JP4473411B2 - Sealed secondary battery - Google Patents

Sealed secondary battery Download PDF

Info

Publication number
JP4473411B2
JP4473411B2 JP2000162729A JP2000162729A JP4473411B2 JP 4473411 B2 JP4473411 B2 JP 4473411B2 JP 2000162729 A JP2000162729 A JP 2000162729A JP 2000162729 A JP2000162729 A JP 2000162729A JP 4473411 B2 JP4473411 B2 JP 4473411B2
Authority
JP
Japan
Prior art keywords
explosion
proof valve
side wall
secondary battery
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000162729A
Other languages
Japanese (ja)
Other versions
JP2001345083A (en
Inventor
雄一 佐藤
昌浩 加藤
康文 湊
連 新東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000162729A priority Critical patent/JP4473411B2/en
Publication of JP2001345083A publication Critical patent/JP2001345083A/en
Application granted granted Critical
Publication of JP4473411B2 publication Critical patent/JP4473411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外装缶の一面又は複数の面に、防爆弁が形成された角型の金属外装缶の二次電池に関し、特に、異常事態に対して正確に作動する安全性の高い防爆機能を備えた密閉二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノートブック型パソコンなどの電子機器の高性能化、小型化には目覚ましいものがあり、これらの電子機器の電源となる二次電池の高エネルギー化の要求も強まっている。このため、リチウム金属、リチウム合金、もしくは炭素質材料のようなリチウムを吸載・放出できる物質を負極材料に使用する密閉二次電池の開発が活発に行われている。
【0003】
しかしながら、電池の高エネルギー化に伴い安全性の低下が懸念されている。たとえば、非水電解液を用いた密閉二次電池は、充電時の際に定格よりも過大な電流が供給されて過充電状態になったり、あるいは電池を搭載して機器の故障や誤使用により大電流が流れて電池が短絡状態になったりすると、電池内部の電解液が分解してガス発生して電池の内圧が上昇してしまい、電池が破裂してしまう場合が発生する。
【0004】
さらに、過充電あるいは電池内での短絡が続くと、電解液の分解による発熱により電池の温度が急激に上昇し、それによっても電池が破裂してしまう場合が発生する。
【0005】
したがって、電池の内圧上昇や発熱による破裂を未然に防ぐことが、密閉二次電池、特に、非水電解液を用いたい場合の実用化には必須である。そのため、特開平2−288063号公報に示されるような防爆機能と電流遮断機能を有する封口構造を備えた密閉電池が実用化されている。
【0006】
また、電池の封口構造を防爆構造と電流遮断機能を具備した構造にせずに、外装缶自体に薄肉部で形成した防爆弁を形成したものも存在している。
【0007】
それらの一例は、図19に示すように金属製の外装缶31の底面32に底面の中心線L−Lに対称に、横方向に薄肉部を形成した防爆弁33aや、図20に示すように、外装缶31の側壁34に側壁面の中心線L−Lに対称に、横方向に薄肉部を形成した防爆弁33bである。この場合、図21に示すように、防爆弁33b両端の先端部分の形状処理は、残肉部36が角のある角型形状に形成されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上述のように防爆機能と電流遮断機能を有する封口構造にするのは構造が複雑で構成する部品点数も多くなり、電池の組み立てにも工数がかかり製造上あまり好ましくない。
【0009】
また、外装缶の底面に防爆弁を形成するのは、最近のように電池の薄型化が進展し、底面の幅が極度に小さくなってきているため、物理的に防爆弁を形成するのが困難になってきている。
【0010】
また、防爆弁は外装缶の強度の最も弱い個所に設置することが望ましい。外装缶の各稜線は強度が強く、また、外装缶の板厚は底面が側壁よりも厚く形成されており、かつ、底面の面積は側壁の各面よりも面積が狭い。そのため、面積の狭い外装缶の底面に防爆弁を設けるのはその意味からもあまり得策ではない。
【0011】
また、外装缶の側壁の中心線に対称に、開口部に平行な直線状に設けた防爆弁は、外装缶の強度が弱く防爆弁としては適当な位置である。しかし、防爆弁が作動する圧力は安全性の面からは下げる方が望ましいので、それに対応するためには、防爆弁の薄肉部分を薄くする必要があるが、それには物理的に限界があり、防爆弁を形成するのが困難になる。仮に、それに対応する極めて板厚の薄い薄肉部が加工され、作動圧の低い防爆弁が形成されても、板厚が薄いため製造誤差のばらつきが大きく影響して作動圧のばらつきが大きくなり、信頼性のある防爆弁を形成するのは困難である。
【0012】
また、外装缶の側壁の中心線に対称に防爆弁を形成した場合には、防爆弁の破裂位置(防爆弁の端部で、同じ応力が加わる位置)が2点になる。そのため、1点の場合に比べて破裂のタイミングが遅れる恐れがある。つまり、破裂位置が2点である場合は、破裂個所が2点に分散して応力が1点に集中しないため、それにより、破裂個所が破裂応力レベルに達するまでに時間がかかる恐れがある。
【0013】
本発明はこれらの事情に基づいてなされたもので、密閉二次電池の防爆手段として、きわめて安全性が高く、かつ、作動圧を容易に変更できる防爆弁の構造を形成した密閉二次電池を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明によれば、側壁と底部とで有底筒状に形成された金属製で矩形状の外装缶と、この外装缶の内部に収納され、セパレータを挟んで対峙した正極及び負極を渦巻き状に捲回した電極体と、前記外装缶の内部に注入される非水電解液を有し、前記外装缶の開口部を蓋体で封口した密閉二次電池において、前記側壁のうち面積の広い側壁には他の部分より薄肉とした薄肉部による防爆弁が形成され、この防爆弁のうち直線部分は前記外装缶が立位状態での前記側壁の縦方向又は横方向の中心線と交差しないか、又は、前記各中心線と非対称に交差しており、前記薄肉部の直線部分の少なくとも一部は、前記外装缶が立位状態で前記側壁の横方向の稜線から対向稜線側へ1mm以後で前記稜線から前記側壁高さの1/4の位置までの領域内で、かつ、前記外装缶が立位状態で前記側壁の縦方向の稜線から対向稜線側へ1mm以後で前記稜線から側壁幅の1/6の位置までの領域内に形成されていることを特徴とする密閉二次電池である。
【0015】
また本発明によれば、前記薄肉部は、前記直線部分とこの直線部分の両端に位置する非直線部分とが連続して形成されたことを特徴とする密閉二次電池である。
【0019】
また本発明によれば、前記防爆弁は、プレス加工によって形成されていることを特徴とする上記のいずれかに記載の密閉二次電池である。
【0020】
また本発明によれば、前記外装缶は、アルミニウム、鉄またはステンレスおよびそれらの合金のうちいずれか1つの材質で形成されていることを特徴とする上記の密閉二次電池である。
【0021】
【発明の実施の形態】
以下、本発明の密閉二次電池の実施の形態を、図面を参照して説明する。
【0022】
まず、本発明にかかわる密閉二次電池の構造を、角型密閉電池を例として、図1を参照して詳細に説明する。図1は、本発明に係る密閉二次電池、例えば、角型密閉リチウムイオン電池を示す斜視図である。ここで、角型とは、発電要素を含む面で外装缶を切断したときの断面形状が長方形であることを意味するが、各コーナの部分がR状(曲面状)に形成されているものも含む。
【0023】
すなわち、アルミニウムまたはアルミニウム系合金からなる有底矩形筒状をなす外装缶1は正極端子を兼ねている。この外装缶1の底面内面には絶縁フィルム2が配置されている。また、外装缶1の側壁部で面積の広い長側面1aには、薄肉加工により後述する防爆弁(不図示)が形成されている。外装缶では面積の広い長側面1aが強度的には一番弱い個所であるので、防爆弁は長側面1aに設けられている。
【0024】
発電要素である電極体3は、外装缶1の内部に収納されている。電極体3は負極4とセパレータ5と正極6とを正極6が最外周に位置するように渦巻き状に捲回した後、偏平状にプレス成形することにより形成されている。中心付近にリード取り出し孔を有する例えば合成樹脂からなるスぺーサ7は、外装缶1内部の電極体3の上に配置されている。アルミニウムまたはアルミニウム系合金からなり、注液孔10と負極端子の取り出し孔(不図示)が設けられた蓋体8は、外装缶1の上端開口部に例えばレーザー溶接により気密に接合されている。なお、注液10は電解液が外装缶1に注液後に、注液孔10に挿入されたアルミニウムまたはアルミニウム系合金製の栓体(不図示)がパルスレーザにより蓋体8と溶接され、注液孔10が封止されている。
【0025】
負極端子11は、蓋体8の取り出し孔にガラス製または樹脂製の絶縁体12を介してハーメティックシールされている。また、これらの外装缶側壁の外部には、図示しない電池パックの配線材13が接合されている。
【0026】
また図2に示すように、外装缶1は、アルミニウムまたはアルミニウム合金の薄板材を深絞り加工で、外形寸法が幅30mm×高さ40mm×厚さ5mmで、板厚は0.25mm〜0.40mm有底矩形筒状の所定形状に加工されている。その後、側壁16へ防爆弁18のプレス加工が施される。防爆弁18の加工は外装缶1である矩形筒体内に開口部19から中子(不図示)を挿入した状態で、側壁16の外側から図2に示すような断面形状をプレス加工により形成している。
【0027】
防爆弁18、18−1〜18−nの形状、および位置は、図2に示すように、直線形状が基本部分で、この直線形状が外装缶1の側壁の中心線A−A´と交差しない位置、あるいは、中心線A−A´と防爆弁18 、18−3の一部が交差している場合は、非対称に交差している位置に形成されている。
【0028】
これらは、防爆弁18、18−1〜18−nの位置と形状、および防爆弁18、18−1〜18−nとしての薄肉部分の厚みを変えた実験により、側壁の中心線A−A´と防爆弁18が交差しない位置に形成することにより、防爆弁18、18−1、18 としての薄肉部分の厚みを薄くすることなく、薄肉部が厚い状態で作動圧を低く設定することができる。
【0029】
つまり、防爆弁18、18−1、18 としての薄肉部分を厚く残すことにより、薄肉部分の加工も容易になり、加工上のばらつきも少なくなる。それにより、防爆弁18、18−1、18 としての作動圧が制御しやすく、また、作動圧のばらつきを一定の最も狭い範囲内に抑えることができる。したがって、安全性と信頼性のきわめて高い防爆弁18、18−1、18 を形成している。
【0030】
また、防爆弁18−2、18 の一部が延在して中心線A−A´と交差する場合は、防爆弁の破裂位置(防爆弁の端部で、同じ応力が加わる位置)が1点になり、防爆弁18−2、18 の動作を正確に制御することができる。
【0031】
なお、図3に示すように、防爆弁18の位置に関しては実験により、外装缶1の開口部19の稜線(外装缶1を立位の状態で横方向の稜線)の下1mm、又は、外装缶1の底部20の稜線の上1mmに位置する平行な直線と、開口部19の稜線または底部20の稜線から、開口部19の稜線から底部20の稜線までの長さの1/4に位置する開口端19の稜線と平行な直線に囲まれた領域、および、開口部19の稜線と直角をなす稜線(外装缶1を立位の状態で縦方向の稜線)から1mmに位置する直線と、対向する稜線までの長さの1/6の長さに位置する当該稜線と平行な直線によって囲まれた領域で、かつ、中心線A−A´と交差しない位置に防爆弁18を加工することが好適であることを確認した。
【0032】
ただし、防爆弁18の一部のみが、各稜線から1mm以内の領域に延在して形成されているか、防爆弁18の一部のみが中心線A−A´と交差している場合も、同様な結果が得られることを確認している。
【0033】
また、この中心線A−A´に関しての防爆弁18の位置は、外装缶1を側転した状態でも全く同様のことが言えることを確認している。すなわち、その場合は、上述の各防爆弁18の位置に関する中心線A−A´を中心線B−B´と読み替え、また各稜線は上述の説明の稜線と直角方向の稜線になる。
【0034】
なお、この位置の確認は、角型の外装缶1の密閉二次電池が、防爆弁18が作動するような状態になった場合に、外装缶1自体が膨らんで変形するが、このときに最も応力が集中する個所が開口部19と底部20から電池高さの1/4までの領域と、開口端と直角を成す稜線から電池幅の1/6までの領域であったことを実験により確認した結果に基づいている。
【0035】
また、防爆弁の形状は、図2に示した直線形状の他にも、図4(a)、(b)および(c)に示すような形状等に形成してもよい。なお、防爆弁以外の個所は図2と同様であるので、同一個所には同符号を付してその説明を省略する。
【0036】
図4(a)に示した防爆弁18aは、直線部分の両端で、外装缶1の開口部19に向けて角度dだけ向きを変えている。角度dは外装缶1の大きさ、形状などにより適正な数値に合わせる必要があるが、その範囲は0度から90度が好ましい。さらに25度から45度の範囲がより好ましいことを、角度を変えた実験により確認している。また、図4(b)に示した防爆弁18bは、直線部分の両端で円形部を形成している。さらに、図4(c)に示した防爆弁18cは、直線部分の両端で上方へ曲率させている。図4(b)、(c)に示した形状は、防爆弁18a、18bの両端部分を角のない丸みのある形状にすることによって防爆弁18a、18bが所望の寸法、面積以上に裂ける機会を大幅に減少している。
【0037】
したがって、これらの形状はいずれも防爆弁18a、18b、18cが作動した際に、防爆弁18a、18b、18cの開口個所が、所定の寸法、面積以上に開いてしまい、最悪の事態として電池内の発電要素などの内容物が電池の外部に飛散することを防ぐ効果がある。
【0038】
また防爆弁の加工方法は、プレスによる加工性が良いことを実験により確認した。プレス加工による生産方法が最もコスト面では有利で、作動圧の制御もしやすく好適であるが、その他にもエッチングを用いる方法も可能である。ただ、エッチングを用いる方法は、コストが掛かる点や大量生産には不向きな点もある。
【0039】
なお、実験によれば、防爆弁の位置等については、外装缶の材料を、アルミニウムやアルミニウム合金以外に、鉄やステンレスを用いた場合でも、同様の結果を得ている。
【0040】
次に、以下に本発明の防爆弁の実施例と、それに対する比較例について説明する。
【0041】
なお、各実施例では、前述のように防爆弁の一部が延在して、縦方向又は横方向の中心線と交差して形成されている場合や、各稜線から1mm以内の領域内に形成されている場合の例は、例示していないが、それぞれの各実施例に付帯している。
【0042】
また、各実施例での例示は、いずれの場合も、外装缶の高さが40mmで幅が30mmである。防爆弁は外装缶の側壁(面積の広い側壁)に形成し、その形状は長さ方向に直線部分が含まれ、幅は0.2mm程度である。また、直線部分が外装缶側壁の中心線と交差しない位置に設けられている。また図2と同一機能部分には同一符号を付してその説明は省略する。
(実施例1)
図5に示すような防爆弁18dの位置と形状で、防爆弁18dは外装缶1の開口部19に平行な直線部分で形成されている。この防爆弁18dの位置は外装缶1の開口部19より1mmの位置に設けられている。
(実施例2)
図6に示すような防爆弁18eの位置と形状で、防爆弁18eは外装缶1の開口部19に平行な直線部分で形成されている。この防爆弁18eの位置は外装缶1の開口部19より、外装缶1の高さの1/4内の領域である10mmの位置に設けられている。
(実施例3)
図7に示すような防爆弁18fの位置と形状で、防爆弁18fは外装缶1の底部20に平行な直線部分で形成されている。この防爆弁の位置は外装缶1の底部20より外装缶1の高さの1/4内の領域である10mmの位置に設けられている。
(実施例4)
図8に示すような防爆弁18gの位置と形状で、防爆弁18gは外装缶1の開口部19と直角を成す稜線に平行な直線部分で形成され、直線部分が側壁のもう一つの中心線B−B´と交差せず、かつ、外装缶1の幅方向の1/6内の領域である5mmの位置に設けられている。
(実施例5)
図9に示すような防爆弁18hの位置と形状で、防爆弁18hは外装缶1の開口部19に対して45度の角度を有す直線部分で形成されている。この防爆弁18hの直線部分の端部は、外装缶1の開口部19より1mmから10mmまでの領域にまたがる。
(実施例6)
図10に示すような防爆弁18iの位置と形状で、防爆弁18iは直線部分で形成され、開口部19に対して45度、かつ、側壁16の稜線に対して45度の角度を有し、かつ、開口部19より外装缶1の高さへ10mm、および、側壁16の稜線より幅方向へ5mmまでの領域内に形成されている。
(実施例7)
図11に示すような防爆弁18aの位置と形状で、防爆弁18aは図4(a)に示す形状で、防爆弁18aは直線部分の両端上方に傾斜している。傾斜角度は45度である。この防爆弁18aの位置は、外装缶の開口部19から下方に1mmから10mmまでの領域内に形成されている。
(実施例8)
図12に示すような防爆弁18bの位置と形状で、防爆弁18bは図4(b)に示す形状で、防爆弁18bは直線部の両端上方に傾斜し、かつ、傾斜した先端に円形部を形成している。また先端はR形状に形成されている。この防爆弁18bは、外装缶1の開口部19から下方の1mmから10mmまでの領域内に形成されている。
(実施例9)
図13に示すような防爆弁18cの位置と形状で、防爆弁18cは図3(c)に示す形状で、防爆弁18cは直線部の両端がそれぞれ上方に半円状に形成されている。この半円形上の曲率半径は15mm〜25mm程度である。この防爆弁18cは、外装缶1の開口部19から下方の1mmから10mmまでの領域内に形成されている。
(実施例10)
図14に示すような防爆弁18jの位置と形状で、防爆弁18jは図14に示す形状で、防爆弁18jは直線部の両端に円形部を形成している。この円形部の曲率半径は0.4mm〜1.2mm程度である。この防爆弁18jは、外装缶1の開口部19から下方の1mmから10mmまでの領域内に形成されている。
(比較例1)
図15に示すような防爆弁18kの位置と形状で、防爆弁18kは外装缶1の開口部19に平行な直線部分で形成され、外装缶1の中心線A−A´に対して対称な位置に形成されている。この防爆弁18kは、外装缶1の開口部19より下方5mmの位置に設けられている。
(比較例2)
図16に示すような防爆弁18mの位置と形状で、防爆弁18mは外装缶1の開口部19に平行な直線部分で形成されている。この防爆弁18mは外装缶1の開口部19より下方15mmの位置に設けられている。
(比較例3)
図17に示すような防爆弁18nの位置と形状で、防爆弁18nは外装缶1の開口部19と底部20を含む側壁16の稜線に平行な直線部分で形成され、外装缶1の幅方向に対して稜線から6mmの位置に設けられている。
(比較例4)
図18に示すような防爆弁18pの位置と形状で、防爆弁18pは直線部分の両端下方に傾斜している。傾斜角度は60度である。この防爆弁18pは、外装缶1の開口部19から下方5mmから12mmまでの領域内に設けられている。
【0043】
なお、上述の形態では、外装缶の側壁の一面に防爆弁を形成したが、側壁の2面にそれぞれ防爆弁を形成してもよい。その場合、2眼における防爆弁の位置は、側壁の中心線に対して逆対称の位置が好ましい。
【0044】
次に、上述の各実施例と比較例についての安全試験の結果について説明する。安全試験は、実施例1〜10、および比較例1〜3の角型電池をそれぞれ20個について、電池を満充電した状態で電池電圧を4.2Vに設定し、ガスバーナーで電池を加熱して試験を行った。表1はその結果を示している。
【表1】

Figure 0004473411
実施例1〜10の電池では、各実施例とも20個全てがガスバーナーで加熱中に防爆弁が作動し、電池内で発生したガスを噴出させて放出することで試験は収束した。それに対して、比較例1〜4の電池では、ガスバーナーで加熱中に防爆弁が作動したものの、ガスの噴出による放出が十分でなく、20個の内、半数以上は破裂する電池が存在した。
【0045】
したがって、本発明の密閉二次電池はいずれも防爆弁が設定通りに作動していることが確認できた。
【0046】
以上に説明したように、本発明の密閉二次電池は、防爆弁が所望の圧力で開口するように形成されているので、電池内部のガス発生により内圧が所定値以上に上昇すると、密閉二次電池の外装缶の所定位置に設けた防爆弁が作用して、過充電時などの密閉二次電池の内圧上昇や発熱を初期で抑えることができる。
【0047】
また、防爆弁により発生したガスを円滑に電池の外部に排出して密閉二次電池の破裂を確実に防止することができる。
【0048】
【発明の効果】
本発明によれば、防爆弁の作動を所定範囲内に確実に限定した、極めて安全性の高い密閉二次電池が得られる。
【図面の簡単な説明】
【図1】本発明にかかわる密閉二次電池の斜視図。
【図2】本発明にかかわる外装缶の斜視図。
【図3】本発明にかかわる外装缶の防爆弁の位置の説明図。
【図4】(a)〜(c)は防爆弁の形状の説明図。
【図5】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図6】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図7】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図8】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図9】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図10】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図11】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図12】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図13】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図14】本発明の実施例を示す防爆弁の形状と位置の説明図。
【図15】本発明の比較例を示す防爆弁の形状と位置の説明図。
【図16】本発明の比較例を示す防爆弁の形状と位置の説明図。
【図17】本発明の比較例を示す防爆弁の形状と位置の説明図。
【図18】本発明の比較例を示す防爆弁の形状と位置の説明図。
【図19】従来の防爆弁の説明図。
【図20】従来の防爆弁の説明図。
【図21】従来の防爆弁の説明図。
【符号の説明】
1…外装缶、2…、3…電極体、16…側壁、18、18a〜18n…防爆弁、19…開口部、20…底部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery of a rectangular metal outer can in which an explosion-proof valve is formed on one surface or a plurality of surfaces of the outer can, and in particular, has a highly safe explosion-proof function that operates accurately against abnormal situations. The present invention relates to a sealed secondary battery.
[0002]
[Prior art]
In recent years, there has been a remarkable increase in performance and size of electronic devices such as mobile phones and notebook computers, and the demand for higher energy secondary batteries serving as power sources for these electronic devices has also increased. For this reason, development of a sealed secondary battery that uses a material capable of absorbing and releasing lithium, such as lithium metal, lithium alloy, or carbonaceous material, as an anode material has been actively conducted.
[0003]
However, there is a concern about a decrease in safety as the energy of the battery increases. For example, a sealed secondary battery using a non-aqueous electrolyte may be overcharged due to excessive current being supplied at the time of charging, or it may be damaged due to equipment failure or misuse. When a large current flows and the battery is short-circuited, the electrolytic solution in the battery is decomposed to generate gas and the internal pressure of the battery increases, and the battery may burst.
[0004]
Furthermore, if overcharging or short-circuiting in the battery continues, the temperature of the battery suddenly rises due to heat generated by the decomposition of the electrolyte, and the battery may burst.
[0005]
Therefore, it is indispensable for practical use when it is desired to use a sealed secondary battery, in particular, a non-aqueous electrolyte solution, to prevent the battery from rising due to an increase in internal pressure or heat generation. For this reason, a sealed battery having a sealing structure having an explosion-proof function and a current interruption function as disclosed in JP-A-2-288063 has been put into practical use.
[0006]
In addition, there is a battery in which an explosion-proof valve formed of a thin-walled portion is formed on the outer can itself without using a battery sealing structure having an explosion-proof structure and a current blocking function.
[0007]
An example of them, symmetrically to the center line L 1 -L 2 on the bottom surface 32 of the bottom surface of the metallic outer can 31, as shown in FIG. 19, and explosion-proof valve 33a forming the thin portion in the lateral direction, in FIG. 20 as shown, symmetrically to the center line L 3 -L 4 of the side wall surface on the side wall 34 of the outer can 31, an explosion-proof valve 33b forming the thin portions in the transverse direction. In this case, as shown in FIG. 21, in the shape processing of the tip portions at both ends of the explosion-proof valve 33b, the remaining portion 36 is formed in a square shape with a corner.
[0008]
[Problems to be solved by the invention]
However, the sealing structure having the explosion-proof function and the current interruption function as described above is not preferable in terms of manufacturing because the structure is complicated and the number of parts to be configured is increased, and the number of parts is increased in assembling the battery.
[0009]
Also, the reason why the explosion-proof valve is formed on the bottom surface of the outer can is that the thickness of the bottom surface has become extremely small as recently developed, and the explosion-proof valve is physically formed. It has become difficult.
[0010]
In addition, it is desirable to install the explosion-proof valve at a location where the strength of the outer can is weakest. Each ridge line of the outer can is strong, and the thickness of the outer can is formed such that the bottom surface is thicker than the side wall, and the area of the bottom surface is smaller than each surface of the side wall. For this reason, providing an explosion-proof valve on the bottom surface of an outer can having a small area is not very advantageous from that point of view.
[0011]
In addition, the explosion-proof valve provided in a straight line parallel to the opening symmetrical to the center line of the side wall of the outer can is an appropriate position as an explosion-proof valve because the strength of the outer can is weak. However, it is desirable to reduce the pressure at which the explosion-proof valve operates from the viewpoint of safety. To cope with this, it is necessary to make the thin part of the explosion-proof valve thin, but there is a physical limit to this, It becomes difficult to form an explosion-proof valve. Even if an extremely thin plate corresponding to that is machined and an explosion-proof valve with a low operating pressure is formed, the variation in operating pressure increases due to large variations in manufacturing errors because the plate thickness is thin. It is difficult to form a reliable explosion-proof valve.
[0012]
In addition, when the explosion-proof valve is formed symmetrically on the center line of the side wall of the outer can, the explosion position of the explosion-proof valve (the position where the same stress is applied at the end of the explosion-proof valve) becomes two points. Therefore, the burst timing may be delayed as compared with the case of one point. That is, when the rupture position is two points, the rupture points are dispersed at two points and the stress is not concentrated on one point, so that it may take time for the rupture points to reach the rupture stress level.
[0013]
The present invention has been made based on these circumstances, and a sealed secondary battery having an explosion-proof valve structure that is extremely safe and can easily change the operating pressure is used as an explosion-proof means for the sealed secondary battery. It is intended to provide.
[0014]
[Means for Solving the Problems]
According to the present invention, a metal rectangular outer can formed in a bottomed cylindrical shape with a side wall and a bottom, and a positive electrode and a negative electrode which are accommodated inside the outer can and opposed to each other with a separator interposed therebetween are spirally formed. In a sealed secondary battery having a wound electrode body and a non-aqueous electrolyte to be injected into the outer can, the opening of the outer can being sealed with a lid, the area of the side wall is wide An explosion-proof valve is formed on the side wall with a thinner part than other parts, and the straight part of the explosion-proof valve does not intersect the vertical or horizontal center line of the side wall when the outer can is in a standing position. Or at least a portion of the straight portion of the thin wall portion is asymmetrically intersecting each center line, and the outer can is in a standing state from the lateral ridge line of the side wall to the opposite ridge line side after 1 mm In the region from the ridge line to a position of 1/4 of the side wall height, One, wherein the outer can is formed in the region of the longitudinal edges of the side wall in upright position from the ridge line in 1mm after the opposite ridge side to the position of 1/6 of the side wall width It is a sealed secondary battery.
[0015]
According to the invention, the thin-walled portion is a sealed secondary battery in which the straight portion and the non-linear portions located at both ends of the straight portion are continuously formed .
[0019]
According to the present invention, in the sealed secondary battery according to any one of the above, the explosion-proof valve is formed by pressing.
[0020]
Further, according to the present invention, in the above sealed secondary battery, the outer can is made of any one material of aluminum, iron, stainless steel, and alloys thereof.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a sealed secondary battery of the present invention will be described with reference to the drawings.
[0022]
First, the structure of a sealed secondary battery according to the present invention will be described in detail with reference to FIG. 1, taking a square sealed battery as an example. FIG. 1 is a perspective view showing a sealed secondary battery according to the present invention, for example, a square sealed lithium ion battery. Here, the square shape means that the cross-sectional shape when the outer can is cut on the surface including the power generation element is a rectangle, but each corner portion is formed in an R shape (curved surface). Including.
[0023]
That is, the outer can 1 having a bottomed rectangular tube shape made of aluminum or an aluminum alloy also serves as a positive electrode terminal. An insulating film 2 is disposed on the inner bottom surface of the outer can 1. Further, an explosion-proof valve (not shown), which will be described later, is formed on the long side surface 1a having a large area at the side wall portion of the outer can 1 by thin-wall processing. In the outer can, the long side surface 1a having a large area is the weakest portion in terms of strength, so the explosion-proof valve is provided on the long side surface 1a.
[0024]
The electrode body 3 that is a power generation element is housed inside the outer can 1. The electrode body 3 is formed by winding the negative electrode 4, the separator 5, and the positive electrode 6 in a spiral shape so that the positive electrode 6 is located on the outermost periphery, and then press-molding it into a flat shape. A spacer 7 made of, for example, a synthetic resin having a lead extraction hole near the center is disposed on the electrode body 3 inside the outer can 1. The lid body 8 made of aluminum or an aluminum-based alloy and provided with a liquid injection hole 10 and a negative terminal take-out hole (not shown) is airtightly joined to the upper end opening of the outer can 1 by, for example, laser welding. Note that injection hole 10 after pouring the electrolytic solution into the outer can 1, the inserted aluminum or aluminum-based alloy of the plug member into the injection hole 10 (not shown) is welded to the lid 8 by a pulse laser, The liquid injection hole 10 is sealed.
[0025]
The negative electrode terminal 11 is hermetically sealed in the take-out hole of the lid 8 via an insulator 12 made of glass or resin. Moreover, the wiring material 13 of the battery pack which is not shown in figure is joined to the exterior of these exterior can side walls.
[0026]
As shown in FIG. 2, the outer can 1 is formed by deep drawing a thin plate material of aluminum or aluminum alloy, the outer dimensions are 30 mm wide × 40 mm high × 5 mm thick, and the plate thickness is 0.25 mm to 0.00 mm. It is processed into a predetermined shape of a 40 mm bottomed rectangular cylinder. Thereafter, the explosion-proof valve 18 is pressed on the side wall 16. The explosion-proof valve 18 is processed by pressing a cross section as shown in FIG. 2 from the outside of the side wall 16 with a core (not shown) inserted through the opening 19 into the rectangular cylinder which is the outer can 1. ing.
[0027]
As shown in FIG. 2, the shape and position of the explosion-proof valves 18, 18 −1 to 18 -n are basically straight portions, which intersect with the center line AA ′ of the side wall of the outer can 1. position without, or center line a-A'and explosion-proof valve 18 - if 2, 18 part of -3 intersect are formed at positions intersecting asymmetrically.
[0028]
These explosion-proof valve 18, 18 -1 ~ 18 -n position and shape, and the experiment of varying the thickness of the thin portion of the explosion-proof valve 18, 18 -1 ~ 18 -n, sidewall centerline A-A of 'and by explosion-proof valve 18 is formed at a position not intersecting, explosion-proof valve 18 -1, 18 - without reducing the thickness of the thin portion of the 4, setting a low working pressure in the thin portion is thicker state be able to.
[0029]
In other words, an explosion-proof valve 18 -1, 18 - by leaving thick thin portion as 4, the processing of the thin portion becomes easy, even less variation in processing. Thus, explosion-proof valve 18 -1, 18 - working pressure as 4 is easily controlled, also, it is possible to suppress variations in operating pressure within a certain narrowest range. Therefore, safety and reliability of the very high explosion-proof valve 18 -1, 18 - 4 form a.
[0030]
Further, explosion-proof valve 18 -2, 18 - 3 when partially intersects with the center line A-A'extend of the rupture position of the explosion-proof valve (at the end of the explosion-proof valve, the same stress is applied position) There will be one point, explosion-proof valve 18 -2, 18 - 3 of the operation can be accurately controlled.
[0031]
As shown in FIG. 3, the position of the explosion-proof valve 18 is 1 mm below the ridgeline of the opening 19 of the outer can 1 (the ridgeline in the lateral direction when the outer can 1 is in a standing position) or by the experiment. Positioned at ¼ of the length from the parallel straight line located 1 mm above the ridgeline of the bottom 20 of the can 1 and the ridgeline of the opening 19 or the ridgeline of the bottom 20 to the ridgeline of the opening 19 to the ridgeline of the bottom 20 A region surrounded by a straight line parallel to the ridgeline of the opening end 19 and a ridgeline perpendicular to the ridgeline of the opening 19 (a ridgeline in the vertical direction with the exterior can 1 in a standing position) and a straight line located 1 mm The explosion-proof valve 18 is processed in a region surrounded by a straight line parallel to the ridge line that is 1/6 of the length to the opposite ridge line and at a position that does not intersect the center line A-A ′. It was confirmed that it was suitable.
[0032]
However, when only a part of the explosion-proof valve 18 is formed to extend to a region within 1 mm from each ridgeline, or only a part of the explosion-proof valve 18 intersects the center line A-A ′, It has been confirmed that similar results can be obtained.
[0033]
It has also been confirmed that the position of the explosion-proof valve 18 with respect to the center line A-A ′ is completely the same even when the outer can 1 is turned over. That is, in this case, the center line A-A ′ relating to the position of each explosion-proof valve 18 described above is read as the center line BB ′, and each ridge line becomes a ridge line perpendicular to the ridge line described above.
[0034]
This position is confirmed by checking that the sealed secondary battery of the rectangular outer can 1 is inflated and deformed when the explosion-proof valve 18 is activated. It was experimentally confirmed that the most concentrated points were the area from the opening 19 and the bottom 20 to 1/4 of the battery height and the area from the ridge line perpendicular to the opening edge to 1/6 of the battery width. Based on confirmed results.
[0035]
In addition to the linear shape shown in FIG. 2, the explosion-proof valve may be formed in a shape as shown in FIGS. 4 (a), 4 (b) and 4 (c). Since the portions other than the explosion-proof valve are the same as those in FIG. 2, the same portions are denoted by the same reference numerals and the description thereof is omitted.
[0036]
The explosion-proof valve 18a shown in FIG. 4 (a) is changed in direction by an angle d toward the opening 19 of the outer can 1 at both ends of the linear portion. The angle d needs to be adjusted to an appropriate value depending on the size and shape of the outer can 1, but the range is preferably 0 to 90 degrees. Furthermore, it has been confirmed by experiments with different angles that the range of 25 to 45 degrees is more preferable. Moreover, the explosion-proof valve 18b shown in FIG.4 (b) forms the circular part in the both ends of a linear part. Furthermore, the explosion-proof valve 18c shown in FIG. 4 (c) is curved upward at both ends of the linear portion. The shape shown in FIGS. 4B and 4C is an opportunity for the explosion-proof valves 18a and 18b to tear beyond the desired dimensions and area by making the end portions of the explosion-proof valves 18a and 18b round with no corners. Has been significantly reduced.
[0037]
Therefore, in any of these shapes, when the explosion-proof valves 18a, 18b, and 18c are operated, the opening portions of the explosion-proof valves 18a, 18b, and 18c are opened beyond a predetermined size and area. It has the effect of preventing the contents such as the power generation element from being scattered outside the battery.
[0038]
Moreover, it was confirmed by experiment that the processing method of the explosion-proof valve had good workability by pressing. A production method by press working is most advantageous in terms of cost, and it is easy to control the operating pressure, but other methods using etching are also possible. However, the etching method is expensive and unsuitable for mass production.
[0039]
According to experiments, the same results were obtained with regard to the position of the explosion-proof valve even when iron or stainless steel was used as the outer can material in addition to aluminum or aluminum alloy.
[0040]
Next, examples of the explosion-proof valve of the present invention and comparative examples for the same will be described below.
[0041]
In each embodiment, as described above, a part of the explosion-proof valve extends and is formed so as to intersect with the longitudinal or lateral center line, or within an area within 1 mm from each ridgeline. Although the example in the case of being formed is not illustrated, it is attached to each example.
[0042]
Moreover, the illustration in each Example is 40 mm in height and 30 mm in width in any case. The explosion-proof valve is formed on the side wall (side wall having a large area) of the outer can, and the shape thereof includes a straight portion in the length direction, and the width is about 0.2 mm. Moreover, the straight part is provided in the position which does not cross | intersect the centerline of an exterior can side wall. The same functional parts as those in FIG.
Example 1
With the position and shape of the explosion-proof valve 18 d as shown in FIG. 5, the explosion-proof valve 18 d is formed by a linear portion parallel to the opening 19 of the outer can 1. The position of the explosion-proof valve 18d is provided at a position 1 mm from the opening 19 of the outer can 1.
(Example 2)
With the position and shape of the explosion-proof valve 18 e as shown in FIG. 6, the explosion-proof valve 18 e is formed by a linear portion parallel to the opening 19 of the outer can 1. The position of the explosion-proof valve 18e is provided at a position of 10 mm, which is a region within 1/4 of the height of the outer can 1 from the opening 19 of the outer can 1.
(Example 3)
With the position and shape of the explosion-proof valve 18 f as shown in FIG. 7, the explosion-proof valve 18 f is formed by a linear portion parallel to the bottom 20 of the outer can 1. The position of this explosion-proof valve is provided at a position of 10 mm, which is an area within 1/4 of the height of the outer can 1 from the bottom 20 of the outer can 1.
Example 4
The explosion-proof valve 18g has the position and shape as shown in FIG. 8, and the explosion-proof valve 18g is formed by a straight portion parallel to the ridge line perpendicular to the opening 19 of the outer can 1 and the straight portion is another center line of the side wall. It does not cross BB ′ and is provided at a position of 5 mm, which is a region within 1/6 of the width direction of the outer can 1.
(Example 5)
With the position and shape of the explosion-proof valve 18 h as shown in FIG. 9, the explosion-proof valve 18 h is formed by a straight portion having an angle of 45 degrees with respect to the opening 19 of the outer can 1. The end portion of the linear portion of the explosion-proof valve 18h extends over an area from 1 mm to 10 mm from the opening 19 of the outer can 1.
(Example 6)
With the position and shape of the explosion-proof valve 18 i as shown in FIG. 10, the explosion-proof valve 18 i is formed by a straight portion and has an angle of 45 degrees with respect to the opening 19 and 45 degrees with respect to the ridgeline of the side wall 16. And it is formed in the area | region which is 10 mm from the opening part 19 to the height of the armored can 1, and 5 mm from the ridgeline of the side wall 16 to the width direction.
(Example 7)
With the position and shape of the explosion-proof valve 18a as shown in FIG. 11, the explosion-proof valve 18a has the shape shown in FIG. 4A, and the explosion-proof valve 18a is inclined above both ends of the linear portion. The inclination angle is 45 degrees. The position of the explosion-proof valve 18a is formed in a region from 1 mm to 10 mm downward from the opening 19 of the outer can.
(Example 8)
The position and shape of the explosion-proof valve 18b as shown in FIG. 12, the explosion-proof valve 18b has the shape shown in FIG. 4 (b), the explosion-proof valve 18b is inclined above both ends of the linear portion, and a circular portion is formed at the inclined tip. Is forming. The tip is formed in an R shape. The explosion-proof valve 18b is formed in a region from 1 mm to 10 mm below the opening 19 of the outer can 1.
Example 9
The position and shape of the explosion-proof valve 18c as shown in FIG. 13, the explosion-proof valve 18c has the shape shown in FIG. 3C, and the explosion-proof valve 18c is formed in a semicircular shape at both ends of the straight line portion. The radius of curvature on the semicircle is about 15 mm to 25 mm. The explosion-proof valve 18c is formed in a region from 1 mm to 10 mm below the opening 19 of the outer can 1.
(Example 10)
The position and shape of the explosion-proof valve 18j as shown in FIG. 14, the explosion-proof valve 18j has the shape shown in FIG. 14, and the explosion-proof valve 18j has circular portions at both ends of the straight line portion. The radius of curvature of the circular portion is about 0.4 mm to 1.2 mm. The explosion-proof valve 18j is formed in a region from 1 mm to 10 mm below the opening 19 of the outer can 1.
(Comparative Example 1)
With the position and shape of the explosion-proof valve 18k as shown in FIG. 15, the explosion-proof valve 18k is formed by a straight portion parallel to the opening 19 of the outer can 1 and is symmetric with respect to the center line AA ′ of the outer can 1. Formed in position. The explosion-proof valve 18k is provided at a position 5 mm below the opening 19 of the outer can 1.
(Comparative Example 2)
With the position and shape of the explosion-proof valve 18 m as shown in FIG. 16, the explosion-proof valve 18 m is formed by a linear portion parallel to the opening 19 of the outer can 1. The explosion-proof valve 18 m is provided at a position 15 mm below the opening 19 of the outer can 1.
(Comparative Example 3)
With the position and shape of the explosion-proof valve 18n as shown in FIG. 17, the explosion-proof valve 18n is formed by a straight portion parallel to the ridgeline of the side wall 16 including the opening 19 and the bottom 20 of the outer can 1, and the width direction of the outer can 1 Is provided at a position of 6 mm from the ridgeline.
(Comparative Example 4)
With the position and shape of the explosion-proof valve 18p as shown in FIG. 18, the explosion-proof valve 18p is inclined downward at both ends of the linear portion. The inclination angle is 60 degrees. The explosion-proof valve 18p is provided in a region from 5 mm to 12 mm below the opening 19 of the outer can 1.
[0043]
In the above embodiment, the explosion-proof valve is formed on one surface of the side wall of the outer can, but the explosion-proof valve may be formed on each of the two surfaces of the side wall. In that case, the position of the explosion-proof valve in the two eyes is preferably an antisymmetric position with respect to the center line of the side wall.
[0044]
Next, the result of the safety test for each of the above-described examples and comparative examples will be described. In the safety test, about 20 square batteries of Examples 1 to 10 and Comparative Examples 1 to 3, the battery voltage was set to 4.2 V with the battery fully charged, and the battery was heated with a gas burner. The test was conducted. Table 1 shows the results.
[Table 1]
Figure 0004473411
In each of the batteries of Examples 1 to 10, the explosion-proof valve actuated while all 20 were heated by a gas burner, and the test converged by ejecting and releasing the gas generated in the battery. On the other hand, in the batteries of Comparative Examples 1 to 4, although the explosion-proof valve was activated during heating with the gas burner, the release by gas ejection was not sufficient, and among the 20 batteries, more than half of the batteries bursted. .
[0045]
Therefore, it was confirmed that all of the sealed secondary batteries of the present invention had the explosion-proof valve operating as set.
[0046]
As described above, since the sealed secondary battery of the present invention is formed so that the explosion-proof valve opens at a desired pressure, when the internal pressure rises to a predetermined value or more due to gas generation inside the battery, the sealed secondary battery is sealed. An explosion-proof valve provided at a predetermined position of the outer battery can can act to suppress an increase in internal pressure and heat generation of the sealed secondary battery at the time of overcharging.
[0047]
Further, the gas generated by the explosion-proof valve can be smoothly discharged to the outside of the battery to reliably prevent the sealed secondary battery from bursting.
[0048]
【The invention's effect】
According to the present invention, it is possible to obtain an extremely safe sealed secondary battery in which the operation of the explosion-proof valve is surely limited within a predetermined range.
[Brief description of the drawings]
FIG. 1 is a perspective view of a sealed secondary battery according to the present invention.
FIG. 2 is a perspective view of an outer can according to the present invention.
FIG. 3 is an explanatory view of the position of an explosion-proof valve of an outer can according to the present invention.
4A to 4C are explanatory views of the shape of an explosion-proof valve. FIG.
FIG. 5 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 6 is an explanatory diagram of the shape and position of an explosion-proof valve according to an embodiment of the present invention.
FIG. 7 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 8 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 9 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 10 is an explanatory diagram of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 11 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 12 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 13 is an explanatory view of the shape and position of an explosion-proof valve showing an embodiment of the present invention.
FIG. 14 is an explanatory diagram of the shape and position of an explosion-proof valve according to an embodiment of the present invention.
FIG. 15 is an explanatory view of the shape and position of an explosion-proof valve showing a comparative example of the present invention.
FIG. 16 is an explanatory diagram of the shape and position of an explosion-proof valve showing a comparative example of the present invention.
FIG. 17 is an explanatory diagram of the shape and position of an explosion-proof valve showing a comparative example of the present invention.
FIG. 18 is an explanatory diagram of the shape and position of an explosion-proof valve showing a comparative example of the present invention.
FIG. 19 is an explanatory diagram of a conventional explosion-proof valve.
FIG. 20 is an explanatory diagram of a conventional explosion-proof valve.
FIG. 21 is an explanatory diagram of a conventional explosion-proof valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... 3 ... Electrode body, 16 ... Side wall, 18, 18a-18n ... Explosion-proof valve, 19 ... Opening, 20 ... Bottom

Claims (4)

側壁と底部とで有底筒状に形成された金属製で矩形状の外装缶と、この外装缶の内部に収納され、セパレータを挟んで対峙した正極及び負極を渦巻き状に捲回した電極体と、前記外装缶の内部に注入される非水電解液を有し、前記外装缶の開口部を蓋体で封口した密閉二次電池において、
前記側壁のうち面積の広い側壁には他の部分より薄肉とした薄肉部による防爆弁が形成され、この防爆弁のうち直線部分は前記外装缶が立位状態での前記側壁の縦方向又は横方向の中心線と交差しないか、又は、前記各中心線と非対称に交差しており、
前記薄肉部の直線部分の少なくとも一部は、前記外装缶が立位状態で前記側壁の横方向の稜線から対向稜線側へ1mm以後で前記稜線から前記側壁高さの1/4の位置までの領域内で、かつ、前記外装缶が立位状態で前記側壁の縦方向の稜線から対向稜線側へ1mm以後で前記稜線から側壁幅の1/6の位置までの領域内に形成されていることを特徴とする密閉二次電池。
A metal rectangular outer can formed in a bottomed cylindrical shape with a side wall and a bottom, and an electrode body housed inside the outer can and wound in a spiral shape with a positive electrode and a negative electrode facing each other across a separator And a non-aqueous electrolyte injected into the outer can, and in a sealed secondary battery in which the opening of the outer can is sealed with a lid,
Of the side walls, an explosion-proof valve is formed on the side wall having a larger area than the other part, and the straight part of the explosion-proof valve is in the vertical or horizontal direction of the side wall when the outer can is in a standing state. Does not intersect the center line of the direction, or intersects each center line asymmetrically ,
At least a part of the straight portion of the thin wall portion extends from the ridge line to a position ¼ of the side wall height after 1 mm from the lateral ridge line of the side wall to the opposite ridge line side in a state where the outer can is standing. In the region, the outer can is formed in the region from the vertical ridge line of the side wall to the opposite ridge line side after 1 mm from the ridge line to the position of 1/6 of the side wall width in the standing state . Sealed secondary battery characterized by.
前記薄肉部は、前記直線部分とこの直線部分の両端に位置する非直線部分とが連続して形成されたことを特徴とする請求項1記載の密閉二次電池。The sealed secondary battery according to claim 1 , wherein the thin portion is formed by continuously forming the straight portion and non-linear portions located at both ends of the straight portion . 前記防爆弁は、プレス加工によって形成されていることを特徴とする請求項1又は2に記載の密閉二次電池。The sealed secondary battery according to claim 1, wherein the explosion-proof valve is formed by press working . 前記外装缶は、アルミニウム、鉄またはステンレスおよびそれらの合金のうちいずれか1つの材質で形成されていることを特徴とする請求項1又は2に記載の密閉二次電池。The sealed secondary battery according to claim 1, wherein the outer can is made of any one material of aluminum, iron, stainless steel, and alloys thereof .
JP2000162729A 2000-05-31 2000-05-31 Sealed secondary battery Expired - Fee Related JP4473411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162729A JP4473411B2 (en) 2000-05-31 2000-05-31 Sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162729A JP4473411B2 (en) 2000-05-31 2000-05-31 Sealed secondary battery

Publications (2)

Publication Number Publication Date
JP2001345083A JP2001345083A (en) 2001-12-14
JP4473411B2 true JP4473411B2 (en) 2010-06-02

Family

ID=18666593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162729A Expired - Fee Related JP4473411B2 (en) 2000-05-31 2000-05-31 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JP4473411B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042598A (en) * 2002-05-16 2002-06-05 이점호 safety-groove of a secondary battery
JP4535699B2 (en) * 2003-07-17 2010-09-01 三洋電機株式会社 Sealed battery with cleavage groove
KR100795069B1 (en) 2004-10-20 2008-01-17 주식회사 엘지화학 Secondary battery with safety device that prevents crack from spreading
KR20090031444A (en) * 2006-08-10 2009-03-25 파나소닉 주식회사 Enclosed battery
KR101192090B1 (en) 2008-06-09 2013-11-27 삼성에스디아이 주식회사 Lithium Secondary Battery
JP2011005540A (en) * 2009-06-29 2011-01-13 Nippon Steel Corp Deep drawn box-shaped can and method of correcting wall canning of deep drawn box-shaped can
US8920964B2 (en) 2010-05-03 2014-12-30 Samsung Sdi Co., Ltd. Rechargeable battery
JP5557664B2 (en) * 2010-09-16 2014-07-23 日立マクセル株式会社 Sealed battery
KR101326186B1 (en) * 2011-02-17 2013-11-07 주식회사 엘지화학 Prismatic Secondary Battery Employed with Safety Plate
US20130330580A1 (en) * 2011-11-01 2013-12-12 Hitachi Maxell, Ltd. Sealed battery
JP6020786B2 (en) * 2012-01-05 2016-11-02 三菱自動車工業株式会社 Secondary battery cell and secondary battery module
JP2015015098A (en) 2013-07-03 2015-01-22 株式会社神戸製鋼所 Battery case and method of forming safety valve for battery case
EP3506392B1 (en) 2017-04-13 2021-08-04 LG Chem, Ltd. Secondary battery

Also Published As

Publication number Publication date
JP2001345083A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
US7781088B2 (en) Non-aqueous electrolyte secondary cell
US6159631A (en) Overcharge safety vents on prismatic cells
JP4473411B2 (en) Sealed secondary battery
US7955730B2 (en) Secondary battery
US7871724B2 (en) Cylindrical rechargeable battery and method of forming the same
EP2696387B1 (en) Lithium ion secondary battery
EP1717894B1 (en) Cylindrical lithium secondary battery and method of fabricating the same
KR20060102751A (en) Lithium secondary battery
JP2007080598A (en) Sealed square battery
JP2001266804A (en) Sealed secondary battery
WO2022109939A1 (en) Electrochemical apparatus and electronic device
KR101975392B1 (en) Rechargeable battery
JP4530333B2 (en) Sealed battery
KR100601508B1 (en) Secondary battery increased safety about horizontal pressure
CN100423351C (en) Lithium rechargeable battery
KR100865405B1 (en) Secondary battery
KR100515356B1 (en) Secondary battery and method for fabricating safety valve thereof
EP4068478A1 (en) Sealing plate equipped with gas discharge valve and secondary battery using the same
KR101218370B1 (en) Lithium battery with safety
JP7353383B2 (en) Explosion-proof casing for energy storage devices and energy storage devices
TWI725613B (en) Explosion-proof enclosure for an energy storage device and an energy storage device
JP6806006B2 (en) Power storage device
KR101285898B1 (en) Secondary battery
JP2002367582A (en) Sealed battery
KR200228355Y1 (en) Cap assembly for a rectangular battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees