JP4468660B2 - Offshore structure construction method - Google Patents

Offshore structure construction method Download PDF

Info

Publication number
JP4468660B2
JP4468660B2 JP2003184911A JP2003184911A JP4468660B2 JP 4468660 B2 JP4468660 B2 JP 4468660B2 JP 2003184911 A JP2003184911 A JP 2003184911A JP 2003184911 A JP2003184911 A JP 2003184911A JP 4468660 B2 JP4468660 B2 JP 4468660B2
Authority
JP
Japan
Prior art keywords
cement
container
sea
kneaded material
cement kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184911A
Other languages
Japanese (ja)
Other versions
JP2005014500A (en
Inventor
肇 佐々木
哲泱 古賀
Original Assignee
株式会社間組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社間組 filed Critical 株式会社間組
Priority to JP2003184911A priority Critical patent/JP4468660B2/en
Publication of JP2005014500A publication Critical patent/JP2005014500A/en
Application granted granted Critical
Publication of JP4468660B2 publication Critical patent/JP4468660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明が属する技術分野】
本発明は海洋構造物の構築方法に関する。
【0002】
【従来の技術】
石炭火力発電所や製鉄所で発生する石炭灰は、その一部がセメント原料またはコンクリート用混和材等の用途で利用されているものの、ほとんどは埋立て処分されており、環境保護や資源活用の観点から更なる利用拡大が求められている。このような要望を満たすため、多量の石炭灰を用いて、これにセメント、硬化促進剤および水を加えて混練物を生成し、この混練物を型枠に打設してブロックが製造されている。このようなブロックの製造方法は、例えば、特許第3201934号公報(特許文献1)や特開2000−256052号公報(特許文献2)に記載されている。
また石炭灰以外にも、例えば、ごみ焼却場などで発生した焼却灰、工事現場で発生した土砂、製鉄所で発生した溶融スラグや高炉スラグなども、セメントと混合して建設資材として活用されている。
【0003】
【特許文献1】
特許第3201934号公報
【特許文献2】
特開2000−256052号公報
【0004】
【発明が解決しようとする課題】
上記したように、石炭灰などの材料にセメントを混合してブロックを製造する場合、セメント混練物が硬化したら型枠から脱型し、所定強度になるまで養生した後に、工事現場までブロックを搬送して構造物を構築している。
しかしながら、上記ブロックを用いて構造物を構築する場合には、型枠内にセメント混練物を打設した後に脱型するまでの時間が比較的長く掛かるため、多数の型枠が必要になり、また脱型後はブロックを養生するために比較的広い養生ヤードを要するという問題点がある。
【0005】
本発明は上記従来技術の問題点に着目し、これを解決せんとしたものであり、その課題は、石炭灰などの材料を用いたブロックで構造物を構築する場合に、ブロックの生産に要する型枠や養生ヤードなどの場所を不要とし、ブロック製造時間の短縮により施工性の向上が図られた海洋構造物の構築方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明では、石炭灰単独、石炭灰にフライアッシュ又は火山灰を加えたもの、および、廃棄物の焼却灰のうちから選ばれた成分と、セメントと水を混合してセメント混練物を生成し、該セメント混練物を容器に打設した後に振動を加えて締め固めを行ない、未だ硬化していないセメント混練物を容器に入れた状態で海上の所定位置から海中に投下するまでの工程を繰り返し行うことにより、前記容器入りセメント混練物の複数を海底に積み上げて、各容器入りセメント混練物が海中で硬化することで、セメント硬化体による構造物を海底に形成することを特徴とする海洋構造物の構築方法が提供される。
【0007】
また本発明では、前記セメント混練物の生成工程から、前記容器入りセメント混練物の海中への投下工程までの全ての工程を、海上における船舶または台船上にて行うことを特徴とする請求項1記載の海洋構造物の構築方法が提供される。
本発明の海洋構造物の構築方法では、セメント混練物を生成して容器に打設し、未硬化のセメント混練物を容器に入れた状態で海中に投下するので、従来のプレキャスト部材製造時のような型枠が不要になり、型枠転用のための作業工程を省くことができる。またセメント混練物は海中において容器内で硬化が進むため、従来のような養生工程は不要になり、これに拠っても施工性の向上が図られる。
【0008】
本発明の海洋構造物の構築方法では、セメント混練物の生成から、容器入りセメント混練物の海中への投下までの全ての工程を、海上の所定位置における船舶または台船上で行うことが好ましい。このように全ての工程を洋上で行なえば、セメント混練物を容器に打設した後、直ちに容器入りセメント混練物を海中に投下することができるため、施工性をさらに向上させることができる。
【0009】
本発明において、セメント混練物は、水と下記(1)〜()の材料の組み合わせで構成することができる。なお、下記(1)〜()には、溶融スラグ、高炉スラグなどを骨材として加えることが可能であり、さらに、補強材としての繊維性材料や、セメント混和剤としての遅延剤、減水剤、流動化剤を添加することが可能である。
(1)セメント、石炭灰
(2)セメント、石炭灰、フライアッシュまたは火山灰
(3)セメント、廃棄物の焼却灰
【0010】
セメント硬化体の強度は、設計条件に応じて配合設計や試験練りを行なって確認するものであるが、本発明では、セメント硬化体が概ね2〜20N/mm2の強度になるように配合が定められる。
【0011】
本発明において、容器入りセメント混練物を海底の所定位置に設置するためには、上下移動や水平移動が伴うものであるが、その際に、可能な限り容器に外力が作用しないように取り扱うことが好ましい。そのために、必要に応じて、中抜き台船などの水中で容器入りセメント混練物を成型し、そのまま水中を移動して所定位置で水中に投下するか、あるいは台船上で成型した容器入りセメント混練物をモッコで移動したりすることが可能である。
【0012】
【発明の実施の形態】
本発明は、消波堤、護岸構造物、人工海底山脈、漁礁などの海洋構造物を構築する方法に関するものであり、図1では、人工海底山脈10を例示している。人工海底山脈10は、複数のコンクリート硬化体35が海底11に積上げられて構築され、海底付近を流れる海水を人工海底山脈10の斜面に沿って上昇させ、湧昇流12を発生させるための魚類蝟集用海底構造物である。
以下、添付図面を参照し、本発明の好適な実施形態として、海底山脈10を構築する方法について説明する。
【0013】
図2は人工海底山脈10を構築する際に使用する台船20であって、台船20は、船体21の上にセメント、石炭灰などの材料を収容するサイロ22と、これらの材料を混合してセメント混練物を生成するためのバッチャープラント24と、セメント混練物を容器に打設した後に締め固めるための振動台26と、建設資材などの積み降ろし作業のためのクレーン27とを備え、サイロ22からバッチャープラント24までの区間に材料搬送用のベルトコンベア23が設けられ、またバッチャープラント24から振動台26までの区間にセメント搬送するためのベルトコンベア25が設けられている。
【0014】
本発明の海洋構造物の構築方法では、所要の材料を台船20に積載し、海洋構造物の建設予定地点付近の海上まで運搬し、セメント混練物の生成から、容器入りセメント混練物の海中への投下までの全ての工程を海上の台船20上で実施する。
【0015】
すなわち、海上の台船20上では最初に材料の計量が行なわれる。所定容量のセメントが計量されてベルトコンベア23でサイロ22からバッチャープラント24のミキサーに供給され、所定容量の石炭灰も同様に計量されてミキサーに供給され、これらの粉体材料が練混ぜられて均質にされ、さらに、所定容量の海水が計量されてバッチャープラント24のミキサーに供給され、ここで均質化された粉体材料と海水とが練り混ぜられてセメント混練物が生成される。なお、セメント量を節約するために、水材料比は30〜40重量%程度にするのが好ましい。ここで、水材料比とは、(水の重量/(セメント重量+その他の材料の重量))×100の式から得られる値である。
【0016】
次に、セメント混練物をベルトコンベア25でバッチャープラント24のミキサーから振動台26まで搬送し、あらかじめ振動台26に設置した容器内に充填し、セメント混練物に振動を加えて締め固める。
さらに詳細に説明すれば、図3(a)に示したように、内側袋31aと外側袋31bとで二重に構成された袋状の容器31を振動台26の凹部に設置し、ホッパー25aなどにより図3(b)のようにセメント混練物33を容器31内に打設する。所定量のセメント混練物33の上に、図3(c)のように振動板28を載置し、振動板28によりセメント混練物33に振動を加えて締め固めを行なう。
なお、上述のように水材料比が30〜40重量%程度のときには、振動締め固めは、振動台26の外側に起振機を設置し、これにより締め固める方法が好ましい。振動締め固めの方法は、セメント混練物33の流動性を考慮したうえで定められるものであり、スランプが大きく流動的なものは、容器に流し込むだけで打設が可能であり、コンクリートポンプやモルタルポンプが使用できる。一方、スランプがほとんど0であるような固練りのセメント混練物は、振動台26の凹部自体から直接振動が伝達されるような型枠設置用バイブレータを用いて締め固めることが可能である。
以上のように振動締め固めが終了したら、図3(d)のように、直ちに容器31の内側袋31aを密封し、外側袋31bも閉じて、容器31に入った状態のセメント混練物30を海中に投下する。容器入りセメント混練物30を海中へ投下するに際しては、容器入りセメント混練物30の複数が海底に積み上げられたときに、図1に示した如く、横断面が三角の山形になるように実施する。
【0017】
ここで、上記振動台26は、側板26aと底板26bとを備え、図示はしないが底板26bは開閉自在に形成され、底板26bを開放することにより、内部の容器入りセメント混練物を海中に投下し得る構成となっている。
また上記容器31は、内側袋31aと外側袋31bとで二重に構成され、内側袋31aはセメント混練物の成分が外部に漏れ出ることを防止可能なように略密閉可能な塩化ビニール等からなるシート材で形成され、外側袋31bはセメント混練物充填後の海中投下工程等において作用する外力に耐え得る強度を備えた、ポリプロピレン等からなるシート材で形成されている。図4は容器入りセメント混練物30の外観であり、図4に示したように、容器31は、外側袋31bの開口が閉じ紐32aにより閉鎖可能に形成されており、また外側袋31bの中間部には補強用ベルト32bが設けられている。
なお、容器は、これ以外にもポリエチレン、塩化ビニール、ゴム等の樹脂材料から成形された、図5のような形状のものを使用可能であり、この容器は、内部にセメント混練物が充填されたときにも変形可能なように薄く形成され、補強部40aが部分的に設けられている。
【0018】
海中に投下された容器入りセメント混練物30は未硬化状態であるため、海底に達すると、海底の凹凸形状に応じて変形し、その場所で水中養生が為されて硬化が進み、セメント硬化体35が形成される。このような硬化過程において、セメント硬化体35に亀裂などが入らないようにするために、容器入りセメント混練物30は下方から上方に順序良く積み上げられるのが好ましく、これを可能にするように、海上における投下位置が適宜設定される。また容器入りセメント混練物30は、先行投下されて硬化が進んだセメント硬化体35の上に積み上げられると、このセメント硬化体表面の凹凸形状に応じて変形し、その後に硬化するので、セメント硬化体間に隙間はでき難く、したがって、海底の水流が隙間を通って透過する水量も少なく、人工海底山脈10に求められる湧昇流を効果的に発生させることが可能である。
なお、セメント硬化体へ亀裂などが入らないようにするため、鉄筋やネット状のシートは任意に入れることができる。
【0019】
【発明の効果】
本発明の海洋構造物の構築方法では、セメント混練物を容器に打設した後に振動を加えて締め固めを行なうものであるため、従来のような型枠は不要であり、型枠転用のための作業も省けるため、生産性や施工性の向上が図れる。
またセメント硬化体は陸上の施設でも製造可能なものであるが、本発明では、海洋構造物を構築する予定の海上位置に船舶または台船を係留し、この船舶または台船の上でセメント混練物を生成し、ここから直ちに海中投下を行なうので、セメント混練物を養生して硬化体を製造するための養生ヤードが不要になり、構築物の施工期間も短くすることが可能になった。
さらに、セメント混練物は容器に入れられて未硬化状態で海中に投下され、その後に海中で硬化が進むものであるため、海底や、先行投下されたセメント硬化体の凹凸に緩やかに係合するような形状に、セメント硬化体を形成することができる。
【図面の簡単な説明】
【図1】海洋構造物としての人工海底山脈を示した断面図である。
【図2】人工海底山脈を構築する際に使用する台船を示した簡略図である。
【図3】(a)〜(d)はセメント混練物を容器に打設する工程から締固める工程までを示した断面図である。
【図4】容器入りセメント混練物の外観を示した図である。
【図5】容器の一実施形態を示した側面図である。
【符号の説明】
10 人工海底山脈
20 台船
26 振動台
30 容器入りセメント混練物
31 容器(ほぼ密閉可能に形成された袋状の容器)
33 セメント混練物
35 セメント硬化体
40 容器
[0001]
[Technical field to which the invention belongs]
The present invention relates to a process for the construction of marine structures.
[0002]
[Prior art]
Although some of the coal ash generated at coal-fired power plants and steelworks is used for cement raw materials or concrete admixtures, most of it is disposed of in landfills for environmental protection and resource utilization. Further expansion of usage is required from the viewpoint. In order to satisfy such a demand, a block is manufactured by using a large amount of coal ash and adding a cement, a hardening accelerator and water to this to produce a kneaded product, and placing this kneaded product on a mold. Yes. Such a block manufacturing method is described in, for example, Japanese Patent No. 3201934 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-256052 (Patent Document 2).
In addition to coal ash, for example, incineration ash generated at garbage incinerators, earth and sand generated at construction sites, molten slag and blast furnace slag generated at steelworks are mixed with cement and used as construction materials. Yes.
[0003]
[Patent Document 1]
Japanese Patent No. 3201934 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-256052
[Problems to be solved by the invention]
As described above, when manufacturing cement by mixing cement with materials such as coal ash, the cement kneaded product is removed from the mold when cured, cured to a specified strength, and then transported to the construction site. And construct the structure.
However, in the case of constructing a structure using the above blocks, since it takes a relatively long time to demold after placing the cement kneaded material in the mold, a large number of molds are required, In addition, after demolding, there is a problem that a relatively wide curing yard is required to cure the block.
[0005]
The present invention focuses on the above-mentioned problems of the prior art and solves this problem, and the problem is that it is necessary to produce a block when a structure is constructed with a block using a material such as coal ash. An object of the present invention is to provide a method for constructing an offshore structure that eliminates the need for a place such as a formwork or a curing yard and improves workability by shortening the block manufacturing time.
[0006]
[Means for Solving the Problems]
In the present invention, coal ash alone, coal ash added with fly ash or volcanic ash, and components selected from incineration ash of waste, cement and water are mixed to produce a cement kneaded product, After placing the cement kneaded material in a container, it is vibrated and compacted, and the process is repeated until the cement kneaded material that has not yet hardened is dropped from a predetermined position on the sea into the sea. A plurality of the cemented kneaded materials in a container are stacked on the seabed, and each cemented kneaded material in a container is hardened in the sea to form a structure of a cemented body on the seabed. A construction method is provided.
[0007]
In the present invention also claims wherein the generating step of the cement kneaded product, all steps up dropping steps to the sea of the packaged cement kneaded product, and carrying out at the ship or platform ship at sea 1 A method for constructing the described offshore structure is provided.
In the construction method of the offshore structure of the present invention, a cement kneaded product is generated and placed in a container, and the uncured cement kneaded material is dropped into the sea in a state of being placed in the container. Such a mold becomes unnecessary, and the work process for diverting the mold can be omitted. In addition, since the cement kneaded product is cured in the container in the sea, a conventional curing process is not required, and the workability can be improved even if it is based on this.
[0008]
In the construction method of the offshore structure of the present invention, it is preferable that all steps from the generation of the cement kneaded material to the dropping of the cement kneaded material into the sea are performed on a ship or a trolley at a predetermined position on the sea. If all the steps are performed offshore in this manner, the cement kneaded material can be dropped into the sea immediately after the cement kneaded material is placed in the container, so that the workability can be further improved.
[0009]
In the present invention, the cement kneaded product can be composed of a combination of water and the following materials (1) to ( 3 ). In addition, in the following (1) to ( 3 ), molten slag, blast furnace slag, and the like can be added as an aggregate, and further, a fibrous material as a reinforcing material, a retarder as a cement admixture, water reduction It is possible to add an agent and a fluidizing agent.
(1) Cement, coal ash (2) Cement, coal ash, fly ash or volcanic ash (3) Cement, waste incineration ash
The strength of the hardened cement body is confirmed by blending design and test kneading according to the design conditions. In the present invention, the blending is performed so that the hardened cement body has a strength of approximately 2 to 20 N / mm 2. Determined.
[0011]
In the present invention, in order to set the cement kneaded material in a container at a predetermined position on the seabed, it is accompanied by vertical movement or horizontal movement, but at that time, handle it so that external force does not act on the container as much as possible. Is preferred. Therefore, if necessary, mold the cement-mixed container in the water such as a hollow pier, move it as it is and drop it into the water at a predetermined position, or mix the cement-containing cement molded in the trolley. It is possible to move things with mocco.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of constructing a marine structure such as a breakwater, a seawall, an artificial submarine mountain range, and a fishing reef. FIG. 1 illustrates an artificial submarine mountain range 10. The artificial seabed mountain range 10 is constructed by stacking a plurality of hardened concrete bodies 35 on the seabed 11, and fish for raising the seawater flowing near the seabed along the slope of the artificial seabed mountain range 10 to generate the upwelling flow 12. It is a submarine structure for collection.
Hereinafter, a method for constructing a submarine mountain range 10 will be described as a preferred embodiment of the present invention with reference to the accompanying drawings.
[0013]
FIG. 2 shows a trolley 20 used when constructing an artificial submarine mountain range 10. The trolley 20 mixes these materials with a silo 22 that accommodates materials such as cement and coal ash on a hull 21. A batcher plant 24 for producing a cement kneaded material, a shaking table 26 for compacting the cement kneaded material after placing it in a container, and a crane 27 for loading and unloading construction materials and the like. A belt conveyor 23 for conveying materials is provided in a section from the silo 22 to the batcher plant 24, and a belt conveyor 25 for conveying cement in a section from the batcher plant 24 to the vibration table 26 is provided.
[0014]
In the construction method of the offshore structure of the present invention, a required material is loaded on the carriage 20, transported to the sea near the planned construction site of the offshore structure, and from the generation of the cement kneaded material, the cement kneaded material in the container is submerged. All the processes up to the drop in are carried out on the maritime carrier 20.
[0015]
That is, the material is first weighed on the marine carrier 20. A predetermined volume of cement is weighed and fed from the silo 22 to the mixer of the batcher plant 24 by the belt conveyor 23, and a predetermined volume of coal ash is also weighed and fed to the mixer, and these powder materials are mixed. Further, a predetermined volume of seawater is weighed and supplied to the mixer of the batcher plant 24, where the homogenized powder material and seawater are mixed to produce a cement kneaded mixture. In order to save the amount of cement, the water material ratio is preferably about 30 to 40% by weight. Here, the water material ratio is a value obtained from the formula of (weight of water / (weight of cement + weight of other materials)) × 100.
[0016]
Next, the cement kneaded material is conveyed from the mixer of the batcher plant 24 to the vibrating table 26 by the belt conveyor 25, filled in a container previously set on the vibrating table 26, and the cement kneaded material is vibrated and compacted.
More specifically, as shown in FIG. 3 (a), a bag-like container 31 composed of a double inner bag 31a and an outer bag 31b is installed in the recess of the vibration table 26, and the hopper 25a The cement kneaded material 33 is driven into the container 31 as shown in FIG. As shown in FIG. 3C, the vibration plate 28 is placed on a predetermined amount of the cement kneaded material 33, and the cement kneaded material 33 is vibrated and compacted by the vibration plate 28.
As described above, when the water material ratio is about 30 to 40% by weight, the vibration compaction is preferably performed by installing a vibrator on the outside of the vibration table 26 and compacting by this. The vibration compaction method is determined in consideration of the fluidity of the cement kneaded material 33. If the slump is large and fluid, it can be placed by simply pouring it into a container, such as a concrete pump or mortar. A pump can be used. On the other hand, a solid cement kneaded product having slumps of almost 0 can be compacted by using a vibrator for installing a mold in which vibration is directly transmitted from the concave portion of the vibration table 26 itself.
When the vibration compaction is finished as described above, the inner bag 31a of the container 31 is immediately sealed and the outer bag 31b is also closed as shown in FIG. Drop into the sea. When the container-containing cement kneaded material 30 is dropped into the sea, when a plurality of the container-containing cement kneaded materials 30 are stacked on the seabed, as shown in FIG. .
[0017]
Here, the vibration table 26 includes a side plate 26a and a bottom plate 26b. Although not shown, the bottom plate 26b is formed to be openable and closable. It is a possible configuration.
In addition, the container 31 is composed of an inner bag 31a and an outer bag 31b, and the inner bag 31a is made of vinyl chloride or the like that can be substantially sealed so as to prevent the components of the cement kneaded material from leaking outside. The outer bag 31b is formed of a sheet material made of polypropylene or the like having a strength capable of withstanding an external force acting in a submerged dropping step after filling the cement kneaded material. FIG. 4 is an external view of the cement kneaded material 30 in the container. As shown in FIG. 4, the container 31 is formed so that the opening of the outer bag 31b can be closed by the closing string 32a, and the middle of the outer bag 31b. A reinforcing belt 32b is provided at the portion.
In addition, the container can be made of a resin material such as polyethylene, vinyl chloride, rubber, etc. and shaped as shown in FIG. 5, and the container is filled with a cement kneaded material. It is formed thin so that it can be deformed, and the reinforcing portion 40a is partially provided.
[0018]
Since the cement-blended cement mixture 30 dropped into the sea is in an uncured state, when it reaches the seabed, it deforms according to the uneven shape of the seabed, and underwater curing is performed at that location, and hardening progresses. 35 is formed. In such a curing process, in order to prevent cracks and the like in the cement cured body 35, it is preferable that the cement kneaded material 30 in the container is stacked in order from the lower side to the upper side. The drop position at sea is set appropriately. In addition, when the cement kneaded material 30 in a container is stacked on the cement hardened body 35 which has been dropped and cured in advance, the cement hardened body 30 is deformed according to the uneven shape on the surface of the cement hardened body and then hardened. It is difficult to create a gap between the bodies, and therefore, the amount of water that the water flow on the seabed permeates through the gap is small, and the upwelling flow required for the artificial seabed mountain range 10 can be effectively generated.
In order to prevent cracks and the like from entering the hardened cement body, reinforcing bars and net-like sheets can be arbitrarily added.
[0019]
【The invention's effect】
In the method for constructing an offshore structure of the present invention, the cement kneaded material is placed in a container and then subjected to vibration to be compacted. Therefore, a conventional formwork is unnecessary and the formwork is diverted. Therefore, productivity and workability can be improved.
In addition, the hardened cement body can be manufactured even on land facilities. However, in the present invention, a ship or a barge is moored at a marine position where an offshore structure is to be constructed, and cement mixing is performed on the ship or the barge. Since a product is generated and immediately dropped into the sea, a curing yard for curing the cement kneaded material and producing a cured body is no longer necessary, and the construction period of the structure can be shortened.
Furthermore, the cement kneaded material is put in a container and dropped into the sea in an uncured state, and then hardening proceeds in the sea, so that it gently engages with the seabed and the unevenness of the cement hardened body dropped earlier. A hardened cement body can be formed in the shape.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an artificial submarine mountain range as an offshore structure.
FIG. 2 is a simplified diagram showing a trolley used to construct an artificial submarine mountain range.
FIGS. 3A to 3D are cross-sectional views showing a process from placing a cement kneaded material into a container to a compacting process.
FIG. 4 is a view showing the appearance of a cement kneaded material in a container.
FIG. 5 is a side view showing an embodiment of a container.
[Explanation of symbols]
10 Artificial submarine mountain range 20 Boat 26 Shaking table 30 Cement mixture 31 in container 31
33 Cement mixture 35 Cement cured body 40 Container

Claims (2)

石炭灰単独、石炭灰にフライアッシュ又は火山灰を加えたもの、および、廃棄物の焼却灰のうちから選ばれた成分と、セメントと水を混合してセメント混練物を生成し、該セメント混練物を容器に打設した後に振動を加えて締め固めを行ない、未だ硬化していないセメント混練物を容器に入れた状態で海上の所定位置から海中に投下するまでの工程を繰り返し行うことにより、前記容器入りセメント混練物の複数を海底に積み上げて、各容器入りセメント混練物が海中で硬化することで、セメント硬化体による構造物を海底に形成することを特徴とする海洋構造物の構築方法。 Ingredients selected from coal ash alone, coal ash added with fly ash or volcanic ash, and waste incineration ash, and cement and water are mixed to produce a cement kneaded product. After being placed in a container, it is compacted by applying vibration, and repeatedly performing the process of dropping the cement kneaded material that has not yet been cured into a container from a predetermined position on the sea, A method for constructing a marine structure, comprising: stacking a plurality of cement-kneaded products in a container on the seabed, and curing each cement-mixed product in a container in the sea to form a structure of a cemented cement on the seabed. 前記セメント混練物の生成工程から、前記容器入りセメント混練物の海中への投下工程までの全ての工程を、海上における船舶または台船上にて行うことを特徴とする請求項1記載の海洋構造物の構築方法。  2. The offshore structure according to claim 1, wherein all steps from the step of producing the cement kneaded material to the step of dropping the container-containing cement kneaded material into the sea are performed on a ship or a trolley at sea. How to build.
JP2003184911A 2003-06-27 2003-06-27 Offshore structure construction method Expired - Fee Related JP4468660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184911A JP4468660B2 (en) 2003-06-27 2003-06-27 Offshore structure construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184911A JP4468660B2 (en) 2003-06-27 2003-06-27 Offshore structure construction method

Publications (2)

Publication Number Publication Date
JP2005014500A JP2005014500A (en) 2005-01-20
JP4468660B2 true JP4468660B2 (en) 2010-05-26

Family

ID=34184530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184911A Expired - Fee Related JP4468660B2 (en) 2003-06-27 2003-06-27 Offshore structure construction method

Country Status (1)

Country Link
JP (1) JP4468660B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2609452B (en) * 2021-07-30 2024-02-21 Dp World Fze An underwater structure construction method

Also Published As

Publication number Publication date
JP2005014500A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4007997B2 (en) Modified sulfur solidified body production system
CN104230256A (en) Self-compaction concrete and production technique of prefabricated municipal quadrate culvert component
JP4468660B2 (en) Offshore structure construction method
CN101269520B (en) Method for producing concrete building block by using pipe pile wastewater slurry
CN101269519B (en) Method for producing water conservancy concrete wrest block and four-pin hollow block by using pipe pile wastewater slurry
JPH11269849A (en) Breakwater and revetment structure
CN105821888A (en) Backfill method and device of shore-connecting zone
JP2004285605A (en) Method for constructing structure by using kneaded product including a large quantity of coal ash
JP3690624B2 (en) Placing kneaded material containing a large amount of coal ash
JP2003003476A (en) Earth filing method using cohesive soil having high moisture ratio
EP0541998A1 (en) Refilling material and refilling method
KR100971002B1 (en) Method for constructing revetment using mixed composition of flowable recliamed coal ash
CN101269516B (en) Vibrating method for producing concrete building block by using pipe pile wastewater slurry
JP4112338B2 (en) Manufacturing method and manufacturing apparatus of fine powder cured body
KR100947555B1 (en) Mixed composition of reclaimed coal ash
CN216920308U (en) Anti-seepage structure of prestressed pipe pile
JP4644646B2 (en) Construction method of porous concrete retaining wall
CN117344735A (en) Construction method of self-compacting rock-fill concrete
JPH0551931A (en) Quick filling constructing method, and filling structural body constructed by the method
JP6987578B2 (en) Porous split-on block
JP3007940B2 (en) Lightweight ground to be cast on soft ground and construction method thereof
JP2006347836A (en) Natural stone block and method of manufacturing the same
JP2023048220A (en) Production method and construction method of artificial stone
JPH10311021A (en) Manufacture of filling, reclamation or backing material
JPH01142117A (en) Light-weight banking work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees