JP4469248B2 - Method for producing high carbon steel rails with excellent wear resistance and ductility - Google Patents

Method for producing high carbon steel rails with excellent wear resistance and ductility Download PDF

Info

Publication number
JP4469248B2
JP4469248B2 JP2004285934A JP2004285934A JP4469248B2 JP 4469248 B2 JP4469248 B2 JP 4469248B2 JP 2004285934 A JP2004285934 A JP 2004285934A JP 2004285934 A JP2004285934 A JP 2004285934A JP 4469248 B2 JP4469248 B2 JP 4469248B2
Authority
JP
Japan
Prior art keywords
rail
rolling
steel
ductility
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004285934A
Other languages
Japanese (ja)
Other versions
JP2005290544A (en
Inventor
正治 上田
和夫 藤田
公一郎 松下
剛士 山本
琢也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34921734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4469248(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004285934A priority Critical patent/JP4469248B2/en
Priority to BRPI0508533-0B1A priority patent/BRPI0508533B1/en
Priority to US10/590,846 priority patent/US20070181231A1/en
Priority to DE602005015199T priority patent/DE602005015199D1/en
Priority to EP09004035A priority patent/EP2071044A1/en
Priority to AT05726643T priority patent/ATE435308T1/en
Priority to CA2558850A priority patent/CA2558850C/en
Priority to PCT/JP2005/004582 priority patent/WO2005085481A1/en
Priority to EP05726643A priority patent/EP1730317B1/en
Publication of JP2005290544A publication Critical patent/JP2005290544A/en
Publication of JP4469248B2 publication Critical patent/JP4469248B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/085Rail sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

Disclosed are methods of producing steel rails having a high carbon content and being excellent in wear resistance and ductility from the slabs for rails. One method involves producing a steel rail having a high content of carbon, comprising finish rolling the rail in two consecutive passes, with a reduction rate per pass of a cross-section of the rail of 2-30%, wherein the conditions of the finish rolling satisfy the following relationship: S ‰¦ 800 / (C × T), wherein S is the maximum rolling interval time (seconds), C is the carbon content of the steel, wherein the carbon content is 0.85-1.40 mass%, and T is the maximum surface temperature (°C) of the rail head. Another method involves producing a steel rail with a high content of carbon, comprising: finish rolling the rail in three or more passes, with a reduction rate per pass of a cross-section of the rail of 2-30%, wherein the conditions of the finish rolling satisfy the following relationship: S ‰¦ 2400 / (C × T × P), wherein S is the maximum rolling interval time (seconds), C is the carbon content of the steel rail, wherein the carbon content is 0.85ˆ¼1.40 mass%, T is the maximum surface temperature (°C) of a rail head, and P is the number of passes, which is 3 or more. In addition to above, controlled additional amounts of V, Nb, N may be added to the steel rail and/or controlled rapid cooling of the rail after rolling may be accomplished to provide further improvements.

Description

本発明は、重荷重鉄道に使用されるレールにおいて、耐摩耗性と延性を同時に付与することを目的としたパーライト組織を呈した高炭素鋼レールの製造方法に関する。   The present invention relates to a method for manufacturing a high carbon steel rail having a pearlite structure for the purpose of simultaneously imparting wear resistance and ductility in a rail used in heavy-duty railways.

高炭素含有のパーライト鋼はその優れた耐摩耗性鋼から鉄道用レール材料として使用されてきた。しかしながら炭素含有量が非常に高いため、延性や靭性が低いといった問題があった。
例えば、非特許文献1に示されている炭素量0.6〜0.7mass%の普通炭素鋼レールでは、JIS3号Uノッチシャルピー衝撃試験での常温の衝撃値は12〜18J/cm2 程度であり、このようなレールを寒冷地等の低温度域で使用した場合、微小な初期欠陥や疲労き裂から脆性破壊を引き起こすといった問題があった。
また、近年レール鋼は耐摩耗性改善のため、より一層の高炭素化を進めており、これに伴い延性や靭性がさらに低下するといった問題があった。
High carbon content pearlite steel has been used as a rail material for railways because of its excellent wear resistant steel. However, since the carbon content is very high, there is a problem that ductility and toughness are low.
For example, in an ordinary carbon steel rail having a carbon content of 0.6 to 0.7 mass% shown in Non-Patent Document 1, an impact value at room temperature in a JIS No. 3 U-notch Charpy impact test is about 12 to 18 J / cm 2 . When such a rail is used in a low temperature region such as a cold region, there is a problem that a brittle fracture is caused by a minute initial defect or a fatigue crack.
Further, in recent years, rail steel has been further increased in carbon to improve wear resistance, resulting in a problem that ductility and toughness are further reduced.

一般にパーライト鋼の延性や靭性を向上させるには、パーライト組織(パーライトブロックサイズ)の微細化、具体的には、パーライト変態前のオーステナイト組織の細粒化やパーライト組織の微細化が有効であると言われている。オーステナイト組織の細粒化を達成するには、熱間圧延時の圧延温度の低減、圧下量の増加、さらにはレール圧延後に低温再加熱による熱処理が行われている。また、パーライト組織の微細化を図るには、変態核を利用したオーステナイト粒内からのパーライト変態の促進等が行われている。   In general, to improve the ductility and toughness of pearlite steel, it is effective to refine the pearlite structure (pearlite block size), specifically, to refine the austenite structure before pearlite transformation and to refine the pearlite structure. It is said. In order to achieve the fine graining of the austenite structure, a reduction in rolling temperature during hot rolling, an increase in rolling reduction, and a heat treatment by low-temperature reheating after rail rolling are performed. In order to refine the pearlite structure, pearlite transformation is promoted from the austenite grains using transformation nuclei.

しかしレールの製造においては、熱間圧延時の成形性確保の観点から、圧延温度の低減、圧下量の増加には限界があり、十分なオーステナイト粒の微細化が達成できなかった。 また、変態核を利用したオーステナイト粒内からのパーライト変態については、変態核の量の制御が困難なことや粒内からのパーライト変態が安定しない等の問題があり、十分なパーライト組織の微細化が達成できなかった。   However, in the production of rails, from the viewpoint of securing formability during hot rolling, there are limits to the reduction in rolling temperature and the increase in reduction, and sufficient austenite grain refinement could not be achieved. In addition, for pearlite transformation from austenite grains using transformation nuclei, there are problems such as difficulty in controlling the amount of transformation nuclei and instability of pearlite transformation from within grains. Could not be achieved.

これらの諸問題から、パーライト組織のレールにおいて延性や靭性を抜本的に改善するには、レール圧延後に低温再加熱を行い、その後、加速冷却によりパーライト変態をさせ、パーライト組織を微細化する方法が用いられてきた。しかし、近年耐摩耗性改善のためレールの高炭素化が進み、上記の低温再加熱処理時に、オーステナイト粒内に粗大な炭化物が溶け残り、加速冷却後のパーライト組織の延性や靭性が低下するといった問題があった。また、再加熱であるため製造コストが高く、生産性も低い等の経済性の問題もあった。   In order to drastically improve the ductility and toughness of a pearlite structure rail due to these problems, a method of refining the pearlite structure by performing low-temperature reheating after rail rolling and then performing pearlite transformation by accelerated cooling is a method. Has been used. However, in recent years, the carbon of rails has been increased to improve wear resistance, and during the low temperature reheating treatment, coarse carbides remain undissolved in the austenite grains, reducing the ductility and toughness of the pearlite structure after accelerated cooling. There was a problem. Moreover, since it is reheating, there also existed economical problems, such as high manufacturing cost and low productivity.

そこで、圧延時成形性を確保し、圧延後のパーライト組織の微細化する高炭素鋼レールの製造方法の開発が求められるようになってきた。この問題を解決するため、下記に示すような高炭素鋼レールの製造方法が開発された。
(1) 高炭素鋼含有の鋼レールの仕上げ圧延において、所定のパス間時間で連続3パス以 上の圧延を行う高延性レールの製造法(特許文献1)。
(2) 高炭素鋼含有の鋼レールの仕上げ圧延において、所定のパス間時間で連続2パス以 上の圧延を行い、さらに、連続圧延を行った後、圧延終了後に加速冷却を行う高耐摩 耗性・高靭性レールの製造方法(特許文献2)。
(3) 高炭素鋼含有の鋼レールの仕上げ圧延において、パス間で冷却を施し、さらに、連 続圧延を行った後、圧延終了後に加速冷却を行う高耐摩耗性・高靭性レールの製造方 法(特許文献3)。
Accordingly, development of a method for producing a high carbon steel rail that ensures formability during rolling and that refines the pearlite structure after rolling has been demanded. In order to solve this problem, a method for producing a high carbon steel rail as described below has been developed.
(1) A method for producing a high ductility rail in which rolling of a high-carbon steel-containing steel rail is performed for three or more consecutive passes in a predetermined time between passes (Patent Document 1).
(2) In the finish rolling of steel rails containing high carbon steel, high wear resistance is achieved in which rolling is performed for two or more consecutive passes at a predetermined time between passes, and further, accelerated cooling is performed after completion of rolling after continuous rolling. Manufacturing method of high-strength and high-toughness rail (Patent Document 2).
(3) A method of manufacturing a highly wear-resistant, high-toughness rail in which high-carbon steel-containing steel rails are subjected to cooling between passes, followed by continuous rolling, followed by accelerated cooling after rolling. Law (Patent Document 3).

これらのレールの特徴は、レールの延性や靭性の向上を図るため、パーライト組織を微細化する方法として、オーステナイト組織の微細化を検討し、高炭素鋼が比較的低温で、かつ小さい圧下量でも再結晶し易いことを利用して、小圧下の連続圧延によって整粒の微細オーステナイト粒を得、パーライト鋼の延性や靭性を向上させるものであった。
特開平7−173530号公報 特開2001−234238号公報 特開2002−226915号公報 JISE1101−1990
The characteristics of these rails are that, in order to improve the ductility and toughness of the rails, as a method of refining the pearlite structure, we examined the refining of the austenite structure, and the high carbon steel has a relatively low temperature and a small reduction amount. Utilizing the fact that it is easy to recrystallize, fine-sized austenite grains are obtained by continuous rolling under a small pressure, and the ductility and toughness of pearlite steel are improved.
Japanese Unexamined Patent Publication No. 7-173530 JP 2001-234238 A JP 2002-226915 A JISE1101-1990

上記に示された連続圧延方法では、主に鋼の炭素量、連続熱間圧延時の温度、圧延パス数やパス間時間の組み合わせによっては、オーステナイト組織の微細化が図れず、パーライト組織が粗大化し、延性が向上しないといった問題があった。
特に炭素含有量が高い鋼では、圧延直後の粒成長速度が大きいため、連続圧延時のパス
間時間の選択によっては、パス間でのオーステナイト粒の成長が顕著となり、上記に示された連続圧延方法やパス間での冷却を行っても、オーステナイト組織の微細化が図れず、パーライト組織が粗大化し、延性が向上しないといった問題があった。
このような背景から、高炭素鋼含有の鋼レールの仕上げ圧延において、整粒の微細オーステナイト粒を得、同時に、パス間でのオーステナイト粒の成長を抑制し、安定的に延性を向上させるレール製造方法の開発が求められていた。
In the continuous rolling method shown above, depending on the combination of the carbon content of steel, the temperature during continuous hot rolling, the number of rolling passes and the time between passes, the austenite structure cannot be refined and the pearlite structure is coarse. There was a problem that the ductility was not improved.
Especially in steel with high carbon content, the grain growth rate immediately after rolling is large, so depending on the selection of the time between passes during continuous rolling, the growth of austenite grains between passes becomes significant, and the continuous rolling shown above Even if cooling is performed between methods and passes, there is a problem that the austenite structure cannot be refined, the pearlite structure becomes coarse, and the ductility does not improve.
Against such a background, in the finish rolling of steel rails containing high carbon steel, rail production that obtains finely grained fine austenite grains and at the same time suppresses the growth of austenite grains between passes and stably improves ductility. There was a need to develop a method.

すなわち、本発明は、高炭素含有の鋼片をレールとして熱間連続圧延する際に、最大パス間時間(S、sec )を鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度 (T、℃)、さらには、パス回数(P、回)から算定される値以下に納め、次に、熱間連続圧延後に、ある一定の温度範囲において、レール頭部表面に加速冷却を施し、高硬度で微細なパーライト組織を得、レール頭部の耐摩耗性と延性を確保することを目的としたものである。   That is, in the present invention, when continuous hot rolling is performed using a steel piece having a high carbon content as a rail, the maximum time between passes (S, sec) is set to the carbon content (C, mass%) of the steel, and the maximum rail head during rolling. Surface temperature (T, ° C.), and further below the value calculated from the number of passes (P, times), then accelerated to the rail head surface in a certain temperature range after continuous hot rolling The purpose of this is to obtain cooling and to obtain a fine pearlite structure with high hardness, and to ensure the wear resistance and ductility of the rail head.

本発明は、以下の構成からなる。
(1)質量%で、
C :0.85超〜1.40%
Si:0.05〜2.00%、
Mn:0.05〜2.00%
を含有し、さらに、
Cr:0.05〜2.00%、
Mo:0.01〜0.50%、
B :0.0001〜0.0050%、
Co:0.003〜2.00%、
Cu:0.01〜1.00%、
Ni:0.01〜1.00%、
Ti:0.0050〜0.0500%、
Mg:0.0005〜0.0200%、
Ca:0.0005〜0.0150%、
Al:0.0100〜1.00%、
Zr:0.0001〜0.2000%、
N :0.0060〜0.0200%、
V :0.005〜0.50%、
Nb:0.002〜0.050%
の1種または2種以上を含有し、残部Feおよび不可避的不純物からなるレール圧延用鋼片からレールを製造するに際して、1パス当たりの断面減少率が2〜30%のパス回数2回の連続仕上げ圧延において、圧延パス間時間(S、sec)が、鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度(T、℃)からなる下記の式1で示される値(CPT1)に対して、S≦CPT1となるように連続圧延を行うことを特徴とす高炭素鋼レールの製造方法。
CPT1=800/(C×T) …………………(式1)
The present invention has the following configuration.
(1) In mass%,
C: more than 0.85 to 1.40% ,
Si: 0.05 to 2.00%,
Mn: 0.05 to 2.00%
In addition,
Cr: 0.05 to 2.00%,
Mo: 0.01 to 0.50%,
B: 0.0001 to 0.0050%,
Co: 0.003 to 2.00%,
Cu: 0.01 to 1.00%,
Ni: 0.01-1.00%,
Ti: 0.0050-0.0500%,
Mg: 0.0005 to 0.0200%,
Ca: 0.0005 to 0.0150%,
Al: 0.0100-1.00%,
Zr: 0.0001 to 0.2000%,
N: 0.0060-0.0200%,
V: 0.005-0.50%,
Nb: 0.002 to 0.050%
When manufacturing a rail from rail rolling steel slabs containing one or more of the following, and the balance Fe and unavoidable impurities, the number of consecutive passes is 2 to 30% with a cross-section reduction rate per pass of 2 to 30%. In finish rolling, the time between rolling passes (S, sec) is a value represented by the following formula 1 consisting of the carbon content (C, mass%) of steel and the maximum rail head surface temperature (T, ° C) during rolling. against (CPTl), method for producing high-carbon steel rail you and performing continuous rolling such that S ≦ CPTl.
CPT1 = 800 / (C × T) (1)

(2)質量%で、(2) In mass%,
C:0.85超〜1.40%、C: more than 0.85 to 1.40%,
Si:0.05〜2.00%、Si: 0.05 to 2.00%,
Mn:0.05〜2.00%Mn: 0.05 to 2.00%
を含有し、さらに、In addition,
Cr:0.05〜2.00%、Cr: 0.05 to 2.00%,
Mo:0.01〜0.50%、Mo: 0.01 to 0.50%,
B :0.0001〜0.0050%、B: 0.0001 to 0.0050%,
Co:0.003〜2.00%、Co: 0.003 to 2.00%,
Cu:0.01〜1.00%、Cu: 0.01 to 1.00%,
Ni:0.01〜1.00%、Ni: 0.01-1.00%,
Ti:0.0050〜0.0500%、Ti: 0.0050-0.0500%,
Mg:0.0005〜0.0200%、Mg: 0.0005 to 0.0200%,
Ca:0.0005〜0.0150%、Ca: 0.0005 to 0.0150%,
Al:0.0100〜1.00%、Al: 0.0100-1.00%,
Zr:0.0001〜0.2000%、Zr: 0.0001 to 0.2000%,
N :0.0060〜0.0200%、N: 0.0060-0.0200%,
V :0.005〜0.50%、V: 0.005-0.50%,
Nb:0.002〜0.050%Nb: 0.002 to 0.050%
の1種または2種以上を含有し、残部Feおよび不可避的不純物からなるレール圧延用鋼片からレールを製造するに際して、1パス当たりの断面減少率が2〜30%のパス回数3回以上の連続仕上げ圧延において、最大圧延パス間時間(S、sec)が、鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度(T、℃)、パス回数(P、回)からなる下記の式2で示される値(CPT2)に対して、S≦CPT2となるように連続圧延を行うことを特徴とする高炭素鋼レールの製造方法。When manufacturing a rail from a rail rolling steel slab comprising one or more of the following, and the balance Fe and inevitable impurities, the cross-section reduction rate per pass is 2 to 30%, and the number of passes is 3 times or more. In continuous finish rolling, the maximum time between rolling passes (S, sec) is the carbon content of steel (C, mass%), the maximum rail head surface temperature (T, ° C) during rolling, and the number of passes (P, times). A method for producing a high carbon steel rail, characterized in that continuous rolling is performed so that S ≦ CPT2 is satisfied with respect to a value (CPT2) represented by the following formula 2 comprising:
CPT2=2400/(C×T×P) …………(式2)CPT2 = 2400 / (C × T × P) (Equation 2)

(3)鋼レールの化学成分において、下記の式3で示される値(PC)が、0.30≧PC≧0.04の範囲となることを特徴とする前記(1)または(2)に記載の高炭素鋼レールの製造方法。
PC=V(質量%)+10×Nb(質量%)+5×N(質量%)…………(式3)
(4)熱間連続圧延後直ちに、レール頭部表面を冷却速度5〜30℃/secで950〜750℃まで加速冷却することを特徴とする前記(1)〜(3)のいずれか1項に記載の高炭素鋼レールの製造方法。
(5)熱間連続圧延後、引き続き700℃以上の温度から、レール頭部表面を冷却速度2〜30℃/secで少なくとも600℃まで加速冷却し、その後放冷することを特徴とする前記(1)〜(4)のいずれか1項に記載の高炭素鋼レールの製造方法。
(3) In the chemical composition of the steel rail, the value (PC) represented by the following formula 3 is in the range of 0.30 ≧ PC ≧ 0.04. (1) or (2) The manufacturing method of the high carbon steel rail of description .
PC = V (mass%) + 10 × Nb (mass%) + 5 × N (mass%) (Equation 3)
(4) Immediately after hot continuous rolling, the rail head surface is accelerated and cooled to 950 to 750 ° C. at a cooling rate of 5 to 30 ° C./sec, any one of (1) to (3) above The manufacturing method of the high carbon steel rail of description .
(5) The electrolyte after hot continuous rolling, the subsequently 700 ° C. or higher, the rail head surface accelerated cooling to at least 600 ° C. at a cooling rate 2 to 30 ° C. / sec, characterized by subsequently cooled ( The manufacturing method of the high carbon steel rail of any one of 1)-(4) .

本発明によれば、高炭素含有の鋼レールの製造において、熱間連続圧延時の最大圧延パス間時間を鋼の炭素量、圧延時の最大レール頭部表面温度、パス回数から算定される値以下に制御し、これに加えて、V、Nb、Nの添加量を制御し、レール頭部のオーステナイト粒を微細化し、さらに圧延後に、レール頭部表面を、所定の温度範囲、所定の冷却速度で加速冷却を施すことにより、高硬度で微細なパーライト組織を得、レール頭部の延性を改善し、使用寿命の向上を図ることが可能となる。   According to the present invention, in the production of steel rails containing high carbon, the maximum rolling pass time during continuous hot rolling is calculated from the amount of steel carbon, the maximum rail head surface temperature during rolling, and the number of passes. In addition to this, the addition amount of V, Nb, and N is controlled, the austenite grains of the rail head are refined, and after rolling, the rail head surface is cooled to a predetermined temperature range within a predetermined temperature range. By performing accelerated cooling at a high speed, it is possible to obtain a fine pearlite structure with high hardness, improve the ductility of the rail head, and improve the service life.

以下に本発明について詳細に説明する。
まず本発明者らは、高炭素含有のレール鋼において、鋼の炭素量、連続仕上げ圧延時のレール頭部表面温度、断面減少率やパス間時間の組み合わせ方によって、パーライト組織の粗大化により、延性が向上しない要因を解析した。様々な検証実験を行った結果、連続圧延時の最大パス間時間がある一定値を超えると、熱間連続圧延後のオーステナイト粒が粗大化することが確認された。
The present invention is described in detail below.
First, the inventors of the present invention, in rail steel containing high carbon, by the combination of the amount of carbon of the steel, the rail head surface temperature during continuous finish rolling, the cross-section reduction rate and the time between passes, by the coarsening of the pearlite structure, The factors that did not improve the ductility were analyzed. As a result of various verification experiments, it was confirmed that austenite grains after hot continuous rolling coarsen when the maximum time between passes during a continuous rolling exceeds a certain value.

そこで本発明者らは、高炭素含有のレール鋼において、最大パス間時間の増大により、オーステナイト粒が粗大化する要因を解析した。様々な検証実験を行った結果、オーステナイト粒の粒成長は、鋼の炭素量、連続仕上げ圧延時の最大レール頭部表面温度との正の相関があることが確認された。引き続き解析を進めた結果、パス回数3回以上の連続仕上げ圧延においては、圧延パス回数との正の相関があることが確認された。   Therefore, the present inventors have analyzed the cause of austenite grain coarsening due to an increase in the maximum interpass time in a high carbon content rail steel. As a result of various verification experiments, it was confirmed that the grain growth of austenite grains had a positive correlation with the carbon content of steel and the maximum rail head surface temperature during continuous finish rolling. As a result of continuing the analysis, it was confirmed that there is a positive correlation with the number of rolling passes in continuous finish rolling with three or more passes.

これらの検討結果から、本発明者らは、オーステナイト粒を粗大化させない最適なパス間時間と鋼の炭素量、連続仕上げ圧延時の最大レール頭部表面温度、圧延パス回数との関係を重相関により解析を行った。その結果、連続仕上げ圧延のパス回数が2回の場合は、鋼の炭素量と連続仕上げ圧延時の最大レール頭部表面温度からなる式、連続仕上げ圧延のパス回数が3回以上の場合は、鋼の炭素量、連続仕上げ圧延時の最大レール頭部表面温度、パス回数からなる式で算定される値以下に連続圧延時の最大パス間時間を制御することにより、圧延パス間でのオーステナイト粒の粒成長が抑制され、熱間連続圧延後のオーステナイト粒が微細化することが確認された。   From these examination results, the present inventors have correlated the relationship between the optimal time between passes that does not coarsen austenite grains and the carbon content of the steel, the maximum rail head surface temperature during continuous finish rolling, and the number of rolling passes. The analysis was performed. As a result, if the number of passes of continuous finish rolling is 2, the formula consisting of the amount of steel carbon and the maximum rail head surface temperature during continuous finish rolling, if the number of passes of continuous finish rolling is 3 or more, The austenite grains between rolling passes are controlled by controlling the maximum interpass time during continuous rolling below the value calculated by the formula consisting of the carbon content of steel, the maximum rail head surface temperature during continuous finish rolling, and the number of passes. It was confirmed that grain growth of the austenite was suppressed and the austenite grains after hot continuous rolling were refined.

次に本発明者らは、析出物の適用により、連続圧延後に発生するオーステナイト粒の粒成長を抑制する方法を検討した。熱間連続圧延実験の結果、V炭化物、V窒化物、V炭窒化物、Nb炭化物、Nb炭窒物が連続圧延中に析出して、ピンニングにより、圧延後のオーステナイト粒の粒成長が抑制されることを見出した。
さらに本発明者らは、オーステナイト粒のピンニングに有効なV炭化物、V窒化物、V炭窒化物、Nb炭化物、Nb炭窒物が十分に析出する条件を検討した。その結果、V、Nb、Nの添加量(質量%)からなる式で算定される範囲内に、V、Nb、Nのそれぞれの添加量を制御することにより、連続圧延後のオーステナイト粒の粒成長が十分に抑制されることを確認した。
Next, the present inventors examined a method for suppressing grain growth of austenite grains generated after continuous rolling by applying precipitates. As a result of the hot continuous rolling experiment, V carbide, V nitride, V carbonitride, Nb carbide, and Nb carbonitride precipitate during continuous rolling, and pinning suppresses grain growth of austenite grains after rolling. I found out.
Furthermore, the present inventors examined conditions under which V carbide, V nitride, V carbonitride, Nb carbide, and Nb carbonitride effective for pinning austenite grains are sufficiently precipitated. As a result, the austenite grains after continuous rolling are controlled by controlling the addition amounts of V, Nb, and N within the range calculated by the formula consisting of the addition amounts (mass%) of V, Nb, and N. It was confirmed that the growth was sufficiently suppressed.

次に本発明者らは、圧延直後に加速冷却を適用することにより、連続圧延後に発生するオーステナイト粒の粒成長を抑制する方法を検討した。その結果、上記の連続圧延直後に、レール頭部表面を、所定の温度範囲、所定範囲の冷却速度で加速冷却を施すことにより、圧延後のオーステナイト粒の粒成長を抑制できることを見出した。
これらの発明に加えて、本発明者らは、微細なオーステナイト粒から耐摩耗性や延性に優れたパーライト組織を得る方法を検討した。その結果、オーステナイト域にあるレール頭部表面を、所定の温度範囲、所定の冷却速度で加速冷却することにより、高硬度で微細なパーライト組織が得られ、レール頭部の耐摩耗性や延性が確保できることを見出した。
Next, the present inventors examined a method for suppressing grain growth of austenite grains generated after continuous rolling by applying accelerated cooling immediately after rolling. As a result, it has been found that immediately after the above-described continuous rolling, the rail head surface is subjected to accelerated cooling at a cooling temperature within a predetermined temperature range and a predetermined range, thereby suppressing grain growth of the austenite grains after rolling.
In addition to these inventions, the present inventors examined a method for obtaining a pearlite structure excellent in wear resistance and ductility from fine austenite grains. As a result, by accelerating and cooling the rail head surface in the austenite region at a predetermined temperature range and a predetermined cooling rate, a high hardness and fine pearlite structure can be obtained, and the wear resistance and ductility of the rail head can be improved. It was found that it can be secured.

従って本発明では、高炭素含有の鋼片をレールとして連続圧延する際に、最大パス間時間を鋼の炭素量と圧延時の最大レール頭部表面温度からなる式、または、鋼の炭素量、圧延時の最大レール頭部表面温度、パス回数からなる式で算定される値以下に制御し、これに加えて、連続圧延後に発生するオーステナイト粒の粒成長を抑制するため、V、Nb、Nの添加量をそれぞれの添加量から算定される値内に治め、さらには、連続圧延直後にレール頭部表面を、所定の温度範囲、所定の冷却速度で加速冷却すること、さらに、耐摩耗性や延性に優れたパーライト組織を得るため、オーステナイト域にあるレール頭部表面を、所定の温度範囲、所定の冷却速度で加速冷却することにより、高硬度で、かつ微細なパーライト組織が得られ、耐摩耗性の確保と延性の改善が図れることを知見した。   Therefore, in the present invention, when continuously rolling steel slab containing high carbon as a rail, the maximum time between passes is a formula comprising the carbon amount of steel and the maximum rail head surface temperature during rolling, or the carbon amount of steel, In order to control the maximum rail head surface temperature during rolling and the value calculated by the formula consisting of the number of passes, in addition to this, in order to suppress the grain growth of austenite grains generated after continuous rolling, V, Nb, N In addition, the rail head surface is accelerated and cooled at a predetermined temperature range and at a predetermined cooling rate immediately after continuous rolling, and further, wear resistance is controlled. In order to obtain a pearlite structure excellent in ductility, the surface of the rail head in the austenite region is accelerated and cooled at a predetermined temperature range and a predetermined cooling rate, thereby obtaining a high hardness and fine pearlite structure. Wear resistance Improvement of the security and ductility has been found that can be achieved.

すなわち、本発明では、高炭素含有の鋼片をレールとして連続熱間圧延する際に、鋼の炭素量、圧延時の最大レール頭部表面温度、パス回数を考慮して圧延時の最大パス間時間を制御することにより、レール頭部のオーステナイト粒を微細化し、これに加えて、V、Nb、Nの添加量を制御し、圧延後に、レール頭部表面を、所定の温度範囲、所定の冷却速度で加速冷却を施すことにより、レール頭部の耐摩耗性と延性を同時に確保することを目的とした高炭素鋼レールの製造方法に関するものである。   That is, in the present invention, when continuous hot rolling is performed using a high carbon content steel slab as a rail, considering the carbon content of the steel, the maximum rail head surface temperature during rolling, and the number of passes, the maximum gap between rolling By controlling the time, the austenite grains of the rail head are refined, and in addition to this, the addition amount of V, Nb, and N is controlled, and after rolling, the rail head surface is moved to a predetermined temperature range and a predetermined temperature range. The present invention relates to a method for producing a high carbon steel rail for the purpose of simultaneously ensuring wear resistance and ductility of a rail head by performing accelerated cooling at a cooling rate.

次に、本発明の限定理由について詳細に説明する。
(1)鋼レールの化学成分の限定理由:
まず、レール鋼の化学成分を上記請求範囲に限定した理由について詳細に説明する。
Cは、パーライト変態を促進させ、かつ耐摩耗性を確保する有効な元素である。C量が0.85%以下では、パーライト組織中のセメンタイト相の体積比率が確保できず、重荷重鉄道において耐摩耗性が維持できない。またC量が1.40%を超えると、本製造方法では、旧オーステナイト粒界に初析セメンタイト組織が多量に生成し、耐摩耗性や延性が低下する。このためC量を0.85超〜1.40%に限定した。なお、炭素量を0.95%以上にすると、耐摩耗性がより一層向上し、レールの使用寿命の改善効果が高い。
Next, the reason for limitation of the present invention will be described in detail.
(1) Reasons for limiting the chemical composition of steel rails:
First, the reason why the chemical components of the rail steel are limited to the above claims will be described in detail.
C is an effective element that promotes pearlite transformation and ensures wear resistance. If the C content is 0.85% or less, the volume ratio of the cementite phase in the pearlite structure cannot be secured, and the wear resistance cannot be maintained in heavy-duty railways. On the other hand, if the C content exceeds 1.40%, a large amount of proeutectoid cementite structure is formed at the prior austenite grain boundaries in this production method, and the wear resistance and ductility deteriorate. For this reason, the amount of C was limited to more than 0.85 to 1.40%. When the carbon content is 0.95% or more, the wear resistance is further improved, and the effect of improving the service life of the rail is high.

また、上記の成分組成で製造されるレールは、パーライト組織の硬度(強化)の向上、パーライト組織の延性の向上、溶接熱影響部の軟化の防止、レール頭部内部の断面硬度分布の制御を図る目的で、Si、Mn、Cr、Mo、V、Nb、B、Co、Cu、Ni、Ti、Mg、Ca、Al、Zr、Nの元素を必要に応じて添加する。   In addition, the rail manufactured with the above component composition improves the hardness (strengthening) of the pearlite structure, improves the ductility of the pearlite structure, prevents softening of the weld heat affected zone, and controls the cross-sectional hardness distribution inside the rail head. For the purpose, Si, Mn, Cr, Mo, V, Nb, B, Co, Cu, Ni, Ti, Mg, Ca, Al, Zr, and N are added as necessary.

ここで、Siはフェライト相への固溶強化によりレール頭部の硬度(強度)を上昇させ、初析セメンタイト組織の生成を抑制し、硬度と延性を確保する元素である。Mnは焼き入れ性を高め、パーライトラメラ間隔を微細化することにより、パーライト組織の硬度を確保する元素である。Cr、Moは、パーライトの平衡変態点を上昇させ、主にパーライトラメラ間隔を微細化することによりパーライト組織の硬度を確保する。V、Nbは、熱間圧延やその後の冷却課程で生成した炭化物や窒化物により、オーステナイト粒の成長を抑制し、さらに析出硬化により、パーライト組織の延性と硬度を向上させる。また、再加熱時に炭化物や窒化物を安定的に生成させ、溶接継ぎ手熱影響部の軟化を防止する。   Here, Si is an element that increases the hardness (strength) of the rail head by solid solution strengthening in the ferrite phase, suppresses the formation of proeutectoid cementite structure, and secures hardness and ductility. Mn is an element that secures the hardness of the pearlite structure by increasing the hardenability and reducing the pearlite lamella spacing. Cr and Mo secure the hardness of the pearlite structure by raising the equilibrium transformation point of pearlite and mainly reducing the pearlite lamella spacing. V and Nb suppress the growth of austenite grains by carbides and nitrides generated by hot rolling and the subsequent cooling process, and further improve the ductility and hardness of the pearlite structure by precipitation hardening. In addition, carbides and nitrides are stably generated during reheating, and softening of the weld joint heat-affected zone is prevented.

Bは、初析セメンタイト組織の生成を微細化し、同時にパーライト変態温度の冷却速度依存性を低減させ、レールの延性を向上させ、さらにレール頭部の硬度分布を均一にする。Coは、パーライト組織中のフェライトに固溶し、パーライト組織の硬度を高めると同時に、レール頭部の摩耗面において微細なフェライト組織の形成を促進し、耐摩耗性を向上させる元素である。Cuは、パーライト組織中のフェライトに固溶し、パーライト組織の硬度を高める。Niは、Cu添加による熱間圧延時の脆化を防止し、同時にパーライト鋼の硬度を向上させ、さらに溶接継ぎ手熱影響部の軟化を防止する。   B refines the formation of proeutectoid cementite structure, reduces the dependency of the pearlite transformation temperature on the cooling rate, improves the ductility of the rail, and makes the hardness distribution of the rail head uniform. Co is an element that dissolves in the ferrite in the pearlite structure to increase the hardness of the pearlite structure, and at the same time promotes the formation of a fine ferrite structure on the wear surface of the rail head and improves the wear resistance. Cu dissolves in the ferrite in the pearlite structure and increases the hardness of the pearlite structure. Ni prevents embrittlement during hot rolling due to addition of Cu, simultaneously improves the hardness of the pearlite steel, and further prevents softening of the heat affected zone of the weld joint.

Tiは、熱影響部の組織の微細化を図り、溶接継ぎ手部の脆化を防止する。Mg、Caは、レール圧延時においてオーステナイト粒の微細化を図り、同時にパーライト変態を促進し、パーライト組織の延性を向上させる。Alは、共析変態温度を高温側へ移動させ、パーライト組織を強化し、レールの耐摩耗性の向上させる。さらに共析炭素量を高炭素側へ移動させ、初析セメンタイト組織の生成を抑制する。Zrは、ZrO2 介在物が高炭素レール鋼の凝固核となり、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、初析セメンタイト組織の厚さを微細化し、レールの延性低下を防止する。Nはオーステナイト粒界からのパーライト変態を促進させ、パーライト組織を微細にすることより、延性を向上させることが主な添加目的である。 Ti refines the structure of the heat-affected zone and prevents embrittlement of the weld joint. Mg and Ca make austenite grains finer during rail rolling, and at the same time promote pearlite transformation and improve the ductility of the pearlite structure. Al moves the eutectoid transformation temperature to the high temperature side, strengthens the pearlite structure, and improves the wear resistance of the rail. Furthermore, the amount of eutectoid carbon is moved to the higher carbon side to suppress the formation of proeutectoid cementite structure. Zr suppresses the formation of a segregation zone at the center of the slab by increasing the equiaxed crystallization rate of the solidified structure by the inclusion of ZrO 2 inclusions as the solidification nucleus of the high carbon rail steel. To reduce the ductility of the rail. N is mainly intended to improve ductility by promoting pearlite transformation from the austenite grain boundary and making the pearlite structure fine.

これらの成分の限定理由について、以下に詳細に説明する。
Siは、脱酸材として必須の成分である。また、パーライト組織中のフェライト相への固溶強化によりレール頭部の硬度(強度)を上昇させる元素である。さらに、過共析鋼において初析セメンタイト組織の生成を抑制し、延性の低下を抑制する元素である。しかし、Si量が0.05%未満ではこれらの効果が十分に期待できない。またSi量が2.00%を超えると、熱間圧延時に表面疵が多く生成することや、酸化物の生成により溶接性が低下する。さらに、焼入性が著しく増加し、レールの耐摩耗性や延性に有害なマルテンサイト組織が生成する。このためSi量を0.05〜2.00%に限定した。
The reasons for limiting these components will be described in detail below.
Si is an essential component as a deoxidizing material. Moreover, it is an element which raises the hardness (strength) of a rail head by the solid solution strengthening to the ferrite phase in a pearlite structure | tissue. Furthermore, in hypereutectoid steel, it is an element that suppresses the formation of proeutectoid cementite structure and suppresses the decrease in ductility. However, when the Si content is less than 0.05%, these effects cannot be sufficiently expected. On the other hand, if the amount of Si exceeds 2.00%, a lot of surface defects are generated during hot rolling, and weldability deteriorates due to generation of oxides. Further, the hardenability is remarkably increased, and a martensite structure that is harmful to the wear resistance and ductility of the rail is generated. For this reason, the amount of Si was limited to 0.05 to 2.00%.

Mnは、焼き入れ性を高め、パーライトラメラ間隔を微細化することにより、パーライト組織の硬度を確保し、耐摩耗性を向上させる元素である。しかし、Mn量が0.05%未満ではその効果が小さく、レールに必要とされる耐摩耗性の確保が困難となる。またMn量が2.00%を超えると、焼入性が著しく増加し、耐摩耗性や延性に有害なマルテンサイト組織が生成し易くなる。このためMn量を0.05〜2.00%に限定した。   Mn is an element that increases the hardenability and refines the pearlite lamella spacing to ensure the hardness of the pearlite structure and improve the wear resistance. However, if the amount of Mn is less than 0.05%, the effect is small, and it is difficult to ensure the wear resistance required for the rail. On the other hand, if the amount of Mn exceeds 2.00%, the hardenability is remarkably increased, and a martensite structure that is harmful to wear resistance and ductility is easily generated. For this reason, the amount of Mn was limited to 0.05 to 2.00%.

Crは、パーライトの平衡変態点を上昇させ、結果としてパーライト組織を微細にして高硬度(強度)化に寄与すると同時に、セメンタイト相を強化して、パーライト組織の硬度(強度)を向上させることにより耐摩耗性を向上させる元素である。しかし、Cr量が0.05%未満ではその効果は小さい。またCr量が2.00%を超えると、焼入性が著しく増加し、マルテンサイト組織が多量に生成し、レールの耐摩耗性や延性が低下する。このためCr量を0.05〜2.00%に限定した。   Cr raises the equilibrium transformation point of pearlite and, as a result, refines the pearlite structure and contributes to higher hardness (strength), and at the same time, strengthens the cementite phase and improves the hardness (strength) of the pearlite structure. It is an element that improves wear resistance. However, the effect is small when the Cr content is less than 0.05%. On the other hand, when the Cr content exceeds 2.00%, the hardenability is remarkably increased, a large amount of martensite structure is generated, and the wear resistance and ductility of the rail are lowered. For this reason, the Cr content is limited to 0.05 to 2.00%.

Moは、Cr同様パーライトの平衡変態点を上昇させ、結果としてパーライト組織を微細にすることにより高硬度(強度)化に寄与し、パーライト組織の硬度(強度)を向上させる元素である。Mo量が0.01%未満ではその効果が小さく、レール鋼の硬度を向上させる効果が全く見られなくなる。またMo量が0.50%を超えると、パーライト組織の変態速度が著しく低下し、延性に有害なマルテンサイト組織が生成しやすくなる。このためMo添加量を0.01〜0.50%に限定した。   Mo, like Cr, is an element that increases the equilibrium transformation point of pearlite and, as a result, refines the pearlite structure, thereby contributing to higher hardness (strength) and improving the hardness (strength) of the pearlite structure. If the amount of Mo is less than 0.01%, the effect is small, and the effect of improving the hardness of the rail steel is not seen at all. On the other hand, if the Mo content exceeds 0.50%, the transformation rate of the pearlite structure is remarkably reduced, and a martensite structure that is harmful to ductility is easily generated. For this reason, Mo addition amount was limited to 0.01 to 0.50%.

Bは、旧オーステナイト粒界に鉄炭ほう化物を形成し、初析セメンタイト組織の生成を微細化し、同時にパーライト変態温度の冷却速度依存性を低減させ、頭部の硬度分布を均一化することにより、レールの延性低下を防止し、高寿命化を図る元素である。しかし、B量が0.0001%未満ではその効果は十分でなく、初析セメンタイト組織の生成やレール頭部の硬度分布には改善が認められない。またB量が0.0050%を超えると、旧オーステナイト粒界に粗大な鉄の炭ほう化物が生成し、レールの延性、さらには耐疲労損傷性が大きく低下することから、B量を0.0001〜0.0050%に限定した。   B forms iron boride at the prior austenite grain boundary, refines the formation of proeutectoid cementite structure, reduces the cooling rate dependence of the pearlite transformation temperature, and makes the head hardness distribution uniform. It is an element that prevents a decrease in the ductility of the rail and extends its life. However, if the amount of B is less than 0.0001%, the effect is not sufficient, and no improvement is observed in the formation of proeutectoid cementite structure and the hardness distribution of the rail head. On the other hand, if the amount of B exceeds 0.0050%, coarse iron carbon borides are formed at the prior austenite grain boundaries, and the ductility of the rail and further the fatigue damage resistance are greatly reduced. It was limited to 0001 to 0.0050%.

Coは、パーライト組織中のフェライトに固溶し、固溶強化によりパーライト組織の硬度(強度)を向上させる元素であり、さらに、パーライトの変態エネルギーを増加させて、パーライト組織を微細にすることにより延性を向上させる元素である。さらに、レール頭部の摩耗面において、車輪との接触により形成させる微細なフェライト組織をより一層微細化し、耐摩耗性を向上させる元素である。しかし、Co量が0.003%未満ではその効果が期待できない。またCo量が2.00%を超えると、パーライト組織中のフェライト相の延性が著しく低下し、ころがり面にスポーリング損傷が発生し、レールの耐表面損傷性が低下する。このためCo量を0.003〜2.00%に限定した。   Co is an element that dissolves in ferrite in the pearlite structure and improves the hardness (strength) of the pearlite structure by solid solution strengthening, and further increases the transformation energy of the pearlite to make the pearlite structure finer. It is an element that improves ductility. Furthermore, it is an element that further refines the fine ferrite structure formed by contact with the wheel on the wear surface of the rail head and improves the wear resistance. However, if the Co content is less than 0.003%, the effect cannot be expected. On the other hand, if the Co content exceeds 2.00%, the ductility of the ferrite phase in the pearlite structure is remarkably lowered, spalling damage occurs on the rolling surface, and the surface damage resistance of the rail is lowered. For this reason, the amount of Co was limited to 0.003 to 2.00%.

Cuは、パーライト組織中のフェライトに固溶し、固溶強化によりパーライト組織の硬度(強度)を向上させる元素である。しかし、Cu量が0.01%未満ではその効果が期待できない。またCu量が1.00%を超えると、著しい焼入れ性向上により耐摩耗性に有害なマルテンサイト組織が生成しやすくなる。さらに、パーライト組織中のフェライト相の延性が著しく低下し、レールの延性が低下する。このためCu量を0.01〜1.00%に限定した。   Cu is an element that dissolves in the ferrite in the pearlite structure and improves the hardness (strength) of the pearlite structure by solid solution strengthening. However, if the amount of Cu is less than 0.01%, the effect cannot be expected. On the other hand, if the Cu content exceeds 1.00%, a martensite structure that is harmful to wear resistance is likely to be generated due to a significant improvement in hardenability. Furthermore, the ductility of the ferrite phase in the pearlite structure is remarkably lowered, and the ductility of the rail is lowered. For this reason, the amount of Cu was limited to 0.01 to 1.00%.

Niは、Cu添加による熱間圧延時の脆化を防止し、同時にフェライトへの固溶強化によりパーライト鋼の高硬度(強度)化を図る元素である。さらに、溶接熱影響部においては、Tiと複合でNi3 Tiの金属間化合物が微細に析出し、析出強化により軟化を抑制する元素である。しかし、Ni量が0.01%未満ではその効果が著しく小さい。またNi量が1.00%を超えると、フェライト相の延性が著しく低下し、ころがり面にスポーリング損傷が発生し、レールの耐表面損傷性が低下する。このためNi量を0.01〜1.00%に限定した。 Ni is an element that prevents embrittlement during hot rolling due to the addition of Cu, and at the same time, increases the hardness (strength) of pearlite steel by solid solution strengthening to ferrite. Further, in the weld heat affected zone, an intermetallic compound of Ni 3 Ti that is composited with Ti is finely precipitated and is an element that suppresses softening by precipitation strengthening. However, if the amount of Ni is less than 0.01%, the effect is remarkably small. On the other hand, when the Ni content exceeds 1.00%, the ductility of the ferrite phase is remarkably lowered, spalling damage is generated on the rolling surface, and the surface damage resistance of the rail is lowered. For this reason, the amount of Ni was limited to 0.01 to 1.00%.

Tiは、溶接時の再加熱において析出したTiの炭化物、Tiの窒化物が溶解しないことを利用して、オーステナイト域まで加熱される熱影響部の組織の微細化を図り、溶接継ぎ手部の脆化を防止するのに有効な成分である。しかし、Ti量が0.0050%未満ではその効果が少ない。またTi量が0.0500%を超えると、粗大なTiの炭化物、Tiの窒化物が生成して、レールの延性、これに加えて耐疲労損傷性が大きく低下することから、Ti量を0.0050〜0.0500%に限定した。   By utilizing the fact that Ti carbide and Ti nitride precipitated during reheating during welding do not dissolve, the structure of the heat-affected zone heated to the austenite region is refined and brittleness of the welded joint is achieved. It is an effective ingredient for preventing oxidization. However, the effect is small when the Ti content is less than 0.0050%. On the other hand, if the Ti content exceeds 0.0500%, coarse Ti carbides and Ti nitrides are generated, and the ductility of the rail and, in addition to this, the fatigue damage resistance is greatly reduced. Limited to .0050-0.0500%.

Mgは、O、または、SやAl等と結合して微細な酸化物を形成し、レール圧延時の再加熱において結晶粒の粒成長を抑制し、オーステナイト粒の微細化を図り、パーライト組織の延性を向上させるのに有効な元素である。さらに、MgO、MgSがMnSを微細に分散させ、MnSの周囲にMnの希薄帯を形成し、パーライト変態の生成に寄与し、その結果パーライトブロックサイズを微細化することにより、パーライト組織の延性を向上させるのに有効な元素である。しかし、Mg量が0.0005%未満ではその効果は弱い。またMg量が0.0200%を超えると、Mgの粗大酸化物が生成し、レールの延性、さらには耐疲労損傷性を低下させるため、Mg量を0.0005〜0.0200%に限定した。   Mg combines with O, S, Al, or the like to form fine oxides, suppresses grain growth during reheating during rail rolling, refines austenite grains, It is an effective element for improving ductility. Furthermore, MgO and MgS finely disperse MnS, forming a Mn dilute band around MnS, contributing to the generation of pearlite transformation, and as a result, reducing the pearlite block size, thereby reducing the ductility of the pearlite structure. It is an effective element to improve. However, if the amount of Mg is less than 0.0005%, the effect is weak. On the other hand, if the Mg amount exceeds 0.0200%, a coarse Mg oxide is generated, and the ductility of the rail and further fatigue damage resistance is lowered. Therefore, the Mg amount is limited to 0.0005 to 0.0200%. .

Caは、Sとの結合力が強く、CaSとして硫化物を形成し、さらにCaSがMnSを微細に分散させ、MnSの周囲にMnの希薄帯を形成し、パーライト変態の生成に寄与し、その結果パーライトブロックサイズを微細化することにより、パーライト組織の延性を向上させるのに有効な元素である。しかし、Ca量が0.0005%未満ではその効果は弱い。またCa量が0.0150%を超えると、Caの粗大酸化物が生成し、レールの延性、さらには耐疲労損傷性を低下させるため、Ca量を0.0005〜0.0150%に限定した。   Ca has a strong binding force with S, forms a sulfide as CaS, CaS finely disperses MnS, forms a Mn dilute band around MnS, and contributes to the generation of pearlite transformation. As a result, it is an effective element for improving the ductility of the pearlite structure by reducing the pearlite block size. However, if the Ca content is less than 0.0005%, the effect is weak. Further, when the Ca content exceeds 0.0150%, a coarse oxide of Ca is generated, and the ductility of the rail and further the fatigue damage resistance are lowered. Therefore, the Ca content is limited to 0.0005 to 0.0150%. .

Alは、脱酸材として必須の成分である。また、共析変態温度を高温側へ、共析炭素量を高炭素側へ移動させる元素であり、パーライト組織の高強度化と初析セメンタイト組織の生成抑制に有効な元素である。しかし、Al量が0.0100%未満ではその効果が弱い。またAl量が1.00%を超えると、鋼中に固溶させることが困難となり、疲労損傷の起点となる粗大なアルミナ系介在物が生成し、レールの延性、さらには耐疲労損傷性が低下する。また溶接時に酸化物が生成して溶接性が著しく低下するため、Al量を0.0100〜1.00%に限定した。   Al is an essential component as a deoxidizing material. In addition, it is an element that moves the eutectoid transformation temperature to the higher temperature side and the amount of eutectoid carbon to the higher carbon side, and is an effective element for increasing the strength of the pearlite structure and suppressing the formation of the proeutectoid cementite structure. However, when the Al content is less than 0.0100%, the effect is weak. Also, if the Al content exceeds 1.00%, it becomes difficult to make a solid solution in the steel, and coarse alumina inclusions that become the starting point of fatigue damage are generated, and the ductility of the rail and further the fatigue damage resistance are improved. descend. Further, since oxides are generated during welding and weldability is remarkably lowered, the Al content is limited to 0.0100 to 1.00%.

Zrは、ZrO2 介在物がγ−Feとの格子整合性が良いため、γ−Feが凝固初晶である高炭素レール鋼の凝固核となり、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、レール偏析部に生成する初析セメンタイト組織の生成を抑制する元素である。しかし、Zr量が0.0001%未満ではZrO2 系介在物の数が少なく、凝固核として十分な作用を示さない。その結果、偏析部に初析セメンタイト組織が生成してレールの延性を低下させる。またZr量が0.2000%を超えると、粗大Zr系介在物が多量に生成し、レールの延性が低下することや、粗大Zr系介在物を起点とした疲労損傷が発生しやすくなり、レールの使用寿命が低下する。このためZr量を0.0001〜0.2000%に限定した。 Zr has good lattice matching with γ-Fe because ZrO 2 inclusions have good lattice matching with γ-Fe, so that γ-Fe becomes a solidification nucleus of high-carbon rail steel that is a solidification primary crystal, and increases the equiaxed crystallization rate of the solidification structure An element that suppresses the formation of a segregation zone at the center of a slab and suppresses the formation of a pro-eutectoid cementite structure generated in a rail segregation portion. However, if the amount of Zr is less than 0.0001%, the number of ZrO 2 inclusions is small and does not exhibit a sufficient effect as a solidification nucleus. As a result, a pro-eutectoid cementite structure is generated in the segregation part, and the ductility of the rail is lowered. If the amount of Zr exceeds 0.2000%, a large amount of coarse Zr-based inclusions are produced, and the ductility of the rail is reduced, and fatigue damage starting from coarse Zr-based inclusions is likely to occur. The service life of the battery is reduced. For this reason, the amount of Zr was limited to 0.0001 to 0.2000%.

Nは、連続圧延中に、V窒化物やV炭窒化物、Nb炭窒化物を析出させ、オーステナイト粒の粒成長を抑制する。また、連続圧延後の冷却過程でV窒化物やV炭窒化物、Nb炭窒化物を析出させ、パーライト組織の延性を高めると同時に、硬度(強度)を向上させるのに有効な元素である。さらに、Ac1 点以下の温度域に再加熱された熱影響部において、V窒化物やV炭窒化物、Nb炭窒化物を析出させ、溶接継ぎ手熱影響部の軟化を防止するのに有効な元素である。これに加えて、オーステナイト粒界に偏析することにより、オーステナイト粒界からのパーライト変態を促進させ、パーライトブロックサイズを微細化することにより、パーライト組織の延性を向上させるのに有効な元素である。
しかし、N量が0.0060%未満ではその効果が弱い。またN量が0.0200%を超えると、鋼中に固溶させることが困難となり、疲労損傷の起点となる気泡が生成することから、N量を0.0060〜0.0200%に限定した。
なおレール鋼においては、Nは不純物として最大0.0050%程度含まれる。したがって上記の効果を得るには、Nは少なくとも0.0060%以上の添加が必要である。
N precipitates V nitride, V carbonitride, and Nb carbonitride during continuous rolling, and suppresses austenite grain growth. In addition, V nitride, V carbonitride, and Nb carbonitride are precipitated in the cooling process after continuous rolling to increase the ductility of the pearlite structure and at the same time improve the hardness (strength). Furthermore, in the heat-affected zone reheated to a temperature range below the Ac1 point, an element effective for precipitating V nitride, V carbonitride and Nb carbonitride and preventing softening of the weld joint heat-affected zone. It is. In addition, it is an element effective for improving the ductility of the pearlite structure by promoting the pearlite transformation from the austenite grain boundary by segregating to the austenite grain boundary and by reducing the pearlite block size.
However, if the N content is less than 0.0060%, the effect is weak. Further, if the N amount exceeds 0.0200%, it becomes difficult to make a solid solution in the steel, and bubbles are generated as the starting point of fatigue damage. Therefore, the N amount is limited to 0.0060 to 0.0200%. .
In the rail steel, N is contained as a maximum of about 0.0050% as an impurity. Therefore, to obtain the above effect, N needs to be added in an amount of at least 0.0060%.

Vは、連続圧延中に析出したV炭化物、V窒化物、V炭窒化物によりオーステナイト粒の粒成長を抑制し、また、連続圧延後の冷却過程で析出したV炭化物、V窒化物、V炭窒化物による析出硬化により、パーライト組織の延性を高めると同時に、硬度(強度)を向上させるのに有効な元素である。さらに、Ac1 点以下の温度域に再加熱された熱影響部において、比較的高温度域でV炭化物、V窒化物、V炭窒化物が析出し、溶接継ぎ手熱影響部の軟化を防止するのに有効な元素である。しかし、V量が0.005%未満ではその効果が十分に期待できず、パーライト組織の延性や硬度の向上は認められない。またV量が0.500%を超えると、疲労損傷の起点となる粗大なV炭化物、V窒化物、V炭窒化物が生成し、レールの延性や耐疲労損傷性が低下する。このためV量を0.005〜0.500%に限定した。   V suppresses the growth of austenite grains by V carbide, V nitride, and V carbonitride precipitated during continuous rolling, and V carbide, V nitride, and V carbon precipitated during the cooling process after continuous rolling. It is an element effective for improving the hardness (strength) as well as enhancing the ductility of the pearlite structure by precipitation hardening with nitride. Furthermore, in the heat-affected zone reheated to a temperature range below the Ac1 point, V carbide, V nitride, and V carbonitride precipitate in a relatively high temperature range, thereby preventing the weld joint heat affected zone from being softened. Is an effective element. However, if the amount of V is less than 0.005%, the effect cannot be sufficiently expected, and no improvement in the ductility and hardness of the pearlite structure is observed. On the other hand, if the V content exceeds 0.500%, coarse V carbide, V nitride, and V carbonitride that are the starting points of fatigue damage are generated, and the ductility and fatigue damage resistance of the rail are lowered. Therefore, the V amount is limited to 0.005 to 0.500%.

Nbは、連続圧延中に析出したNb炭化物、Nb炭窒化物によりオーステナイト粒の粒成長を抑制し、また、連続圧延後の冷却過程で析出したNb炭化物、Nb炭窒化物による析出硬化により、パーライト組織の延性を高めると同時に、硬度(強度)を向上させるのに有効な元素である。さらに、Ac1 点以下の温度域に再加熱された熱影響部において、低温度域から高温度域までNb炭化物やNb炭窒化物が析出し、溶接継ぎ手熱影響部の軟化を防止するのに有効な元素である。しかしその効果は、Nb量が0.002%未満では期待できず、パーライト組織の硬度の向上や延性の改善は認められない。またNb量が0.050%を超えると、疲労損傷の起点となる粗大なNb炭化物やNb炭窒化物が生成し、レールの延性や耐疲労損傷性が低下する。このためNb量を0.002〜0.050%に限定した。   Nb suppresses grain growth of austenite grains by Nb carbide and Nb carbonitride precipitated during continuous rolling, and pearlite by precipitation hardening by Nb carbide and Nb carbonitride precipitated in the cooling process after continuous rolling. It is an element effective for enhancing the hardness (strength) as well as increasing the ductility of the structure. In addition, Nb carbide and Nb carbonitride precipitate from the low temperature range to the high temperature range in the heat affected zone reheated to a temperature range below the Ac1 point, and are effective in preventing softening of the weld joint heat affected zone. Element. However, the effect cannot be expected when the Nb content is less than 0.002%, and no improvement in the hardness or ductility of the pearlite structure is observed. On the other hand, if the Nb content exceeds 0.050%, coarse Nb carbide or Nb carbonitride that becomes the starting point of fatigue damage is generated, and the ductility and fatigue damage resistance of the rail are lowered. For this reason, the amount of Nb was limited to 0.002 to 0.050%.

(2)圧延後のオーステナイト粒の粒成長を抑制するV、Nb、Nの添加量の限定理由: 次に、V、Nb、Nのそれぞれの添加量をV(質量%)、Nb(質量%)、N(質量%)からなる下記の式(3式)で算定される範囲内に限定した理由を説明する。
高炭素含有のレール鋼の連続圧延において、析出物の適用により、圧延後に発生するオーステナイト粒の粒成長を抑制する方法を検討した。その結果、V炭化物、V窒化物、V炭窒化物、Nb炭化物、Nb炭窒物が連続圧延中に析出して、ピンニングにより圧延後のオーステナイト粒の粒成長が抑制されることを見出した。
次に、オーステナイト粒のピンニングに有効なV炭化物、V窒化物、V炭窒化物、Nb炭化物、Nb炭窒物が十分に析出する条件を検討した。その結果、これらの析出物の生成はV、Nb、Nの添加量との正の相関があることが確認された。
(2) Reasons for limiting the addition amounts of V, Nb, and N that suppress the grain growth of austenite grains after rolling: Next, the addition amounts of V, Nb, and N are set to V (mass%) and Nb (mass%), respectively. ) And N (mass%) will be explained for the reason limited to the range calculated by the following formula (formula 3).
In continuous rolling of high carbon content rail steel, a method of suppressing grain growth of austenite grains generated after rolling was studied by applying precipitates. As a result, it has been found that V carbide, V nitride, V carbonitride, Nb carbide, and Nb carbonitride precipitate during continuous rolling, and the grain growth of austenite grains after rolling is suppressed by pinning.
Next, the conditions under which V carbide, V nitride, V carbonitride, Nb carbide, and Nb carbonitride effective for pinning of austenite grains were sufficiently examined were examined. As a result, it was confirmed that the formation of these precipitates had a positive correlation with the amounts of V, Nb, and N added.

これらの結果から、オーステナイト粒の粒成長を十分に抑制するV、Nb、Nの添加量の範囲を実験により検討した。その結果、V(質量%)、Nb(質量%)の添加量、さらに、Vの窒化物、V、Nbの炭窒物の形成を促進させるために添加するN(質量%)の添加量には、それぞれ単位添加量当たりの寄与率が異なることが確認され、この寄与率を実験により求め、下記の式(3式)を導き出した。
さらに、この式から、V、Nb、Nの最適な添加量範囲を実験により検討した。その結果、下記の式(3式)から求められるPC値を、0.30≧PC≧0.04の範囲に治めることにより、連続圧延後のオーステナイト粒の粒成長が十分に抑制されることを知見した。
なお、V、Nb、Nの添加量の組合せにより、PC値が上記の範囲外になった場合は、連続圧延後のオーステナイト粒の粒成長が十分に抑制されず、熱処理後のパーライト組織の延性が十分に向上しない。したがって、PC値が上記の範囲外になったとしても、延性の向上は図れないが、レールの諸特性に悪影響を与えるものではない。
PC=V(質量%)+10×Nb(質量%)+5×N(質量%)………(式3)
From these results, the range of the amount of V, Nb, and N added to sufficiently suppress the grain growth of austenite grains was examined by experiments. As a result, the addition amount of V (mass%) and Nb (mass%), and the addition amount of N (mass%) added to promote the formation of nitrides of V and carbonitrides of V and Nb Were confirmed to have different contribution ratios per unit addition amount, and the contribution ratios were obtained by experiments, and the following formula (formula 3) was derived.
Furthermore, from this equation, the optimum range of addition amounts of V, Nb, and N was examined by experiments. As a result, by controlling the PC value obtained from the following formula (formula 3) within the range of 0.30 ≧ PC ≧ 0.04, the grain growth of austenite grains after continuous rolling is sufficiently suppressed. I found out.
When the PC value is out of the above range due to the combination of the addition amounts of V, Nb, and N, grain growth of the austenite grains after continuous rolling is not sufficiently suppressed, and the ductility of the pearlite structure after heat treatment Does not improve sufficiently. Therefore, even if the PC value is out of the above range, the ductility cannot be improved, but it does not adversely affect the characteristics of the rail.
PC = V (mass%) + 10 × Nb (mass%) + 5 × N (mass%) (Equation 3)

ここで、NはV窒化物、V炭窒化物、Nb炭窒物の形成を促進させるために添加されており、Nのみの単独添加では上記の析出物が形成されず、オーステナイト粒の粒成長抑制効果はない。したがって、上記のオーステナイト粒の粒成長抑制効果を得るには、V単独、Nb単独、VとNbの複合添加、VとNの複合添加、NbとNの複合添加、V、NbとNの複合添加の場合に限られ、上記の式(3式)の算定においては、Nの単独添加についてはその量を0(質量%)として取り扱う。
なお、上記のN添加量の限定理由でも説明したように、レール鋼においては、Nは不純物として最大0.0050%程度含まれるが、V窒化物、V炭窒化物、Nb炭窒物の形成を促進させるには、Nは少なくとも0.0060%以上の添加が必要である。したがって、上記の式(3式)の算定においては、不純物レベルのN量についてはその量を0(質量%)として取り扱う。
Here, N is added to promote the formation of V nitride, V carbonitride, and Nb carbonitride, and the above precipitates are not formed when N alone is added, and austenite grain growth occurs. There is no suppression effect. Therefore, in order to obtain the above effect of suppressing grain growth of austenite grains, V alone, Nb alone, composite addition of V and Nb, composite addition of V and N, composite addition of Nb and N, composite of V, Nb and N Only in the case of addition, in the calculation of the above formula (formula 3), the amount of N added alone is treated as 0 (mass%).
As explained above for the reason for limiting the amount of N added, in the rail steel, N is included as a maximum of about 0.0050% as an impurity, but formation of V nitride, V carbonitride, and Nb carbonitride. In order to promote N, addition of at least 0.0060% or more is necessary. Therefore, in the calculation of the above formula (formula 3), the amount of N at the impurity level is treated as 0 (mass%).

(3)1パス当たりの断面減少率の限定理由:
仕上げ圧延時の1パス当たりの断面減少率を2〜30%の範囲に限定した理由を説明する。仕上げ圧延時の1パス当たりの断面減少率が30%を超えると、熱間圧延後の加工発熱量が大きく、圧延後の頭部表面温度が大きく上昇し、頭部のオーステナイト粒が粗大化し、レールの延性が確保できない。さらに、レール圧延において成形性の確保が困難となる。また、仕上げ圧延時の1パス当たりの断面減少率が2%未満では、レール頭部のオーステナイト粒を再結晶させるのに必要な最低限の歪み量を確保できず、オーステナイト粒が微細化せず、レールの延性が確保できない。このため、仕上げ圧延時の1パス当たりの断面減少率を2〜30%の範囲に限定した。
(3) Reason for limiting the cross-section reduction rate per pass:
The reason why the cross-section reduction rate per pass during finish rolling is limited to the range of 2 to 30% will be described. If the cross-section reduction rate per pass during finish rolling exceeds 30%, the heat generation amount after hot rolling is large, the head surface temperature after rolling is greatly increased, and the austenite grains of the head are coarsened. The ductility of the rail cannot be secured. Furthermore, it becomes difficult to ensure formability in rail rolling. Also, if the cross-sectional reduction rate per pass during finish rolling is less than 2%, the minimum amount of strain required to recrystallize the austenite grains in the rail head cannot be secured, and the austenite grains do not become finer. The ductility of the rail cannot be ensured. For this reason, the cross-sectional reduction rate per pass at the time of finish rolling is limited to a range of 2 to 30%.

(4)最大圧延パス間時間の限定理由:
連続圧延時の最大圧延パス間時間(S)を、鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度(T、℃)、パス回数(P、回)からなる下記の式(1式、2式)で算定される値以下に限定した理由を説明する。
高炭素含有のレール鋼において、最大圧延パス間時間の増大により、オーステナイト粒が粗大化する要因を解析した結果、オーステナイト粒の粒成長は、鋼の炭素量、連続仕上げ圧延時の最大レール頭部表面温度との正の相関があることが確認された。引き続き解析を進めた結果、パス回数3回以上の連続仕上げ圧延においては、圧延パス回数との正の相関があることが確認された。
(4) Reason for limitation of maximum rolling pass time:
The maximum rolling pass time (S) at the time of continuous rolling is the following consisting of the carbon content (C, mass%) of steel, the maximum rail head surface temperature (T, ° C) at the time of rolling, and the number of passes (P, times). The reason for limiting to below the value calculated by the formula (1 formula, 2 formula) will be described.
As a result of analyzing the cause of coarsening of austenite grains due to the increase in the maximum rolling pass time in high-carbon rail steel, the austenite grain growth is the carbon content of the steel, the maximum rail head during continuous finish rolling. It was confirmed that there was a positive correlation with the surface temperature. As a result of continuing the analysis, it was confirmed that there is a positive correlation with the number of rolling passes in continuous finish rolling with three or more passes.

これらの結果から、オーステナイト粒を粗大化させない最適な最大圧延パス間時間と鋼の炭素量(C、mass%)、連続仕上げ圧延時の最大レール頭部表面温度(T、℃)、圧延パス回数(P、回)との関係を重相関により解析を行った。その結果、連続仕上げ圧延のパス回数が2回の場合は、鋼の炭素量と連続仕上げ圧延時の最大レール頭部表面温度からなる下記の式(1式)、連続仕上げ圧延のパス回数が3回以上の場合は、鋼の炭素量、連続仕上げ圧延時の最大レール頭部表面温度、パス回数からなる下記の式(2式)で算定される値(CPT1、CPT2)以下に連続圧延時の最大圧延パス間時間(S、sec )を制御することにより、圧延パス間でのオーステナイト粒の粒成長が抑制され、熱間連続圧延後のオーステナイト粒が微細化することを知見した。
CPT1= 800/(C×T) ……………(式1)
CPT2=2400/(C×T×P) ………(式2)
S(sec )≦CPT1、CPT2
From these results, the optimal maximum rolling pass time and carbon content (C, mass%), maximum rail head surface temperature (T, ° C) during continuous finish rolling, and number of rolling passes that do not coarsen austenite grains. The relationship with (P, times) was analyzed by multiple correlation. As a result, when the number of passes of continuous finish rolling is 2, the following formula (1 formula) consisting of the carbon content of steel and the maximum rail head surface temperature during continuous finish rolling, the number of passes of continuous finish rolling is 3 In the case of more than the number of turns, the carbon content of steel, the maximum rail head surface temperature during continuous finish rolling, and the value (CPT1, CPT2) calculated by the following formula (2 formulas) consisting of the number of passes are below the values during continuous rolling. It has been found that by controlling the maximum time between rolling passes (S, sec), the growth of austenite grains between rolling passes is suppressed and the austenite grains after hot continuous rolling are refined.
CPT1 = 800 / (C × T) (1)
CPT2 = 2400 / (C × T × P) (Equation 2)
S (sec) ≤ CPT1, CPT2

ここで、最大パス間時間について定義する。最大パス間時間とは、本発明においては、連続圧延における1パス毎の熱間圧延時の経過時間の最大値を示すものである。したがって3パス連続圧延の場合、1パス目と2パス目の経過時間と2パス目と3パス目の経過時間の内、大きな方の値を最大パス間時間として取り扱う。
なお、1式、2式中のCは炭素量(mass%)、Tは連続仕上げ圧延時の最大レール頭部表面温度(℃)、Pは圧延パス回数(回)である。いずれの値も正の値を取り、Pは自然数である。
また、圧延時の最大レール頭部表面温度とは、連続圧延する場合の各パスでのレール頭部表面における最大値である。
Here, the maximum time between paths is defined. In the present invention, the maximum time between passes indicates the maximum value of the elapsed time during hot rolling for each pass in continuous rolling. Therefore, in the case of three-pass continuous rolling, the larger one of the elapsed time of the first pass and the second pass and the elapsed time of the second pass and the third pass is handled as the maximum time between passes.
In Formulas 1 and 2, C is the amount of carbon (mass%), T is the maximum rail head surface temperature (° C.) during continuous finish rolling, and P is the number of rolling passes (times). Both values are positive values, and P is a natural number.
Moreover, the maximum rail head surface temperature at the time of rolling is the maximum value on the rail head surface in each pass in the case of continuous rolling.

(5)熱間圧延直後の頭部加速冷却条件の限定理由:
熱間連続圧延直後のレール頭部表面の加速冷却速度、加速冷却停止温度を上記請求範囲に限定した理由について詳細に説明する。
まず、加速冷却速度の範囲について説明する。熱間連続圧延後のレール頭部表面の冷却速度が5℃/sec 未満では、加速冷却中にオーステナイト粒が粗大化し、レール頭部の延性が低下する。またレール頭部表面の冷却速度が30℃/sec を超えると、加速冷却後に発生するレール頭部内部からの復熱量が多く、レール頭部表面の温度が上昇するためオーステナイト粒が粗大化し、レール頭部の延性が低下する。このため、レール頭部表面の加速冷却速度の範囲を5〜30℃/sec の範囲に限定した。
(5) Reason for limiting head accelerated cooling conditions immediately after hot rolling:
The reason why the accelerated cooling rate and accelerated cooling stop temperature of the rail head surface immediately after the hot continuous rolling are limited to the above claims will be described in detail.
First, the range of the accelerated cooling rate will be described. When the cooling rate of the rail head surface after hot continuous rolling is less than 5 ° C./sec, austenite grains become coarse during accelerated cooling, and ductility of the rail head decreases. Also, if the cooling speed of the rail head surface exceeds 30 ° C / sec, the amount of recuperation from the inside of the rail head generated after accelerated cooling is large and the temperature of the rail head surface rises, so the austenite grains become coarse and the rail Head ductility is reduced. For this reason, the range of the accelerated cooling rate on the rail head surface is limited to the range of 5 to 30 ° C./sec.

次に、加速冷却温度の範囲について説明する。950℃を超えた温度でレール頭部表面の加速冷却を停止すると、鋼の炭素量によっては、加速冷却終了後にオーステナイト粒の粒成長が著しく、オーステナイト粒が粗大化してレール頭部の延性が低下する。また750℃未満までレール頭部表面の加速冷却を行うと、冷却速度によっては、加速冷却後に発生するレール頭部内部からの復熱量が多く、レール頭部表面の温度が上昇するためオーステナイト粒が粗大化し、レール頭部の延性が低下する。このため加速冷却を950〜750℃まで行うことに限定した。   Next, the range of the accelerated cooling temperature will be described. When accelerated cooling of the rail head surface is stopped at a temperature exceeding 950 ° C., depending on the amount of carbon in the steel, austenite grains grow markedly after the accelerated cooling is completed, and the austenite grains become coarse and ductility of the rail head decreases. To do. Also, when accelerated cooling of the rail head surface to below 750 ° C., depending on the cooling rate, the amount of recuperated heat from the inside of the rail head generated after accelerated cooling increases, and the temperature of the rail head surface rises, so austenite grains It becomes coarse and the duct head becomes less ductile. For this reason, it was limited to performing accelerated cooling to 950-750 degreeC.

(6)熱間圧延後の頭部加速冷却条件の限定理由:
熱間連続圧延後に行われる最終熱処理のレール頭部表面の加速冷却速度、加速冷却停止温度を上記請求範囲に限定した理由について詳細に説明する。
まず、加速冷却速度開始温度について説明する。レール頭部表面の加速冷却速度開始温度が700℃未満になると、加速冷却前にパーライト変態が始まり、レール頭部の高硬度が図れず、耐摩耗性が確保できない。また鋼の炭素量や合金成分によっては、初析セメンタイト組織が生成し、レール頭部表面の延性が低下する。このためレール頭部表面の加速冷却速度開始温度を700℃以上とした。
(6) Reason for limitation of head accelerated cooling condition after hot rolling:
The reason why the accelerated cooling rate and the accelerated cooling stop temperature of the rail head surface in the final heat treatment performed after the hot continuous rolling are limited to the above claims will be described in detail.
First, the accelerated cooling rate start temperature will be described. When the accelerated cooling rate start temperature on the rail head surface is less than 700 ° C., pearlite transformation starts before accelerated cooling, the high hardness of the rail head cannot be achieved, and the wear resistance cannot be ensured. Depending on the carbon content and alloy composition of the steel, a pro-eutectoid cementite structure is formed, and the ductility of the rail head surface is reduced. For this reason, the accelerated cooling rate start temperature of the rail head surface was set to 700 ° C. or higher.

次に、加速冷却速度の範囲について説明する。レール頭部表面の加速冷却速度が2℃/sec 未満では、本レール製造条件ではレール頭部の高硬度が図れず、レール頭部の耐摩耗性の確保が困難となる。さらに、鋼の炭素量や合金成分によっては初析セメンタイト組織が生成し、レールの頭部の延性が低下する。また、加速冷却速度が30℃/sec を超えると、本成分系ではマルテンサイト組織が生成し、レール頭部の延性が大きく低下する。このため、レール頭部表面の加速冷却速度の範囲を2〜30℃/sec の範囲に限定した。   Next, the range of the accelerated cooling rate will be described. If the accelerated cooling rate on the surface of the rail head is less than 2 ° C./sec, the high hardness of the rail head cannot be achieved under these rail manufacturing conditions, and it becomes difficult to ensure the wear resistance of the rail head. Furthermore, depending on the carbon content and alloy composition of the steel, a pro-eutectoid cementite structure is formed, and the ductility of the head of the rail is lowered. On the other hand, when the accelerated cooling rate exceeds 30 ° C./sec, a martensitic structure is generated in this component system, and the ductility of the rail head is greatly reduced. For this reason, the range of the accelerated cooling rate of the rail head surface was limited to the range of 2 to 30 ° C./sec.

次に、加速冷却温度の範囲について説明する。600℃を超えた温度でレール頭部の加速冷却を停止すると、加速冷却終了後にレール内部から過大な復熱が発生する。この結果、温度上昇によりパーライト変態温度が上昇し、パーライト組織の高硬度が図れず、耐摩耗性を確保できない。また、パーライト組織が粗大化してレール頭部の延性も低下する。このため、少なくとも600℃まで加速冷却を行うことを限定した。
なお、レール頭部の加速冷却を終了する温度の下限は特に限定してないが、レール頭部表面の硬度を確保し、かつ頭部内部の偏析部等に生成しやすいマルテンサイト組織の生成を防止するには、実質的に400℃が下限となる。
Next, the range of the accelerated cooling temperature will be described. If the accelerated cooling of the rail head is stopped at a temperature exceeding 600 ° C., excessive recuperation occurs from the inside of the rail after the accelerated cooling is completed. As a result, the pearlite transformation temperature rises due to the temperature rise, the pearlite structure cannot have a high hardness, and the wear resistance cannot be ensured. In addition, the pearlite structure becomes coarse and the duct head ductility also decreases. For this reason, it was limited to perform accelerated cooling to at least 600 ° C.
The lower limit of the temperature at which the accelerated cooling of the rail head is terminated is not particularly limited, but the hardness of the rail head surface is ensured, and the generation of martensite structure that is easy to be generated in the segregated portion inside the head is generated. In order to prevent this, the lower limit is substantially 400 ° C.

ここで、レールの部位について説明する。図1はレール部位の呼称を示したものである。「レール頭部」とは、図2に示す頭頂部(符号:1)および頭部コーナー部(符号:2)を含む部分である。圧延時のレール頭部表面温度は、頭頂部(符号:1)および頭部コーナー部(符号:2)の頭部表面の温度を制御することにより、圧延時のオーステナイト粒の微細化が図れ、レールの延性を向上させることができる。
また、上記に説明した熱間連続圧延直後の熱処理、さらに、熱間連続圧延後に行われる熱処理における加速冷却開始温度、加速冷却速度、加速冷却停止温度は、図1に示す頭頂部(符号:1)および頭部コーナー部(符号:2)の頭部表面、または、頭部表面から深さ5mmの範囲で測温すれば、レール頭部の全体を代表させることができ、この部分の温度や冷却速度を制御することにより、耐摩耗性に優れた微細なパーライト組織を得ることができる。
Here, the part of the rail will be described. FIG. 1 shows the names of the rail parts. The “rail head” is a portion including the top (code: 1) and the head corner (code: 2) shown in FIG. Rail head surface temperature during rolling can be achieved by controlling the temperature of the head surface of the top (code: 1) and the head corner (code: 2), thereby reducing the austenite grain size during rolling, The ductility of the rail can be improved.
Further, the accelerated cooling start temperature, the accelerated cooling rate, and the accelerated cooling stop temperature in the heat treatment immediately after the hot continuous rolling described above and further in the heat treatment performed after the hot continuous rolling are the top portion (reference numeral: 1) shown in FIG. ) And the head surface of the head corner (symbol: 2), or if the temperature is measured within a depth of 5 mm from the head surface, the entire rail head can be represented. By controlling the cooling rate, a fine pearlite structure with excellent wear resistance can be obtained.

本製造方法では、特に冷媒については限定していないが、所定の冷却速度を確保し、レール各部位において、冷却条件の制御を確実に行うため、エアー、ミスト、エアーとミストの混合冷媒を用いて、レール各部位の外表面に所定の冷却を行うことが望ましい。
なお、本製造方法によって製造された鋼レールの頭部の金属組織はパーライト組織であることが望ましいが、成分系、さらには加速冷却条件の選択によっては、パーライト組織中に微量な初析フェライト組織、初析セメンタイト組織およびベイナイト組織が生成することがある。しかし、パーライト組織中にこれらの組織が微量に生成してもレールの疲労強度や延性に大きな影響を及ぼさないため、本製造方法によって製造された鋼レールの頭部の組織としては、若干の初析フェライト組織、初析セメンタイト組織およびベイナイト組織の混在も含んでいる。
In this manufacturing method, the refrigerant is not particularly limited, but air, mist, a mixed refrigerant of air and mist is used in order to ensure a predetermined cooling rate and to reliably control the cooling conditions at each part of the rail. Thus, it is desirable to perform predetermined cooling on the outer surface of each part of the rail.
The metal structure of the head of the steel rail manufactured by this manufacturing method is preferably a pearlite structure. However, depending on the selection of the component system and accelerated cooling conditions, a very small amount of proeutectoid ferrite structure in the pearlite structure. In some cases, a pro-eutectoid cementite structure and a bainite structure are formed. However, even if a small amount of these structures are formed in the pearlite structure, the fatigue strength and ductility of the rail are not greatly affected. It also includes a mixed ferrite structure, pro-eutectoid cementite structure and bainite structure.

次に、本発明の実施例について説明する。
表1に供試レール鋼の化学成分を示す。
表2は、表1に示す供試レール鋼を用いて、本発明のレール製造方法で製造したレールの成分(炭素量、PC値)、熱間圧延条件、熱処理条件、さらにはレール頭部のミクロ組織、硬さ、引張試験の全伸び値を示す。
表3は、表1に示す供試レール鋼を用いて、比較レール製造方法で製造したレールの成分(炭素量、PC値)、熱間圧延条件、熱処理条件、さらにはレール頭部のミクロ組織、硬さ、引張試験の全伸び値を示す。
Next, examples of the present invention will be described.
Table 1 shows the chemical composition of the test rail steel.
Table 2 shows the components of the rail manufactured by the rail manufacturing method of the present invention using the test rail steel shown in Table 1 (carbon content, PC value), hot rolling conditions, heat treatment conditions, and rail heads. The total elongation value of the microstructure, hardness, and tensile test is shown.
Table 3 shows the components (carbon content, PC value) of the rail manufactured by the comparative rail manufacturing method using the test rail steel shown in Table 1, hot rolling conditions, heat treatment conditions, and the microstructure of the rail head. , Hardness, total elongation of tensile test.

ここで、本明細書中の図について説明する。図1はレール各部位の呼称を示したものである。図1において、1は頭頂部、2は頭部コーナー部である。図2は表2と表3に示す引張試験における試験片採取位置を図示したものである。また、図3は表2に示す本発明のレール製造方法で製造したレールと表3に示す比較レール製造方法で製造したレールの頭部引張試験結果における炭素量と全伸び値の関係を示したものである。   Here, the drawings in this specification will be described. FIG. 1 shows the designation of each part of the rail. In FIG. 1, 1 is a top part and 2 is a head corner part. FIG. 2 illustrates test specimen collection positions in the tensile tests shown in Tables 2 and 3. FIG. 3 shows the relationship between the amount of carbon and the total elongation in the head tensile test results of the rail manufactured by the rail manufacturing method of the present invention shown in Table 2 and the rail manufactured by the comparative rail manufacturing method shown in Table 3. Is.

なお、レールの構成は以下のとおりである。
(1)本発明熱処理レール(24本)
上記成分範囲内のレール鋼を、上記限定範囲内の熱間圧延条件、熱処理条件で製造したレール:符号1〜4、6〜15。
上記成分範囲内で、かつPC値が上記範囲内のレール鋼を、上記限定範囲内の熱間圧延条件、熱処理条件で製造したレール:符号5、16〜24。
(2)比較熱処理レール(16本)
上記成分範囲内のレール鋼を、上記限定範囲外の熱間圧延条件で製造したレール:符号25〜33。
上記成分範囲内のレール鋼を、上記限定範囲外の熱処理条件で製造したレール:符号34〜40。
The configuration of the rail is as follows.
(1) Invention heat treatment rail (24)
Rails produced from rail steel within the above component range under hot rolling conditions and heat treatment conditions within the above limited range: reference numerals 1 to 4 and 6 to 15.
Rail which manufactured the rail steel within the said component range and PC value in the said range on the hot rolling conditions and heat processing conditions in the said limited range: Code | symbol 5, 16-24.
(2) Comparative heat treatment rail (16)
Rails manufactured with rail steel within the above component range under hot rolling conditions outside the above limited range: symbols 25 to 33.
Rail manufactured with rail steel within the above component range under heat treatment conditions outside the above limited range: 34-40.

また、各種試験条件は下記のとおりである。
(3)頭部引張試験
試験機:万能小型引張試験機
試験片形状:JIS4号相似
平行部長さ:25mm、平行部直径:6mm、伸び測定評点間距離:21mm
試験片採取位置:レール頭部表面下5mm(図2参照)
引張速度:10mm/min、試験温度:常温(20℃)
Various test conditions are as follows.
(3) Head Tensile Test Tester: Universal Small Tensile Tester Test piece shape: Similar to JIS No. 4 Parallel part length: 25 mm, Parallel part diameter: 6 mm, Distance between elongation measurement grades: 21 mm
Test piece sampling position: 5mm below the rail head surface (see Fig. 2)
Tensile speed: 10 mm / min, test temperature: normal temperature (20 ° C.)

表2、表3に示すように、本発明レール鋼(符号:1〜24)は、比較レール鋼(符号:25〜40)と比べて、連続圧延時の最大圧延パス間時間を、レール鋼の炭素量、連続圧延時の最大レール頭部表面温度、パス回数からなる式で算定される値以下に制御し、さらには圧延直後に熱処理を行うことにより、オーステナイト組織の微細化を図り、これに加えて、圧延後に適切な温度範囲と冷却速度で熱処理を行うことにより、延性に悪影響を与える初析セメンタイト組織やマルテンサイト組織などを生成させず、耐摩耗性と延性を確保した微細なパーライト組織とすることができる。   As shown in Tables 2 and 3, the rail steel of the present invention (symbol: 1 to 24) has a maximum rolling pass time during continuous rolling compared to the comparative rail steel (symbol: 25 to 40). The austenite structure is refined by controlling the amount of carbon, the maximum rail head surface temperature during continuous rolling, to a value calculated by the formula consisting of the number of passes, and by performing heat treatment immediately after rolling. In addition, by performing heat treatment at an appropriate temperature range and cooling rate after rolling, fine pearlite that ensures wear resistance and ductility without generating proeutectoid cementite structure or martensite structure that adversely affects ductility. It can be an organization.

図3に示すように、本発明レール鋼(符号:1〜24)は、連続圧延時の最大圧延パス間時間を制御しなかった比較レール鋼(符号:25〜33)と比べて、いずれの炭素量においてもレール頭部の延性が向上している。これらの連続圧延時の最大圧延パス間時間の制御に加えて、さらに連続圧延後に発生するオーステナイト粒の粒成長を抑制するため、PC値(3式)の範囲に従い、V、Nb、Nを添加した本発明レール鋼(符号:5、16〜24)は、いずれの炭素量においても、レール頭部の延性がより一層向上している。
また表2、表3に示すように、本発明レール鋼(符号:1〜24)は、連続圧延後の熱処理を適切に行わなかった比較レール鋼(符号:34〜40)と比べて、いずれの炭素量においてもレール頭部の延性が確保されている。
As shown in FIG. 3, the rail steel of the present invention (symbol: 1 to 24) is compared with the comparative rail steel (symbol: 25 to 33) that did not control the maximum time between rolling passes during continuous rolling. In terms of carbon content, the duct head has improved ductility. In addition to the control of the time between the maximum rolling passes during continuous rolling, V, Nb, and N are added according to the range of the PC value (formula 3) in order to suppress the growth of austenite grains generated after continuous rolling. The present invention rail steel (symbol: 5, 16 to 24) has a further improved ductility of the rail head at any carbon content.
Moreover, as shown in Table 2 and Table 3, this invention rail steel (code | symbol: 1-24) compared with the comparison rail steel (code | symbol: 34-40) which did not perform the heat processing after continuous rolling appropriately, Even in the amount of carbon, the duct head is secured.

本発明のレール製造方法で製造したレールの頭部断面表面位置での呼称を示した図。The figure which showed the name in the head cross-section surface position of the rail manufactured with the rail manufacturing method of this invention. 表2と表3に示す引張試験における試験片採取位置を示した図。The figure which showed the test piece collection position in the tension test shown in Table 2 and Table 3. FIG. 表2に示す本発明レール鋼(V、Nb、N添加量未制御鋼、符号:1〜4、6〜15)、本発明レール鋼(V、Nb、N添加量制御鋼、符号:5、16〜24)と表3に示す比較レール鋼(符号:25〜40)の引張試験結果における炭素量と全伸び値の関係を示した図。The present invention rail steel shown in Table 2 (V, Nb, N addition amount uncontrolled steel, code: 1-4, 6-15), the present invention rail steel (V, Nb, N addition amount controlled steel, code: 5, The figure which showed the relationship between the carbon amount and the total elongation value in the tension test result of the comparison rail steel (code | symbol: 25-40) shown in 16-24) and Table 3. FIG.

符号の説明Explanation of symbols

1:頭頂部
2:頭部コーナー部
1: Head part 2: Head corner part

Claims (5)

質量%で、
C :0.85超〜1.40%
Si:0.05〜2.00%、
Mn:0.05〜2.00%
を含有し、さらに、
Cr:0.05〜2.00%、
Mo:0.01〜0.50%、
B :0.0001〜0.0050%、
Co:0.003〜2.00%、
Cu:0.01〜1.00%、
Ni:0.01〜1.00%、
Ti:0.0050〜0.0500%、
Mg:0.0005〜0.0200%、
Ca:0.0005〜0.0150%、
Al:0.0100〜1.00%、
Zr:0.0001〜0.2000%、
N :0.0060〜0.0200%、
V :0.005〜0.50%、
Nb:0.002〜0.050%
の1種または2種以上を含有し、残部Feおよび不可避的不純物からなるレール圧延用鋼片からレールを製造するに際して、1パス当たりの断面減少率が2〜30%のパス回数2回の連続仕上げ圧延において、圧延パス間時間(S、sec)が、鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度(T、℃)からなる下記の式1で示される値(CPT1)に対して、S≦CPT1となるように連続圧延を行うことを特徴とす高炭素鋼レールの製造方法。
CPT1=800/(C×T) …………………(式1)
% By mass
C: more than 0.85 to 1.40% ,
Si: 0.05 to 2.00%,
Mn: 0.05 to 2.00%
In addition,
Cr: 0.05 to 2.00%,
Mo: 0.01 to 0.50%,
B: 0.0001 to 0.0050%,
Co: 0.003 to 2.00%,
Cu: 0.01 to 1.00%,
Ni: 0.01-1.00%,
Ti: 0.0050-0.0500%,
Mg: 0.0005 to 0.0200%,
Ca: 0.0005 to 0.0150%,
Al: 0.0100-1.00%,
Zr: 0.0001 to 0.2000%,
N: 0.0060-0.0200%,
V: 0.005-0.50%,
Nb: 0.002 to 0.050%
When manufacturing a rail from rail rolling steel slabs containing one or more of the following, and the balance Fe and unavoidable impurities, the number of consecutive passes is 2 to 30% with a cross-section reduction rate per pass of 2 to 30%. In finish rolling, the time between rolling passes (S, sec) is a value represented by the following formula 1 consisting of the carbon content (C, mass%) of steel and the maximum rail head surface temperature (T, ° C) during rolling. against (CPTl), method for producing high-carbon steel rail you and performing continuous rolling such that S ≦ CPTl.
CPT1 = 800 / (C × T) (1)
質量%で、
C:0.85超〜1.40%
Si:0.05〜2.00%、
Mn:0.05〜2.00%
を含有し、さらに、
Cr:0.05〜2.00%、
Mo:0.01〜0.50%、
B :0.0001〜0.0050%、
Co:0.003〜2.00%、
Cu:0.01〜1.00%、
Ni:0.01〜1.00%、
Ti:0.0050〜0.0500%、
Mg:0.0005〜0.0200%、
Ca:0.0005〜0.0150%、
Al:0.0100〜1.00%、
Zr:0.0001〜0.2000%、
N :0.0060〜0.0200%、
V :0.005〜0.50%、
Nb:0.002〜0.050%
の1種または2種以上を含有し、残部Feおよび不可避的不純物からなるレール圧延用鋼片からレールを製造するに際して、1パス当たりの断面減少率が2〜30%のパス回数3回以上の連続仕上げ圧延において、最大圧延パス間時間(S、sec)が、鋼の炭素量(C、mass%)、圧延時の最大レール頭部表面温度(T、℃)、パス回数(P、回)からなる下記の式2で示される値(CPT2)に対して、S≦CP2となるように連続圧延を行うことを特徴とす高炭素鋼レールの製造方法。
CPT2=2400/(C×T×P) …………(式2)
% By mass
C: more than 0.85 to 1.40% ,
Si: 0.05 to 2.00%,
Mn: 0.05 to 2.00%
In addition,
Cr: 0.05 to 2.00%,
Mo: 0.01 to 0.50%,
B: 0.0001 to 0.0050%,
Co: 0.003 to 2.00%,
Cu: 0.01 to 1.00%,
Ni: 0.01-1.00%,
Ti: 0.0050-0.0500%,
Mg: 0.0005 to 0.0200%,
Ca: 0.0005 to 0.0150%,
Al: 0.0100-1.00%,
Zr: 0.0001 to 0.2000%,
N: 0.0060-0.0200%,
V: 0.005-0.50%,
Nb: 0.002 to 0.050%
When manufacturing a rail from a rail rolling steel slab comprising one or more of the following, and the balance Fe and inevitable impurities , the cross-section reduction rate per pass is 2 to 30%, and the number of passes is 3 times or more. In continuous finish rolling, the maximum time between rolling passes (S, sec) is the carbon content of steel (C, mass%), the maximum rail head surface temperature (T, ° C) during rolling, and the number of passes (P, times). for values of the formula 2 below consisting of (CPT2), method for producing high-carbon steel rail you and performing continuous rolling such that S ≦ CP T 2.
CPT2 = 2400 / (C × T × P) (Equation 2)
鋼レールの化学成分において、下記の式3で示される値(PC)が、0.30≧PC≧0.04の範囲となることを特徴とする請求項1または2に記載の高炭素鋼レールの製造方法。
PC=V(質量%)+10×Nb(質量%)+5×N(質量%)………(式3)
The high-carbon steel rail according to claim 1 or 2, wherein the chemical composition of the steel rail has a value (PC) represented by the following formula 3 in a range of 0.30≥PC≥0.04. Manufacturing method.
PC = V (mass%) + 10 × Nb (mass%) + 5 × N (mass%) (Equation 3)
熱間連続圧延後直ちに、レール頭部表面を冷却速度5〜30℃/secで950〜750℃まで加速冷却することを特徴とする請求項1〜のいずれか1項に記載高炭素鋼レールの製造方法。 The high carbon steel according to any one of claims 1 to 3 , wherein the rail head surface is accelerated and cooled to 950 to 750 ° C at a cooling rate of 5 to 30 ° C / sec immediately after the hot continuous rolling. Rail manufacturing method. 熱間連続圧延後、700℃以上の温度から、レール頭部表面を冷却速度2〜30℃/secで少なくとも600℃まで加速冷却し、その後放冷することを特徴とする請求項1〜のいずれか1項に記載高炭素鋼レールの製造方法。 After continuous hot rolling, from 700 ° C. or higher, the rail head surface accelerated cooling to at least 600 ° C. at a cooling rate 2 to 30 ° C. / sec, according to claim 1-4 then characterized by cool The manufacturing method of the high carbon steel rail of any one of Claims.
JP2004285934A 2004-03-09 2004-09-30 Method for producing high carbon steel rails with excellent wear resistance and ductility Expired - Fee Related JP4469248B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004285934A JP4469248B2 (en) 2004-03-09 2004-09-30 Method for producing high carbon steel rails with excellent wear resistance and ductility
CA2558850A CA2558850C (en) 2004-03-09 2005-03-09 A method for producing high-carbon steel rails excellent in wear resistance and ductility
US10/590,846 US20070181231A1 (en) 2004-03-09 2005-03-09 Method for producing high-carbon steel rails excellent in wear resistance and ductility
DE602005015199T DE602005015199D1 (en) 2004-03-09 2005-03-09 METHOD FOR PRODUCING RAILS OF CARBON STEEL WITH EXCELLENT WEAR RESISTANCE AND DUCTILITY
EP09004035A EP2071044A1 (en) 2004-03-09 2005-03-09 A method for producing high-carbon steel rails excellent in wear resistance and ductility
AT05726643T ATE435308T1 (en) 2004-03-09 2005-03-09 METHOD FOR PRODUCING HIGH CARBON STEEL RAILS WITH EXCELLENT WEAR RESISTANCE AND DUCTILITY
BRPI0508533-0B1A BRPI0508533B1 (en) 2004-03-09 2005-03-09 METHOD FOR PRODUCING EXCELLENT HIGH CARBON STEEL RAIL IN RESISTANCE TO WEAR AND DUCTILITY
PCT/JP2005/004582 WO2005085481A1 (en) 2004-03-09 2005-03-09 A method for producing high-carbon steel rails excellent in wear resistance and ductility
EP05726643A EP1730317B1 (en) 2004-03-09 2005-03-09 A method for producing high-carbon steel rails excellent in wear resistance and ductility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004065676 2004-03-09
JP2004285934A JP4469248B2 (en) 2004-03-09 2004-09-30 Method for producing high carbon steel rails with excellent wear resistance and ductility

Publications (2)

Publication Number Publication Date
JP2005290544A JP2005290544A (en) 2005-10-20
JP4469248B2 true JP4469248B2 (en) 2010-05-26

Family

ID=34921734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285934A Expired - Fee Related JP4469248B2 (en) 2004-03-09 2004-09-30 Method for producing high carbon steel rails with excellent wear resistance and ductility

Country Status (8)

Country Link
US (1) US20070181231A1 (en)
EP (2) EP2071044A1 (en)
JP (1) JP4469248B2 (en)
AT (1) ATE435308T1 (en)
BR (1) BRPI0508533B1 (en)
CA (1) CA2558850C (en)
DE (1) DE602005015199D1 (en)
WO (1) WO2005085481A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145795B2 (en) 2006-07-24 2013-02-20 新日鐵住金株式会社 Method for producing pearlitic rails with excellent wear resistance and ductility
JP5472418B2 (en) * 2006-07-24 2014-04-16 新日鐵住金株式会社 Method for producing pearlitic rails with excellent wear resistance and ductility
CA2687438C (en) * 2007-10-10 2012-12-18 Jfe Steel Corporation Internal high hardness type pearlitic rail with excellent wear resistance, rolling contact fatigue resistance, and delayed fracture property and method for producing same
JP5053190B2 (en) * 2008-07-10 2012-10-17 新日本製鐵株式会社 Perlite rail with excellent wear resistance and ductility
PL2343390T3 (en) * 2008-10-31 2016-01-29 Nippon Steel & Sumitomo Metal Corp Pearlite rail having superior abrasion resistance and excellent toughness
BRPI1007283B1 (en) * 2009-02-18 2017-12-19 Nippon Steel & Sumitomo Metal Corporation PERLITICAL RAIL
EP2447383B1 (en) 2009-06-26 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Pearlite based high-carbon steel rail having excellent ductility and process for production thereof
CA2744992C (en) * 2009-08-18 2014-02-11 Nippon Steel Corporation Pearlite rail
US8241442B2 (en) * 2009-12-14 2012-08-14 Arcelormittal Investigacion Y Desarrollo, S.L. Method of making a hypereutectoid, head-hardened steel rail
DE102010016282A1 (en) * 2010-03-31 2011-10-06 Max-Planck-Institut Für Eisenforschung GmbH Ultrahigh-strength and wear-resistant quasi-eutectoid rail steels
KR101421368B1 (en) * 2010-06-07 2014-07-24 신닛테츠스미킨 카부시키카이샤 Steel rail and production method thereof
KR101531778B1 (en) * 2011-03-18 2015-06-25 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet exhibiting exceptional press-molding properties and method for manufacturing same
DE102012020844A1 (en) 2012-10-24 2014-04-24 Thyssenkrupp Gft Gleistechnik Gmbh Process for the thermomechanical treatment of hot-rolled profiles
CN102936696A (en) * 2012-11-09 2013-02-20 宁波市鄞州商业精密铸造有限公司 High hardness and high abrasion-resistance ferroalloy material and preparation method thereof
CN102936697A (en) * 2012-11-09 2013-02-20 宁波市鄞州商业精密铸造有限公司 Method for preparing high abrasion-resistance ferroalloy material
CN102899585A (en) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 High-hardness and high-abrasion-resistance iron alloy material
CN102899586A (en) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 Iron alloy material and preparation method
US9670570B2 (en) * 2014-04-17 2017-06-06 Evraz Inc. Na Canada High carbon steel rail with enhanced ductility
US20170283895A1 (en) * 2014-09-22 2017-10-05 Jfe Steel Corporation Rail manufacturing method and rail manufacturing apparatus
CN106086663B (en) * 2016-07-14 2018-03-06 攀钢集团攀枝花钢铁研究院有限公司 A kind of hypereutectoid rail and preparation method thereof
JP6787426B2 (en) * 2019-03-19 2020-11-18 Jfeスチール株式会社 Rail manufacturing method
KR102239184B1 (en) * 2019-09-04 2021-04-12 주식회사 포스코 Steel plate having excellent strength and low-temperature impact toughness and method for manufacturing thereof
CN113637914A (en) * 2021-08-18 2021-11-12 攀钢集团攀枝花钢铁研究院有限公司 High-strength and high-toughness steel rail and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658400A (en) * 1993-12-20 1997-08-19 Nippon Steel Corporation Rails of pearlitic steel with high wear resistance and toughness and their manufacturing methods
JP3113137B2 (en) 1993-12-20 2000-11-27 新日本製鐵株式会社 Manufacturing method of high toughness rail with pearlite metal structure
AT407057B (en) * 1996-12-19 2000-12-27 Voest Alpine Schienen Gmbh PROFILED ROLLING MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP2001234238A (en) 2000-02-18 2001-08-28 Nippon Steel Corp Producing method for highly wear resistant and high toughness rail
JP2002226915A (en) * 2001-02-01 2002-08-14 Nippon Steel Corp Manufacturing method of rail with high wear resistance and high toughness
BRPI0304718B1 (en) * 2002-04-05 2016-01-12 Nippon Steel & Sumitomo Metal Corp method for producing an excellent perlite steel rail for wear resistance and ductility

Also Published As

Publication number Publication date
EP1730317A1 (en) 2006-12-13
DE602005015199D1 (en) 2009-08-13
ATE435308T1 (en) 2009-07-15
CA2558850A1 (en) 2005-09-15
US20070181231A1 (en) 2007-08-09
WO2005085481A1 (en) 2005-09-15
EP1730317B1 (en) 2009-07-01
JP2005290544A (en) 2005-10-20
CA2558850C (en) 2014-02-18
BRPI0508533A (en) 2007-08-14
EP2071044A1 (en) 2009-06-17
BRPI0508533B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
JP4469248B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP5145795B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP4635115B1 (en) PERLITE HIGH CARBON STEEL RAIL HAVING EXCELLENT DUCTIVITY AND PROCESS FOR PRODUCING THE
WO2008053884A1 (en) Steel wire for spring excellent in fatigue property and drawing property
JP2005171327A (en) Method for manufacturing pearlite-based rail having excellent surface damage-resistance and internal fatigue damage-resistance, and rail
JP2013108129A (en) Rolled steel bar for hot forging
JP5267306B2 (en) High carbon steel rail manufacturing method
JP4964489B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP5472418B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP5701483B2 (en) Extremely thick steel plate for welded structure with excellent strength and toughness at the center of thickness and little material deviation, and method for manufacturing the same
JP4846476B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
JP4192109B2 (en) Method for producing high carbon steel rail with excellent ductility
JP4214043B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
JP4214044B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP4355200B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP5053187B2 (en) Perlite high carbon steel rail with excellent ductility
JP5058892B2 (en) DP steel sheet with excellent stretch flangeability and method for producing the same
JP2005256022A (en) Method for producing high carbon steel rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R151 Written notification of patent or utility model registration

Ref document number: 4469248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees