JP4472369B2 - Method for cleaning semiconductor substrate or semiconductor element - Google Patents

Method for cleaning semiconductor substrate or semiconductor element Download PDF

Info

Publication number
JP4472369B2
JP4472369B2 JP2004021058A JP2004021058A JP4472369B2 JP 4472369 B2 JP4472369 B2 JP 4472369B2 JP 2004021058 A JP2004021058 A JP 2004021058A JP 2004021058 A JP2004021058 A JP 2004021058A JP 4472369 B2 JP4472369 B2 JP 4472369B2
Authority
JP
Japan
Prior art keywords
cleaning
cleaning agent
copper
residue
copper wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004021058A
Other languages
Japanese (ja)
Other versions
JP2005217116A (en
Inventor
康広 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004021058A priority Critical patent/JP4472369B2/en
Publication of JP2005217116A publication Critical patent/JP2005217116A/en
Application granted granted Critical
Publication of JP4472369B2 publication Critical patent/JP4472369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、銅配線用非フッ素系残渣洗浄剤、及び該洗浄剤を用いた銅配線半導体基板又は半導体素子の製造方法に関する。さらに詳しくは、シリコンウェハ等の半導体基板上に半導体素子を形成する工程で、銅もしくは銅合金を有する配線を使用し、ドライエッチングやアッシング処理を行った後の残渣、いわゆるポリマーを除去する工程に用いる銅配線用非フッ素系残渣洗浄剤に関する。更に、半導体基板又は半導体素子の洗浄方法及び製造方法に関する。   The present invention relates to a non-fluorinated residue cleaning agent for copper wiring and a method for manufacturing a copper wiring semiconductor substrate or a semiconductor element using the cleaning agent. More specifically, in a process of forming a semiconductor element on a semiconductor substrate such as a silicon wafer, a process using a wiring having copper or a copper alloy, and removing a so-called polymer after dry etching or ashing treatment is performed. The present invention relates to a non-fluorinated residue cleaning agent for copper wiring to be used. Furthermore, the present invention relates to a cleaning method and a manufacturing method for a semiconductor substrate or a semiconductor element.

近年、電子機器の小型化に伴い、半導体素子の高速化及び高集積化が進んでおり、高集積化では配線の微細化が要求されている。その結果、配線は従来のアルミニウムから、高導電率の銅へ移行しつつある。そこで、銅配線半導体基板の洗浄工程で、現在使用しているアルミニウム配線半導体基板用の残渣洗浄剤を用いた場合、銅配線由来のポリマーに対しては、洗浄力が不足していることや、銅配線自身が洗浄剤によって劣化し、膜厚減少が起こることなどから、デバイス化した際の電気特性に影響が生じ、生産性が下がることが問題となっている。   In recent years, with the miniaturization of electronic devices, semiconductor elements have been increased in speed and integration, and miniaturization of wiring is required for high integration. As a result, wiring is shifting from conventional aluminum to high conductivity copper. Therefore, in the cleaning process of the copper wiring semiconductor substrate, when using the residue cleaning agent for the aluminum wiring semiconductor substrate currently used, the polymer derived from the copper wiring has insufficient cleaning power, Since the copper wiring itself is deteriorated by the cleaning agent and the film thickness is reduced, the electrical characteristics at the time of device formation are affected, and the productivity is lowered.

また半導体素子を構成している絶縁膜も、プラズマTEOS酸化膜から低誘電率膜、いわゆるLow−k膜へ移行しつつある。Low−k膜としては、HSQ、MSQ、有機SOG、SiOF等のフッ素系樹脂、SiOC、SilK等がよく知られているが、Low−k膜自身が化学的に安定でなく、既存の残渣洗浄剤ではダメージを受け、比誘電率の上昇や、膜厚減少が起こることが、普及を妨げる原因のひとつとなっている。   In addition, the insulating film constituting the semiconductor element is also shifting from a plasma TEOS oxide film to a low dielectric constant film, a so-called Low-k film. As the Low-k film, fluorine resins such as HSQ, MSQ, organic SOG, and SiOF, SiOC, and SilK are well known. However, the Low-k film itself is not chemically stable, and the existing residue cleaning is performed. The agent is damaged, and the increase in relative dielectric constant and the decrease in film thickness are one of the causes that hinder its spread.

更に次世代の絶縁膜として開発が進められているUltra―low−kと呼ばれるポーラス材料に対しては、これまで以上に材料ダメージを受けやすいことが知られており、ダメージの小さい残渣洗浄剤の開発が必要となっている。   Furthermore, it is known that the porous material called Ultra-low-k, which is being developed as a next-generation insulating film, is more susceptible to material damage than ever before, and the residual cleaning agent with less damage. Development is needed.

しかしながら、銅配線やLow−k膜、Ultra−low−k膜等の絶縁膜にダメージを与えず、銅配線由来のポリマーを効率良く洗浄できる銅配線半導体基板用洗浄剤は未だ得られていないのが現状である。   However, there has not yet been obtained a cleaning agent for a copper wiring semiconductor substrate that can efficiently clean a polymer derived from copper wiring without damaging an insulating film such as a copper wiring, a low-k film, or an ultra-low-k film. Is the current situation.

例えば、特許文献1では、ホスホン酸系キレート剤と、酸化剤、水溶性フッ素化合物、有機溶剤とを含有したレジスト剥離液が提案されている。しかしながら、これらの剥離液や洗浄剤は、アルミニウム配線に対しては効果があるが、銅配線に対しては、ダメージが大きく使用するのは困難である。   For example, Patent Document 1 proposes a resist stripping solution containing a phosphonic acid chelating agent, an oxidizing agent, a water-soluble fluorine compound, and an organic solvent. However, although these stripping solutions and cleaning agents are effective for aluminum wiring, they are highly damaged and difficult to use for copper wiring.

また、特許文献2では、ホスホン酸系キレート剤に加えて、オゾン又は/及びフッ素イオンを含んでなる半導体表面洗浄剤が提案されているが、特許文献1と同様に銅配線へのダメージが大きく使用するのは困難である。
特開2000−258924号公報 特開平11−340182号公報
Further, Patent Document 2 proposes a semiconductor surface cleaning agent containing ozone or / and fluorine ions in addition to a phosphonic acid chelating agent. However, as in Patent Document 1, damage to copper wiring is large. It is difficult to use.
JP 2000-258924 A JP 11-340182 A

本発明の目的は、銅配線半導体基板又は半導体素子の製造工程におけるエッチングやアッシング処理後の残渣を、銅配線やlow−k膜等の絶縁膜にダメージを与えず、効果的に除去できる銅配線用非フッ素系残渣洗浄剤、該洗浄剤を用いる半導体基板又は半導体素子の洗浄方法、及び該洗浄方法を用いる半導体基板又は半導体素子の製造方法を提供することにある。   An object of the present invention is to provide a copper wiring that can effectively remove a residue after etching or ashing in a manufacturing process of a copper wiring semiconductor substrate or a semiconductor element without damaging an insulating film such as a copper wiring or a low-k film. An object of the present invention is to provide a non-fluorine-based residue cleaning agent, a semiconductor substrate or semiconductor element cleaning method using the cleaning agent, and a semiconductor substrate or semiconductor element manufacturing method using the cleaning method.

即ち、本発明の要旨は、
〔1〕 亜リン酸及び/又は有機ホスホン酸と、水とを含有する銅配線用非フッ素系残渣洗浄剤、
〔2〕 前記〔1〕記載の銅配線用非フッ素系残渣洗浄剤を用いて、半導体基板又は半導体素子を洗浄する工程を有する、半導体基板又は半導体素子の洗浄方法、並びに
〔3〕 前記〔2〕記載の洗浄方法を用いた洗浄工程を含む、半導体基板又は半導体素子の製造方法
に関する。
That is, the gist of the present invention is as follows.
[1] A non-fluorine residue cleaning agent for copper wiring, containing phosphorous acid and / or organic phosphonic acid and water,
[2] A method for cleaning a semiconductor substrate or a semiconductor element, comprising a step of cleaning the semiconductor substrate or the semiconductor element using the non-fluorine-based residue cleaning agent for copper wiring according to [1], and [3] the above [2] ] The manufacturing method of a semiconductor substrate or a semiconductor element including the washing | cleaning process using the washing | cleaning method of description.

本発明の銅配線用非フッ素系残渣洗浄剤は、半導体基板又は半導体素子形成時に発生する銅配線残渣に対し優れた剥離性を有し、且つ配線幅の狭い配線金属材料に対してもエッチングが起こらず防食性に優れる。従って、本発明の銅配線用非フッ素系残渣洗浄剤を用いることで、半導体素子の高速化、高集積化が可能となり、品質の優れたLCD、メモリ、CPU等の電子部品を製造することができるという効果が発現される。   The non-fluorine residue cleaning agent for copper wiring of the present invention has excellent releasability for copper wiring residue generated during the formation of a semiconductor substrate or semiconductor element, and can also etch a wiring metal material having a narrow wiring width. It does not occur and has excellent corrosion resistance. Therefore, by using the non-fluorine residue cleaning agent for copper wiring of the present invention, it is possible to increase the speed and integration of semiconductor elements, and to manufacture electronic parts such as LCDs, memories, and CPUs with excellent quality. The effect that it is possible is expressed.

1.銅配線用非フッ素系残渣洗浄剤
本発明の銅配線用非フッ素系残渣洗浄剤(以下、単に洗浄剤という)は、亜リン酸及び/又は有機ホスホン酸と水とを含有するものである点に一つの大きな特徴があり、かかる特徴を有することで、銅配線半導体基板の製造工程におけるエッチングやアッシング処理後の残渣、いわゆるポリマーを、銅配線やlow−k膜等の絶縁膜にダメージを与えず、効果的に除去できるという効果が奏される。
なお、本発明の洗浄剤は、非フッ素系の洗浄剤であり、フッ素化合物の含有量が、洗浄剤中、0.1重量%未満であり、好ましくは0.05重量%以下のものをいう。
1. Non-fluorine residue cleaning agent for copper wiring The non-fluorine residue cleaning agent for copper wiring of the present invention (hereinafter simply referred to as cleaning agent) contains phosphorous acid and / or organic phosphonic acid and water. There is one major feature, and by having such a feature, the residue after etching and ashing treatment in the manufacturing process of the copper wiring semiconductor substrate, so-called polymer, is damaged to the insulating film such as copper wiring and low-k film. Therefore, the effect that it can be removed effectively is produced.
The cleaning agent of the present invention is a non-fluorine cleaning agent, and the fluorine compound content is less than 0.1% by weight, preferably 0.05% by weight or less in the cleaning agent. .

本発明の洗浄剤における亜リン酸としては、酸形態のもののほか、塩の形態のものを含有したものも使用することができる。   As phosphorous acid in the cleaning agent of the present invention, those containing the salt form in addition to the acid form can be used.

洗浄剤の残部は水である。水としては、蒸留水、イオン交換水、純水、超純水等が挙げられる。水の含有量としては、作業性、廃液処理等の環境性の観点から、洗浄剤中、70〜99重量%であることが好ましく、より好ましくは80〜99重量%、更に好ましくは85〜98.5重量%である。   The balance of the cleaning agent is water. Examples of water include distilled water, ion exchange water, pure water, and ultrapure water. The water content is preferably 70 to 99% by weight, more preferably 80 to 99% by weight, and still more preferably 85 to 98% in the cleaning agent from the viewpoint of workability and environmental performance such as waste liquid treatment. .5% by weight.

本発明において用いられる有機ホスホン酸としては、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等が挙げられ、中でも、エッチング残渣又はアッシング残渣の除去性及び配線、絶縁膜等の腐食防止の観点から、1−ヒドロキシエチリデン−1,1−ジホスホン酸が好ましい。   Examples of the organic phosphonic acid used in the present invention include 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid). Among them, 1-hydroxyethylidene-1,1-diphosphonic acid is preferable from the viewpoint of removing etching residues or ashing residues and preventing corrosion of wirings, insulating films and the like.

亜リン酸及び/又は有機ホスホン酸の含有量は、銅配線腐食性、low−k膜のダメージの観点から、洗浄剤中、0.5〜10重量%が好ましく、0.5〜5重量%がより好ましく、1.0〜5重量が更に好ましい。   The content of phosphorous acid and / or organic phosphonic acid is preferably 0.5 to 10% by weight, and preferably 0.5 to 5% by weight in the cleaning agent from the viewpoint of copper wiring corrosion and low-k film damage. Is more preferable, and 1.0 to 5 weight is still more preferable.

また、本発明の洗浄剤は、エッチング残渣又はアッシング残渣への洗浄剤の浸透性を上げることや、洗浄剤のlow−k膜への濡れ性を上げるために、さらに水溶性有機溶剤を含有することが好ましい。   The cleaning agent of the present invention further contains a water-soluble organic solvent in order to increase the permeability of the cleaning agent to the etching residue or ashing residue and to increase the wettability of the cleaning agent to the low-k film. It is preferable.

前記水溶性有機溶剤としては、例えばメタノール、エタノール、イソプロピルアルコール、ベンジルアルコール、3−メトキシ−1−ブタノール、4−メトキシ−1−ブタノール、2−ヒドロキシイソ酪酸メチル等のアルコール類、フェノール、クレゾール等のフェノール類、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド類、ジメチルスルホン、ジエチルスルホン等のスルホン類、N―メチルホルムアミド、N、N―ジメチルホルムアミド、N―メチルアセトアミド、N、N―ジメチルアセトアミド、N、N―ジエチルアセトアミド等のアミド類、N―メチル−2−ピロリドン、N―エチル−2−ピロリドン、N―ヒドロキシメチル−2−ピロリドン等のラクタム類、1、3−ジメチル−2−イミダゾリジノン、1、3−ジエチル−2−イミダゾリジノン等のイミダゾリジノン類、γ−ブチロラクトン、δ―バレロラクトン等のラクトン類、エチレングリコール、ジエチレングリコール、ブチルジグリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等の多価アルコール及びそのアルキルエーテル誘導体、1、3−ジオキサン、1、4−ジオキサン、メチルグリセリルエーテル、ジメチルグリセリルエーテル、トリメチルグリセリルエーテル、エチルグリセリルエーテル等のエーテル類、プロピオン酸メチル、蓚酸メチル、乳酸メチル、蓚酸エチル、乳酸エチル等のエステル、メチルイソブチルケトン等のケトン類、アセトニトリル等のニトリル類等が挙げられ、その1種以上を用いることができる。   Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, benzyl alcohol, 3-methoxy-1-butanol, 4-methoxy-1-butanol, methyl 2-hydroxyisobutyrate, phenol, cresol, and the like. Phenols, sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide, sulfones such as dimethyl sulfone and diethyl sulfone, N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, N, Amides such as N-diethylacetamide, lactams such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-hydroxymethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 1, 3- Imidazolidinones such as ethyl-2-imidazolidinone, lactones such as γ-butyrolactone, δ-valerolactone, multivalents such as ethylene glycol, diethylene glycol, butyl diglycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether Alcohols and alkyl ether derivatives thereof, 1,3-dioxane, 1,4-dioxane, methyl glyceryl ether, dimethyl glyceryl ether, trimethyl glyceryl ether, ethyl glyceryl ether and other ethers, methyl propionate, methyl oxalate, methyl lactate, oxalic acid Examples thereof include esters such as ethyl and ethyl lactate, ketones such as methyl isobutyl ketone, and nitriles such as acetonitrile, and one or more of them can be used.

これらの内で、好ましくはアルコール類、フェノール類、多価アルコール及びそのアルキルエーテル誘導体、スルホキシド類、アミド類、ラクタム類であり、より好ましくはアルコール類、及びブチルジグリコール等の多価アルコールのアルキルエーテル誘導体、ジメチルスルホキシド、N、N―ジメチルホルムアミド、N―メチル−2−ピロリドン等であり、更に好ましくは、アルコール類、またはブチルジグリコール等の多価アルコールのアルキルエーテル誘導体であり、その中でもブチルジグリコールが最も効果的である。
これらの水溶性有機溶剤は、単独で又は2種以上を混合して使用してもよい。
Among these, alcohols, phenols, polyhydric alcohols and alkyl ether derivatives thereof, sulfoxides, amides, and lactams are preferable, and alcohols and alkyls of polyhydric alcohols such as butyl diglycol are more preferable. Ether derivatives, dimethyl sulfoxide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like, more preferably alcohols or alkyl ether derivatives of polyhydric alcohols such as butyl diglycol, among which butyl Diglycol is most effective.
These water-soluble organic solvents may be used alone or in admixture of two or more.

水溶性有機溶剤の含有量は、浸透性や濡れ性の観点、及びlow−k膜へのダメージの観点から、洗浄剤中、0.5〜20重量%が好ましく、より好ましくは0.5〜15重量%、更に好ましくは0.5〜10重量%である。   The content of the water-soluble organic solvent is preferably from 0.5 to 20% by weight in the cleaning agent, more preferably from 0.5 to 20% by weight from the viewpoints of permeability and wettability, and damage to the low-k film. 15% by weight, more preferably 0.5 to 10% by weight.

本発明の洗浄剤は、前記のような成分を含有する組成物であれば、エッチングやアッシング処理後の残渣を、銅配線やlow−k膜等の絶縁膜にダメージを与えず、効果的に除去できる。本発明において、かかる効果が発現される理由としては、亜リン酸や有機ホスホン酸は特異的に銅のエッチング残渣又はアッシング残渣を溶解することができ、且つ水系洗浄剤であるため、絶縁膜等の材料ダメージを抑制できる等が挙げられる。   If the cleaning agent of the present invention is a composition containing the components as described above, the residue after etching or ashing treatment can be effectively performed without damaging the insulating film such as copper wiring or low-k film. Can be removed. In the present invention, such an effect is expressed because phosphorous acid or organic phosphonic acid can specifically dissolve copper etching residue or ashing residue and is an aqueous cleaning agent, so that an insulating film, etc. The material damage can be suppressed.

また、本発明の洗浄剤は、前記のような効果を損なわない範囲で、その他の防食剤、防腐剤、界面活性剤、消泡剤等の添加剤を含有してもかまわない。かかる添加剤の含有量は、本発明の洗浄剤の効果を損なわないでそれぞれの添加剤の性能を発揮できる観点から、本発明の洗浄剤中、1重量%以下であることが好ましく、0.5重量%以下がより好ましい。   In addition, the cleaning agent of the present invention may contain additives such as other anticorrosives, preservatives, surfactants and antifoaming agents as long as the effects as described above are not impaired. The content of the additive is preferably 1% by weight or less in the cleaning agent of the present invention, from the viewpoint of exhibiting the performance of each additive without impairing the effect of the cleaning agent of the present invention. 5% by weight or less is more preferable.

尚、前記洗浄剤中の各成分の濃度は、該洗浄剤製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として洗浄剤は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component in the cleaning agent may be either the concentration at the time of manufacturing the cleaning agent or the concentration at the time of use. Usually, a cleaning agent is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

本発明の洗浄剤は、前記各成分を公知の方法で混合することにより調製することができる。   The cleaning agent of the present invention can be prepared by mixing the above-mentioned components by a known method.

本発明の洗浄剤のpHとしては、優れた残渣除去性、銅配線防食性を得る観点、low−k膜のダメージを低減する観点から、1〜4が好ましく、1〜3がより好ましい。   The pH of the cleaning agent of the present invention is preferably 1 to 4 and more preferably 1 to 3 from the viewpoint of obtaining excellent residue removability, copper wiring anticorrosion, and reducing damage to the low-k film.

本発明の洗浄剤は、疎水性が高い材料であるlow−k膜において、洗浄剤の濡れ性を上げて洗浄性を高める観点から、その表面張力が50mN/m以下であることが好ましく、より好ましくは45mN/m以下、更に好ましくは40mN/m以下である。表面張力の測定は、後述の実施例に記載の方法に基づいて行うことができる。   In the low-k film which is a highly hydrophobic material, the cleaning agent of the present invention preferably has a surface tension of 50 mN / m or less from the viewpoint of increasing the wettability of the cleaning agent and improving the cleaning property. Preferably it is 45 mN / m or less, More preferably, it is 40 mN / m or less. The surface tension can be measured based on the method described in Examples described later.

また、本発明の洗浄剤は、銅配線由来のエッチング残渣の除去性に優れたものである。この銅配線由来のエッチング残渣の除去性は、例えば、下記標準試験(A)で測定する第二酸化銅(CuO)の溶解量により評価することができる。   Moreover, the cleaning agent of the present invention is excellent in removability of etching residues derived from copper wiring. The removability of the etching residue derived from the copper wiring can be evaluated by, for example, the amount of dissolved copper dioxide (CuO) measured in the following standard test (A).

標準試験(A)
1)100ml容のポリエチレン容器に、洗浄剤20gを入れ、25℃の恒温槽中で恒温化する。
2)次に、酸化銅(II)粉末(和光純薬製:038-04345 ;平均粒径 約3μm)0.1gを添加し、30分間十分撹拌する。
3)上澄み10gを遠心チューブに分取し、遠心分離装置(日立製作所製:商品名「himac CP56G」)を用い、20000 r/min、15分間の条件で分離を行い、その結果生じた上澄み液をICP 発光分析装置(堀場製作所(株)製、商品名「JY238 」)を用いて銅の発光強度を測定する。
4)銅の溶解量は、既知の濃度の銅水溶液により作成した検量線から求める。
Standard test (A)
1) Put 20 g of cleaning agent in a 100 ml polyethylene container, and make it constant temperature in a thermostatic bath at 25 ° C.
2) Next, 0.1 g of copper (II) oxide powder (manufactured by Wako Pure Chemicals: 038-04345; average particle size of about 3 μm) is added and stirred sufficiently for 30 minutes.
3) 10g of the supernatant was collected in a centrifuge tube and separated using a centrifuge (made by Hitachi, trade name “himac CP56G”) under the conditions of 20000 r / min for 15 minutes, and the resulting supernatant was obtained. Is measured using an ICP emission spectrometer (trade name “JY238”, manufactured by HORIBA, Ltd.).
4) The dissolution amount of copper is determined from a calibration curve prepared with a copper aqueous solution having a known concentration.

前記溶解量としては、低温、短時間で残渣を除去する観点から、1000ppm以上が好ましく、より好ましくは1500ppm以上、更に好ましくは2000ppm以上である。   The amount of dissolution is preferably 1000 ppm or more, more preferably 1500 ppm or more, and still more preferably 2000 ppm or more, from the viewpoint of removing the residue at a low temperature for a short time.

また、本発明の洗浄剤は、銅配線へのダメージが少ないものである。この物性については、下記標準試験(B)で測定する銅の腐食量により評価することができる。   Moreover, the cleaning agent of the present invention has little damage to the copper wiring. This physical property can be evaluated by the amount of copper corrosion measured in the following standard test (B).

標準試験(B)
1)シリコン上にメッキ法により製膜した銅メッキ層(厚さ約500nm )を形成させた基板から、3cm角に切り出し、試験片を作製する。
2)試験片を、0.1 重量%フッ化水素酸水溶液に室温下30秒間浸漬し、水ですすぎ、窒素ブローで乾燥することにより前洗浄を行う。その試験片について蛍光X線測定装置(理学電機工業製:「ZSX100e 」)を用い銅の強度測定を行う(洗浄剤浸漬前の膜厚測定)。
4)その後、恒温化された25℃の洗浄剤20gに試験片を30分間浸漬し、イオン交換水ですすぎ、窒素ブローにより乾燥した後、浸漬前に測定した場所と同一場所を蛍光X線測定装置を用い銅の強度測定を行う(洗浄剤浸漬後の膜厚測定)。
5)あらかじめ既知の膜厚の銅メッキ膜について蛍光X線測定装置を用いて作成した検量線から洗浄剤浸漬前後での膜厚を算出して銅の腐食量を算出する。
Standard test (B)
1) From a substrate on which a copper plating layer (thickness: about 500 nm) formed by plating on silicon is formed, a 3 cm square is cut out to prepare a test piece.
2) Pre-clean the test piece by immersing it in a 0.1 wt% hydrofluoric acid aqueous solution at room temperature for 30 seconds, rinsing with water, and drying with nitrogen blow. The test piece is measured for the strength of copper using a fluorescent X-ray measuring device (manufactured by Rigaku Corporation: “ZSX100e”) (measurement of film thickness before immersion of the cleaning agent).
4) After that, immerse the test piece in 20g of constant temperature 25 ° C cleaning agent for 30 minutes, rinse with ion-exchanged water, dry by nitrogen blow, and measure the same place as measured before immersion by X-ray fluorescence. The strength of copper is measured using an apparatus (measurement of film thickness after immersion in a cleaning agent).
5) The copper corrosion amount is calculated by calculating the film thickness before and after the immersion of the cleaning agent from a calibration curve prepared in advance using a fluorescent X-ray measuring apparatus for a copper plating film having a known film thickness.

前記銅の腐食量は、配線ダメージを防ぐ観点から、10nm未満が好ましく、より好ましくは7nm以下、更に好ましくは5nm以下である。   From the viewpoint of preventing wiring damage, the copper corrosion amount is preferably less than 10 nm, more preferably 7 nm or less, and even more preferably 5 nm or less.

また、本発明の洗浄剤は、絶縁膜へのダメージが少ないものである。この物性については、絶縁膜の腐食量を測定することにより評価することができる。絶縁膜の腐食量は、10nm以下であることが好ましく、5nm以下であることがより好ましい。絶縁膜の腐食量は、後述の実施例に記載の方法により測定することができる。   Further, the cleaning agent of the present invention has little damage to the insulating film. This physical property can be evaluated by measuring the corrosion amount of the insulating film. The amount of corrosion of the insulating film is preferably 10 nm or less, and more preferably 5 nm or less. The amount of corrosion of the insulating film can be measured by the method described in Examples described later.

本発明の洗浄剤は、例えば、銅等の金属配線及び絶縁膜を有する、即ち銅等の金属配線及び絶縁膜を形成する工程前後の半導体基板のレジストをアッシングした後、ライトアッシングした後、又はアッシングしなかった場合のいずれにおいても、該レジストの剥離に好適に使用することができる。   The cleaning agent of the present invention has, for example, a metal wiring such as copper and an insulating film, that is, after ashing the resist of the semiconductor substrate before and after the step of forming the metal wiring and insulating film such as copper, after light ashing, or In any case where ashing is not performed, the resist can be suitably used for peeling.

2.半導体基板又は半導体素子の洗浄方法
本発明の半導体基板又は半導体素子の洗浄方法は、本発明の洗浄剤を用いて、半導体基板又は半導体素子を洗浄することを特徴とする。かかる洗浄手段としては、特に限定されるものではなく、浸漬剥離洗浄、揺動剥離洗浄、枚葉剥離洗浄、スピナーのような回転を利用した剥離洗浄、パドル洗浄、気中又は液中スプレーによる剥離洗浄、超音波を用いた剥離洗浄等が挙げられるが、中でも、浸漬剥離洗浄と揺動剥離洗浄に好適である。
2. Semiconductor substrate or semiconductor element cleaning method The semiconductor substrate or semiconductor element cleaning method of the present invention is characterized by cleaning the semiconductor substrate or semiconductor element using the cleaning agent of the present invention. Such cleaning means is not particularly limited, and immersion peeling cleaning, rocking peeling cleaning, single wafer peeling cleaning, peeling cleaning using rotation such as a spinner, paddle cleaning, peeling by air or liquid spray. Examples thereof include cleaning, peeling cleaning using ultrasonic waves, and the like. Among them, it is suitable for immersion peeling cleaning and swing peeling cleaning.

洗浄温度は、残渣の溶解性、残渣剥離性、金属配線材料の防食性、安全性、及び操業性の観点から20〜60℃が好ましく、20〜40℃の範囲がより好ましく、20〜30℃又は室温(25℃程度)が更に好ましい。なお、前記洗浄手段における、他の洗浄条件については、特に限定はない。   The washing temperature is preferably 20 to 60 ° C., more preferably 20 to 40 ° C. from the viewpoint of residue solubility, residue peelability, corrosion resistance of metal wiring material, safety, and operability, and 20 to 30 ° C. is more preferable. Or room temperature (about 25 degreeC) is still more preferable. The other cleaning conditions in the cleaning means are not particularly limited.

本発明の洗浄剤で洗浄した後のすすぎ工程においては、水すすぎが可能である。従来のフッ化アンモニウム系洗浄剤やヒドロキシルアミン等のアミン系洗浄剤は、溶剤系の剥離剤であるために水ではすすぎにくく、また、水との混合で配線等の腐食が起こる恐れがあるため、一般的にイソプロパノール等の溶剤ですすぐ方法が用いられていた。しかし、本発明の洗浄剤は水系である点と、水過剰になっても配線の腐食に対する耐性は高いことから、水すすぎが可能となり、環境負荷が極めて小さく経済的な洗浄方法が得られる。   In the rinsing step after washing with the cleaning agent of the present invention, water rinsing is possible. Since conventional amine-based cleaning agents such as ammonium fluoride-based cleaning agents and hydroxylamine are solvent-based release agents, they are difficult to rinse with water, and there is a risk of corrosion of wiring etc. when mixed with water. Generally, a method of rinsing with a solvent such as isopropanol has been used. However, since the cleaning agent of the present invention is water-based and has high resistance against corrosion of wiring even when water is excessive, water rinsing is possible, and an economical cleaning method is obtained with an extremely low environmental load.

本発明において、銅配線としては、銅又は銅を30重量%以上含む合金によってつくられた配線が挙げられる。前記銅配線は、メッキ、CVD及びPVD等によって形成される。   In the present invention, examples of the copper wiring include copper and a wiring made of an alloy containing 30% by weight or more of copper. The copper wiring is formed by plating, CVD, PVD, or the like.

また、半導体基板は、銅配線以外にも、例えば、アルミニウム、タングステン、チタン、タンタル、クロム等の配線を含んでいてもよく、これらの金属配線は異種の金属を含む合金であっても、また純金属でもよく、また配線形状にも限定されるものではない。   In addition to the copper wiring, the semiconductor substrate may include wiring such as aluminum, tungsten, titanium, tantalum, and chromium, and these metal wirings may be alloys containing different kinds of metals. Pure metal may be used, and the shape of the wiring is not limited.

なお、本発明に係わる半導体基板において使用できる絶縁膜としては、プラズマTEOS酸化膜、及び比誘電率3.0以下のLow−k膜、さらには比誘電率2.0以下のUltra−low−k膜等の低誘電率絶縁膜が挙げられる。Low−k膜の具体例としては、ヒドロゲンシルセスキオキサン系のHSQ、メチルシルセスキオキサン系のMSQ、有機SOG、SiOF等のフッ素系樹脂、SiOC、芳香族ポリアリールエーテル系のSiLK等が挙げられる。また、Ultra−low−k膜としては、ポーラスMSQ、ポーラスSiOC、ポーラスSiLK等が挙げられる。本発明の洗浄剤は、残渣除去効果が高く、かつlow−k膜やUltra−low−k膜のようなダメージを受けやすい材料に対しても、使用することができる。洗浄剤によるlow−k膜へのダメージとしては、膜厚の減少、増大(膨潤)や、比誘電率の変化などが上げられるが、本発明の洗浄剤は、非常にlow−k膜への影響が小さく、これらの変化が起こりにくい。
尚、前記の絶縁膜は、バリア膜、ストッパー膜、層間絶縁膜等に用いることができる。
The insulating film that can be used in the semiconductor substrate according to the present invention includes a plasma TEOS oxide film, a low-k film having a relative dielectric constant of 3.0 or less, and an ultra-low-k having a relative dielectric constant of 2.0 or less. Examples thereof include a low dielectric constant insulating film such as a film. Specific examples of the low-k film include hydrogen silsesquioxane-based HSQ, methyl silsesquioxane-based MSQ, fluorine resins such as organic SOG and SiOF, SiOC, aromatic polyaryl ether-based SiLK, and the like. Is mentioned. Examples of the ultra-low-k film include porous MSQ, porous SiOC, and porous SiLK. The cleaning agent of the present invention can be used even for materials that have a high residue removal effect and are susceptible to damage such as low-k films and ultra-low-k films. The damage to the low-k film due to the cleaning agent includes a decrease in film thickness, an increase (swelling), a change in relative dielectric constant, and the like. The impact is small and these changes are unlikely to occur.
The insulating film can be used as a barrier film, a stopper film, an interlayer insulating film, and the like.

本発明の洗浄対象物の一つである残渣は、エッチングによりデュアルダマシン構造形成時に形成されたビィアホールやビィアトレンチホール等のホール頂上部若しくは側壁部に付着した残渣、バリア膜をエッチングした時に銅配線上、ホール頂上部、若しくは側壁部に付着した銅系の残渣、又はチタン系の残渣等を示すが、電子基板の製造過程で生成する残渣であれば、これらに限定されるものではない。   The residue that is one of the objects to be cleaned of the present invention is a residue attached to the top or side wall of a via hole or a via trench hole formed during the formation of a dual damascene structure by etching, or a copper wiring when the barrier film is etched. The upper residue, the top of the hole, or the copper-based residue attached to the side wall portion, or the titanium-based residue is shown. However, the residue is not limited as long as it is a residue generated in the manufacturing process of the electronic substrate.

更に、洗浄対象物としては、前記銅配線等の金属配線を形成する際に使用されるレジストが挙げられる。レジストとしては、ポジ型、ネガ型及びポジ−ネガ兼用型のフォトレジストが挙げられ、後記埋め込み材も含む。また、ビィアホール及びビィアトレンチホールの形成時に好適に用いることができる。例えば、リアライズ社刊「半導体集積回路用レジスト材料ハンドブック」(1996年)のP. 67〜169に記載されているレジストを使用できる。   Furthermore, the cleaning object includes a resist used when forming the metal wiring such as the copper wiring. Examples of the resist include a positive type, a negative type, and a positive / negative type photoresist, and include a post-embedding material. Further, it can be suitably used when forming a via hole and a via trench hole. For example, resists described in pages 67 to 169 of “Resist Material Handbook for Semiconductor Integrated Circuits” (1996) published by Realize, Inc. can be used.

3.半導体基板又は半導体素子の製造方法
本発明の半導体基板又は半導体素子の製造方法は、前記洗浄方法を用いた洗浄工程を含むものであり、具体的には、前記洗浄剤を用いて、半導体基板又は半導体素子を洗浄する工程を有することを特徴とする。
該製造方法に用いられる半導体基板又は半導体素子の洗浄方法は、前記方法と同じであることが好ましい。前記洗浄剤、及び前記半導体基板又は半導体素子の洗浄方法を用いて得られる半導体基板又は半導体素子は、残渣の残留がなく、金属配線材料の腐食が極めて少ないものであり、従来の洗浄剤では適用できなかった配線幅が非常に微細な半導体基板又は半導体素子の洗浄にも使用でき、かつlow−k膜へのダメージも小さいため、より小型で高性能なLCD、メモリ、CPU等の電子部品の製造に好適に使用できる。さらには、次世代の絶縁膜として開発が進められているUltra―low−k等のダメージを受けやすいポーラス材料を用いた半導体基板又は半導体素子の製造にも好適に使用することができる。
3. Manufacturing method of semiconductor substrate or semiconductor element The manufacturing method of a semiconductor substrate or semiconductor element of the present invention includes a cleaning step using the cleaning method, and specifically, using the cleaning agent, It has the process of wash | cleaning a semiconductor element.
The method for cleaning the semiconductor substrate or semiconductor element used in the manufacturing method is preferably the same as the above method. The semiconductor substrate or semiconductor element obtained by using the cleaning agent and the method for cleaning the semiconductor substrate or semiconductor element has no residual residue and extremely little corrosion of the metal wiring material. It can be used to clean semiconductor substrates or semiconductor elements with very fine wiring widths, and the damage to the low-k film is small, making it possible to reduce the size and performance of electronic components such as LCDs, memories, and CPUs. It can be suitably used for production. Furthermore, it can be suitably used for manufacturing a semiconductor substrate or a semiconductor element using a porous material that is easily damaged such as Ultra-low-k, which is being developed as a next-generation insulating film.

実施例1〜5、比較例1〜4(実施例1は参考例である)
1.洗浄剤の調製
表1に示す組成(数値は重量%)の洗浄剤を調製し、pHを測定した。また、得られた洗浄剤の物性について、以下の方法に従って測定し、評価した。これらの結果を表2に示す。
Examples 1-5, Comparative Examples 1-4 (Example 1 is a reference example)
1. Preparation of cleaning agent A cleaning agent having the composition shown in Table 1 (the numerical value is% by weight) was prepared, and the pH was measured. Further, the physical properties of the obtained cleaning agent were measured and evaluated according to the following methods. These results are shown in Table 2.

2.表面張力の測定
表面張力の測定は、自動表面張力計「CBVP−Z型」(協和界面科学株式会社)を用いて行った。
2. Measurement of surface tension Measurement of surface tension was performed using an automatic surface tension meter “CBVP-Z type” (Kyowa Interface Science Co., Ltd.).

3.第二酸化銅(CuO)溶解量、及び銅メッキ膜腐食量の測定
前記標準試験(A)により第二酸化銅の溶解量を、また、前記標準試験(B)により銅メッキ膜の腐食量を測定した。
なお、標準試験(A)における検量線は、Cu含有量が既知の約0、2及び20ppmの標準溶液を用いてICP測定により作成した。洗浄剤の測定は、0〜20ppmの検量線範囲内に測定値が入るように希釈して行った。
また、標準試験(B)における検量線は、銅メッキ膜の厚さが既知の約0、250及び500nmの標準試料を用い、蛍光X線強度を測定することにより作成した。
3. Measurement of dissolution amount of copper dioxide (CuO) and corrosion amount of copper plating film The dissolution amount of copper dioxide was measured by the standard test (A), and the corrosion amount of copper plating film was measured by the standard test (B). .
The calibration curve in the standard test (A) was prepared by ICP measurement using standard solutions with known Cu contents of about 0, 2, and 20 ppm. The cleaning agent was measured by diluting so that the measured value was within the calibration curve range of 0 to 20 ppm.
In addition, the calibration curve in the standard test (B) was prepared by measuring the fluorescent X-ray intensity using standard samples with known copper plating film thicknesses of about 0, 250 and 500 nm.

4.絶縁膜腐食量の測定
シリコン上に低誘電率絶縁膜として、ポーラスSiOC(比誘電率2.2)を500 nmの厚さで均一に成膜したウェハ(シリコン厚み:0.7mm)を、1cm角で切り出しサンプルとした。この絶縁膜サンプルの正確な膜厚を、光干渉膜厚計(大日本スクリーン製造(株)製、光干渉式膜厚測定装置「ラムダエースVM−1000」)を用いて正確に測定した後、洗浄剤30g中に25℃、30分間浸漬させた。その後、再び膜厚を測定して浸漬前後での膜厚差を計算することにより、腐食量を求めた。同様の方法にて、ポーラスSiLK(比誘電率2.2)についても測定した。
4). Measurement of corrosion amount of insulating film A wafer (silicon thickness: 0.7 mm) in which porous SiOC (relative dielectric constant 2.2) is uniformly formed on silicon as a low dielectric constant insulating film with a thickness of 500 nm is 1 cm. A sample was cut at the corner. After accurately measuring the film thickness of this insulating film sample using an optical interference film thickness meter (Dainippon Screen Mfg. Co., Ltd., optical interference film thickness measuring device “Lambda Ace VM-1000”), It was immersed in 30 g of cleaning agent at 25 ° C. for 30 minutes. Then, the amount of corrosion was calculated | required by measuring a film thickness again and calculating the film thickness difference before and behind immersion. The porous SiLK (relative dielectric constant: 2.2) was also measured by the same method.

Figure 0004472369
Figure 0004472369

なお、表中、
HEDPは1−ヒドロキシエチリデン−1,1−ジホスホン酸、
BDG はブチルジグリコール、
DMSOはジメチルスルホキシド、
DMF はジメチルホルムアミド、をそれぞれ示す。
In the table,
HEDP is 1-hydroxyethylidene-1,1-diphosphonic acid,
BDG is butyl diglycol,
DMSO is dimethyl sulfoxide,
DMF represents dimethylformamide, respectively.

Figure 0004472369
Figure 0004472369

次に、得られた洗浄剤を用いてウェハを洗浄し、その銅配線残渣剥離性、銅配線腐食性及び絶縁膜腐食性について下記の手順に従って、測定し、評価した。これらの結果を表3に示す。   Next, the wafer was cleaned using the obtained cleaning agent, and its copper wiring residue peelability, copper wiring corrosiveness and insulating film corrosiveness were measured and evaluated according to the following procedures. These results are shown in Table 3.

5.評価用ウェハ
シリコンウェハ上に銅、窒化珪素膜、低誘電率絶縁膜{(ポーラスSiOC(比誘電率2.2)}、窒化珪素膜の順で成膜し、その上にポリビニルフェノール系のポジ型レジスト組成物を塗布、乾燥してレジスト膜を形成することによりサンプルウェハを調製した。その後、ホールパターンを転写してリソグラフィーを行い、これをマスクとしてレジスト膜のない窒化珪素膜、低誘電率絶縁膜、窒化珪素膜をフッ化炭素系(CF系)や酸素系のエッチングガスでドライエッチングして除去した。最後に、酸素プラズマによるアッシング処理によって、レジストを除去し、ホールパターンを形成させた(評価ウェハ1)。また、低誘電率絶縁膜として、ポーラスSiLK(比誘電率2.2)を用いた系についても、全く同様の方法でホールパターンを形成させた(評価ウェハ2)。
これらのウェハをSEM(走査型電子顕微鏡)観察(50000 倍〜100000倍)することにより、ホール内部にエッチング、アッシング後の残渣、つまりポリマーが形成されているのを確認した。
これらのウェハを1cm角に切り出して、洗浄試験に使用した。
5). Wafer for evaluation A copper, silicon nitride film, a low dielectric constant insulating film {(porous SiOC (relative dielectric constant 2.2)}) and a silicon nitride film are formed in this order on a silicon wafer, and a polyvinylphenol-based positive electrode is formed thereon. A sample wafer was prepared by applying a resist resist composition and drying to form a resist film, followed by lithography with a hole pattern transferred, and using this as a mask, a silicon nitride film without a resist film, a low dielectric constant The insulating film and silicon nitride film were removed by dry etching with a fluorocarbon (CF) or oxygen etching gas, and finally the resist was removed by ashing with oxygen plasma to form a hole pattern. (Evaluation wafer 1) Also, a system using porous SiLK (relative dielectric constant 2.2) as a low dielectric constant insulating film is processed in the same manner by using the same method. It was formed over emissions (evaluation wafer 2).
By observing these wafers with SEM (scanning electron microscope) (50000 times to 100000 times), it was confirmed that residues after etching and ashing, that is, polymers were formed inside the holes.
These wafers were cut into 1 cm squares and used for cleaning tests.

6.洗浄性評価
(1)剥離方法:30mlの洗浄剤に25℃で3分間、上記の評価用ウェハ1、2を浸漬し、洗浄した。
(2)すすぎ、乾燥方法:30mlの超純水に25℃で1分間、評価用ウェハ1、2を浸漬し、これを2回繰り返した後、窒素ブローにより乾燥した。
(3)評価方法:すすぎを終えた評価用ウェハ1、2を乾燥後、FE−SEM(走査型電子顕微鏡)を用いて50000 倍〜100000倍の倍率下で観察し、銅配線残渣の除去性及び銅配線の腐食性の評価を下記の3段階で行った。
6). Evaluation of Detergency (1) Peeling Method: The above evaluation wafers 1 and 2 were immersed in 30 ml of cleaning agent at 25 ° C. for 3 minutes and cleaned.
(2) Rinsing and drying method: The evaluation wafers 1 and 2 were immersed in 30 ml of ultrapure water at 25 ° C. for 1 minute, and this was repeated twice, followed by drying by nitrogen blowing.
(3) Evaluation method: After the rinsed evaluation wafers 1 and 2 have been rinsed, they are observed using a FE-SEM (scanning electron microscope) at a magnification of 50000 times to 100000 times to remove copper wiring residues. In addition, the corrosivity of the copper wiring was evaluated in the following three stages.

(銅配線残渣除去性)
○:残渣が全く確認されない。
△:残渣が一部残存している。
×:残渣が大部分残存している。
(Removability of copper wiring residue)
○: No residue is confirmed.
Δ: A part of the residue remains.
X: Most residue remains.

(銅配線腐食性)
○:銅配線の腐食が全く確認されない。
△:銅配線の腐食が一部発生している。
×:銅配線の腐食が大きく発生している。
(Corrosion of copper wiring)
○: No corrosion of copper wiring is confirmed.
Δ: Some corrosion of copper wiring occurred.
X: Corrosion of copper wiring is greatly generated.

(絶縁膜腐食性)
○:絶縁線の腐食が全く確認されない。
△:絶縁膜の腐食が一部発生している。
×:絶縁膜の腐食が大きく発生している。
(Insulating film corrosiveness)
○: No insulation wire corrosion was confirmed.
Δ: Some corrosion of the insulating film has occurred.
X: Corrosion of the insulating film is greatly generated.

なお、合格品は銅配線残渣の除去性と銅配線の腐食性、及び絶縁膜の腐食性がいずれも「○」であるものとする。   In addition, it is assumed that the acceptable product is “◯” for the removal of copper wiring residue, the corrosivity of copper wiring, and the corrosivity of the insulating film.

Figure 0004472369
Figure 0004472369

表3の結果より、実施例1〜5で得られた洗浄剤は、比較例1〜4で得られたものに比べて、残渣除去性、銅配線腐食防止性、絶縁膜腐食防止性のいずれにも優れたものであることがわかる。   From the results in Table 3, the cleaning agents obtained in Examples 1 to 5 are any of residue removal, copper wiring corrosion prevention, and insulation film corrosion prevention compared to those obtained in Comparative Examples 1 to 4. It turns out that it is also excellent.

本発明の銅配線用非フッ素系残渣洗浄剤は、高性能なLCD、メモリ、CPU等の電子部品の製造に好適に使用できる。   The non-fluorine residue cleaning agent for copper wiring of the present invention can be suitably used for the production of electronic components such as high performance LCDs, memories, and CPUs.

Claims (4)

亜リン酸及び/又は有機ホスホン酸と、水及び水溶性有機溶剤からなり、pHが1〜4の銅配線用非フッ素系残渣洗浄剤を用いて、半導体基板又は半導体素子のアッシング処理後の残渣を洗浄する工程を有する、low−k膜を有する半導体基板又は半導体素子の洗浄方法 After ashing treatment of a semiconductor substrate or a semiconductor element using a non-fluorine-based residual cleaning agent for copper wiring having a pH of 1 to 4, comprising phosphorous acid and / or organic phosphonic acid, water and a water-soluble organic solvent A method for cleaning a semiconductor substrate or a semiconductor element having a low-k film, comprising a step of cleaning a residue . 銅配線用非フッ素系残渣洗浄剤における、亜リン酸及び/又は有機ホスホン酸の含有量が0.5〜10重量%で、水の含有量が70〜99重量%である請求項1記載の洗浄方法 In the fluorine-free residue cleaners for copper wiring, the content of phosphorous acid and / or an organic phosphonic acid is 0.5 to 10 wt%, claim 1 Symbol placement content of water is 70 to 99 wt% Cleaning method . 銅配線用非フッ素系残渣洗浄剤の表面張力が50mN/m以下である請求項1又は2記載の洗浄方法The cleaning method according to claim 1 or 2 , wherein the surface tension of the non-fluorine residue cleaning agent for copper wiring is 50 mN / m or less. 銅配線用非フッ素系残渣洗浄剤の、標準試験(A)における第二酸化銅の溶解量が1000ppm以上であり、且つ標準試験(B)における銅の腐食量が10nm未満である請求項1〜いずれか記載の洗浄方法 Copper wiring fluorine-free residue cleaners are the dissolution of the second copper oxide in the standard test (A) is 1000ppm or higher, and claim 1-3 corrosion amount of copper in the standard test (B) is less than 10nm Any of the washing | cleaning methods .
JP2004021058A 2004-01-29 2004-01-29 Method for cleaning semiconductor substrate or semiconductor element Expired - Fee Related JP4472369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021058A JP4472369B2 (en) 2004-01-29 2004-01-29 Method for cleaning semiconductor substrate or semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021058A JP4472369B2 (en) 2004-01-29 2004-01-29 Method for cleaning semiconductor substrate or semiconductor element

Publications (2)

Publication Number Publication Date
JP2005217116A JP2005217116A (en) 2005-08-11
JP4472369B2 true JP4472369B2 (en) 2010-06-02

Family

ID=34904812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021058A Expired - Fee Related JP4472369B2 (en) 2004-01-29 2004-01-29 Method for cleaning semiconductor substrate or semiconductor element

Country Status (1)

Country Link
JP (1) JP4472369B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758187B2 (en) * 2005-09-26 2011-08-24 関東化学株式会社 Photoresist residue and polymer residue remover
WO2020262448A1 (en) * 2019-06-27 2020-12-30 花王株式会社 Cleaning method

Also Published As

Publication number Publication date
JP2005217116A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP3040409B1 (en) Stripping compositions having high wn/w etching selectivity
US7888300B2 (en) Cleaning liquid for semiconductor device and cleaning method
JP4959095B2 (en) Composition for cleaning organic and plasma etching residues of semiconductor devices
US7456140B2 (en) Compositions for cleaning organic and plasma etched residues for semiconductor devices
JP4628209B2 (en) Release agent composition
WO2015166826A1 (en) Semiconductor element cleaning liquid and cleaning method
KR102533069B1 (en) Liquid composition for cleaning semiconductor element, method for cleaning semiconductor element, and method for manufacturing semiconductor element
KR20040032855A (en) Sulfoxide Pyrolid(in)one Alkanolamine Stripping and Cleaning Composition
KR20070003772A (en) Process for the use of bis-choline and tris-choline in the cleaning of quartz-coated polysilicon and other materials
KR20030035830A (en) Stripping composition
WO2006110645A2 (en) Fluoride liquid cleaners with polar and non-polar solvent mixtures for cleaning low-k-containing microelectronic devices
KR100946636B1 (en) Photoresist residue remover composition
JP2009231354A (en) Cleaning liquid for semiconductor device and cleaning method
JP2006251491A (en) Photoresist stripper composition and method for stripping photoresist
JP4776191B2 (en) Photoresist residue and polymer residue removal composition, and residue removal method using the same
CN102138202B (en) Residue remover composition and use its washing methods of semiconductor element
WO2004109788A1 (en) Removing agent composition and removing/cleaning method using same
JP4689855B2 (en) Residue stripper composition and method of use thereof
WO2008046305A1 (en) A low etched photoresist cleaning agent and cleaning method of using same
JP4637010B2 (en) Release agent composition
JP4375722B2 (en) Residue cleaning agent for copper wiring
TW200525012A (en) Photoresist residue remover composition and semiconductor circuit element production process employing said composition
JP2007173601A (en) Phosphor-containing cleaning agent composite
JP4472369B2 (en) Method for cleaning semiconductor substrate or semiconductor element
JP3893104B2 (en) Polymer cleaning composition for copper wiring semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4472369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees