JP4470142B2 - Relay optical system - Google Patents

Relay optical system Download PDF

Info

Publication number
JP4470142B2
JP4470142B2 JP2003048060A JP2003048060A JP4470142B2 JP 4470142 B2 JP4470142 B2 JP 4470142B2 JP 2003048060 A JP2003048060 A JP 2003048060A JP 2003048060 A JP2003048060 A JP 2003048060A JP 4470142 B2 JP4470142 B2 JP 4470142B2
Authority
JP
Japan
Prior art keywords
lens group
optical system
lens
diffractive
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003048060A
Other languages
Japanese (ja)
Other versions
JP2004258246A (en
JP2004258246A5 (en
Inventor
憲三郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003048060A priority Critical patent/JP4470142B2/en
Publication of JP2004258246A publication Critical patent/JP2004258246A/en
Publication of JP2004258246A5 publication Critical patent/JP2004258246A5/ja
Application granted granted Critical
Publication of JP4470142B2 publication Critical patent/JP4470142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体と像をリレーする光学系に関し、特に、回折光学素子を備えたリレー光学系に関する。
【0002】
【従来の技術】
物体と像をリレーするリレー光学系には、従来から正の屈折力を有するレンズを2組以上組み合わせて用いられている。そして、このリレー光学系を、対物レンズ及び接眼レンズと組み合わせて観察光学系を構成したり、装置内での引き回し光学系として、被写体(物体)から撮像面(像)までの距離が離れている場合などに用いられている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平9−281414号公報
【0004】
【発明が解決しようとする課題】
しかしながら、近年の撮像素子の画素ピッチの微細化などによる撮像技術の進歩に対応して、リレー光学系等も小型化の要求があるが、優れた結像性能(特に、色ズレの少ないもの)と、小型化、軽量化等を両立させることが極めて困難であった。
【0005】
本発明は、以上の課題に鑑みなされたものであり、回折光学素子を利用して、良好な結像性能を達成することができ、且つ、高性能なリレー光学系を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために、本発明に係るリレー光学系は、有限距離に位置する物体の像をリレーする光学系であって、物体側から順に配置された正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とから構成されるリレー光学系において、通過する光線の光軸とのなす角度が10度以下となる位置に配置された回折光学面を有し、リレー結像倍率をβ、第1レンズ群の最も像側の面と第2レンズ群の最も物体側の面との光軸上の距離をL、全体の共役距離をTLとしたとき、次式
−3.0 < β < −0.2
0.1653 ≦ L/TL < 0.8
を満足するように構成される。
【0007】
なお、本発明に係るリレー光学系において、回折光学面は第1若しくは第2レンズ群中のいずれかのレンズ面に設けられ、この回折光学面の有効径をCとし、全体の焦点距離をfwとしたとき、次式
0.03 < C/fw < 2.0
を満足することが好ましい。
【0008】
また、通過する光線の光軸とのなす角度が5度以下になる位置に回折光学面が配置されることが好ましい。
【0009】
また、第1レンズ群を出射し第2レンズ群に入射するまでの光線は光軸に対してほぼ平行になるように構成され、第1レンズ群を出射し第2レンズ群に入射するまでの最大像高の主光線の光軸とのなす角度をWとしたとき、次式
0.01 < W < 10.0
を満足することが好ましい。
【0010】
また、回折光学面は、少なくとも一つの回折素子要素に形成された回折格子構造よりなり、第1レンズ群と第2レンズ群とは、少なくとも1つの回折素子要素の厚さ及び回折格子構造以外の部分は対称な構成の光学系であって、結像倍率がほぼ−1.0であるように構成されることが好ましい。あるいは、第1レンズ群と第2レンズ群とは対称な光学系であって、結像倍率がほぼ−1.0であるように構成されることが好ましい。さらに、回折光学面が、屈折率の異なる複数の回折素子要素からなる複層の回折格子構造により構成されることが好ましい。
【0011】
また、本発明に係るリレー光学系は、第1レンズ群を接合レンズで構成する場合の接合した光学部材の屈折率の差をΔNとしたとき、次式
0.1 < ΔN
を満足することが好ましい。あるいは、回折光学面を有する回折光学素子の最も物体側の面から最終面までの光軸上の厚さをdとし、全体の焦点距離をfwとしたとき、次式
0.01 < d/fw < 0.5
を満足することが好ましい。
【0012】
このような本発明に係るリレー光学系において、回折光学面が、第1レンズ群の像側、または、第2レンズ群の物体側に配置されることが好ましい。また、回折光学面が、レンズ表面に樹脂層で形成されていることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照して説明する。一般的にリレー光学系は、凸レンズを用いても、凹レンズを用いても構成することができる。しかし、十分な共役距離を有し、レンズのサイズをコンパクトにし、良好な結像性能を保つように構成された、最も実用的なものとしては、凸レンズと凸レンズを正対させるタイプのものが従来より広く用いられている。図1に示すように、本発明に係るリレー光学系RLも、物体側より順に、正の屈折力を有する第1レンズ群G1(凸レンズ)と、正の屈折力を有する第2レンズ群G2(凸レンズ)とから構成されている。そのため、物体Oから放射された光線は、第1レンズ群G1で屈折してほぼ平行光線として出射し、さらに第2レンズ群G2に入射して屈折し、第2レンズ群G2を出射した光線は像Iとして結像するように構成される。本発明においては、リレー光学系RLに回折光学面Gfを適用し、小型、高性能で、かつ、少ないレンズで構成することができる光学系を実現するための適正な条件を見出したものである。
【0014】
次に、回折光学面及びこの回折光学面を有する光学素子である回折光学素子について説明する。一般に、光線を曲げる方法は屈折と反射が知られているが、第3番目の方法として回折が知られている。回折光学素子とは、光の回折現象を利用した光学素子であって、屈折や反射とは異なる振る舞いを示すことが知られている。具体的には、回折格子やフレネルゾーンプレートによる回折光学面が従来より知られている。この回折光学面の性質としては、負の分散値を有していて、色収差補正に極めて有効であることが知られている。このため、通常ガラスでは達し得ない良好な色収差補正が可能である事が知られている。本発明においては、ガラスやプラスチック等の光学部材の表面に回折格子やフレネルゾーンプレートのように回折現象を応用して光線を曲げる作用を有する面を形成し、その作用により良好な光学性能を得るものであり、このように回折現象を応用して光線を曲げる作用をする面を回折光学面と呼ぶことにする。そして、このような面を有する光学素子を回折光学素子と一般に呼んでいる。なお、回折光学素子等については、「『回折光学素子入門』応用物理学会日本光学会監修平成9年第1版発行」に詳しい。
【0015】
さて、一般に、光学系の回折光学面を通過する光線の角度は、できるだけ小さい事が好ましい。これは、回折光学面を通過する光線の角度が大きくなると回折光学面(格子の段差部分)によるフレア(ブレーズした所定次数以外の光が有害光となって像面に達する現象)が発生し易くなり、画質を損ねてしまうためである。そして、そのフレアがあまり影響を及ぼさずに、良好な画質を得るためには、本光学系の場合、その角度が10度以下とすることが望ましい。このような条件が満たされれば、回折光学面は、リレー光学系中のどこに配置しても良い。しかし、その効果を十分に得るには、5度以下であることがより好ましい。
【0016】
以下に本発明に係るリレー光学系RLを構成するための条件について説明する。まず、本発明に係るリレー光学系RLは、結像倍率をβとしたとき、下の条件式(1)を満足するように構成される。
【0017】
【数1】
−3.0 < β < −0.2 (1)
【0018】
条件式(1)は、リレー光学系RLの結像倍率の適切な範囲を示しており、条件式(1)の上限、下限のいずれを超えても、先に示した凸レンズと凸レンズとを正対させる構造は不適となってしまい、良好な収差補正を達成することが困難となる。また、上限を超える場合には、共役距離のうち像距離が短くなるため、第2レンズ群G2の焦点距離が短くなり、この結果、レンズ系のペッツバール和が正側に大きくなって、像面の曲がりが負側に甚大となり、良好な画像が得られない。逆に下限を超えるときは、結像倍率の大きさが大きくなりすぎてしまい、球面収差が大きくなりがちであるばかりか、軸上色収差と倍率色収差が大きくなって不都合である。なお、本発明の効果を十分に発揮するには、上限を−0.5、下限を−1.8とすることが望ましい。
【0019】
さらには、コストダウン等のため、第1レンズ群G1と第2レンズ群G2とを同一の光学系として対称に配置した、タンデム配置としても良い。この場合、結像倍率βは−1.0(いわゆる等倍)となり、開口絞りSを光学系の中央に配置すれば歪曲収差、倍率色収差がほとんど0とできるので、良好な結像性能が得られて好ましい。
【0020】
また、リレー光学系RLが有する回折光学面Gfの有効径(直径)をCとし、リレー光学系RL全体の焦点距離をfwとしたとき、以下に示す条件式(2)を満足するように構成することが好ましい。
【0021】
【数2】
0.03 < C/fw < 2.0 (2)
【0022】
条件式(2)は、回折光学面Gfの有効径(直径)の適切な範囲を規定している。条件式(2)の上限を上回ると、径が大きくなりすぎ、回折光学面Gfの製造が困難となり、コストアップにつながる。また、回折光学面Gfに外部からの有害光が入りやすくなり、フレア等による画質低下を招きやすくなる。反対に条件式(2)の下限を下回ると、回折光学面Gfを有するレンズ(回折光学素子)の有効径が小さくなりすぎて、回折光学面Gfの格子ピッチが小さくなる傾向が強まり、回折光学面Gfの製造が困難となりコストアップにつながるばかりか、回折光学面Gfの格子によるフレア発生が大きくなり画質低下を招きやすくなる。なお、本発明の効果を十分に発揮するには、上限を1.0、下限を0.12とすることが望ましい。
【0023】
また、本発明においては、上述の条件式(1),(2)に加えて、以下の条件式(3),(4)を満足することが望ましい。なお、以下の条件式(3),(4)において、Lは第1レンズ群G1の最も像側の面と第2レンズ群G2の最も物体側の面との光軸上の距離であり、TLはリレー光学系RLの光学系全体の共役距離(物像間距離)であり、Wは第1レンズ群G1を出射し第2レンズ群G2に入射するまでの最大像高の主光線の光軸とのなす角度(単位は「度」とする)である。
【0024】
【数3】
0.08 < L/TL < 0.8 (3)
0.01 < W < 10.0 (4)
【0025】
条件式(3)は、第1レンズ群G1と第2レンズ群G2の光軸上の距離の適正なる範囲を示しており、合わせて第1レンズ群G1と第2レンズ群G2の適切な位置も規定する。条件式(3)の上限を上回ると、第1レンズ群G1と第2レンズ群G2の距離Lが大きくなりすぎて、この結果、第1レンズ群G1と第2レンズ群G2の焦点距離が小さくなりすぎてしまい、レンズ系のペッツバール和が正側に大きくなり、そのため像面の曲がりが負側に甚大となるため、良好な画像は得られない。さらには、回折光学面Gfが像面に近くなりすぎてしまい、格子のピッチが画像に写り込み易くなる不都合も生じる。反対に、条件式(3)の下限を下回ると、第1レンズ群G1と第2レンズ群G2の焦点距離が大きくなりすぎてしまい、球面収差の発生、軸上色収差が甚大となり、良好な結像性能が得にくくなる。なお、本発明の効果をさらに十分に発揮するには、条件式(3)の上限値を0.5とし、下限値を0.08とすることが好ましい。
【0026】
条件式(4)は、第1レンズ群G1と第2レンズ群G2の間を通過する最大像高の主光線の光線角度(光軸とのなす角度)の適正なる範囲を規定するものである。条件式(4)の下限を下回ると、第1レンズ群G1と第2レンズ群G2の間を通過する最大像高の主光線の光線角度が小さくなりすぎてしまい、十分な像面フィールドの大きさが確保しづらくなってしまい不都合である。特に、共役距離に制限のある場合には顕著である。一方、条件式(4)の上限を上回ると、リレー光学系RLを通る光線角度(光軸とのなす角度)が大きくなりすぎてしまい、フレア発生が甚大となって画質を損ねるため不都合である。なお、本発明の効果をさらに十分に発揮するには、条件式(4)の上限値を3.0度とし、下限値を0.1度とすることが好ましい。
【0027】
また、本発明において、さらに、次の条件式(5),(6)を満足することが望ましい。なお、以下の条件式(5),(6)において、ΔNは第1レンズ群G1を接合レンズで構成する場合の接合した光学部材(レンズ)の屈折率の差であり、dは回折光学面Gfを有する回折光学素子の光軸上の厚さである。なお、回折光学面Gfが複層の回折格子構造を有する場合は、格子を形成する基板側の光学部材の光軸上の厚さを指すものとする。
【0028】
【数4】
0.1 < ΔN (5)
0.01 < d/fw < 0.5 (6)
【0029】
条件式(5)は、接合レンズを構成する光学部材の屈折率の差を規定するものである。条件式(5)の下限を超えると、球面収差の補正が困難となりがちで不都合である。又、ペッツバール和が小さくなりすぎてしまい、中心の最良像面と周辺の最良像面の差が大きくなりがちとなる不都合が生じる。
【0030】
条件式(6)は、回折光学面Gfを有する回折光学素子の最も物体側の面から最終面までの光軸上の厚さと全体の焦点距離との適切なる比を示すものである。条件式(6)の上限を超えると、回折光学素子の厚さdが大きく(厚く)なりすぎてしまい製造しにくくなるばかりか、コストアップを招く。条件式(6)の下限を超えると、回折光学素子が薄くなりすぎてしまい、製造中に撓みやすくなる不都合が生じる。また、組み込み時の変形が生じやすくなり、結像性能劣化の原因となる。なお、本発明の効果をさらに十分に発揮するには、条件式(6)の上限値を0.1とし、下限値を0.02とすることが好ましい。
【0031】
なお、実際にリレー光学系RLを構成するときには、以下に述べる用件を満たすように構成することが望ましい。まず、第1レンズ群G1の物体側に回折光学面を配置すると、通過する光線の光軸とのなす角度が10度を超えてしまいがちなので、この回折光学面によるフレア発生が大きくなり好ましくない。そのため、回折光学面を通過する光線の光軸とのなす角度を10度以下にするためには、第1レンズ群G1の像側や第2レンズ群G2の物体側に回折光学面を配置することが適切であって、回折光学面を配置するレンズは凸レンズでも凹レンズでも構わない。
【0032】
また、良好な色収差補正のために、第2レンズ群G2も接合レンズを有することが好ましく、両凸レンズと凹メニスカスレンズの接合レンズとすることが好ましい。これは、回折光学面Gfで補正しきれない2次スペクトルを補正するものであり、凸レンズと凹レンズの接合レンズで補正可能だからである。そして、さらには、その効果を十分に得るために、通過する光線の光軸とのなす角度が5度以下であることが好ましい。しかしながら、適用すべき仕様などによっては、接合レンズとせずとも、単レンズに回折光学面を形成するのみで、十分な効果が得られる場合もあり、コストや重量等を優先した設計を行うこともできる。そして、この場合に光学系中に非球面を少なくとも1面有することが望ましい。
【0033】
実際に回折光学面を創製するには、レンズの表面にフレネルゾーンプレートのように、光軸に対して回転対称な回折格子構造を作ることが製造上容易であるため好ましい。この際、通常の非球面レンズを製造するのと同じく、精研削でも、ガラスモールドでも可能である。さらには、レンズ表面に薄い樹脂層で回折格子構造を形成してもよい。また、格子はキノフォーム等の単純な単層構造に限らず、複数の回折格子構造を重ねることにより、回折効率の波長特性や画角特性を向上させることができるので好都合である。なお、回折光学面はアッベ数が65以下の光学ガラスのレンズ面上に創製することが望ましい。これは、製造し易く良好な性能が得られるからである。
【0034】
さらに、本発明に係るリレー光学系RLは、撮影レンズのブレを検出するブレ検出手段と、ブレ検出手段からの信号とカメラの作動シークエンスの制御を行う制御手段からの信号とに基づいて適正なブレ補正量を定めるブレ制御装置と、ブレ補正量に基づき防振レンズ群を移動させる駆動機構とを組み合わせて、防振レンズシステムを構成することもできる。上述の第1レンズG1若しくは第2レンズ群G2のいずれかのレンズ群を光軸とほぼ直交する方向に可動として防振を行うことができ、このとき、移動量をΔSとしたとき、ΔS < 0.1を満たすことが望ましい。
【0035】
また、本発明に係るリレー光学系RLを構成する各レンズに対して、上述した非球面を有する非球面レンズや、屈折率分布型レンズ等を用いることにより、さらに良好な光学性能を得ることができることは言うまでもない。また、このリレー光学系RLは、レーザー光学系など単色光で用いても良く、この場合、収差補正の自由度が増すので、設計が容易になる。
【0036】
【実施例】
以下、本発明に係るリレー光学系RLの具体的な実施例について説明する。下に示す4つの実施例では、図1、図3、図5及び図7に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2とから構成されており、物体Oから出た光線が、本発明に係るリレー光学系RLでリレーされて、像面Iに結像する。
【0037】
各実施例において、回折光学面Gfの位相差は、通常の屈折率と後述する非球面式(7),(8)とを用いて行う超高屈折率法により計算した。超高屈折率法は、非球面形状を表す式と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例において回折光学面は超高屈折率法のデータとして、すなわち、後述する非球面式(7),(8)及びその係数により示している。なお、本実施例では収差特性の算出対象としてd線、g線、C線及びF線を選んだ。本実施例において用いたd線、g線、C線及びF線の波長と各スペクトル線に対して設定した具体的な屈折率の値を下の表1に示す。
【0038】
【表1】

Figure 0004470142
【0039】
各実施例において非球面は、光軸に垂直な方向の高さ(入射高)をyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(非球面量又はサグ量)をS(y)とし、基準球面の曲率半径をrとし、近軸曲率半径をRとし、円錐係数をκとし、2次の非球面係数をC2、4次の非球面係数をC4、6次の非球面係数をC6、8次の非球面係数をC8、10次の非球面係数をC10としたとき、下の式(7),(8)で表されるものとした。
【0040】
【数5】
S(y)=(y2/r)/(1+(1−κ(y2/r2))1/2
+C22+C44+C66+C88+C1010 (7)
R=1/((1/r)+2C2) (8)
【0041】
なお、本実施例において用いた超高屈折率法については、前述の「『回折光学素子入門』応用物理学会日本光学会監修平成9年第1版発行」に詳しい。
【0042】
(第1実施例)
図1に、本発明の第1実施例に係るリレー光学系RLのレンズ構成を示す。本第1実施例におけるリレー光学系RLの第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1(負レンズ)と像側に回折光学面Gfが形成された回折光学素子L2Eとの貼り合わせからなる接合レンズで構成される。また、第2レンズ群G2は、物体側から順に、物体側に回折光学面Gfが形成された回折光学素子L3Eと物体側に凹面を向けた負メニスカスレンズL4(負レンズ)とを貼り合わせた接合レンズで構成される。ここで、回折光学素子L2Eは、物体側に位置した両凸レンズL2(正レンズ)である第1回折素子要素(基板側光学部材)と、像側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。また、回折光学素子L3Eは、像側に位置した両凸レンズL3(正レンズ)である第1回折素子要素(基板側光学部材)と、物体側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。なお、第1レンズ群G1と第2レンズ群G2とは、回折光学面Gfを有する回折素子要素を含めて完全対称な構成の光学系であり、各々の間の中央に開口絞りSを有している。また、本第1実施例において、結像倍率βは−1.000であるが、ほぼ−1.0(すなわち−1.000からのずれが±5%以内)として構成しても構わない。
【0043】
下の表2に、本第1実施例における各レンズの諸元を示す。表2における面番号1〜11は、本発明に係るリレー光学系RLに関するものであり、それぞれ図1における符号1〜11に対応する。また、表2におけるrはレンズ面の曲率半径(非球面の場合は基準球面の曲率半径)を、dはレンズ面の面間隔を、n(d)はd線に対する屈折率を、n(g)はg線に対する屈折率をそれぞれ示している。なお、表2において、非球面形状に形成されたレンズ面には、面番号の右側に*印を付している。また、非球面係数Cn(n=2,4,6,8,10)において「E−09」等は「×10-09」等を示す。以上の表2の記号の説明は、以降の実施例においても同様である。また、以下の全ての諸元値において掲載されている曲率半径r、面間隔dその他の長さの単位は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることもできる。
【0044】
本実施例では、リレー光学系RLの第1レンズ群G1における面番号3及び4に相当する面と、第2レンズ群G2における面番号8及び9に相当する面が回折光学面Gfに相当している。また、下の表2の条件対応値において、回折光学素子の回折光学面の有効径C及び光軸上の厚さdは、第1及び第2レンズ群G1,G2にそれぞれ回折光学素子を有するため、第1レンズ群G1における回折光学素子L2Eの有効径をC1、厚さをd1とし、第2レンズ群G2における回折光学素子L3Eの有効径をC2、厚さをd2としている。
【0045】
【表2】
(第1レンズ群G1)
面番号 r d n(d) n(g)
494.34460 1.000000
1 769.93988 2.29833 1.651280 1.673231 L1
2 222.93782 8.04415 1.516800 1.526703 L2E
3 -298.78264 0.00000 n12
4* -298.78264 0.30000 1.553890 1.572840
5 -298.78264 100.00000 1.000000
6 ∞ 100.00000 1.000000 S(開口絞り)
(第2レンズ群G2)
面番号 r d n(d) n(g)
7 298.78264 0.30000 1.553890 1.572840 L3E
8* 298.78264 0.00000 n12
9 298.78264 8.04415 1.516800 1.526703
10 -222.93782 2.29833 1.651280 1.673231 L4
11 -769.93988 494.34460 1.000000
(回折光学素子データ)
第3,8面
n(d)=10001.0000=n1 n(g)=7418.6853=n2
(非球面データ)
第4面
κ=1.0000 C2=-1.56640E-09
4=-6.58950E-31 C6=-4.98990E-31
8=-3.77860E-31 C10=-2.86130E-31
第8面
κ=1.0000 C2=1.56640E-09
4=6.58950E-31 C6=4.98990E-31
8=3.77860E-31 C10=2.86130E-31
(条件対応値)
C1=59.98
C2=59.98
C1に入射する光線の角度=0.00057度
C2に入射する光線の角度=0.42274度
fw=313.480
L=200.000
TL=1209.974
ΔN=0.13448
d1=8.04415
d2=8.04415
(1)β=-1.000
(2)C1/fw=0.1913
C2/fw=0.1913
(3)L/TL=0.1653
(4)W=0.6303度
(5)ΔN=0.13448
(6)d1/fw=0.02566
d2/fw=0.02566
【0046】
このように本第1実施例では、上記条件式(1)〜(6)は全て満たされていることがわかる。
【0047】
また、図2は第1実施例における光学系の諸収差図である。各収差図においてNAは開口数を、Yは像高を、dはd線を、gはg線をそれぞれ示している。また、球面収差図では最大口径に対する開口数NAの最大値を、非点収差図、歪曲収差図、倍率色収差図では像高Yの最大値をそれぞれ示し、コマ収差図では各像高Yの値を示す。さらに、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示している。以上の収差図の説明は、以降の他の収差図についても同様である。各収差図から明らかなように、本第1実施例では諸収差が良好に補正され、優れた結像性能が確保されていることが分かる。
【0048】
(第2実施例)
図3に、本発明の第2実施例に係るリレー光学系RLのレンズ構成を示す。本第2実施例におけるリレー光学系RLの第1レンズ群G1は、像側に凸面を向け像側に回折光学面Gfが形成された回折光学素子L11Eから構成される。また、第2レンズ群G2は、物体側に凸面を向け物体側に回折光学面Gfが形成された回折光学素子L12Eから構成される。ここで、回折光学素子L11Eは、物体側に位置し像側に凸面を向けた平凸レンズL11(正レンズ)である第1回折素子要素(基板側光学部材)と、像側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。また、回折光学素子L12Eは、像側に位置し物体側に凸面を向けた平凸レンズL12(正レンズ)である第1回折素子要素(基板側光学部材)と、物体側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。なお、第1レンズ群G1と第2レンズ群G2とは、第2回折素子要素の厚さ及び回折格子構造以外の部分が互いに対称な構成の光学系であり、各々の間の中央に開口絞りSを有している。また、本第2実施例において、結像倍率βは−1.000であるが、ほぼ−1.0(すなわち−1.000からのずれが±5%以内)として構成しても構わない。
【0049】
下の表3に、本第2実施例における各レンズの諸元を示す。表3における面番号1〜9は本発明のリレー光学系RLに関するものであり、それぞれ図3における符号1〜9に対応する。
【0050】
本実施例では、リレー光学系RLの第1レンズ群G1における面番号2及び3に相当する面と、第2レンズ群G2における面番号7及び8に相当する面が回折光学面Gfに相当している。また、下の表3の条件対応値において、回折光学素子の回折光学面の有効径C及び光軸上の厚さdは、第1実施例と同じく、第1レンズ群G1における回折光学素子L11Eの有効径をC1、厚さをd1とし、第2レンズ群G2における回折光学素子L12Eの有効径をC2、厚さをd2としている。
【0051】
【表3】
(第1レンズ群G1)
面番号 r d n(d) n(g)
490.66200 1.000000
1* ∞ 14.65587 1.589130 1.601033 L11E
2 -314.05438 0.00000 n12
3* -314.05438 0.22726 1.553890 1.572840
4 -314.05438 200.00000 1.000000
5 ∞ 200.00000 1.000000 S(開口絞り)
(第2レンズ群G2)
面番号 r d n(d) n(g)
6 314.05438 0.20000 1.553890 1.572840 L12E
7* 314.05438 0.00000 n12
8 314.05438 14.65587 1.589130 1.601033
9* ∞ 490.64882 1.000000
(回折光学素子データ)
第2,7面
n(d)=10001.0000=n1 n(g)=7418.6853=n2
(非球面データ)
第1面
κ=1.0000 C2=0.00000E+00
4=-1.85230E-09 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第3面
κ=1.0000 C2=-6.20910E-09
4=0.00000E+00 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第7面
κ=1.0000 C2=6.20910E-09
4=0.00000E+00 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第9面
κ=1.0000 C2=0.00000E+00
4=1.85230E-09 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
(条件対応値)
C1=59.99
C2=59.99
C1に入射する光線の角度=0.72997度
C2に入射する光線の角度=0.72997度
fw=416.689
L=400.000
TL=1411.050
ΔN(単レンズのためこの条件は対象外)
d1=14.65587
d2=14.65587
(1)β=-1.000
(2)C1/fw=0.1440
C2/fw=0.1440
(3)L/TL=0.2835
(4)W=1.1460度
(5)ΔN(単レンズのためこの条件は対象外)
(6)d1/fw=0.03517
d2/fw=0.03517
【0052】
このように本第2実施例では、上記条件式(1)〜(4)及び(6)を全て満足していることがわかる。また、図4は第2実施例における光学系の諸収差図である。各収差図から明らかなように、本第2実施例では諸収差が良好に補正されており、優れた結像性能が確保されていることが分かる。
【0053】
(第3実施例)
図5に、本発明の第3実施例に係るリレー光学系RLのレンズ構成を示す。本第3実施例におけるリレー光学系RLの第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21(負レンズ)と像側に回折光学面Gfが形成された回折光学素子L22Eとの貼り合わせからなる接合レンズで構成される。また、第2レンズ群G2は、物体側から順に、物体側に回折光学面Gfが形成された回折光学素子L23Eと物体側に凹面を向けた負メニスカスレンズL24(負レンズ)とを貼り合わせた接合レンズで構成される。ここで、回折光学素子L22Eは、物体側に位置した両凸レンズL22(正レンズ)である第1回折素子要素(基板側光学部材)と、像側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。また、回折光学素子L23Eは、像側に位置した両凸レンズL23(正レンズ)である第1回折素子要素(基板側光学部材)と、物体側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。なお、開口絞りSは第1レンズ群G1の最も像側のレンズ面に隣接して配設されており、迷光を遮光するための迷光絞りFSは、第1レンズ群G1と第2レンズ群G2との間(好ましくは中央位置)に配設されている。
【0054】
下の表4に、本第3実施例における各レンズの諸元を示す。表4における面番号1〜11は本発明のリレー光学系RLに関するものであり、それぞれ図5における符号1〜11に対応する。
【0055】
本実施例では、リレー光学系RLの第1レンズ群G1における面番号3及び4に相当する面と、第2レンズ群G2における面番号8及び9に相当する面が回折光学面Gfに相当している。また、下の表4の条件対応値において、回折光学素子の回折光学面の有効径C及び光軸上の厚さdは、第1実施例と同じく、第1レンズ群G1における回折光学素子L22Eの有効径をC1、厚さをd1とし、第2レンズ群G2における回折光学素子L23Eの有効径をC2、厚さをd2としている。
【0056】
【表4】
(第1レンズ群G1)
面番号 r d n(d) n(g)
450.00000 1.000000
1 769.93988 2.29833 1.651280 1.673231 L21
2 222.93781 8.04415 1.516800 1.526703 L22E
3 -298.78265 0.00000 n12
4* -298.78265 0.30000 1.553890 1.572840
5 -298.78264 0.00000 1.000000
6 ∞ 200.00000 1.000000 S(開口絞り)
(第2レンズ群G2)
面番号 r d n(d) n(g)
7 239.02612 0.24000 1.553890 1.572840 L23E
8* 239.02612 0.00000 n12
9 239.02612 6.43532 1.516800 1.526703
10 -178.35025 1.83866 1.651280 1.673231 L24
11 -615.95190 186.60660 1.000000
(回折光学素子データ)
第3,8面
n(d)=10001.0000=n1 n(g)=7418.6853=n2
(非球面データ)
第4面
κ=1.0000 C2=-1.56640E-09
4=-6.58950E-31 C6=-4.98990E-31
8=-3.77860E-31 C10=-2.86130E-31
第8面
κ=1.0000 C2=1.95800E-09
4=1.28700E-30 C6=1.52280E-30
8=1.80180E-30 C10=2.13180E-30
(条件対応値)
C1=51.31
C2=48.00
C1に入射する光線の角度=0.00057度
C2に入射する光線の角度=0.06337度
fw=286.636
L=200.000
TL=1097.021
ΔN=0.13448
d1=8.04415
d2=6.43532
(1)β=-0.913
(2)C1/fw=0.1790
C2/fw=0.1675
(3)L/TL=0.1653
(4)W=0.7575度
(5)ΔN=0.13448
(6)d1/fw=0.02806
d2/fw=0.02245
【0057】
このように本第3実施例では、上記条件式(1)〜(6)を全て満足していることがわかる。また、図6は第3実施例における光学系の諸収差図である。各収差図から明らかなように、本第3実施例では諸収差が良好に補正されており、優れた結像性能が確保されていることが分かる。
【0058】
(第4実施例)
図7に、本発明の第4実施例に係るリレー光学系RLのレンズ構成を示す。本第4実施例におけるリレー光学系RLの第1レンズ群G1は、像側に凸面を向け像側に回折光学面Gfが形成された回折光学素子L31Eから構成される。また、第2レンズ群G2は、物体側に凸面を向け物体側に回折光学面Gfが形成された回折光学素子L32Eから構成される。ここで、回折光学素子L31Eは、物体側に位置し像側に凸面を向けた平凸レンズL31(正レンズ)である第1回折素子要素(基板側光学部材)と、像側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。また、回折光学素子L32Eは、像側に位置し物体側に凸面を向けた平凸レンズL32(正レンズ)である第1回折素子要素(基板側光学部材)と、物体側に位置する第2回折素子要素とを密接接合し、その接合面に回折光学面Gfが形成された複層の回折格子構造を有して構成されている。なお、開口絞りSは第1レンズ群G1と第2レンズ群G2との間の中央に配置されている。
【0059】
下の表5に、本第4実施例における各レンズの諸元を示す。表5における面番号1〜9は本発明のリレー光学系RLに関するものであり、それぞれ図7における符号1〜9に対応する。
【0060】
本実施例では、リレー光学系RLの第1レンズ群G1における面番号2及び3に相当する面と、第2レンズ群G2における面番号7及び8に相当する面が回折光学面Gfに相当している。また、下の表5の条件対応値において、回折光学素子の回折光学面の有効径C及び光軸上の厚さdは、第1実施例と同じく、第1レンズ群G1における回折光学素子L31Eの有効径をC1、厚さをd1とし、第2レンズ群G2における回折光学素子L32Eの有効径をC2、厚さをd2としている。
【0061】
【表5】
(第1レンズ群G1)
面番号 r d n(d) n(g)
520.00000 1.000000
1* ∞ 14.65587 1.589130 1.601033 L31E
2 -314.05438 0.00000 n12
3* -314.05438 0.22726 1.553890 1.572840
4 -314.05438 200.00000 1.000000
5 ∞ 200.00000 1.000000 S(開口絞り)
(第2レンズ群G2)
面番号 r d n(d) n(g)
6 376.86527 0.24000 1.553890 1.572840 L32E
7* 376.86527 0.00000 n12
8 376.86527 17.58704 1.589130 1.601033
9* ∞ 549.73889 1.000000
(回折光学素子データ)
第2,7面
n(d)=10001.0000=n1 n(g)=7418.6853=n2
(非球面データ)
第1面
κ=1.0000 C2=0.00000E+00
4=-1.85230E-09 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第3面
κ=1.0000 C2=-6.20910E-09
4=0.00000E+00 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第7面
κ=1.0000 C2=5.17420E-09
4=0.00000E+00 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
第9面
κ=1.0000 C2=0.00000E+00
4=1.07190E-09 C6=0.00000E+00
8=0.00000E+00 C10=0.00000E+00
(条件対応値)
C1=60.0
C2=65.64
C1に入射する光線の角度=0.63606度
C2に入射する光線の角度=0.53000度
fw=428.593
L=400.000
TL=1502.449
ΔN(単レンズのためこの条件は対象外)
d1=14.65587
d2=17.58704
(1)β=-1.109
(2)C1/fw=0.1400
C2/fw=0.1532
(3)L/TL=0.2835
(4)W=0.9981度
(5)ΔN(単レンズのためこの条件は対象外)
(6)d1/fw=0.03420
d2/fw=0.04103
【0062】
このように本第4実施例では、上記条件式(1)〜(4)及び(6)を全て満足していることがわかる。また、図8は第4実施例における光学系の諸収差図である。各収差図から明らかなように、本第4実施例では諸収差が良好に補正されており、優れた結像性能が確保されていることが分かる。
【0063】
以上の各実施例において、開口絞りSは、前述の位置に限定配置されることなく、他の位置に配置しても構わない。また、別部材として設けなくても、レンズを保持する枠で代用しても構わない。また、迷光絞りFSも、必要に応じて適宜所定の位置に配置しても構わない。
【0064】
【発明の効果】
以上説明したように、本発明に係るリレー光学系によれば、回折光学素子を利用し、優れた結像性能を有するとともに、小型、軽量で、構成枚数の少ないリレー光学系を得ることができる。したがって、本発明のリレー光学系は、撮影光学系、装置内の光学系、ファインダー、レーザー干渉計用光学系、観察光学系等に好適である。
【図面の簡単な説明】
【図1】本発明に係るリレー光学系の第1実施例におけるレンズ構成図である。
【図2】第1実施例における諸収差図である。
【図3】本発明に係るリレー光学系の第2実施例におけるレンズ構成図である。
【図4】第2実施例における諸収差図である。
【図5】本発明に係るリレー光学系の第3実施例におけるレンズ構成図である。
【図6】第3実施例における諸収差図である。
【図7】本発明に係るリレー光学系の第4実施例におけるレンズ構成図である。
【図8】第4実施例における諸収差図である。
【符号の説明】
RL リレー光学系
G1 第1レンズ群
G2 第2レンズ群
Gf 回折光学面
O 物体
I 像面
S 開口絞り
FS 迷光絞り[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical system that relays an object and an image, and more particularly, to a relay optical system including a diffractive optical element.
[0002]
[Prior art]
Conventionally, a relay optical system that relays an object and an image uses a combination of two or more lenses having positive refractive power. The relay optical system is combined with an objective lens and an eyepiece lens to form an observation optical system, or as a routing optical system in the apparatus, the distance from the subject (object) to the imaging surface (image) is large. It is used in some cases (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-9-281414
[0004]
[Problems to be solved by the invention]
However, in response to advances in imaging technology due to the recent reduction in pixel pitch of imaging devices, relay optical systems and the like are also required to be downsized, but excellent imaging performance (especially those with little color misregistration). It has been extremely difficult to achieve both reduction in size and weight.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-performance relay optical system that can achieve good imaging performance using a diffractive optical element. To do.
[0006]
[Means for Solving the Problems]
  In order to solve the above problems, a relay optical system according to the present invention has a finite distance.Located inAn optical system for relaying an image of an object, wherein the relay optical system includes a first lens group having a positive refractive power and a second lens group having a positive refractive power, which are sequentially arranged from the object side. , A diffractive optical surface disposed at a position where the angle formed by the optical axis of the passing light beam is 10 degrees or less, the relay imaging magnification β, the most image side surface of the first lens group and the second lens When the distance on the optical axis with the most object side surface of the group is L, and the total conjugate distance is TL,
              −3.0 <β <−0.2
              0.1653 ≦ L / TL <0.8
It is configured to satisfy
[0007]
In the relay optical system according to the present invention, the diffractive optical surface is provided on any lens surface in the first or second lens group, the effective diameter of this diffractive optical surface is C, and the overall focal length is fw. When
0.03 <C / fw <2.0
Is preferably satisfied.
[0008]
  In addition, the diffractive optical surface is disposed at a position where the angle formed by the optical axis of the passing light beam is 5 degrees or less.ThatIs preferred.
[0009]
In addition, the light from the first lens group until it enters the second lens group is configured to be substantially parallel to the optical axis, and the light from the first lens group until it enters the second lens group. When W is the angle formed by the optical axis of the chief ray with the maximum image height,
0.01 <W <10.0
Is preferably satisfied.
[0010]
  The diffractive optical surface includes a diffraction grating structure formed on at least one diffraction element element, and the first lens group and the second lens group have a thickness other than the thickness of at least one diffraction element element and the diffraction grating structure. The portion is an optical system having a symmetrical configuration, and is preferably configured so that the imaging magnification is approximately −1.0. Alternatively, it is preferable that the first lens group and the second lens group are symmetrical optical systems and are configured so that the imaging magnification is approximately −1.0. Further, the diffractive optical surface is constituted by a multilayer diffraction grating structure composed of a plurality of diffraction element elements having different refractive indexes.thingIs preferred.
[0011]
  In the relay optical system according to the present invention, when the refractive index difference of the cemented optical member when the first lens group is composed of a cemented lens is ΔN,
                  0.1 <ΔN
Is preferably satisfied. Alternatively, when the thickness on the optical axis from the most object-side surface to the final surface of the diffractive optical element having a diffractive optical surface is d and the total focal length is fw,
            0.01 <d / fw <0.5
Is preferably satisfied.
[0012]
  In such a relay optical system according to the present invention, it is preferable that the diffractive optical surface is disposed on the image side of the first lens group or the object side of the second lens group. The diffractive optical surface is preferably formed of a resin layer on the lens surface.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In general, the relay optical system can be configured using either a convex lens or a concave lens. However, the most practical one that has a sufficient conjugate distance, the lens size is compact, and maintains good imaging performance, is a type in which a convex lens and a convex lens face each other. More widely used. As shown in FIG. 1, the relay optical system RL according to the present invention also includes a first lens group G1 (convex lens) having positive refractive power and a second lens group G2 having positive refractive power (in order from the object side). Convex lens). Therefore, the light beam radiated from the object O is refracted by the first lens group G1 and emitted as a substantially parallel light beam, and further incident on the second lens group G2 and refracted, and the light beam emitted from the second lens group G2 It is configured to form an image I. In the present invention, the diffractive optical surface Gf is applied to the relay optical system RL, and appropriate conditions for realizing an optical system that can be configured with a small size, high performance, and a small number of lenses have been found. .
[0014]
Next, a diffractive optical surface and a diffractive optical element that is an optical element having the diffractive optical surface will be described. In general, refraction and reflection are known as a method of bending a light beam, but diffraction is known as a third method. A diffractive optical element is an optical element that utilizes the diffraction phenomenon of light, and is known to exhibit behavior different from refraction and reflection. Specifically, a diffractive optical surface using a diffraction grating or a Fresnel zone plate is conventionally known. As a property of the diffractive optical surface, it has a negative dispersion value and is known to be extremely effective for correcting chromatic aberration. For this reason, it is known that a good chromatic aberration correction that cannot be achieved with normal glass is possible. In the present invention, a surface having an action of bending a light beam by applying a diffraction phenomenon such as a diffraction grating or a Fresnel zone plate is formed on the surface of an optical member such as glass or plastic, and good optical performance is obtained by the action. A surface that acts to bend a light beam by applying a diffraction phenomenon in this way is called a diffractive optical surface. An optical element having such a surface is generally called a diffractive optical element. The diffractive optical elements and the like are described in detail in “Introduction to Diffractive Optical Elements” published by the Japan Society for Optical Science, Applied Physics Society, 1997 edition.
[0015]
In general, it is preferable that the angle of light passing through the diffractive optical surface of the optical system is as small as possible. This is because when the angle of the light beam passing through the diffractive optical surface increases, flare due to the diffractive optical surface (stepped portion of the grating) (a phenomenon in which blazed light other than the predetermined order reaches the image surface as harmful light) is likely to occur. This is because the image quality is impaired. In order to obtain a good image quality without the flare being affected so much, in the case of the present optical system, the angle is desirably set to 10 degrees or less. If such a condition is satisfied, the diffractive optical surface may be disposed anywhere in the relay optical system. However, in order to obtain the effect sufficiently, it is more preferably 5 degrees or less.
[0016]
The conditions for configuring the relay optical system RL according to the present invention will be described below. First, the relay optical system RL according to the present invention is configured to satisfy the following conditional expression (1) when the imaging magnification is β.
[0017]
[Expression 1]
−3.0 <β <−0.2 (1)
[0018]
Conditional expression (1) indicates an appropriate range of the imaging magnification of the relay optical system RL. If the upper limit or lower limit of conditional expression (1) is exceeded, the above-described convex lens and convex lens are corrected. The structure to be paired becomes unsuitable, and it becomes difficult to achieve good aberration correction. When the upper limit is exceeded, the image distance of the conjugate distance is shortened, so that the focal length of the second lens group G2 is shortened. As a result, the Petzval sum of the lens system is increased to the positive side, and the image plane is increased. The bend of the image becomes large on the negative side, and a good image cannot be obtained. Conversely, when the lower limit is exceeded, the magnitude of the imaging magnification becomes too large, and not only the spherical aberration tends to increase, but also the axial chromatic aberration and the chromatic aberration of magnification become inconvenient. In order to fully demonstrate the effects of the present invention, it is desirable to set the upper limit to -0.5 and the lower limit to -1.8.
[0019]
Furthermore, in order to reduce costs, a tandem arrangement in which the first lens group G1 and the second lens group G2 are arranged symmetrically as the same optical system may be used. In this case, the imaging magnification β is −1.0 (so-called equal magnification), and if the aperture stop S is arranged at the center of the optical system, distortion and lateral chromatic aberration can be almost zero, so that good imaging performance is obtained. It is preferable.
[0020]
Further, when the effective diameter (diameter) of the diffractive optical surface Gf of the relay optical system RL is C and the focal length of the entire relay optical system RL is fw, the following conditional expression (2) is satisfied. It is preferable to do.
[0021]
[Expression 2]
0.03 <C / fw <2.0 (2)
[0022]
Conditional expression (2) defines an appropriate range of the effective diameter (diameter) of the diffractive optical surface Gf. If the upper limit of conditional expression (2) is exceeded, the diameter becomes too large, making it difficult to manufacture the diffractive optical surface Gf, leading to an increase in cost. In addition, harmful light from the outside is likely to enter the diffractive optical surface Gf, and the image quality is likely to deteriorate due to flare or the like. On the other hand, if the lower limit of conditional expression (2) is not reached, the effective diameter of the lens (diffractive optical element) having the diffractive optical surface Gf becomes too small, and the tendency of the grating pitch of the diffractive optical surface Gf to become small increases. The manufacture of the surface Gf becomes difficult and leads to an increase in cost, and the occurrence of flare due to the grating of the diffractive optical surface Gf is increased, which tends to cause a decrease in image quality. In order to fully exhibit the effects of the present invention, it is desirable that the upper limit is 1.0 and the lower limit is 0.12.
[0023]
In the present invention, it is desirable that the following conditional expressions (3) and (4) are satisfied in addition to the conditional expressions (1) and (2). In the following conditional expressions (3) and (4), L is the distance on the optical axis between the most image side surface of the first lens group G1 and the most object side surface of the second lens group G2. TL is the conjugate distance (object-image distance) of the entire optical system of the relay optical system RL, and W is the principal ray light having the maximum image height until it exits the first lens group G1 and enters the second lens group G2. This is the angle between the axes (unit is “degrees”).
[0024]
[Equation 3]
0.08 <L / TL <0.8 (3)
0.01 <W <10.0 (4)
[0025]
Conditional expression (3) indicates an appropriate range of the distance on the optical axis between the first lens group G1 and the second lens group G2, and the appropriate positions of the first lens group G1 and the second lens group G2 together. Also stipulate. If the upper limit of conditional expression (3) is exceeded, the distance L between the first lens group G1 and the second lens group G2 becomes too large. As a result, the focal length of the first lens group G1 and the second lens group G2 becomes small. As a result, the Petzval sum of the lens system becomes large on the positive side, and the curvature of the image surface becomes large on the negative side, so that a good image cannot be obtained. Furthermore, the diffractive optical surface Gf becomes too close to the image plane, and there arises a disadvantage that the pitch of the grating is easily reflected in the image. On the other hand, if the lower limit of conditional expression (3) is not reached, the focal lengths of the first lens group G1 and the second lens group G2 become too large, resulting in the occurrence of spherical aberration and axial chromatic aberration, resulting in good results. Image performance is difficult to obtain. In addition, in order to exhibit the effect of this invention more fully, it is preferable to set the upper limit of conditional expression (3) to 0.5 and set the lower limit to 0.08.
[0026]
Conditional expression (4) defines an appropriate range of the ray angle (angle formed with the optical axis) of the principal ray having the maximum image height that passes between the first lens group G1 and the second lens group G2. . If the lower limit of conditional expression (4) is not reached, the ray angle of the principal ray having the maximum image height passing between the first lens group G1 and the second lens group G2 becomes too small, and the image field field has a sufficient size. It is inconvenient because it becomes difficult to secure the height. This is particularly noticeable when the conjugate distance is limited. On the other hand, if the upper limit of conditional expression (4) is exceeded, the light ray angle passing through the relay optical system RL (the angle formed with the optical axis) becomes too large, and flare generation becomes enormous and the image quality is impaired. . In addition, in order to exhibit the effect of this invention more fully, it is preferable that the upper limit of conditional expression (4) is 3.0 degrees and the lower limit is 0.1 degrees.
[0027]
In the present invention, it is further desirable to satisfy the following conditional expressions (5) and (6). In the following conditional expressions (5) and (6), ΔN is a difference in refractive index of the optical member (lens) that is cemented when the first lens group G1 is composed of a cemented lens, and d is a diffractive optical surface. It is the thickness on the optical axis of the diffractive optical element having Gf. When the diffractive optical surface Gf has a multilayer diffraction grating structure, the thickness on the optical axis of the optical member on the substrate side that forms the grating is indicated.
[0028]
[Expression 4]
0.1 <ΔN (5)
0.01 <d / fw <0.5 (6)
[0029]
Conditional expression (5) defines the difference in refractive index of the optical members constituting the cemented lens. If the lower limit of conditional expression (5) is exceeded, correction of spherical aberration tends to be difficult, which is inconvenient. Further, the Petzval sum becomes too small, and there arises a disadvantage that the difference between the central best image surface and the peripheral best image surface tends to become large.
[0030]
Conditional expression (6) represents an appropriate ratio between the thickness on the optical axis from the most object-side surface to the final surface of the diffractive optical element having the diffractive optical surface Gf and the overall focal length. If the upper limit of conditional expression (6) is exceeded, the thickness d of the diffractive optical element becomes too large (thick), making it difficult to manufacture, and increasing the cost. When the lower limit of the conditional expression (6) is exceeded, the diffractive optical element becomes too thin, which causes a disadvantage that it is easily bent during manufacture. In addition, deformation at the time of incorporation is likely to occur, which causes deterioration of imaging performance. In addition, in order to fully demonstrate the effect of this invention, it is preferable to set the upper limit of conditional expression (6) to 0.1, and to set a lower limit to 0.02.
[0031]
Note that when the relay optical system RL is actually configured, it is desirable that the relay optical system RL be configured to satisfy the requirements described below. First, if the diffractive optical surface is disposed on the object side of the first lens group G1, the angle formed with the optical axis of the light beam passing therethrough tends to exceed 10 degrees. . Therefore, in order to set the angle formed by the optical axis of the light beam passing through the diffractive optical surface to 10 degrees or less, the diffractive optical surface is disposed on the image side of the first lens group G1 or the object side of the second lens group G2. It is appropriate that the lens on which the diffractive optical surface is disposed may be a convex lens or a concave lens.
[0032]
In order to satisfactorily correct chromatic aberration, the second lens group G2 also preferably has a cemented lens, and is preferably a cemented lens of a biconvex lens and a concave meniscus lens. This is because a secondary spectrum that cannot be corrected by the diffractive optical surface Gf is corrected and can be corrected by a cemented lens of a convex lens and a concave lens. Further, in order to sufficiently obtain the effect, it is preferable that the angle formed by the optical axis of the light beam passing through is 5 degrees or less. However, depending on the specifications to be applied, there may be a case where a sufficient effect can be obtained only by forming a diffractive optical surface on a single lens without using a cemented lens. it can. In this case, it is desirable to have at least one aspheric surface in the optical system.
[0033]
In order to actually create a diffractive optical surface, it is preferable to make a diffraction grating structure that is rotationally symmetric with respect to the optical axis, such as a Fresnel zone plate, on the surface of the lens because it is easy to manufacture. At this time, as in the case of manufacturing an ordinary aspheric lens, it can be performed by precision grinding or glass mold. Furthermore, a diffraction grating structure may be formed on the lens surface with a thin resin layer. Further, the grating is not limited to a simple single-layer structure such as kinoform, and it is advantageous to overlap a plurality of diffraction grating structures because wavelength characteristics and field angle characteristics of diffraction efficiency can be improved. The diffractive optical surface is desirably created on a lens surface of optical glass having an Abbe number of 65 or less. This is because it is easy to manufacture and good performance is obtained.
[0034]
Furthermore, the relay optical system RL according to the present invention is based on a blur detection unit that detects a blur of the photographing lens, a signal from the blur detection unit, and a signal from a control unit that controls the operation sequence of the camera. An image stabilization lens system can also be configured by combining an image stabilization control device that determines an image stabilization amount and a drive mechanism that moves an image stabilization lens group based on the image stabilization amount. The above-described first lens group G1 or the second lens group G2 can be moved in the direction substantially orthogonal to the optical axis to perform image stabilization. At this time, when the movement amount is ΔS, ΔS < It is desirable to satisfy 0.1.
[0035]
Further, by using the above-mentioned aspherical lens having an aspherical surface, a gradient index lens, or the like for each lens constituting the relay optical system RL according to the present invention, it is possible to obtain even better optical performance. Needless to say, you can. The relay optical system RL may be used for monochromatic light such as a laser optical system. In this case, the degree of freedom in correcting aberrations is increased, so that the design becomes easy.
[0036]
【Example】
Specific examples of the relay optical system RL according to the present invention will be described below. In the four examples shown below, as shown in FIGS. 1, 3, 5 and 7, in order from the object side, a first lens group G1 having a positive refractive power, an aperture stop S, and a positive The second lens group G2 having a refractive power is configured such that the light beam emitted from the object O is relayed by the relay optical system RL according to the present invention and imaged on the image plane I.
[0037]
In each example, the phase difference of the diffractive optical surface Gf was calculated by an ultrahigh refractive index method performed using a normal refractive index and aspherical expressions (7) and (8) described later. The ultrahigh refractive index method uses a certain equivalent relationship between the expression representing the aspherical shape and the grating pitch of the diffractive optical surface. In this embodiment, the diffractive optical surface is data of the ultrahigh refractive index method. That is, it is shown by aspherical expressions (7) and (8) described later and their coefficients. In the present embodiment, d-line, g-line, C-line, and F-line are selected as aberration characteristics calculation targets. Table 1 below shows the wavelengths of the d-line, g-line, C-line and F-line used in this example, and specific refractive index values set for each spectral line.
[0038]
[Table 1]
Figure 0004470142
[0039]
In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis (incident height) is y, and the distance along the optical axis from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y. (Aspherical amount or sag amount) is S (y), the radius of curvature of the reference spherical surface is r, the paraxial radius of curvature is R, the conic coefficient is κ, and the secondary aspherical coefficient is C2The fourth-order aspheric coefficient is CFour, The sixth-order aspheric coefficient is C6, The eighth-order aspheric coefficient is C8The 10th-order aspheric coefficient is CTenIn this case, the following expressions (7) and (8) are used.
[0040]
[Equation 5]
S (y) = (y2/ R) / (1+ (1-κ (y2/ R2))1/2)
+ C2y2+ CFouryFour+ C6y6+ C8y8+ CTenyTen           (7)
R = 1 / ((1 / r) + 2C2(8)
[0041]
The ultra-high refractive index method used in this example is detailed in the aforementioned “Introduction to Diffractive Optical Elements” published by the Japan Society for Optics of Applied Physics, published in 1997, first edition.
[0042]
(First embodiment)
FIG. 1 shows a lens configuration of a relay optical system RL according to the first embodiment of the present invention. In the first lens group G1 of the relay optical system RL in the first embodiment, in order from the object side, a negative meniscus lens L1 (negative lens) having a convex surface facing the object side and a diffractive optical surface Gf are formed on the image side. It is composed of a cemented lens formed by bonding with the diffractive optical element L2E. In the second lens group G2, a diffractive optical element L3E having a diffractive optical surface Gf formed on the object side and a negative meniscus lens L4 (negative lens) having a concave surface facing the object side are bonded together in order from the object side. Consists of a cemented lens. Here, the diffractive optical element L2E closely bonds a first diffractive element element (substrate side optical member) that is a biconvex lens L2 (positive lens) positioned on the object side and a second diffractive element element positioned on the image side. In addition, it has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the joint surface. Further, the diffractive optical element L3E closely bonds a first diffractive element element (substrate side optical member) that is a biconvex lens L3 (positive lens) positioned on the image side and a second diffractive element element positioned on the object side. The multi-layered diffraction grating structure has a diffractive optical surface Gf formed on the joint surface. The first lens group G1 and the second lens group G2 are optical systems having a completely symmetric configuration including a diffractive element element having a diffractive optical surface Gf, and have an aperture stop S at the center between them. ing. In the first embodiment, the imaging magnification β is −1,000, but it may be configured to be approximately −1.0 (that is, the deviation from −1,000 is within ± 5%).
[0043]
Table 2 below shows the specifications of each lens in the first example. Surface numbers 1 to 11 in Table 2 relate to the relay optical system RL according to the present invention, and correspond to reference numerals 1 to 11 in FIG. In Table 2, r is the radius of curvature of the lens surface (in the case of an aspherical surface, the radius of curvature of the reference spherical surface), d is the surface spacing of the lens surface, n (d) is the refractive index with respect to the d-line, and n (g ) Indicates the refractive index with respect to g-line. In Table 2, the lens surface formed in an aspherical shape is marked with * on the right side of the surface number. In addition, the aspheric coefficient CnIn (n = 2, 4, 6, 8, 10), “E-09” is “× 10-09". The explanation of the symbols in Table 2 is the same in the following examples. The unit of length of curvature r, surface spacing d and other lengths listed in all the following specification values is generally “mm” unless otherwise specified, but the optical system is proportionally enlarged or reduced. However, since the same optical performance can be obtained, the unit is not limited to “mm”, and other appropriate units can be used.
[0044]
In this embodiment, the surfaces corresponding to the surface numbers 3 and 4 in the first lens group G1 of the relay optical system RL and the surfaces corresponding to the surface numbers 8 and 9 in the second lens group G2 correspond to the diffractive optical surface Gf. ing. Further, in the condition corresponding values in Table 2 below, the effective diameter C of the diffractive optical surface of the diffractive optical element and the thickness d on the optical axis have diffractive optical elements in the first and second lens groups G1 and G2, respectively. Therefore, the effective diameter of the diffractive optical element L2E in the first lens group G1 is C1, the thickness is d1, the effective diameter of the diffractive optical element L3E in the second lens group G2 is C2, and the thickness is d2.
[0045]
[Table 2]
(First lens group G1)
Surface number r d n (d) n (g)
                 494.34460 1.000000
1 769.93988 2.29833 1.651280 1.673231 L1
2 222.93782 8.04415 1.516800 1.526703 L2E
3 -298.78264 0.00000 n1        n2
4 * -298.78264 0.30000 1.553890 1.572840
5 -298.78264 100.00000 1.000000
6 ∞ 100.00000 1.000000 S (Aperture stop)
(Second lens group G2)
Surface number r d n (d) n (g)
7 298.78264 0.30000 1.553890 1.572840 L3E
8 * 298.78264 0.00000 n1        n2
9 298.78264 8.04415 1.516800 1.526703
10 -222.93782 2.29833 1.651280 1.673231 L4
11 -769.93988 494.34460 1.000000
(Diffraction optical element data)
3rd and 8th surfaces
n (d) = 10001.0000 = n1    n (g) = 7418.6853 = n2
(Aspheric data)
4th page
κ = 1.000 C2= -1.56640E-09
CFour= -6.58950E-31 C6= -4.98990E-31
C8= -3.77860E-31 CTen= -2.86130E-31
8th page
κ = 1.000 C2= 1.56640E-09
CFour= 6.58950E-31 C6= 4.89990E-31
C8= 3.77860E-31 CTen= 2.86130E-31
(Conditional value)
C1 = 59.98
C2 = 59.98
Angle of light incident on C1 = 0.00057 degrees
Angle of light incident on C2 = 0.42274 degrees
fw = 313.480
L = 200.000
TL = 1209.974
ΔN = 0.13448
d1 = 8.04415
d2 = 8.04415
(1) β = -1.000
(2) C1 / fw = 0.1913
      C2 / fw = 0.1913
(3) L / TL = 0.1653
(4) W = 0.6303 degrees
(5) ΔN = 0.13448
(6)d1 / fw = 0.02566
      d2 / fw = 0.02566
[0046]
As described above, in the first embodiment, it is understood that all the conditional expressions (1) to (6) are satisfied.
[0047]
FIG. 2 is a diagram showing various aberrations of the optical system in the first example. In each aberration diagram, NA represents a numerical aperture, Y represents an image height, d represents a d-line, and g represents a g-line. In addition, in the spherical aberration diagram, the maximum value of the numerical aperture NA with respect to the maximum aperture is shown, in the astigmatism diagram, distortion diagram, and magnification chromatic aberration diagram, the maximum value of the image height Y is shown. In the coma aberration diagram, the value of each image height Y is shown. Indicates. Further, in the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The explanation of the above aberration diagrams is the same for the other aberration diagrams. As is apparent from the respective aberration diagrams, it is understood that various aberrations are corrected well and excellent imaging performance is secured in the first embodiment.
[0048]
(Second embodiment)
FIG. 3 shows the lens configuration of the relay optical system RL according to the second embodiment of the present invention. The first lens group G1 of the relay optical system RL in the second embodiment includes a diffractive optical element L11E having a convex surface on the image side and a diffractive optical surface Gf formed on the image side. The second lens group G2 includes a diffractive optical element L12E having a convex surface on the object side and a diffractive optical surface Gf formed on the object side. Here, the diffractive optical element L11E is a first diffractive element element (substrate-side optical member) which is a planoconvex lens L11 (positive lens) located on the object side and having a convex surface facing the image side, and a second diffractive optical element L11E located on the image side. The diffractive element element is intimately bonded, and has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the bonded surface. The diffractive optical element L12E includes a first diffractive element element (substrate-side optical member) that is a planoconvex lens L12 (positive lens) positioned on the image side and having a convex surface facing the object side, and a second diffractive element positioned on the object side. The element element is closely bonded, and has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the bonded surface. The first lens group G1 and the second lens group G2 are optical systems having a configuration in which portions other than the thickness of the second diffractive element element and the diffraction grating structure are symmetric with each other, and an aperture stop is provided at the center between them. S. In the second embodiment, the imaging magnification β is −1,000, but it may be configured to be approximately −1.0 (that is, the deviation from −1,000 is within ± 5%).
[0049]
Table 3 below shows the specifications of each lens in the second example. Surface numbers 1 to 9 in Table 3 relate to the relay optical system RL of the present invention, and correspond to reference numerals 1 to 9 in FIG.
[0050]
In this embodiment, the surface corresponding to the surface numbers 2 and 3 in the first lens group G1 of the relay optical system RL and the surface corresponding to the surface numbers 7 and 8 in the second lens group G2 correspond to the diffractive optical surface Gf. ing. Further, in the condition corresponding values in Table 3 below, the effective diameter C of the diffractive optical surface of the diffractive optical element and the thickness d on the optical axis are the same as in the first example, and the diffractive optical element L11E in the first lens group G1. The effective diameter is C1, the thickness is d1, the effective diameter of the diffractive optical element L12E in the second lens group G2 is C2, and the thickness is d2.
[0051]
[Table 3]
(First lens group G1)
Surface number r d n (d) n (g)
                 490.66200 1.000000
1 * ∞ 14.65587 1.589130 1.601033 L11E
2 -314.05438 0.00000 n1        n2
3 * -314.05438 0.22726 1.553890 1.572840
4 -314.05438 200.00000 1.000000
5 ∞ 200.00000 1.000000 S (Aperture stop)
(Second lens group G2)
Surface number r d n (d) n (g)
6 314.05438 0.20000 1.553890 1.572840 L12E
7 * 314.05438 0.00000 n1        n2
8 314.05438 14.65587 1.589130 1.601033
9 * ∞ 490.64882 1.000000
(Diffraction optical element data)
2nd and 7th surfaces
n (d) = 10001.0000 = n1    n (g) = 7418.6853 = n2
(Aspheric data)
First side
κ = 1.000 C2= 0.00000E + 00
CFour= -1.85230E-09 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
Third side
κ = 1.000 C2= -6.20910E-09
CFour= 0.00000E + 00 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
7th page
κ = 1.000 C2= 6.20910E-09
CFour= 0.00000E + 00 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
9th page
κ = 1.000 C2= 0.00000E + 00
CFour= 1.85230E-09 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
(Conditional value)
C1 = 59.99
C2 = 59.99
Angle of light incident on C1 = 0.72997 degrees
Angle of light incident on C2 = 0.72997 degrees
fw = 416.689
L = 400.000
TL = 1411.050
ΔN (This condition is not applicable because it is a single lens)
d1 = 14.565587
d2 = 14.565587
(1) β = -1.000
(2) C1 / fw = 0.1440
      C2 / fw = 0.1440
(3) L / TL = 0.2835
(4) W = 1.1460 degrees
(5) ΔN (This condition is not applicable because it is a single lens)
(6)d1 / fw = 0.03517
      d2 / fw = 0.03517
[0052]
Thus, in the second embodiment, it can be seen that all the conditional expressions (1) to (4) and (6) are satisfied. FIG. 4 is a diagram showing various aberrations of the optical system in the second example. As is apparent from each aberration diagram, it is understood that various aberrations are corrected favorably in the second embodiment, and excellent imaging performance is ensured.
[0053]
(Third embodiment)
FIG. 5 shows a lens configuration of the relay optical system RL according to the third example of the present invention. The first lens group G1 of the relay optical system RL in the third example includes a negative meniscus lens L21 (negative lens) having a convex surface directed toward the object side and a diffractive optical surface Gf formed on the image side in order from the object side. It is composed of a cemented lens that is bonded to the diffractive optical element L22E. In the second lens group G2, in order from the object side, a diffractive optical element L23E having a diffractive optical surface Gf formed on the object side and a negative meniscus lens L24 (negative lens) having a concave surface facing the object side are bonded. Consists of a cemented lens. Here, the diffractive optical element L22E closely bonds a first diffractive element element (substrate side optical member) that is a biconvex lens L22 (positive lens) positioned on the object side and a second diffractive element element positioned on the image side. In addition, it has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the joint surface. The diffractive optical element L23E closely bonds a first diffractive element element (substrate side optical member) that is a biconvex lens L23 (positive lens) positioned on the image side and a second diffractive element element positioned on the object side. The multi-layered diffraction grating structure has a diffractive optical surface Gf formed on the joint surface. The aperture stop S is disposed adjacent to the lens surface closest to the image side of the first lens group G1, and the stray light stop FS for shielding stray light includes the first lens group G1 and the second lens group G2. (Preferably at a central position).
[0054]
Table 4 below shows the specifications of each lens in the third example. Surface numbers 1 to 11 in Table 4 relate to the relay optical system RL of the present invention, and correspond to reference numerals 1 to 11 in FIG.
[0055]
In this embodiment, the surfaces corresponding to the surface numbers 3 and 4 in the first lens group G1 of the relay optical system RL and the surfaces corresponding to the surface numbers 8 and 9 in the second lens group G2 correspond to the diffractive optical surface Gf. ing. Further, in the condition corresponding values in Table 4 below, the effective diameter C of the diffractive optical surface of the diffractive optical element and the thickness d on the optical axis are the same as in the first example, and the diffractive optical element L22E in the first lens group G1. The effective diameter is C1, the thickness is d1, the effective diameter of the diffractive optical element L23E in the second lens group G2 is C2, and the thickness is d2.
[0056]
[Table 4]
(First lens group G1)
Surface number r d n (d) n (g)
                 450.00000 1.000000
1 769.93988 2.29833 1.651280 1.673231 L21
2 222.93781 8.04415 1.516800 1.526703 L22E
3 -298.78265 0.00000 n1        n2
4 * -298.78265 0.30000 1.553890 1.572840
5 -298.78264 0.00000 1.000000
6 ∞ 200.00000 1.000000 S (aperture stop)
(Second lens group G2)
Surface number r d n (d) n (g)
7 239.02612 0.24000 1.553890 1.572840 L23E
8 * 239.02612 0.00000 n1        n2
9 239.02612 6.43532 1.516800 1.526703
10 -178.35025 1.83866 1.651280 1.673231 L24
11 -615.95190 186.60660 1.000000
(Diffraction optical element data)
3rd and 8th surfaces
n (d) = 10001.0000 = n1    n (g) = 7418.6853 = n2
(Aspheric data)
4th page
κ = 1.000 C2= -1.56640E-09
CFour= -6.58950E-31 C6= -4.98990E-31
C8= -3.77860E-31 CTen= -2.86130E-31
8th page
κ = 1.000 C2= 1.95800E-09
CFour= 1.28700E-30 C6= 1.52280E-30
C8= 1.80180E-30 CTen= 2.13180E-30
(Conditional value)
C1 = 51.31
C2 = 48.00
Angle of light incident on C1 = 0.00057 degrees
Angle of light incident on C2 = 0.06337 degrees
fw = 286.636
L = 200.000
TL = 1097.021
ΔN = 0.13448
d1 = 8.04415
d2 =6.43532
(1) β = -0.913
(2) C1 / fw = 0.1790
      C2 / fw = 0.1675
(3) L / TL = 0.1653
(4) W = 0.7575 degrees
(5) ΔN = 0.13448
(6)d1 / fw = 0.02806
      d2 / fw = 0.02245
[0057]
Thus, it can be seen that the third embodiment satisfies all the conditional expressions (1) to (6). FIG. 6 is a diagram showing various aberrations of the optical system in the third example. As is apparent from the respective aberration diagrams, it is understood that various aberrations are satisfactorily corrected in the third embodiment, and excellent imaging performance is ensured.
[0058]
(Fourth embodiment)
FIG. 7 shows the lens configuration of the relay optical system RL according to the fourth example of the present invention. The first lens group G1 of the relay optical system RL in the fourth example includes a diffractive optical element L31E having a convex surface on the image side and a diffractive optical surface Gf formed on the image side. The second lens group G2 includes a diffractive optical element L32E having a convex surface on the object side and a diffractive optical surface Gf formed on the object side. Here, the diffractive optical element L31E is a first diffractive element element (substrate-side optical member) which is a planoconvex lens L31 (positive lens) positioned on the object side and having a convex surface facing the image side, and a second positioned on the image side. The diffractive element element is intimately bonded, and has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the bonded surface. The diffractive optical element L32E includes a first diffractive element element (substrate side optical member) which is a planoconvex lens L32 (positive lens) positioned on the image side and having a convex surface facing the object side, and a second diffractive element positioned on the object side. The element element is closely bonded, and has a multilayer diffraction grating structure in which a diffractive optical surface Gf is formed on the bonded surface. The aperture stop S is disposed at the center between the first lens group G1 and the second lens group G2.
[0059]
Table 5 below shows the specifications of each lens in the fourth example. Surface numbers 1 to 9 in Table 5 relate to the relay optical system RL of the present invention, and correspond to reference numerals 1 to 9 in FIG.
[0060]
In this embodiment, the surface corresponding to the surface numbers 2 and 3 in the first lens group G1 of the relay optical system RL and the surface corresponding to the surface numbers 7 and 8 in the second lens group G2 correspond to the diffractive optical surface Gf. ing. Further, in the condition corresponding values in Table 5 below, the effective diameter C of the diffractive optical surface of the diffractive optical element and the thickness d on the optical axis are the same as in the first example, and the diffractive optical element L31E in the first lens group G1. The effective diameter is C1, the thickness is d1, the effective diameter of the diffractive optical element L32E in the second lens group G2 is C2, and the thickness is d2.
[0061]
[Table 5]
(First lens group G1)
Surface number r d n (d) n (g)
                 520.00000 1.000000
1 * ∞ 14.65587 1.589130 1.601033 L31E
2 -314.05438 0.00000 n1        n2
3 * -314.05438 0.22726 1.553890 1.572840
4 -314.05438 200.00000 1.000000
5 ∞ 200.00000 1.000000 S (Aperture stop)
(Second lens group G2)
Surface number r d n (d) n (g)
6 376.86527 0.24000 1.553890 1.572840 L32E
7 * 376.86527 0.00000 n1        n2
8 376.86527 17.58704 1.589130 1.601033
9 * ∞ 549.73889 1.000000
(Diffraction optical element data)
2nd and 7th surfaces
n (d) = 10001.0000 = n1    n (g) = 7418.6853 = n2
(Aspheric data)
First side
κ = 1.000 C2= 0.00000E + 00
CFour= -1.85230E-09 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
Third side
κ = 1.000 C2= -6.20910E-09
CFour= 0.00000E + 00 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
7th page
κ = 1.000 C2= 5.17420E-09
CFour= 0.00000E + 00 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
9th page
κ = 1.000 C2= 0.00000E + 00
CFour= 1.07190E-09 C6= 0.00000E + 00
C8= 0.00000E + 00 CTen= 0.00000E + 00
(Conditional value)
C1 = 60.0
C2 = 65.64
Angle of light incident on C1 = 0.63606 degrees
Angle of light incident on C2 = 0.53000 degrees
fw = 428.593
L = 400.000
TL = 1502.449
ΔN (This condition is not applicable because it is a single lens)
d1 = 14.565587
d2 =17.58704
(1) β = -1.109
(2) C1 / fw = 0.1400
      C2 / fw = 0.1532
(3) L / TL = 0.2835
(4) W = 0.9981 degrees
(5) ΔN (This condition is not applicable because it is a single lens)
(6)d1 / fw = 0.03420
      d2 / fw = 0.04103
[0062]
Thus, in the fourth embodiment, it can be seen that all the conditional expressions (1) to (4) and (6) are satisfied. FIG. 8 is a diagram showing various aberrations of the optical system in the fourth example. As is apparent from each aberration diagram, it is understood that various aberrations are corrected favorably in the fourth embodiment, and excellent imaging performance is ensured.
[0063]
In each of the embodiments described above, the aperture stop S is not limited to the above-described position and may be disposed at another position. In addition, a frame that holds the lens may be used instead of being provided as a separate member. Further, the stray light stop FS may be appropriately disposed at a predetermined position as necessary.
[0064]
【The invention's effect】
As described above, according to the relay optical system of the present invention, it is possible to obtain a relay optical system that uses a diffractive optical element, has excellent imaging performance, is small and light, and has a small number of components. . Therefore, the relay optical system of the present invention is suitable for a photographing optical system, an optical system in the apparatus, a finder, an optical system for a laser interferometer, an observation optical system, and the like.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram in a first example of a relay optical system according to the present invention;
FIG. 2 is a diagram showing various aberrations in the first example.
FIG. 3 is a lens configuration diagram in a second example of the relay optical system according to the present invention;
FIG. 4 is a diagram illustrating various aberrations in the second example.
FIG. 5 is a lens configuration diagram of a third example of a relay optical system according to the present invention.
FIG. 6 is a diagram illustrating various aberrations in the third example.
FIG. 7 is a lens configuration diagram of a fourth example of the relay optical system according to the present invention.
FIG. 8 is a diagram illustrating all aberrations in the fourth example.
[Explanation of symbols]
RL relay optical system
G1 first lens group
G2 second lens group
Gf Diffraction optical surface
O object
I Image plane
S Aperture stop
FS stray light aperture

Claims (11)

有限距離に位置する物体の像をリレーする光学系であって、物体側から順に配置された正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とから構成されるリレー光学系において、
通過する光線の光軸とのなす角度が10度以下となる位置に配置された回折光学面を有し、
リレー結像倍率をβ、前記第1レンズ群の最も像側の面と前記第2レンズ群の最も物体側の面との光軸上の距離をL、全体の共役距離をTLとしたとき、次式
−3.0 < β < −0.2
0.1653 ≦ L/TL < 0.8
を満足することを特徴とするリレー光学系。
An optical system that relays an image of an object located at a finite distance , and includes a first lens group having a positive refractive power and a second lens group having a positive refractive power, which are sequentially arranged from the object side. In the relay optical system
A diffractive optical surface disposed at a position where the angle formed by the optical axis of the light beam passing through is 10 degrees or less;
When the relay imaging magnification is β, the distance on the optical axis between the most image side surface of the first lens group and the most object side surface of the second lens group is L, and the overall conjugate distance is TL, Next formula
−3.0 <β <−0.2
0.1653 ≦ L / TL <0.8
Relay optical system characterized by satisfying
前記回折光学面は前記第1若しくは第2レンズ群内のいずれかのレンズ面に設けられ、
前記回折光学面の有効径をCとし、全体の焦点距離をfwとしたとき、次式
0.03 < C/fw < 2.0
を満足することを特徴とする請求項1に記載のリレー光学系。
The diffractive optical surface is provided on any lens surface in the first or second lens group,
When the effective diameter of the diffractive optical surface is C and the entire focal length is fw,
0.03 <C / fw <2.0
The relay optical system according to claim 1, wherein:
通過する光線の光軸となす角度が5度以下になる位置に前記回折光学面が配置されることを特徴とする請求項1または2に記載のリレー光学系。  3. The relay optical system according to claim 1, wherein the diffractive optical surface is disposed at a position where an angle formed by an optical axis of a light beam passing through is 5 degrees or less. 前記第1レンズ群を出射し前記第2レンズ群に入射するまでの光線は光軸に対してほぼ平行になるように構成され、
前記第1レンズ群を出射し前記第2レンズ群に入射するまでの最大像高の主光線の光軸とのなす角度をWとしたとき、次式
0.01 < W < 10.0
を満足することを特徴とする請求項1〜3のいずれかに記載のリレー光学系。
The light rays from the first lens group to the second lens group are configured to be substantially parallel to the optical axis,
When the angle formed by the optical axis of the principal ray with the maximum image height from the first lens group to the second lens group is W,
0.01 <W <10.0
The relay optical system according to claim 1, wherein:
前記回折光学面は、少なくとも一つの回折素子要素に形成された回折格子構造よりなり、
前記第1レンズ群と前記第2レンズ群とは、少なくとも1つの回折素子要素の厚さ及び回折格子構造以外の部分は対称な構成の光学系であって、結像倍率がほぼ−1.0であることを特徴とする請求項1〜4のいずれかに記載のリレー光学系。
The diffractive optical surface comprises a diffraction grating structure formed on at least one diffractive element element,
The first lens group and the second lens group are optical systems having symmetrical configurations except for the thickness of at least one diffraction element element and the diffraction grating structure, and the imaging magnification is approximately −1.0. The relay optical system according to claim 1, wherein the relay optical system is a relay optical system.
前記第1レンズ群と前記第2レンズ群とは対称な光学系であって、結像倍率がほぼ−1.0であることを特徴とする請求項1〜4のいずれかに記載のリレー光学系。  The relay optical system according to any one of claims 1 to 4, wherein the first lens group and the second lens group are symmetrical optical systems, and an imaging magnification is approximately -1.0. system. 前記回折光学面は、屈折率の異なる複数の回折素子要素からなる複層の回折格子構造により構成されることを特徴とする請求項1〜6のいずれかに記載のリレー光学系。  The relay optical system according to claim 1, wherein the diffractive optical surface includes a multilayer diffraction grating structure including a plurality of diffractive element elements having different refractive indexes. 前記第1レンズ群を接合レンズで構成する場合の接合した光学部材の屈折率の差をΔNとしたとき、次式
0.1 < ΔN
を満足することを特徴とする請求項1〜7のいずれかに記載のリレー光学系。
When the difference in the refractive index of the joined optical member when the first lens group is constituted by a cemented lens is ΔN,
0.1 <ΔN
The relay optical system according to claim 1, wherein:
前記回折光学面を有する回折光学素子の最も物体側の面から最終面までの光軸上の厚さをdとし、全体の焦点距離をfwとしたとき、次式
0.01 < d/fw < 0.5
を満足することを特徴とする請求項1〜7のいずれかに記載のリレー光学系。
When the thickness on the optical axis from the most object-side surface to the final surface of the diffractive optical element having the diffractive optical surface is d and the total focal length is fw,
0.01 <d / fw <0.5
The relay optical system according to claim 1, wherein:
前記回折光学面は、前記第1レンズ群の像側、または、前記第2レンズ群の物体側に配置されることを特徴とする請求項1〜9のいずれかに記載のリレー光学系。  The relay optical system according to claim 1, wherein the diffractive optical surface is disposed on an image side of the first lens group or an object side of the second lens group. 前記回折光学面は、レンズ表面に樹脂層で形成されていることを特徴とする請求項1〜10のいずれかに記載のリレー光学系。  The relay optical system according to claim 1, wherein the diffractive optical surface is formed of a resin layer on a lens surface.
JP2003048060A 2003-02-25 2003-02-25 Relay optical system Expired - Fee Related JP4470142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048060A JP4470142B2 (en) 2003-02-25 2003-02-25 Relay optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048060A JP4470142B2 (en) 2003-02-25 2003-02-25 Relay optical system

Publications (3)

Publication Number Publication Date
JP2004258246A JP2004258246A (en) 2004-09-16
JP2004258246A5 JP2004258246A5 (en) 2006-10-05
JP4470142B2 true JP4470142B2 (en) 2010-06-02

Family

ID=33114136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048060A Expired - Fee Related JP4470142B2 (en) 2003-02-25 2003-02-25 Relay optical system

Country Status (1)

Country Link
JP (1) JP4470142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067788B2 (en) 2016-06-17 2021-07-20 Olympus Corporation Bright relay optical system, and optical system for rigid endoscope and rigid endoscope using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067788B2 (en) 2016-06-17 2021-07-20 Olympus Corporation Bright relay optical system, and optical system for rigid endoscope and rigid endoscope using the same

Also Published As

Publication number Publication date
JP2004258246A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP6427241B2 (en) Zoom lens system and imaging device
JP5202004B2 (en) Bonded lens, optical system having the same, and method of manufacturing cemented lens
JP3573575B2 (en) Optical system
US20120229921A1 (en) Photographic optical system and image pickup apparatus having the same
JP5476881B2 (en) Wide-angle lens, optical device, and wide-angle lens focusing method
US7990615B2 (en) Diffractive optical system and eyepiece optical system
JP6365984B2 (en) Projection optical system and projection apparatus
JPH1123968A (en) Zoom lens having diffraction surface
JP6304954B2 (en) Optical system and optical apparatus using diffractive optical element
JP3713250B2 (en) Eyepiece variable magnification optical system
JP4860500B2 (en) Achromatic lens system, optical device
JP4806943B2 (en) Zoom lens
JPH11119097A (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JP2004252101A (en) Super wide angle lens
JP5787676B2 (en) Zoom lens and optical equipment
JP4670300B2 (en) Zoom lens
JP4470142B2 (en) Relay optical system
JP4323595B2 (en) Imaging optical system and camera
JP4650715B2 (en) Front teleconverter lens
JP2004126397A (en) Telephotographic lens
JP2004046022A (en) Relay optical system equipped with vibration-proofing function
JP2014194494A (en) Optical system and optical device
JP7379092B2 (en) Optical system and imaging device having the same
JP4423587B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees