JP4470629B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP4470629B2
JP4470629B2 JP2004215991A JP2004215991A JP4470629B2 JP 4470629 B2 JP4470629 B2 JP 4470629B2 JP 2004215991 A JP2004215991 A JP 2004215991A JP 2004215991 A JP2004215991 A JP 2004215991A JP 4470629 B2 JP4470629 B2 JP 4470629B2
Authority
JP
Japan
Prior art keywords
light
optical element
light guide
emission
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004215991A
Other languages
Japanese (ja)
Other versions
JP2006040627A (en
Inventor
敏貴 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004215991A priority Critical patent/JP4470629B2/en
Publication of JP2006040627A publication Critical patent/JP2006040627A/en
Application granted granted Critical
Publication of JP4470629B2 publication Critical patent/JP4470629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、照明装置に係り、更に詳しくは、光源からの光を導光して射出面より射出する導光板を備えた面状の照明装置に関する。   The present invention relates to a lighting device, and more particularly to a planar lighting device including a light guide plate that guides light from a light source and emits the light from an emission surface.

通常、透過型のLCDパネルの背面に用いられる照明光源である所謂バックライトには、光源からの光を均一にLCDパネルに導くために、透明樹脂からなる導光板が用いられている。図15に示すように、この種の導光板10に光源12が配置されてなる照明装置14では、導光板10の光入射側端面11から導光板10内に入射した光は、導光板10の平面部を全反射しながら、図中矢印F方向に沿って導光板10内を進む。なお、図15は、光源12として線状の光源を用いた例を示しているが、光源12の形状は線状に限るものではなく、例えば点状であってもよい。導光板10の平面部には所々にプリズム13が設けられ、プリズム13に当たった光は、図中矢印Eに示す射出方向に従って、導光板10から図中上方側へ向かって射出される。   Usually, a so-called backlight, which is an illumination light source used on the back surface of a transmissive LCD panel, uses a light guide plate made of a transparent resin in order to uniformly guide light from the light source to the LCD panel. As shown in FIG. 15, in the illumination device 14 in which the light source 12 is disposed on this type of light guide plate 10, the light incident on the light guide plate 10 from the light incident side end surface 11 of the light guide plate 10 is transmitted to the light guide plate 10. The light guide plate 10 travels along the direction of arrow F in the figure while totally reflecting the plane portion. FIG. 15 shows an example in which a linear light source is used as the light source 12, but the shape of the light source 12 is not limited to a linear shape, and may be, for example, a dot shape. Prisms 13 are provided in places on the plane portion of the light guide plate 10, and light hitting the prisms 13 is emitted upward from the light guide plate 10 according to the emission direction indicated by the arrow E in the figure.

図16に示すように、この照明装置14の導光板10の上部に透過型のLCDパネル18を配置し、導光板10から図中矢印Eに示す射出方向に従って射出した光を透過させることによって画像を表示する表示装置24が形成される。   As shown in FIG. 16, a transmissive LCD panel 18 is disposed on the light guide plate 10 of the illumination device 14, and the light emitted from the light guide plate 10 according to the emission direction indicated by the arrow E in the drawing is transmitted. Is displayed.

なお、図15および図16に示すように背面にプリズム13が設けられた導光板10に係る公知例としては、例えば下記特許文献1がある。   As a known example of the light guide plate 10 in which the prism 13 is provided on the back surface as shown in FIGS.

一方、プリズム13を用いない照明装置の例としては、導光板10の面に散乱性のドットを印刷することにより、光を拡散射出する方法もある。
特開平5−264819号公報
On the other hand, as an example of an illumination device that does not use the prism 13, there is a method of diffusing and emitting light by printing scattering dots on the surface of the light guide plate 10.
JP-A-5-264819

しかしながら、このような照明装置14は、射出面26内の光強度を均一にしながら、光源12から導光板10に入射する光を射出光へ変換する割合を高くすることが困難であり、透過型LCDパネル18のバックライトなどとして利用する際に光の利用効率(光源12から導光板10に入射した光のうち、照明光として望ましい角度範囲の射出光に変換される割合)が低いという問題がある。   However, it is difficult for such an illuminating device 14 to increase the ratio of the light incident on the light guide plate 10 from the light source 12 to the emitted light while making the light intensity in the emission surface 26 uniform, and the transmissive type There is a problem that light utilization efficiency (the ratio of light incident on the light guide plate 10 from the light source 12 that is converted into emitted light in a desired angle range as illumination light) when used as a backlight of the LCD panel 18 is low. is there.

特にLCDパネル18のバックライトとしては、射出面26の法線方向に強い光を出すことが望まれるが、従来技術では光源12と導光板10の組み合わせのみによってこれを実現することは極めて難しい。導光板10からの射出光を適切な光分布へと変換するために、導光板10と透過型表示素子の間に各種の光学フィルムを挿入する方法も提案されているが、これでは表示装置の厚みが増してしまい、製造コストも嵩んでしまうという別の問題が生じる。   In particular, as the backlight of the LCD panel 18, it is desired to emit strong light in the normal direction of the emission surface 26, but it is extremely difficult to achieve this by using only the combination of the light source 12 and the light guide plate 10 in the prior art. In order to convert the light emitted from the light guide plate 10 into an appropriate light distribution, a method of inserting various optical films between the light guide plate 10 and the transmissive display element has also been proposed. Another problem arises that the thickness increases and the manufacturing cost increases.

また、プリズム13を用いる場合には構造が比較的大きいために目視観察時にプリズム13の配置パターンを隠すのが困難であること、またプリズム13によって導光板10の厚みが厚くなること、射出光の射出角度範囲や射出光強度を自由に制御することができないなどの問題がある。   Further, when the prism 13 is used, the structure is relatively large, so that it is difficult to hide the arrangement pattern of the prism 13 during visual observation, the light guide plate 10 is thickened by the prism 13, There is a problem that the emission angle range and the emission light intensity cannot be freely controlled.

更に、導光板10の光入射側端面11に光源12を設置した際に、光源12に近い側と遠い側との光強度を一定にするのが困難である。特に、点状の光源もしくはムラのある光源の場合には、光入射側端面11から光源12に遠い側の端面に光が向かう平均的な方向である平均導光方向(導光板内を導光する光の平均的な方向)Fと直交する方向における射出光の分布の均一性と光の利用効率を共に高くすることは一層困難である。   Furthermore, when the light source 12 is installed on the light incident side end face 11 of the light guide plate 10, it is difficult to make the light intensity constant on the side close to the light source 12 and on the side far from the light source 12. In particular, in the case of a spot-like light source or an uneven light source, an average light guide direction (light guide through the light guide plate) is an average direction in which light travels from the light incident side end surface 11 to the end surface far from the light source 12. It is more difficult to increase both the uniformity of the distribution of the emitted light in the direction orthogonal to F and the light utilization efficiency.

本発明はこのような事情に鑑みてなされたものであり、その目的は、光の利用効率を高くし、射出面における射出光強度の均一性を高くし、さらに射出光の角度範囲を自在に制御することが可能な簡便な構成の照明装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to increase the light use efficiency, to increase the uniformity of the emitted light intensity on the exit surface, and to make the angle range of the emitted light freely. An object of the present invention is to provide a lighting device having a simple configuration that can be controlled.

上記の目的を達成するために、本発明では、以下のような手段を講じる。   In order to achieve the above object, the present invention takes the following measures.

すなわち、請求項1の発明は、光源と、光源から入射した光を導光し、導光された光を射出面から射出する平面状の導光板とを備えた照明装置において、回折格子から構成され、射出面または射出面の対向面に、導光板の光入射側から離れるに従って配置密度が大きくなるように配置された射出用光学素子と、射出用光学素子が配置された面に、導光板の光入射側から離れるに従って配置密度が小さくなるように配置された拡散性光学素子とを備えている。   That is, the invention of claim 1 is a lighting device including a light source and a planar light guide plate that guides light incident from the light source and emits the guided light from the exit surface. And an emission optical element arranged on the emission surface or the surface opposite to the emission surface so that the arrangement density increases as the distance from the light incident side of the light guide plate increases, and the light guide plate on the surface where the emission optical element is arranged The diffusive optical element is arranged so that the arrangement density decreases as the distance from the light incident side increases.

従って、光源の大きさや配置個数、光源からの射出光量ムラに起因する導光板の光入射側における光量分布の不均一性(特に平均導光方向に直交する方向の不均一性)を、拡散性光学素子により拡散することにより解消しながら、平均導光方向に沿って導光板内を導光する光量が減少することを射出用光学素子の配置密度によって補償して射出光に変換するため、平均導光方向に沿っても導光板からの射出光量を均一にできる。   Therefore, the non-uniformity of the light distribution on the light incident side of the light guide plate (particularly the non-uniformity in the direction perpendicular to the average light guide direction) due to the size and number of the light sources, and the unevenness of the amount of light emitted from the light sources. While eliminating by diffusing by the optical element, it is compensated by the arrangement density of the optical elements for emission and reduced to the emitted light, reducing the amount of light guided in the light guide plate along the average light guide direction. Even along the light guide direction, the amount of light emitted from the light guide plate can be made uniform.

このとき、平均導光方向に直交する方向の不均一性は、一般的に光源から光が導光板に入射した直後が最も大きく、また導光する光が一度均一になれば、その後は均一な導光状態を保ちやすいので、導光板の光入射側付近で不均一性を解消することが最も望ましい。請求項1の発明では、拡散性光学素子を導光板の光入射側において配置密度を大きくすることで十分な均一性を実現し、また均一性が高くなるに連れて配置密度を減らして配置することにより、導光板全体で十分な均一性が得られるようにしている。更に、導光板の射出面もしくはその対向面に拡散性光学素子と射出用光学素子を無理なく配置することが可能となり、容易に高い均一性を得ることができる。   At this time, the non-uniformity in the direction orthogonal to the average light guide direction is generally the largest immediately after the light from the light source is incident on the light guide plate, and once the light to be guided becomes uniform, it is uniform thereafter. Since it is easy to maintain the light guide state, it is most desirable to eliminate the non-uniformity near the light incident side of the light guide plate. In the invention of claim 1, sufficient uniformity is realized by increasing the arrangement density of the diffractive optical elements on the light incident side of the light guide plate, and the arrangement density is reduced as the uniformity increases. Thus, sufficient uniformity can be obtained over the entire light guide plate. Furthermore, it becomes possible to dispose the diffusing optical element and the emitting optical element without difficulty on the exit surface of the light guide plate or on the opposite surface, and high uniformity can be easily obtained.

また、射出用光学素子が回折格子から構成されていることにより、構造が極めて微小であり、また微細加工技術などにより容易に任意の領域に形成可能であるため、導光板上の配置が最適化でき、極めて均一な射出光分布を有する導光板を構成することが可能である。   In addition, since the optical element for emission is composed of a diffraction grating, the structure is extremely small, and it can be easily formed in any area by microfabrication technology, etc., so the arrangement on the light guide plate is optimized. It is possible to construct a light guide plate having a very uniform emission light distribution.

加えて、回折格子の機能により射出光の角度範囲を適宜設計でき、必ずしも他の光学フィルムなどを用いること無しに、望ましい角度範囲の射出光分布を有する均一な照明装置を少ない部材構成で実現することが可能となる。しかもこれらの光学的効果は導光板上の単一面で実現されているため、射出用光学素子と拡散性光学素子の配置位置関係を高精度に保ちながら、極めて容易に製造することも可能である。   In addition, the angle range of the emitted light can be appropriately designed by the function of the diffraction grating, and a uniform illumination device having an emitted light distribution in the desired angle range can be realized with a small number of member configurations without necessarily using another optical film. It becomes possible. Moreover, since these optical effects are realized on a single surface on the light guide plate, it can be manufactured very easily while maintaining the positional relationship between the emission optical element and the diffusing optical element with high accuracy. .

請求項2の発明は、請求項1の発明の照明装置において、射出用光学素子および拡散性光学素子が配置された面に複数のセルを配置し、射出用光学素子および拡散性光学素子が、複数のセルのうちの何れかに配置されるようにする。そして、射出用光学素子が配置されたセル、および拡散性光学素子が配置されたセルの配置個数および/または大きさを調整することにより、射出用光学素子の配置密度が光入射側から離れるに従って大きくなり、拡散性光学素子の配置密度が光入射側から離れるに従って小さくなるようにしている。   According to a second aspect of the present invention, in the illumination device of the first aspect of the present invention, a plurality of cells are arranged on a surface on which the emission optical element and the diffusive optical element are arranged, and the emission optical element and the diffusive optical element are: It is arranged in any one of a plurality of cells. Then, by adjusting the number and / or size of the cells in which the emission optical elements are arranged and the cells in which the diffusive optical elements are arranged, the arrangement density of the emission optical elements is increased as the distance from the light incident side increases. The density is increased, and the arrangement density of the diffusive optical elements is reduced as the distance from the light incident side increases.

従って、導光板の各位置における射出用光学素子および/または拡散性光学素子の配置密度を、セルの配置個数および/またはセルの大きさの設定により、簡便に最適化することが可能となり、簡便かつ正確に均一な射出光分布を実現することが可能となる。   Therefore, the arrangement density of the emission optical element and / or the diffusive optical element at each position of the light guide plate can be easily optimized by setting the number of arranged cells and / or the size of the cells. And it becomes possible to implement | achieve an exact uniform emitted light distribution.

請求項3の発明は、請求項2の発明の照明装置において、射出用光学素子が配置されたセルの、導光板内を導光される光の平均導光方向の大きさを5μm以上100μm以下とする。   According to a third aspect of the present invention, in the illumination device according to the second aspect of the present invention, the average light guide direction size of the light guided through the light guide plate of the cell in which the emission optical element is arranged is 5 μm or more and 100 μm or less. And

従って、平均導光方向において、射出用光学素子から射出する光をそのセルの大きさに応じて拡げる(特定方向においてセルが小さいほど、当該方向に光が拡がる)ことができ、照明装置としての射出角度範囲を調整することができる。これは、射出用光学素子を構成する回折格子が単純な回折格子である場合にも、回折格子がレンズのような作用を有し、光を拡げる機能を有する場合にも有効である。更に、光源から導光板に入射する光が白色光である場合に、回折格子の分光作用を、セルの大きさによって光を拡げる効果によって顕著でなくすことができ、より均一な波長分布の射出光を実現できる。セルの大きさは5μm以上であれば回折格子が十分な機能を発揮し、また100μm以下であれば、目視で射出面を観察したときにも十分に均一と感じられるようにセルを配置することができる。   Therefore, in the average light guide direction, the light emitted from the emission optical element can be expanded according to the size of the cell (the smaller the cell in the specific direction, the more the light expands in that direction), and as an illumination device The injection angle range can be adjusted. This is effective both when the diffraction grating constituting the emission optical element is a simple diffraction grating and when the diffraction grating has an action like a lens and has a function of spreading light. Furthermore, when the light incident on the light guide plate from the light source is white light, the spectral action of the diffraction grating can be made inconspicuous by the effect of spreading the light depending on the cell size, and the emitted light with a more uniform wavelength distribution Can be realized. If the size of the cell is 5 μm or more, the diffraction grating will exhibit a sufficient function, and if it is 100 μm or less, the cell should be arranged so that it can be felt sufficiently even when the exit surface is visually observed. Can do.

請求項4の発明は、請求項2または請求項3の発明の照明装置において、拡散性光学素子が配置されたセルの、導光板内を導光される光の平均導光方向に直交する方向の大きさを1μm以上100μm以下とする。   According to a fourth aspect of the present invention, in the illumination device according to the second or third aspect of the present invention, a direction orthogonal to an average light guide direction of light guided through the light guide plate of the cell in which the diffusive optical element is disposed. Is 1 μm or more and 100 μm or less.

従って、平均導光方向に直交する方向において、拡散性光学素子から射出する光をそのセルの大きさに応じて拡げることができ、導光板内の平均導光方向に直交する方向の光量分布を均一にすることができる。これは、拡散性光学素子自身の拡散機能に加えて、更に光を拡散するため、一層の均一化が図れることを意味する。セルの大きさが小さいほどセルの大きさによる拡散効果は大きくなり、実質的に1μm以上であれば内部に拡散性光学素子を形成でき、また100μm以下であれば拡散効果が十分になると共に、目視で射出面を観察したときにも十分に均一と感じられるようにセルを配置することができる。   Therefore, in the direction orthogonal to the average light guide direction, the light emitted from the diffusive optical element can be expanded according to the size of the cell, and the light quantity distribution in the direction orthogonal to the average light guide direction in the light guide plate is obtained. It can be made uniform. This means that in addition to the diffusing function of the diffusing optical element itself, the light is further diffused, so that further uniformization can be achieved. The smaller the cell size, the greater the diffusion effect due to the cell size, and if substantially 1 μm or more, a diffusive optical element can be formed inside, and if it is 100 μm or less, the diffusion effect is sufficient, The cells can be arranged so as to be sufficiently uniform even when the exit surface is visually observed.

請求項5の発明は、請求項1の発明の照明装置において、射出用光学素子の配置密度が光入射側から離れるに従って大きくなり、拡散性光学素子の配置密度が光入射側から離れるに従って小さくなるように、射出用光学素子および拡散性光学素子が配置された面に、射出用光学素子が配置された第1の領域と、拡散性光学素子が配置された第2の領域とを交互に入り組んで配置する。   According to a fifth aspect of the present invention, in the illumination device of the first aspect, the arrangement density of the emitting optical elements increases as the distance from the light incident side increases, and the arrangement density of the diffusive optical elements decreases as the distance from the light incident side increases. As described above, the first area where the emission optical element is arranged and the second area where the diffusive optical element is arranged alternately on the surface where the emission optical element and the diffusive optical element are arranged. Place with.

従って、射出用光学素子が導光板の光入射側から離れるに従って配置密度が大きくなり、拡散性光学素子が導光板の光入射側から離れるに従って配置密度が小さくなるようにすることが容易に実現でき、導光板の射出面内で均一な射出光分布を極めて容易かつ確実に得ることができる。   Accordingly, it is easy to realize that the arrangement density increases as the emitting optical element moves away from the light incident side of the light guide plate, and the arrangement density decreases as the diffusing optical element moves away from the light incident side of the light guide plate. A uniform emission light distribution within the emission surface of the light guide plate can be obtained very easily and reliably.

請求項6の発明は、請求項1の発明の照明装置において、射出用光学素子の配置密度が光入射側から離れるに従って大きくなり、拡散性光学素子の配置密度が光入射側から離れるに従って小さくなるように、射出用光学素子および拡散性光学素子が配置された面に、射出用光学素子と拡散性光学素子とを入り交じるように配置する。   According to a sixth aspect of the present invention, in the illumination device of the first aspect, the arrangement density of the emitting optical elements increases as the distance from the light incident side increases, and the arrangement density of the diffusive optical elements decreases as the distance from the light incident side increases. As described above, the emission optical element and the diffusive optical element are arranged so as to intervene on the surface on which the emission optical element and the diffusive optical element are arranged.

従って、小領域に射出用光学素子と拡散性光学素子とが含まれやすくなり、導光板の射出面上の小さい領域同士の射出光の均一性が一層向上する。   Therefore, the emission optical element and the diffusive optical element are easily included in the small area, and the uniformity of the emitted light between the small areas on the emission surface of the light guide plate is further improved.

請求項7の発明は、請求項1乃至6のうちの何れか1項の発明の照明装置において、射出用光学素子は、導光板内を導光される光の方向を、射出面に対する法線方向に近づけるように曲げ、拡散性光学素子は、導光板内を導光される光を、導光板内を導光される光の平均導光方向に対する直交方向に拡散する。   According to a seventh aspect of the present invention, in the illumination device according to any one of the first to sixth aspects of the present invention, the emission optical element has a direction of light guided through the light guide plate and a normal line to the emission surface. The diffusing optical element is bent so as to approach the direction, and diffuses the light guided in the light guide plate in a direction orthogonal to the average light guide direction of the light guided in the light guide plate.

従って、導光する光を拡散性光学素子によって不用意に導光板外へ射出することを抑制しながら、光源の大きさや配置個数、光源からの射出光量ムラに起因する、平均導光方向に直交する方向の光量分布の不均一性を拡散性光学素子に確実に解消し、加えて、射出用光学素子によって導光板から射出光への変換を適切かつ確実に実現できる。   Therefore, while suppressing the inadvertent emission of the light to be guided out of the light guide plate by the diffusive optical element, it is orthogonal to the average light guide direction due to the size and number of light sources and the unevenness of the amount of light emitted from the light sources. In addition, the non-uniformity of the light amount distribution in the direction to be emitted can be reliably eliminated in the diffusive optical element, and in addition, the conversion from the light guide plate to the emitted light can be appropriately and reliably realized by the emitting optical element.

請求項8の発明は、請求項1乃至7のうちの何れか1項の発明の照明装置において、射出用光学素子と拡散性光学素子とをレリーフ構造によって形成する。   An eighth aspect of the present invention is the illumination device according to any one of the first to seventh aspects, wherein the emission optical element and the diffusive optical element are formed by a relief structure.

この時、射出用光学素子としては表面レリーフ型回折格子を、拡散性光学素子としてはランダムに配置された凹凸パターンを用いると、簡便に実現でき、好適である。特に後者としては、平均導光方向Fに平行な線状の凹凸をランダムに配置したものが、平均導光方向Fに対して直交する方向の光拡散,平均導光方向Fの方向の導光状態の不変性の双方が両立でき、最適である。   At this time, it is preferable that a surface relief type diffraction grating is used as the emitting optical element, and a concavo-convex pattern arranged at random is used as the diffusing optical element, which can be easily realized. In particular, as the latter, linear unevenness parallel to the average light guide direction F is randomly arranged to diffuse light in a direction orthogonal to the average light guide direction F, and to guide light in the direction of the average light guide direction F. Both state invariance can be achieved and it is optimal.

従って、導光板の射出面もしくはその対向面に形成する射出用光学素子と拡散性光学素子とが、両方共微小なレリーフ構造であるため、導光板の該当面に対する一度の成形で上述の効果を有する導光板を形成でき、簡便に安価に照明装置を構成することができる。また、射出用光学素子と拡散性光学素子とをレリーフ原版上に正確に配置形成しておけば、レリーフの複製物として、両光学素子が正確に配置された導光板を極めて安定して安価に作成することができ、製品間のバラツキの少ない照明装置を得ることができる。   Therefore, since both the emission optical element and the diffusive optical element formed on the emission surface of the light guide plate or the opposite surface thereof have a minute relief structure, the above-described effects can be obtained by molding the corresponding surface of the light guide plate once. The light guide plate can be formed, and the lighting device can be configured simply and inexpensively. Moreover, if the optical element for injection and the diffusive optical element are accurately arranged and formed on the relief original plate, a light guide plate on which both optical elements are accurately arranged can be extremely stably and inexpensively produced as a replica of the relief. It is possible to obtain an illumination device that can be produced and has little variation between products.

以上説明したように、本発明によれば、光の利用効率を高くし、射出面における射出光強度の均一性を高くし、さらに射出光の角度範囲を自在に制御することが可能な照明装置を簡便な構成によって実現することができる。   As described above, according to the present invention, the illumination device can increase the light utilization efficiency, increase the uniformity of the emitted light intensity on the exit surface, and freely control the angle range of the emitted light. Can be realized with a simple configuration.

以下に、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る照明装置の構成例を示す斜視図である。
(First embodiment)
FIG. 1 is a perspective view showing a configuration example of a lighting apparatus according to the first embodiment of the present invention.

すなわち、本実施の形態に係る照明装置16は、光源12と、光源12から入射した光を導光し、導光された光を射出面26から射出する平面状の導光板10とを備えている。そして、射出面26の対向面27に、射出用光学素子38と、拡散性光学素子39とを備えている。   That is, the illuminating device 16 according to the present embodiment includes the light source 12 and the planar light guide plate 10 that guides the light incident from the light source 12 and emits the guided light from the exit surface 26. Yes. An emission optical element 38 and a diffusive optical element 39 are provided on the opposing surface 27 of the emission surface 26.

図2は、同実施の形態に係る照明装置における射出用光学素子及び拡散性光学素子の配置例を示した平面図である。図2に示すように、射出用光学素子38は、例えば回折格子から構成され、射出面26の対向面27に、導光板10の光入射側端面11から離れるに従って配置密度が大きくなるように配置している。また、拡散性光学素子39は、射出用光学素子38が配置された同一面である対向面27に、導光板10の光入射側端面11から離れるに従って配置密度が小さくなるように配置している。   FIG. 2 is a plan view showing an arrangement example of the emission optical element and the diffusive optical element in the illumination device according to the embodiment. As shown in FIG. 2, the emission optical element 38 is formed of, for example, a diffraction grating, and is arranged on the opposing surface 27 of the emission surface 26 so that the arrangement density increases as the distance from the light incident side end surface 11 of the light guide plate 10 increases. is doing. Further, the diffusing optical element 39 is disposed on the opposite surface 27 that is the same surface on which the emission optical element 38 is disposed so that the disposition density decreases as the distance from the light incident side end surface 11 of the light guide plate 10 increases. .

なお、図1は、射出用光学素子38および拡散性光学素子39を射出面26の対向面27に配置した例を示しているが、射出用光学素子38および拡散性光学素子39を射出面26の対向面27に配置する代わりに、射出面26に配置するようにしても良い。   FIG. 1 shows an example in which the emission optical element 38 and the diffusive optical element 39 are arranged on the opposite surface 27 of the emission surface 26. However, the emission optical element 38 and the diffusive optical element 39 are arranged on the emission surface 26. Instead of being arranged on the opposite surface 27, it may be arranged on the exit surface 26.

このような構成をした本実施の形態に係る照明装置16は、光源12から入射した光を導光板10によって導光し、この導光された光を拡散性光学素子39によって拡散することによって、光源12からの射出光量のムラに起因する導光板10の光入射側端面11側における光量分布の不均一性(特に平均導光方向Fに直交する方向Rの不均一性)を解消しながら、平均導光方向Fに沿って導光板10内を導光する光量が減少することによる射出光の減少を射出用光学素子38の配置密度によって補償する。これによって、射出面26内で均一に光を射出するようにしている。   The illuminating device 16 according to the present embodiment having such a configuration guides light incident from the light source 12 by the light guide plate 10 and diffuses the guided light by the diffusive optical element 39. While eliminating the non-uniformity of the light amount distribution on the light incident side end face 11 side of the light guide plate 10 due to the unevenness of the emitted light amount from the light source 12 (particularly the non-uniformity in the direction R perpendicular to the average light guide direction F), A decrease in the amount of emitted light due to a decrease in the amount of light guided through the light guide plate 10 along the average light guide direction F is compensated by the arrangement density of the emission optical elements 38. As a result, light is uniformly emitted within the emission surface 26.

このとき、光入射側端面11側から離れるに従って光量分布の不均一性は徐々に解消するので、拡散性光学素子39は光入射側端面11側から離れるに従って少なくしても十分な均一化が可能である。   At this time, since the non-uniformity of the light quantity distribution is gradually eliminated as the distance from the light incident side end face 11 is increased, the diffusive optical element 39 can be sufficiently uniformed even if the distance from the light incident side end face 11 is decreased. It is.

また、射出用光学素子38が回折格子から構成されていることにより、構造が極めて微小であり、また微細加工技術などにより容易に任意の領域に形成可能であるため、導光板10上の配置を最適化することができる。したがって、図2に示すような配置構造を更に細かくすることによって、極めて均一な射出光分布を有する導光板10を構成することが可能となる。   Further, since the emission optical element 38 is composed of a diffraction grating, the structure is extremely minute and can be easily formed in an arbitrary region by a fine processing technique or the like. Can be optimized. Therefore, by further finely arranging the arrangement structure as shown in FIG. 2, it is possible to configure the light guide plate 10 having a very uniform emission light distribution.

通常、均一に射出用光学素子を配置した導光板10は、光入射側端面11側ほど光の射出光強度は大きく、光源12から離れ、逆側の端面に近づくほど射出光強度は小さくなる。このため、射出用光学素子38を構成する回折格子の回折効率が一定の場合には、図2に示すように、導光板10の平均導光方向Fにおいて、光入射側端面11側から離れるほど射出用光学素子38の配置密度を高めることにより、光強度の強い光入射側端面11側において導光板10から射出する光の割合を少なく、光入射側端面11側から離れるほど射出割合を増加することができ、導光板10の射出面26全域に亘って均一な強度の光を射出することが可能となる。   In general, the light guide plate 10 in which the optical elements for emission are uniformly arranged has a higher intensity of light emission toward the light incident side end face 11 side, and the intensity of the emitted light becomes smaller as the distance from the light source 12 approaches the opposite end face. For this reason, when the diffraction efficiency of the diffraction grating constituting the emission optical element 38 is constant, as the distance from the light incident side end face 11 side increases in the average light guide direction F of the light guide plate 10, as shown in FIG. By increasing the arrangement density of the emission optical elements 38, the ratio of light emitted from the light guide plate 10 is small on the light incident side end face 11 side where the light intensity is strong, and the emission ratio increases as the distance from the light incident side end face 11 side increases. It is possible to emit light with uniform intensity over the entire exit surface 26 of the light guide plate 10.

更に、射出用光学素子38を構成する回折格子の機能により射出光の角度範囲を適宜設計でき、必ずしも他の光学フィルムなどを用いることなしに、望ましい角度範囲の射出光分布を有する均一な照明装置を実現することが可能となる。   Further, the angle range of the emitted light can be appropriately designed by the function of the diffraction grating constituting the emission optical element 38, and a uniform illumination device having an emission light distribution in a desired angle range without necessarily using another optical film or the like. Can be realized.

ここで、光源12として光入射側端面11にほぼ平行に配置された線状の光源12を用いた場合、導光板10における平均導光方向Fは、光入射側端面11にほぼ直交する方向となる。また、図3に示すように、光源として、光入射側端面11側に配置された点状のLED等の光源12aを用いた場合、光源12aを中心とする放射方向に導光しようとするが、導光板10全体に亘って平均すると線状の光源12と同様に光入射側端面11にほぼ直交する方向が平均導光方向Fとなる。   Here, when the linear light source 12 arranged substantially parallel to the light incident side end surface 11 is used as the light source 12, the average light guide direction F in the light guide plate 10 is a direction substantially orthogonal to the light incident side end surface 11. Become. In addition, as shown in FIG. 3, when a light source 12a such as a dotted LED arranged on the light incident side end face 11 side is used as the light source, light is guided in a radial direction centered on the light source 12a. When averaged over the entire light guide plate 10, the direction substantially perpendicular to the light incident side end face 11 is the average light guide direction F as in the case of the linear light source 12.

図4は、同実施の形態に係る照明装置における拡散性光学素子の機能を示した部分平面図である。この図は、照明装置16において拡散性光学素子39が、導光中の光を射出面26に平行な面内に拡散している様子を示している。このとき、平均導光方向Fに直交する方向Rに強く拡散すると、光源12の配置位置に由来する輝度ムラ等を解消して、導光板10内を導光する光の分布を均一にできる。なお、導光する方向にはほとんど影響を与えないことにより、導光板10から不用意に光を射出することなく、光を拡散できるので、光の利用効率を高めることができる。   FIG. 4 is a partial plan view showing the function of the diffusive optical element in the illumination device according to the embodiment. This figure shows a state in which the diffusing optical element 39 diffuses the light being guided in a plane parallel to the exit surface 26 in the illumination device 16. At this time, if the light is diffused strongly in the direction R perpendicular to the average light guide direction F, the unevenness in brightness and the like originating from the position where the light source 12 is disposed can be eliminated, and the distribution of light guided through the light guide plate 10 can be made uniform. In addition, since the light can be diffused without inadvertently emitting light from the light guide plate 10 by hardly affecting the light guide direction, the light use efficiency can be improved.

図5は、同実施の形態に係る照明装置における射出用光学素子の機能を示した側面図である。この図は、図1の照明装置16における射出用光学素子38が、導光板10内の光を射出する様子を示している。また、図6に示すように、透過型のLCDパネル18のバックライトとして本実施の形態に係る照明装置16を利用する場合などには、射出用光学素子38は導光中の光を、射出面26にほぼ垂直な射出方向Eに射出する光に変換することが望ましいが、射出用光学素子38として回折格子を利用することにより簡便にこれを実現する。   FIG. 5 is a side view showing the function of the emission optical element in the illumination apparatus according to the embodiment. This figure shows a state in which the emission optical element 38 in the illumination device 16 of FIG. 1 emits light in the light guide plate 10. As shown in FIG. 6, when the illumination device 16 according to the present embodiment is used as the backlight of the transmissive LCD panel 18, the emission optical element 38 emits the light being guided. Although it is desirable to convert the light to be emitted in an emission direction E substantially perpendicular to the surface 26, this can be easily realized by using a diffraction grating as the emission optical element 38.

更に、回折格子の機能により、射出光の角度範囲を適宜設定することも可能であり、特に他の光学フィルムなどを用いなくても、ディスプレイとして最適な角度分布を持った照明光を実現することができる。   Furthermore, it is possible to set the angle range of the emitted light as appropriate by the function of the diffraction grating, and to realize illumination light having an optimal angular distribution as a display without using any other optical film. Can do.

なお、図5では射出面26の対向面27に射出用光学素子38と拡散性光学素子39を配置する例を示したが、この場合は反射型の回折格子を用いることが望ましい。例えば、導光板の表面にレリーフ型回折格子を形成するだけでも良いし、その表面に金属反射膜を設けるなどしても良い。一方、射出面26に射出用光学素子38と拡散性光学素子39を配置する場合は、回折格子を透過型とすれば、同様の効果が得られる。   FIG. 5 shows an example in which the emission optical element 38 and the diffusive optical element 39 are arranged on the opposite surface 27 of the emission surface 26. In this case, it is desirable to use a reflective diffraction grating. For example, a relief type diffraction grating may be formed only on the surface of the light guide plate, or a metal reflection film may be provided on the surface. On the other hand, when the emission optical element 38 and the diffusive optical element 39 are arranged on the emission surface 26, the same effect can be obtained if the diffraction grating is a transmission type.

また、射出用光学素子38の回折格子としてレリーフ型回折格子を用いる場合、パターンの設計が容易であると共に、高効率化も容易である。このとき、レリーフ型回折格子の構造は、典型的には0.1〜1μm程度であるため、余計な突起のない、ほぼ平面と見なせる導光板10を実現できる。すなわち、照明装置16を薄くできる。   In addition, when a relief type diffraction grating is used as the diffraction grating of the emission optical element 38, it is easy to design a pattern and to improve the efficiency. At this time, since the structure of the relief type diffraction grating is typically about 0.1 to 1 μm, it is possible to realize the light guide plate 10 that can be regarded as a substantially flat surface with no unnecessary protrusions. That is, the illumination device 16 can be thinned.

導光板10内を導光する光のうち、射出用光学素子38に入射した光は回折格子によって回折光を生じるが、通常の主要な回折光は1次回折光である。回折格子の微小領域において、回折格子の格子ピッチdと、1次回折光の射出角度(回折角)θRとの関係は、下記(1)式により表される。

Figure 0004470629
Of the light guided through the light guide plate 10, the light incident on the emission optical element 38 generates diffracted light by the diffraction grating, but the normal main diffracted light is first-order diffracted light. In the minute region of the diffraction grating, the relationship between the grating pitch d of the diffraction grating and the emission angle (diffraction angle) θR of the first-order diffracted light is expressed by the following equation (1).
Figure 0004470629

ただし、mは回折次数、λは光の波長、θiは正反射角度(回折格子が反射時に作用する場合)である。 Where m is the diffraction order, λ is the wavelength of light, and θi is the regular reflection angle (when the diffraction grating acts during reflection).

導光板10内を平均導光方向Fに進む光を射出光に変換するために、最も効果的に作用する回折格子は平均導光方向Fに沿って格子ベクトルvを持つ場合である。すなわち、格子ベクトルvの方向と平均導光方向Fとをほぼ同一あるいは180°異なる方向とし、格子ピッチdを適切に設定することにより、全反射しながら平均導光方向Fに進む光が回折格子によってθRの角度で回折し、全反射条件を外れて導光板10の射出面26から射出して行く。特にθR〜0°とすると、導光板10表面に対してほぼ垂直に照明光が射出し、透過型ディスプレイ用の照明光として最も好ましい。   In order to convert the light traveling in the light guide plate 10 in the average light guide direction F into the emitted light, the diffraction grating that works most effectively has a grating vector v along the average light guide direction F. That is, by making the direction of the grating vector v and the average light guide direction F substantially the same or different from each other by 180 °, and appropriately setting the grating pitch d, the light traveling in the average light guide direction F while being totally reflected is reflected by the diffraction grating. Is diffracted at an angle of θR and exits from the exit surface 26 of the light guide plate 10 outside the total reflection condition. In particular, when θR to 0 °, illumination light is emitted almost perpendicularly to the surface of the light guide plate 10 and is most preferable as illumination light for a transmissive display.

射出用光学素子38を構成する回折格子は、導光板10を導光している光を回折光として射出するのみでなく、その回折光の拡がり方(射出角度範囲)を制御することも可能である。具体的には、図7(a)にその平面図、図7(b)にその断面図を示すような直線状の回折格子40のパターンは、平均導光方向Fに沿って導光される光を曲げる働きのみを持つ。また、図8(a)にその平面図、図8(b)にその断面図を示すような曲線状の回折格子41のパターンは、射出する回折光の範囲をそのパターンによって任意に設計できる。図7、図8において、xは、平均的な格子ベクトルvに一致する方向、yは、xと直交する方向、hは、格子高さをそれぞれ示している。   The diffraction grating constituting the emission optical element 38 not only emits the light guided through the light guide plate 10 as diffracted light, but can also control how the diffracted light spreads (emission angle range). is there. Specifically, the pattern of the linear diffraction grating 40 as shown in the plan view in FIG. 7A and the sectional view in FIG. 7B is guided along the average light guide direction F. It only has the function of bending light. Further, in the pattern of the curved diffraction grating 41 as shown in the plan view of FIG. 8A and the cross-sectional view of FIG. 8B, the range of the diffracted light to be emitted can be arbitrarily designed by the pattern. 7 and 8, x is a direction matching the average lattice vector v, y is a direction orthogonal to x, and h is a lattice height.

ここで、導光板10上での回折格子のパターンは、図7および図8に示すように、平均導光方向Fと、平均的な格子ベクトル方向vとを一致もしくは180°異なる方向にすると、全反射条件を満たす光に対して効果的に作用する構成とすることができる。すなわち、導光中の光に対して、射出光の方向を大きく異ならせることができ、確実に導光板10から射出できるようになる。   Here, the diffraction grating pattern on the light guide plate 10 is, as shown in FIGS. 7 and 8, when the average light guide direction F and the average grating vector direction v coincide with each other or are different by 180 °, It can be set as the structure which acts effectively with respect to the light which satisfy | fills a total reflection condition. That is, the direction of the emitted light can be greatly different from the light being guided, and the light can be reliably emitted from the light guide plate 10.

更に、射出用光学素子38と拡散性光学素子39とがレリーフ構造によって構成されている場合、導光板10と一体成形可能であり、また、単一面の成形のみでよいため、極めて簡便に安価に製造可能である。このとき、射出用光学素子38と拡散性光学素子39の配置位置は原版の製造時に決定し、原版の複製(成形)による量産時には常に互いの配置位置が安定して再現されるため、極めて高精度な導光板が容易に製造できる。   Furthermore, when the emission optical element 38 and the diffusive optical element 39 are configured by a relief structure, they can be integrally molded with the light guide plate 10 and can be molded on a single surface. It can be manufactured. At this time, the arrangement positions of the injection optical element 38 and the diffusive optical element 39 are determined at the time of production of the original, and the arrangement positions are always stably reproduced at the time of mass production by copying (molding) the original. An accurate light guide plate can be easily manufactured.

以上のように、本発明の実施の形態に係る照明装置16から射出される光は、射出角度範囲が制御されており、射出面26内で均一な分布を実現でき、その他の光学シートなど余分な構成物を追加する必要なく、光の利用効率が高く、薄く、安価な照明装置を提供できる。   As described above, the light emitted from the illuminating device 16 according to the embodiment of the present invention has a controlled emission angle range, can achieve a uniform distribution in the emission surface 26, and is extra for other optical sheets and the like. Therefore, it is possible to provide a lighting device that is highly efficient in using light, is thin, and inexpensive.

なお、導光板10は、図1に示すように平均導光方向Fに沿って進むにつれてその厚みが徐々に薄くなる場合のみならず、その厚みを一定とするような構成であっても良い。   In addition, the light guide plate 10 may have a configuration in which the thickness is made constant as well as a case where the thickness gradually decreases as the light guide plate 10 moves along the average light guide direction F as shown in FIG.

また、図9に示すように、導光板10の対向面27の表面を覆うように反射体32を配置することにより、対向面27からの漏れ光を再び導光板10側へ反射し再利用することができ、光の利用効率を一層高めることができる。   Further, as shown in FIG. 9, by disposing the reflector 32 so as to cover the surface of the opposing surface 27 of the light guide plate 10, the leaked light from the opposing surface 27 is reflected again to the light guide plate 10 side and reused. And the light utilization efficiency can be further enhanced.

(第2の実施の形態)
本発明の第2の実施の形態に係る照明装置は、第1の実施の形態に係る照明装置の変形例であって、射出用光学素子38および拡散性光学素子39が配置された面に複数のセルを配置し、更に、射出用光学素子38および拡散性光学素子39が、複数のセルのうちの何れかに配置されるようにする。そして、射出用光学素子38が配置されたセル、および拡散性光学素子39が配置されたセルの配置個数または大きさを調整することにより、射出用光学素子38の配置密度が光入射側端面11から離れるに従って大きくなり、拡散性光学素子39の配置密度が光入射側端面11から離れるに従って小さくなるようにしている。
(Second Embodiment)
The illuminating device according to the second embodiment of the present invention is a modification of the illuminating device according to the first embodiment, and a plurality of illuminating devices are provided on the surface on which the emission optical element 38 and the diffusing optical element 39 are arranged. In addition, the emission optical element 38 and the diffusing optical element 39 are arranged in any one of the plurality of cells. Then, by adjusting the number or size of the cells in which the emission optical elements 38 are arranged and the cells in which the diffusive optical elements 39 are arranged, the arrangement density of the emission optical elements 38 is changed to the light incident side end face 11. The arrangement density of the diffusive optical elements 39 is reduced as the distance from the light incident side end face 11 increases.

その一例を図10に示す。図10に示すように、導光板10の射出面26またはその対向面27には、多数の射出用光学素子38および拡散性光学素子39が互いに入り交じって配置している。ここで、各射出用光学素子38および各拡散性光学素子39のおのおのがそれぞれセルに相当している。そして、拡散性光学素子39からなるセルの配置個数を、光入射側端面11側ほど多く、そこから平均導光方向Fの下流側に行くほど少なくなるようにしている。また、射出用光学素子38からなるセルの配置個数を、光入射側端面11側ほど少なく、そこから平均導光方向Fの下流側に行くほど多くなるようにしている。   An example is shown in FIG. As shown in FIG. 10, a large number of emission optical elements 38 and diffusive optical elements 39 are arranged on the emission surface 26 of the light guide plate 10 or the opposing surface 27 so as to interlace with each other. Here, each of the emission optical elements 38 and each of the diffusive optical elements 39 corresponds to a cell. Then, the number of cells including the diffusive optical element 39 is increased toward the light incident side end face 11 side, and from there to decrease toward the downstream side in the average light guide direction F. In addition, the number of cells formed of the emission optical elements 38 is decreased toward the light incident side end face 11 side, and is increased toward the downstream side in the average light guide direction F therefrom.

また、別の例を図11に示す。図11に示すように、導光板10の射出面26またはその対向面27には、多数の射出用光学素子38および拡散性光学素子39が互いに入り交じって配置している。ここで、各射出用光学素子38および各拡散性光学素子39のおのおのがそれぞれセルに相当している。そして、拡散性光学素子39からなるセルの大きさを、光入射側端面11側ほど大きく、そこから平均導光方向Fの下流側に行くほど小さくなるようにしている。また、射出用光学素子38からなるセルの大きさを、光入射側端面11側ほど小さく、そこから平均導光方向Fの下流側に行くほど大きくなるようにしている。   Another example is shown in FIG. As shown in FIG. 11, a large number of emission optical elements 38 and diffusive optical elements 39 are arranged on the emission surface 26 of the light guide plate 10 or its opposite surface 27 so as to interlace with each other. Here, each of the emission optical elements 38 and each of the diffusive optical elements 39 corresponds to a cell. Then, the size of the cell composed of the diffusive optical element 39 is made larger toward the light incident side end face 11 side and smaller from there toward the downstream side in the average light guide direction F. In addition, the size of the cell composed of the emission optical element 38 is set to be smaller toward the light incident side end face 11 side and to be larger toward the downstream side of the average light guide direction F therefrom.

更にまた、別の例を図12に示す。図12に示すように、導光板10の射出面26またはその対向面27に、拡散性光学素子39を配置するための拡散素子用領域42と、射出用光学素子38を配置するための射出素子用領域43とを設ける。拡散素子用領域42は、平均導光方向Fに向かって刃先が細くなるような櫛刃状をしており、拡散素子用領域42が配置された面において、拡散素子用領域42以外の領域は射出素子用領域43としている。したがって、このように拡散素子用領域42と射出素子用領域43とが交互に入り組んだ面の拡散素子用領域42に拡散性光学素子39を、射出素子用領域43に射出用光学素子38を配置することによっても、射出用光学素子38の配置密度が光入射側端面11から離れるに従って大きくなり、拡散性光学素子39の配置密度が光入射側端面11から離れるに従って小さくなる。   Yet another example is shown in FIG. As shown in FIG. 12, a diffusion element region 42 for disposing a diffusive optical element 39 and an emission element for disposing an emission optical element 38 on the emission surface 26 of the light guide plate 10 or the opposing surface 27 thereof. A working area 43 is provided. The diffusion element region 42 has a comb blade shape such that the cutting edge becomes thinner toward the average light guide direction F. On the surface where the diffusion element region 42 is disposed, the regions other than the diffusion element region 42 are It is set as the emission element region 43. Accordingly, the diffusive optical element 39 is disposed in the diffusion element region 42 on the surface where the diffusion element regions 42 and the emission element regions 43 are alternately arranged in this manner, and the emission optical element 38 is disposed in the emission element region 43. By doing so, the arrangement density of the emitting optical elements 38 increases as the distance from the light incident side end face 11 increases, and the arrangement density of the diffusive optical elements 39 decreases as the distance from the light incident side end face 11 increases.

このようにすることで、導光板10の各位置における射出用光学素子38や拡散性光学素子39の配置密度を、簡便に最適化することが可能となり、第1の実施の形態と同様の効果を有しながら、より簡便かつ正確に均一な射出光分布を実現することが可能となる。   By doing so, it is possible to easily optimize the arrangement density of the emission optical elements 38 and the diffusive optical elements 39 at each position of the light guide plate 10, and the same effect as in the first embodiment. It is possible to realize a uniform emitted light distribution more easily and accurately while having

特に図12に示すように、拡散素子用領域42と射出素子用領域43とが交互に入り組んだ構成とすることにより、射出用光学素子38が導光板10の光入射側端面11から平均導光方向Fに沿って離れるに従って配置密度が大きくなり、拡散性光学素子39が光入射側端面11から平均導光方向Fに沿って離れるに従って配置密度が小さくなるようにすることが容易に実現でき、導光板10の射出面26内で均一な射出光分布を極めて容易かつ確実に得ることができる。   In particular, as shown in FIG. 12, the diffusing element region 42 and the emitting element region 43 are alternately arranged so that the emitting optical element 38 is guided from the light incident side end face 11 of the light guide plate 10 to the average light guide. It is possible to easily realize that the arrangement density is increased as it is separated along the direction F, and the arrangement density is reduced as the diffusible optical element 39 is separated from the light incident side end face 11 along the average light guide direction F. A uniform emission light distribution within the emission surface 26 of the light guide plate 10 can be obtained very easily and reliably.

一方、図10および図11に示すように、導光板10上において射出用光学素子38と拡散性光学素子39とが入り交じって配置するようにすることによって、小領域に射出用光学素子38と拡散性光学素子39とが含まれるようにし、射出面26上の小さい領域同士の射出光の均一性を一層向上し、すなわち導光板10全体としての均一性が保証される。   On the other hand, as shown in FIGS. 10 and 11, the emission optical element 38 and the diffusing optical element 39 are arranged on the light guide plate 10 so that the emission optical element 38 and the emission optical element 38 are arranged in a small area. The diffusive optical element 39 is included, and the uniformity of the emitted light between the small areas on the emission surface 26 is further improved, that is, the uniformity of the entire light guide plate 10 is guaranteed.

ここで、図10、図11、および図12では、セルの外形形状として、図13(a)にその拡大図を示すような長方形状としているが、セルの外形形状は、長方形状に限定されるものではなく、図13(b)に示すような楕円形状や、図示していないが円形状であってもよい。また、同一の導光板10に配置されるセルは全て同一形状であっても、長方形状と円形状と楕円形状とが混在していても良い。最適な設計例としては、拡散性光学素子39のセルは平均導光方向Fに長く、それと直交する方向Fに短い形状を持ち、射出用光学素子38のセルは平均導光方向Fに短く、それと直交する方向Rに長い形状を持つようにすれば、それぞれの光学的機能をセルの形状による回折効果によってサポートすることができる。   Here, in FIGS. 10, 11, and 12, the outer shape of the cell is a rectangular shape as shown in an enlarged view in FIG. 13 (a), but the outer shape of the cell is limited to a rectangular shape. It is not a thing, and elliptical shape as shown in FIG.13 (b) and circular shape although not shown in figure may be sufficient. Moreover, all the cells arranged on the same light guide plate 10 may have the same shape, or a rectangular shape, a circular shape, and an elliptical shape may be mixed. As an optimal design example, the cells of the diffusive optical element 39 are long in the average light guide direction F and have a short shape in the direction F orthogonal thereto, and the cells of the emission optical element 38 are short in the average light guide direction F. If it has a long shape in the direction R orthogonal thereto, each optical function can be supported by the diffraction effect due to the cell shape.

また、各セルの大きさとしては、肉眼でも観察できるほど大きな値にしてしまうと見栄えが損なわれてしまうため、本実施の形態では、100μm以下としている。100μm以下の大きさでは肉眼では観察できないために、見栄えを損なうことはなく、好適である。   Further, the size of each cell is set to 100 μm or less in the present embodiment because the appearance is impaired if the size is large enough to be observed with the naked eye. A size of 100 μm or less is preferable because it cannot be observed with the naked eye and does not impair the appearance.

一方、セルの形状による回折の効果について、フラウンホーファー回折による開口大きさと回折光の拡がり幅との関係を示す図14を用いて説明する。   On the other hand, the diffraction effect due to the cell shape will be described with reference to FIG. 14 showing the relationship between the aperture size by Fraunhofer diffraction and the spread width of the diffracted light.

図13(a)に示すような矩形開口のフラウンホーファー回折による光強度分布は下記式で計算でき、それぞれ矩形開口の辺に直交した方向I(x、y)に、開口の大きさに依存した光の拡がりが生じることが分かる。

Figure 0004470629
The light intensity distribution by Fraunhofer diffraction of a rectangular opening as shown in FIG. 13A can be calculated by the following formula, and depends on the size of the opening in the direction I (x, y) orthogonal to the sides of the rectangular opening. It can be seen that the light spreads.
Figure 0004470629

このとき、光の波長をλ、矩形開口の大きさを直交する2方向(x方向、y方向)においてそれぞれDx、Dy、開口から光強度を観察する面までの距離をRとしている。Aは矩形開口の大きさに依存しない値であるので、ここでは定数として扱える。ここで、sinc関数は、

Figure 0004470629
At this time, λ is the wavelength of light, and R is the distance from the opening to the surface where the light intensity is observed in Dx and Dy, respectively, in two directions (x direction and y direction) orthogonal to the size of the rectangular opening. Since A is a value that does not depend on the size of the rectangular opening, it can be treated as a constant here. Where the sinc function is
Figure 0004470629

である。 It is.

従って、本発明においてはセルの大きさが開口に相当するので、セルの大きさに従ってx方向、y方向に1次回折光の拡がり方を制御することができる。特に射出用光学素子38の場合は、回折格子による1次回折光がこのような拡がりを持つことになり、特定方向の射出光の拡がりをセルの大きさによっても制御することができることになる。また、拡散性光学素子39の場合は、拡散光が更にこのような拡がりを持つことになるので、特定方向の拡散性を更に強めるように設計することもできる。   Therefore, in the present invention, since the size of the cell corresponds to the opening, it is possible to control how the first-order diffracted light spreads in the x direction and the y direction according to the size of the cell. In particular, in the case of the emission optical element 38, the first-order diffracted light by the diffraction grating has such a spread, and the spread of the emitted light in a specific direction can be controlled also by the size of the cell. Further, in the case of the diffusive optical element 39, the diffused light has such a spread, so that it can be designed to further enhance the diffusibility in a specific direction.

具体的には、x方向を平均導光方向Fとすると、x方向におけるセルの大きさが100μmの場合、500nmの波長λに対して、300mm離れた位置で、回折光の拡がり(回折光のピークを中心に最初に強度が0になるところ同士の幅)は約3mmとなる。一方、x方向におけるセルの大きさが5μmの場合には、回折光の拡がりは約60mmとなる。また、x方向におけるセルの大きさが10μmの場合には、回折光の拡がりは約30mmとなる。上記条件において、これらをグラフにすると図14に示す通りとなる。   Specifically, assuming that the x direction is the average light guide direction F, when the cell size in the x direction is 100 μm, the spread of the diffracted light (diffracted light of the diffracted light at a position 300 mm away from the wavelength λ of 500 nm). The width between the places where the intensity first becomes 0 around the peak is about 3 mm. On the other hand, when the cell size in the x direction is 5 μm, the spread of the diffracted light is about 60 mm. When the cell size in the x direction is 10 μm, the spread of the diffracted light is about 30 mm. When these are graphed under the above conditions, they are as shown in FIG.

従って、セルの大きさが5μm以上100μm以下の範囲であれば、回折光の拡がりを60mmから3mmまでと、現実的に十分な範囲に亘って制御することができる。更にセルの大きさを5μm以下とすると、更に拡がりを大きくすることも可能である。射出用光学素子38の場合、セルの内部に形成した回折格子を効果的に機能させるために5μm以上であることが望ましいが、拡散性光学素子39では、粒状のものや、凹凸パターンで形成することによって1μmまで小さくしてセルの大きさによる拡散性を積極的に活用してもよい。   Therefore, if the cell size is in the range of 5 μm or more and 100 μm or less, the spread of the diffracted light can be controlled over a practically sufficient range from 60 mm to 3 mm. Further, if the cell size is 5 μm or less, the spread can be further increased. In the case of the emission optical element 38, it is desirable to be 5 μm or more in order to effectively function the diffraction grating formed inside the cell, but the diffusive optical element 39 is formed in a granular shape or a concavo-convex pattern. Accordingly, the diffusibility depending on the cell size may be positively utilized by reducing the thickness to 1 μm.

以上から、セルの各方向における長さにより回折光の拡がり幅を制御することが可能となり、本実施の形態に係る照明装置から射出する照明光の拡がり方を適宜設計することが可能となる。特に、白色光を照明光として射出する場合に、射出用光学素子38の回折格子によって回折光が分光する度合いは上記(1)式により求められるが、格子ベクトル方向vのセルの長さDxを十分に小さくすることで、回折光の拡がり幅を大きくし、分光の影響を抑制することもできる。   From the above, the spread width of the diffracted light can be controlled by the length in each direction of the cell, and the method of spreading the illumination light emitted from the illumination device according to the present embodiment can be appropriately designed. In particular, when white light is emitted as illumination light, the degree to which the diffracted light is dispersed by the diffraction grating of the emission optical element 38 can be obtained by the above equation (1), but the cell length Dx in the grating vector direction v is set as follows. By making it sufficiently small, the spread width of the diffracted light can be increased and the influence of spectroscopy can be suppressed.

また、セルの外形形状を、導光板10上で同一とすることで、回折光の拡がり方の均一化を図ることができる。あるいは、大きさや形状の異なるセルや、導光板10の表面における配置方向を異とするセルによって、セル形状に依存する回折光の拡がり方を任意に制御することができる。   In addition, by making the outer shape of the cells the same on the light guide plate 10, it is possible to make the diffracted light spread more uniform. Alternatively, the way in which the diffracted light spreads depending on the cell shape can be arbitrarily controlled by cells having different sizes and shapes and cells having different arrangement directions on the surface of the light guide plate 10.

例えば、セルの形状を長方形とすることにより、長方形の各辺に直交する方向へのみ回折光を拡がらせることができ、拡がり方を当該方向における長方形の大きさで制御することができる。従って、2方向への射出光の拡がり方を自由に設計可能である。一般的には、導光板10の平均導光方向Fに対して、一組の辺を直交するように長方形を配置し、各辺に直交する方向の射出光の拡がり方を制御するのが望ましい。これにより、平均導光方向Fとそれに直交する方向Rの射出光の拡がり方を独立に設定し、適宜、拡散する方向や強さを制御したり、射出光の角度範囲を制御したり、回折格子による波長分散効果を打ち消したりできる。   For example, by making the shape of the cell a rectangle, the diffracted light can be spread only in the direction orthogonal to each side of the rectangle, and the spreading method can be controlled by the size of the rectangle in the direction. Accordingly, it is possible to freely design how the emitted light spreads in two directions. In general, it is desirable to arrange a rectangle so that a pair of sides are orthogonal to the average light guide direction F of the light guide plate 10 and to control how the emitted light spreads in the direction orthogonal to each side. . As a result, the spread method of the emitted light in the average light guide direction F and the direction R orthogonal thereto is set independently, and the direction and intensity of diffusion are appropriately controlled, the angle range of the emitted light is controlled, and diffraction is performed. It is possible to cancel the wavelength dispersion effect due to the grating.

また、セルの形状を円形もしくは楕円形とすることにより、あらゆる方向に拡がりを持つ射出光を実現できる。その際、セルの大きさにより射出光の拡がり方を制御できる。また、楕円形の場合には、長軸、短軸に直交する方向への回折光の拡がり方を、当該方向における大きさで制御することができる。従って、2方向への射出光の拡がり方を自由に設計可能である。一般的には、導光板10の平均導光方向Fに対して、片方の軸が直交するように配置し、各辺に直交する方向の射出光の拡がり方を制御するのが望ましい。これにより、平均導光方向Fとそれに直交する方向Rの射出光の拡がり方を独立に設定し、適宜、拡散する方向や強さを制御したり、射出光の角度範囲を制御したり、回折格子による波長分散効果を極小化できる。   Further, by making the shape of the cell circular or elliptical, it is possible to realize emitted light that spreads in all directions. At that time, the spread of the emitted light can be controlled by the size of the cell. In the case of an ellipse, the way in which the diffracted light spreads in the direction perpendicular to the major axis and the minor axis can be controlled by the size in that direction. Accordingly, it is possible to freely design how the emitted light spreads in two directions. In general, it is desirable to arrange the light guide plate 10 so that one axis is perpendicular to the average light guide direction F of the light guide plate 10 and to control how the emitted light spreads in the direction perpendicular to each side. As a result, the spread method of the emitted light in the average light guide direction F and the direction R orthogonal thereto is set independently, and the direction and intensity of diffusion are appropriately controlled, the angle range of the emitted light is controlled, and diffraction is performed. The wavelength dispersion effect due to the grating can be minimized.

また、セルの配置間隔を100μm以下とすると、一般的な観察条件における人間の目の解像度以下となり、このような照明装置の射出面26を目視観察した場合でも、セルの大きさは十分小さく、単位面積あたりに十分な数のセルを配置できるため、均一な射出光を出す面として観察させることができる。   Further, when the cell arrangement interval is set to 100 μm or less, the resolution becomes less than the human eye under general observation conditions. Even when the exit surface 26 of such an illuminating device is visually observed, the size of the cell is sufficiently small. Since a sufficient number of cells can be arranged per unit area, it can be observed as a surface that emits uniform emitted light.

以上、本発明の好適な実施の形態について、添付図面を参照しながら説明したが、本発明はかかる構成に限定されない。特許請求の範囲の発明された技術的思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to this structure. Within the scope of the invented technical idea of the scope of claims, a person skilled in the art can conceive of various changes and modifications. The technical scope of the present invention is also applicable to these changes and modifications. It is understood that it belongs to.

本発明の第1の実施の形態に係る照明装置の構成例を示す斜視図。The perspective view which shows the structural example of the illuminating device which concerns on the 1st Embodiment of this invention. 同実施の形態に係る照明装置における射出用光学素子及び拡散性光学素子の配置例を示した平面図。The top view which showed the example of arrangement | positioning of the optical element for emission in the illuminating device which concerns on the embodiment, and a diffusive optical element. 点状光源から放射された光の導光状態を示す模式図。The schematic diagram which shows the light guide state of the light radiated | emitted from the point light source. 同実施の形態に係る照明装置における拡散性光学素子の機能を示した部分平面図。The fragmentary top view which showed the function of the diffusable optical element in the illuminating device which concerns on the embodiment. 同実施の形態に係る照明装置における射出用光学素子の機能を示した側面図。The side view which showed the function of the optical element for injection | emission in the illuminating device based on the embodiment. 同形態に係る照明装置をバックライトとして用いた透過型LCDパネルの概念図。The conceptual diagram of the transmission type LCD panel which used the illuminating device which concerns on the form as a backlight. 直線状の回折格子パターンの平面図および断面図。The top view and sectional drawing of a linear diffraction grating pattern. 曲線状の回折格子パターンの平面図および断面図。The top view and sectional drawing of a curved diffraction grating pattern. 同実施の形態に係る照明装置の背面に反射板を使用した構成例を示す斜視図。The perspective view which shows the structural example which uses the reflecting plate for the back surface of the illuminating device which concerns on the embodiment. 多数の射出用光学素子および拡散性光学素子が互いに入り交じって配置している照明装置の一例を示す平面図。The top view which shows an example of the illuminating device which has arrange | positioned many optical elements for injection | emission and a diffusible optical element mutually intermingled. 多数の射出用光学素子および拡散性光学素子が互いに入り交じって配置している照明装置の別の例を示す平面図。The top view which shows another example of the illuminating device which has arrange | positioned many optical elements for injection | emission and a diffusible optical element mutually intermingled. 拡散素子用領域と射出素子用領域とが交互に入り組んだ面を備えた照明装置の一例を示す図。The figure which shows an example of the illuminating device provided with the surface where the area | region for spreading | diffusion elements and the area | region for injection | emission elements entered alternately. セルの形状例を示す平面図。The top view which shows the example of a shape of a cell. フラウンホーファー回折による開口大きさと回折光の拡がり幅との関係を示す図。The figure which shows the relationship between the opening size by Fraunhofer diffraction, and the breadth of diffracted light. 従来技術による導光体が適用されてなる照明装置を示す斜視図。The perspective view which shows the illuminating device with which the light guide by a prior art is applied. 図15に示す照明装置が適用されてなる表示装置を示す斜視図。The perspective view which shows the display apparatus with which the illuminating device shown in FIG. 15 is applied.

符号の説明Explanation of symbols

E…射出方向、F…平均導光方向、d…格子ピッチ、v…格子ベクトル方向、10…導光板、11…光入射側端面、12…光源、13…プリズム、14,16…照明装置、18…LCDパネル、24…表示装置、26…射出面、27…対向面、32…反射体、38…射出用光学素子、39…拡散性光学素子、40,41…回折格子、42…拡散素子用領域、43…射出素子用領域   E ... Ejection direction, F ... Average light guide direction, d ... Lattice pitch, v ... Lattice vector direction, 10 ... Light guide plate, 11 ... Light incident side end face, 12 ... Light source, 13 ... Prism, 14, 16 ... Illumination device, DESCRIPTION OF SYMBOLS 18 ... LCD panel, 24 ... Display apparatus, 26 ... Ejection surface, 27 ... Opposite surface, 32 ... Reflector, 38 ... Optical element for emission, 39 ... Diffusing optical element, 40, 41 ... Diffraction grating, 42 ... Diffusing element Area 43 for injection element

Claims (8)

光源と、前記光源から入射した光を導光し、前記導光された光を射出面から射出する平面状の導光板とを備えた照明装置において、
回折格子から構成され、前記射出面または前記射出面の対向面に、前記導光板の光入射側から離れるに従って配置密度が大きくなるように配置された射出用光学素子と、
前記射出用光学素子が配置された面に、前記導光板の光入射側から離れるに従って配置密度が小さくなるように配置された拡散性光学素子と
を備えた照明装置。
In a lighting device including a light source and a planar light guide plate that guides light incident from the light source and emits the guided light from an exit surface.
An emission optical element that is configured of a diffraction grating and is arranged on the emission surface or the surface opposite to the emission surface so that the arrangement density increases as the distance from the light incident side of the light guide plate increases.
An illuminating device comprising: a diffusive optical element disposed on a surface on which the emission optical element is disposed so that the arrangement density decreases as the distance from the light incident side of the light guide plate increases.
請求項1に記載の照明装置において、
前記射出用光学素子および拡散性光学素子が配置された面に複数のセルを配置し、前記射出用光学素子および前記拡散性光学素子が、前記複数のセルのうちの何れかに配置されるようにし、前記射出用光学素子が配置されたセル、および前記拡散性光学素子が配置されたセルの配置個数および/または大きさを調整することにより、前記射出用光学素子の配置密度が前記光入射側から離れるに従って大きくなり、前記拡散性光学素子の配置密度が前記光入射側から離れるに従って小さくなるようにした照明装置。
The lighting device according to claim 1.
A plurality of cells are arranged on a surface on which the emission optical element and the diffusive optical element are arranged, and the emission optical element and the diffusive optical element are arranged in any of the plurality of cells. And adjusting the arrangement number and / or size of the cell in which the emission optical element is arranged and the cell in which the diffusive optical element is arranged, thereby adjusting the arrangement density of the emission optical element to the light incidence. An illuminating device in which the arrangement density of the diffusive optical elements increases as the distance from the side increases, and decreases as the distance from the light incident side increases.
請求項2に記載の照明装置において、
前記射出用光学素子が配置されたセルの、前記導光板内を導光される光の平均導光方向の大きさを5μm以上100μm以下とした照明装置。
The lighting device according to claim 2,
An illumination device in which a size of an average light guide direction of light guided through the light guide plate of the cell in which the emission optical element is arranged is 5 μm or more and 100 μm or less.
請求項2または請求項3に記載の照明装置において、
前記拡散性光学素子が配置されたセルの、前記導光板内を導光される光の平均導光方向に直交する方向の大きさを1μm以上100μm以下とした照明装置。
In the illuminating device of Claim 2 or Claim 3,
A lighting device in which a size of a cell in which the diffusible optical element is arranged is 1 μm or more and 100 μm or less in a direction orthogonal to an average light guide direction of light guided in the light guide plate.
請求項1に記載の照明装置において、
前記射出用光学素子の配置密度が前記光入射側から離れるに従って大きくなり、前記拡散性光学素子の配置密度が前記光入射側から離れるに従って小さくなるように、前記射出用光学素子および拡散性光学素子が配置された面に、前記射出用光学素子が配置された第1の領域と、前記拡散性光学素子が配置された第2の領域とを交互に入り組んで配置するようにした照明装置。
The lighting device according to claim 1.
The emission optical element and the diffusive optical element so that the arrangement density of the emission optical element increases as the distance from the light incident side increases, and the arrangement density of the diffusive optical element decreases as the distance from the light incident side increases. A lighting device in which the first area where the emission optical element is arranged and the second area where the diffusive optical element is arranged are alternately arranged on the surface where is arranged.
請求項1に記載の照明装置において、
前記射出用光学素子の配置密度が前記光入射側から離れるに従って大きくなり、前記拡散性光学素子の配置密度が前記光入射側から離れるに従って小さくなるように、前記射出用光学素子および拡散性光学素子が配置された面に、前記射出用光学素子と前記拡散性光学素子とを入り交じるように配置するようにした照明装置。
The lighting device according to claim 1.
The emission optical element and the diffusive optical element so that the arrangement density of the emission optical element increases as the distance from the light incident side increases, and the arrangement density of the diffusive optical element decreases as the distance from the light incident side increases. An illumination device in which the emission optical element and the diffusive optical element are arranged so as to be mixed with each other on the surface on which is disposed.
請求項1乃至6のうちの何れか1項に記載の照明装置において、
前記射出用光学素子は、前記導光板内を導光される光の方向を、前記射出面に対する法線方向に近づけるように曲げ、前記拡散性光学素子は、前記導光板内を導光される光を、前記導光板内を導光される光の平均導光方向に対する直交方向に拡散するようにした照明装置。
In the illuminating device of any one of Claims 1 thru | or 6,
The emission optical element is bent so that the direction of light guided in the light guide plate is close to a normal direction to the emission surface, and the diffusive optical element is guided in the light guide plate. An illumination device configured to diffuse light in a direction orthogonal to an average light guide direction of light guided in the light guide plate.
請求項1乃至7のうちの何れか1項に記載の照明装置において、
前記射出用光学素子と前記拡散性光学素子とをレリーフ構造によって形成した照明装置。
The illumination device according to any one of claims 1 to 7,
An illumination device in which the emission optical element and the diffusive optical element are formed by a relief structure.
JP2004215991A 2004-07-23 2004-07-23 Lighting device Expired - Fee Related JP4470629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215991A JP4470629B2 (en) 2004-07-23 2004-07-23 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215991A JP4470629B2 (en) 2004-07-23 2004-07-23 Lighting device

Publications (2)

Publication Number Publication Date
JP2006040627A JP2006040627A (en) 2006-02-09
JP4470629B2 true JP4470629B2 (en) 2010-06-02

Family

ID=35905403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215991A Expired - Fee Related JP4470629B2 (en) 2004-07-23 2004-07-23 Lighting device

Country Status (1)

Country Link
JP (1) JP4470629B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227347A (en) * 2005-02-18 2006-08-31 Toppan Printing Co Ltd Back light unit for liquid crystal display, and liquid crystal display
KR100869147B1 (en) * 2007-07-09 2008-11-18 김세덕 Light guide panel for back light unit
WO2009139093A1 (en) * 2008-05-16 2009-11-19 シャープ株式会社 Backlight unit and liquid crystal display device
JP5791527B2 (en) * 2012-01-16 2015-10-07 京セラドキュメントソリューションズ株式会社 Light irradiation apparatus, image reading apparatus, and image forming apparatus
JP2014072019A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Light guide board and surface illuminant device
WO2017164871A1 (en) * 2016-03-23 2017-09-28 Leia Inc. Grating-based backlight employing reflective grating islands

Also Published As

Publication number Publication date
JP2006040627A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4470388B2 (en) Light guide plate, illumination device using the same, and display device
JP4470387B2 (en) Illumination device and display device
JP2009295598A (en) Light guide plate, and illuminating device and display using the same
JP5859585B2 (en) Light extraction structure for light emitting device
KR100977336B1 (en) Light emitting device and lighting device having the same
JP4386749B2 (en) Planar light source
JP4600078B2 (en) Illumination device and liquid crystal display device
KR20020055587A (en) Optical sheet using diffraction grating, and display device using the optical sheet
JP4600077B2 (en) Illumination device and liquid crystal display device
JP4470629B2 (en) Lighting device
KR101064478B1 (en) Plane light emitting back light unit and lamp using point light source
JP2006227347A (en) Back light unit for liquid crystal display, and liquid crystal display
JP4654654B2 (en) Lighting equipment
JPH0651130A (en) Light transmission plate for surface lighting device using spot light source
JP4453516B2 (en) Lighting device
JP4389604B2 (en) Illumination device and display device
JP2005189264A (en) Optical element and surface light source device using the same
JP4779594B2 (en) Illumination device and liquid crystal display device
JP2005317474A (en) Backlight apparatus
JP4599979B2 (en) Lighting device
JP4645150B2 (en) Backlight unit
JP6277416B2 (en) Lighting device
JP2013225417A (en) Planar lighting apparatus
JP4599988B2 (en) Backlight unit
JP2005078909A (en) Surface light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees