム装置。
A hologram apparatus for recording recorded information as a diffraction grating area and / or reproducing recorded information from the diffraction grating area,
A second photosensitive material in which at least one characteristic value of reflectance, absorptance, and transmittance varies depending on the intensity of the 0th-order light of the recording medium portion made of the light-transmissive first photosensitive material and the light beam transmitted therethrough. A holographic recording medium having an incident light processing region portion made of a material, a support portion for holding the holographic recording medium, and a mounting portion;
A light source for generating a coherent reference light beam;
A signal light generation unit including a spatial light modulator that spatially modulates the reference light beam according to recording information to generate a signal light beam;
The signal light beam is applied to the recording medium unit so as to pass from the recording medium unit to the incident light processing region, and the 0th-order light and the diffracted light of the signal light beam in the recording medium unit interfere with each other. A region of a diffraction grating by an optical interference pattern is formed in a part, and the signal light is irradiated to the region of the diffraction grating so that the reference light beam passes from the recording medium unit to the incident light processing region unit. An interference unit that generates a reproduction wave corresponding to the beam;
And a detection unit that detects recording information imaged by the reproduction wave.
前記第2感光材料は前記光ビームの照射時の透過率が非照射時の透過率より低い特性値を有することを特徴とする請求項12記載のホログラム装置。   13. The hologram apparatus according to claim 12, wherein the second photosensitive material has a characteristic value in which the transmittance when irradiated with the light beam is lower than the transmittance when not irradiated. 前記第2感光材料は前記光ビームの照射時の反射率が非照射時の反射率より低い特性値を有することを特徴とする請求項12記載のホログラム装置。   13. The hologram apparatus according to claim 12, wherein the second photosensitive material has a characteristic value in which the reflectance when irradiated with the light beam is lower than the reflectance when not irradiated. 前記参照光ビームの光路から前記再生波を分離する分離部を有することを特徴とする請求項14記載のホログラム装置。   The hologram apparatus according to claim 14, further comprising a separation unit that separates the reproduction wave from an optical path of the reference light beam. 回折格子の領域として記録情報を記録及び/又は前記回折格子の領域から記録情報を再生するホログラム装置であって、
光透過性の第1感光材料からなる記録媒体部を装着自在に保持する支持部と、
可干渉性の参照光ビームを発生する光源と、
記録情報に応じて前記参照光ビームを空間的に変調して信号光ビームを生成する空間光変調器を含む信号光生成部と、
前記信号光ビームを前記記録媒体部に照射して、前記記録媒体部内に入射かつ通過させ、前記記録媒体部における前記信号光ビームの0次光及び回折光が干渉する部位に光干渉パターンによる回折格子の領域を形成し、並びに、前記参照光ビームを前記回折格子の領域に照射して前記信号光ビームに対応する再生波を生ぜしめる干渉部と、
前記記録媒体部の前記信号光ビームの入射側の反対側に配置され、入射光の0次光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する第2感光材料からなる入射光処理領域部と、
前記再生波により結像された記録情報を検出する検出部と、を有することを特徴とするホログラム装置。
A hologram apparatus for recording recorded information as a diffraction grating area and / or reproducing recorded information from the diffraction grating area,
A support portion for holding a recording medium portion made of a light-transmitting first photosensitive material in a freely attachable manner;
A light source for generating a coherent reference light beam;
A signal light generation unit including a spatial light modulator that spatially modulates the reference light beam according to recording information to generate a signal light beam;
The signal light beam is irradiated onto the recording medium unit to enter and pass through the recording medium unit, and diffraction is caused by a light interference pattern at a portion of the recording medium unit where the 0th-order light and diffracted light of the signal light beam interfere. An interference unit that forms a region of a grating, and irradiates the region of the diffraction grating with the reference light beam to generate a reproduction wave corresponding to the signal light beam;
The second recording medium portion is disposed on the opposite side to the incident side of the signal light beam, and has at least one characteristic value of reflectance, absorptance, and transmittance depending on the intensity of the 0th-order light of the incident light. An incident light processing region made of a photosensitive material;
And a detection unit that detects recording information imaged by the reproduction wave.
前記第2感光材料は前記光ビームの照射時の透過率が非照射時の透過率より低い特性値を有することを特徴とする請求項16記載のホログラム装置。   17. The hologram apparatus according to claim 16, wherein the second photosensitive material has a characteristic value in which the transmittance when irradiated with the light beam is lower than the transmittance when not irradiated. 前記第2感光材料は前記光ビームの照射時の反射率が非照射時の反射率より低い特性値を有することを特徴とする請求項16記載のホログラム装置。   17. The hologram apparatus according to claim 16, wherein the second photosensitive material has a characteristic value in which the reflectance when irradiated with the light beam is lower than the reflectance when not irradiated. 前記参照光ビームの光路から前記再生波を分離する分離部を有することを特徴とする請求項18記載のホログラム装置。   The hologram apparatus according to claim 18, further comprising a separation unit that separates the reproduction wave from an optical path of the reference light beam.
JP2004023571A 2004-01-30 2004-01-30 Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus Expired - Lifetime JP4473591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023571A JP4473591B2 (en) 2004-01-30 2004-01-30 Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023571A JP4473591B2 (en) 2004-01-30 2004-01-30 Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2005215456A JP2005215456A (en) 2005-08-11
JP4473591B2 true JP4473591B2 (en) 2010-06-02

Family

ID=34906540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023571A Expired - Lifetime JP4473591B2 (en) 2004-01-30 2004-01-30 Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP4473591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302203A (en) * 2004-04-14 2005-10-27 Nippon Hoso Kyokai <Nhk> Hologram recorder and hologram recording medium

Also Published As

Publication number Publication date
JP2005215456A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US9715426B2 (en) Monocular holographic data storage system and method thereof
JP4631439B2 (en) Hologram recording / reproducing apparatus and hologram recording / reproducing method
JP4561425B2 (en) Hologram recording / reproducing apparatus and hologram recording / reproducing method
EP1460622B1 (en) Method for recording and reproducing holographic data and holographic recording medium
JPWO2005098552A1 (en) Hologram reproducing apparatus and hologram reproducing method
EP1542097A1 (en) Hologram recording/reproducing method and hologram recording/reproducing device
JP4787097B2 (en) Holographic memory reproduction system using servo
US7649661B2 (en) Holographic storage device having a reflective layer on one side of a recording layer
JP2007101608A (en) Hologram recording and reproducing device and hologram reproducing device
JP4473591B2 (en) Hologram recording medium, recording / reproducing method, and recording / reproducing apparatus
JP4258624B2 (en) Optical information recording device
JP4534483B2 (en) Holographic recording medium, hologram recording / erasing method, and holographic recording / reproducing apparatus
EP2390731B1 (en) Monocular holographic data storage system architecture
JP4581808B2 (en) Hologram apparatus and Faraday rotator
JP2002304109A (en) Hologram recording and reproducing method, and hologram recording and reproducing device
JP2005025906A (en) Device and method for recording/reproducing optical information
JP2011198403A (en) Hologram recording method
JP2005251269A (en) Hologram recording medium using cartridge and hologram recording and reproducing device
JP2008197368A (en) Hologram recording apparatus, and hologram recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150