JP4468473B1 - Hobbing machine indexing mechanism - Google Patents

Hobbing machine indexing mechanism Download PDF

Info

Publication number
JP4468473B1
JP4468473B1 JP2008301453A JP2008301453A JP4468473B1 JP 4468473 B1 JP4468473 B1 JP 4468473B1 JP 2008301453 A JP2008301453 A JP 2008301453A JP 2008301453 A JP2008301453 A JP 2008301453A JP 4468473 B1 JP4468473 B1 JP 4468473B1
Authority
JP
Japan
Prior art keywords
gear
worm
indexing
teeth
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008301453A
Other languages
Japanese (ja)
Other versions
JP2010125545A (en
Inventor
俊彦 石本
Original Assignee
俊彦 石本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊彦 石本 filed Critical 俊彦 石本
Priority to JP2008301453A priority Critical patent/JP4468473B1/en
Application granted granted Critical
Publication of JP4468473B1 publication Critical patent/JP4468473B1/en
Publication of JP2010125545A publication Critical patent/JP2010125545A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

【課題】 多条ウオームギヤからなる割出機構を有するホブ盤において、ウオームギヤのなじみ磨耗を利用して隣接ピッチの均等化を図って長期にわたり高精度の割出加工を維持する割出機構を提供する。
【解決手段】 多条ウオーム1と噛合うウオームホイール3の歯数を、ウオーム条数回だけウオームホイール3が回転する間に、全てのウオーム条と全てのウオームホイール歯が噛合う歯数とし、従来の手段のウオーム条数毎の特定の歯とだけのなじみ磨耗を、全ての歯と均等になじみ磨耗させ合うことにより隣接ピッチを均等化し、割出精度の低下を防いだ多条ウオームギヤとした。しかし、かかる多条ウオームギヤ比は必ず帯小数値となり割出機構には不適当なため、機構内の伝導歯車比で帯小数値の小数分を吸収或いは補足して割出定数を整数値としたことにより割出換歯車7の算出を容易にし、また割出加工を可能な手段とした。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide an indexing mechanism for maintaining a high-precision indexing process for a long period of time in a hobbing machine having an indexing mechanism composed of multi-row worm gears, by making use of familiar wear of worm gears to equalize adjacent pitches. .
SOLUTION: The number of teeth of the worm wheel 3 that meshes with the multi-worm worm 1 is set to the number of teeth that all the worm wheels mesh with all the worm wheel teeth while the worm wheel 3 rotates only several times. A conventional multi-worm worm gear that prevents the deterioration of indexing accuracy by equalizing adjacent pitches by combining the wear of only specific teeth for each number of worm lines of conventional means with equal wear of all teeth. . However, this multi-strip worm gear ratio is always a decimal value and is not suitable for the indexing mechanism. Therefore, the indexing constant is set to an integer value by absorbing or supplementing the fractional value of the decimal value in the transmission gear ratio in the mechanism. Thus, the calculation of the index change gear 7 is facilitated, and a means capable of indexing is provided.
[Selection] Figure 1

Description

この発明は、ウオームギヤ(「ウオームとウオームホイールの対」をいう。)からなる割出機構を備えたホブ盤の内、小形歯車の歯切加工を目的とするものであり、日本工業規格(JIS B4355)で小形歯車用ホブの形状・寸法として規定されているが、その規定の寸法以下の小形ホブを使用するホブ盤(以下、「横形ホブ盤」という。)の割出機構に関する。   This invention is intended for gear cutting of small gears among hobbing machines equipped with an indexing mechanism composed of worm gears (referred to as a pair of worm and worm wheel). B4355) relates to an indexing mechanism of a hobbing machine (hereinafter referred to as “horizontal hobbing machine”) that uses a small hob having a size smaller than the specified size.

横形ホブ盤は、一般の縦形ホブ盤と異なり、図2に示すように、加工素材である歯車素材6が比較的に小形で軽量のため、独特の構造になっている。すなわち、加工素材である歯車素材6を取り付けるテーブルがないことである。代わりにウオームホイール軸4を備え、先端にコレットチャック5が設けてあり、歯車素材6あるいは素材取り付け軸をコレットチャック5に嵌合し、ウオームホイール軸4の後部より引張ネジで簡単にウオームホイール軸4の軸心に固定できる構造である。また、加工素材の取替えあるいは切削油や切粉の落下方向が好都合であり作業性が良いため、小形ホブを使用するホブ盤は普通では横形になっている。   Unlike a general vertical hobbing machine, the horizontal hobbing machine has a unique structure because the gear material 6 as a work material is relatively small and light as shown in FIG. That is, there is no table to which the gear material 6 that is a processed material is attached. Instead, a worm wheel shaft 4 is provided, a collet chuck 5 is provided at the tip, a gear material 6 or a material mounting shaft is fitted to the collet chuck 5, and a worm wheel shaft can be easily attached to the rear of the worm wheel shaft 4 with a tension screw. It is a structure that can be fixed to the axis 4. In addition, the hobbing machine using a small hob is generally horizontal because the replacement of the work material or the direction in which cutting oil or chips fall is convenient and the workability is good.

横形ホブ盤は使用するホブ24の径が小さいため、ホブ軸23の回転が比較的高速になっている。したがって少歯数の歯切りの場合には、ウオーム軸2は著しく回転が高速になり、すべり摩擦伝導のため焼損する危険がある。そのため、ウオーム条を複数からなる多条ウオーム1として、ウオームホイール3の回転に対するウオーム軸2の回転速度と回転数をウオーム条数分の1に減じて、割出機構の損耗を防いでいる。この多条ウオーム1は変動負荷の小さい横形ホブ盤だけが有する構造である。   Since the diameter of the hob 24 to be used is small in the horizontal hobbing machine, the hob shaft 23 rotates at a relatively high speed. Therefore, in the case of gear cutting with a small number of teeth, the worm shaft 2 rotates remarkably at high speed and there is a risk of burning due to sliding friction conduction. Therefore, the multi-worm worm 1 is composed of a plurality of worm strips, and the rotation speed and the rotational speed of the worm shaft 2 with respect to the rotation of the worm wheel 3 are reduced to a fraction of the worm strip to prevent the indexing mechanism from being worn. This multi-row worm 1 has a structure which only a horizontal hobbing machine with a small fluctuation load has.

歯車を削りだす方法には、汎用フライス盤に割出台を載せて、インボリュート歯形のフライスで歯車素材に1歯づつ削りだす成形歯切法がある。特殊形状か精度を必要としない場合には非能率であるが、この方法が利用されている。しかし、歯車の需要が増し、また高精度化に伴い、歯切専用の自動加工機が各種開発されてきた。すなわち、インボリュート曲線からなる歯形が自動割出加工できる創成歯切法には、ホブによる法、ラックカッターによる法、ピニオンカッターによる法があり、傘歯車ではG形刃物による法やグリーソン方式の特殊カッターによる法などが主な加工法式で、それぞれ独特の運動機構からなっており、他の機種では加工できない形状の歯車を完成まで能率よく自動で歯切加工できる。普通形状の平歯車、はすば歯車、ウオームホイールはホブにより高能率で加工できるため、ホブ盤が最も多く用いられている。   As a method of cutting out a gear, there is a forming gear cutting method in which an index base is mounted on a general-purpose milling machine, and a gear material is cut out one gear at a time by an involute tooth mill. This method is used, although it is inefficient when a special shape or accuracy is not required. However, with the increasing demand for gears and higher precision, various automatic processing machines dedicated to gear cutting have been developed. In other words, there are the hobbing method, rack cutter method, pinion cutter method, and the bevel gear method with G-shaped blades and the Gleason method special cutter. The main machining method is a unique motion mechanism, and gears that cannot be machined by other models can be efficiently and automatically geared up to completion. Hobbing machines are most commonly used because ordinary shaped spur gears, helical gears, and worm wheels can be machined with high efficiency by a hob.

現在では、CNC制御技術が急速に発達して、各種の工作機械がNC化されている。また新しい複合工作機も開発され、歯切機能を備えた機種も出現している。ただし、多機能とはいえ機械の大きさに比べ加工できる歯車は小形で生産性も不十分である。よって便利性はあるがコストの高い歯車となる欠点がある。したがって、これらは多量生産向きには実用性がない。   At present, the CNC control technology is rapidly developed, and various machine tools are made into NC. New multi-task machine tools have also been developed, and models with gear cutting functions are emerging. However, although it is multifunctional, the gears that can be machined are smaller than the size of the machine, and are small in productivity. Therefore, there is a drawback that it is a convenient but expensive gear. Therefore, they are not practical for mass production.

また、NC化した工作機械で複雑な形状の加工を自動化し、素材の交換だけ人手に頼ることで効果を発揮できるNC加工機がある。これは、一般に素材又は工具の回転が非常に高速切削になっており、超硬工具の使用が殆どであり、よって加工送りを遅くして変動負荷を生じない加工法になっている。ホブ盤のNC化の場合にはホブによる創成歯切のため、変動負荷が大きく、よってホブ軸回転を高速とし、送りを特に遅くする必要がある。そのためには高価なホブを非常に高価な超硬ホブに取り替える必要がある。しかし、超硬ホブは非常に脆弱で、刃が欠損し易いので、歯切り加工中に2軸モーターの回転比が負荷に負けて僅かでもずれると、急激に負荷が増大して瞬時に超硬ホブの刃が欠損する。したがって加工歯車の形状や材質により変動負荷が大きく変わるホブ盤のNC化には、加工効率や採算性の問題が生じる。   In addition, there are NC processing machines that can automate the processing of complex shapes with NC machine tools and can demonstrate the effect by relying on human hands only for material replacement. In general, this is a machining method in which the rotation of the material or the tool is performed at a very high speed, and the use of a cemented carbide tool is mostly used. Therefore, the machining feed is slowed and no fluctuation load is generated. In the case of using a hobbing machine with an NC, since the hob is generating teeth, the load of fluctuation is large. Therefore, it is necessary to increase the rotation speed of the hob shaft and to make the feeding particularly slow. For this purpose, it is necessary to replace the expensive hob with a very expensive carbide hob. However, since the carbide hob is very fragile and the blade is easily damaged, if the rotation ratio of the biaxial motor loses the load and shifts slightly even during gear cutting, the load will increase rapidly and the carbide will instantaneously Hob blade is missing. Therefore, the problem of machining efficiency and profitability arises when the hobbing machine whose NC varies greatly depending on the shape and material of the machined gear.

従来の歯切盤として、歯切りカッターの回転に同期させてワークテーブルを回転させ、当該ワークテーブルにセットしたワークを加工する歯切盤において、ワークテーブルをモーターと一体に形成して上記ワークを直接回転させる構成からなる歯切盤が提案されている(例えば、特許文献1参照。)。このものは、大きなモーター8でダイレクト駆動しているが、ダイレクト駆動では変動負荷の大きいホブ盤のテーブルを正確に回転させるには問題が多い。また、テーブルサドルを前後に移動させるネジ軸はモーター取り付けのために下方にあり、トーションによりテーブルサドル摺動面が湾曲磨耗し、加工中の変動負荷により僅かずつ移動して正確な歯切加工が困難となる。   As a conventional gear cutting machine, in a gear cutting machine that rotates a work table in synchronization with the rotation of the gear cutting cutter and processes a work set on the work table, the work table is formed integrally with a motor to A gear cutting machine having a structure that directly rotates is proposed (see, for example, Patent Document 1). This is directly driven by a large motor 8, but there are many problems with the direct drive in order to accurately rotate the hobbing table with a large variable load. In addition, the screw shaft that moves the table saddle back and forth is located at the bottom for mounting the motor. The torsion causes the table saddle sliding surface to bend and wear, and it moves little by little due to fluctuating loads during processing, enabling accurate gear cutting. It becomes difficult.

また、従来のホブ盤では、切削による加工熱を除去するために切削油を使用する。したがって切削油が切粉とともにテーブル上に落下する。テーブルの外周は溝を設けて壁囲いとなっており、よって加工素材取り付け軸を固定するために、放射状に設けられたT溝を通って、中央にある大きな穴よりベッドに設けられた油槽に切削油が落下する構造になっている。よってモーターが中央に位置すると、その対策が必要となる。したがって、テーブルのダイレクト駆動はトルクの点で、変動負荷の大きいホブ盤のNC化には、加工能力に問題が多い。   Moreover, in the conventional hobbing machine, cutting oil is used in order to remove the processing heat by cutting. Accordingly, the cutting oil falls on the table together with the chips. The outer periphery of the table is provided with a groove and is surrounded by a wall. Therefore, in order to fix the workpiece mounting shaft, it passes through the radially provided T groove and enters the oil tank provided in the bed from the large hole in the center. The structure is such that the cutting oil falls. Therefore, when the motor is located in the center, countermeasures are required. Accordingly, direct drive of the table is problematic in terms of torque, and there are many problems in machining capability in the case of NC hobbing machines with large variable loads.

よって他のホブ盤の駆動装置には、テーブルの駆動機構としてサーボモーターとウオームギヤからなるものが提案されている(例えば、特許文献2参照。)このものの割出機構はサーボモーターによりウオームギヤ駆動されるが、図面で見る限り、ウオームギヤがテーブルの摺動面から離れているのでテーブルにトーションがかかり正確な歯切加工ができない問題がある。   Therefore, another hobbing device has been proposed that includes a servo motor and a worm gear as a table driving mechanism (see, for example, Patent Document 2). The indexing mechanism of this type is driven by a worm gear by the servo motor. However, as can be seen from the drawings, the worm gear is separated from the sliding surface of the table, so there is a problem that the table is torsioned and accurate gear cutting cannot be performed.

また、NC化したホブ盤で歯切加工中、突然に停電が発生した場合、モーターも電磁による保持力が消えるため、2軸モーターが変動負荷に耐えて回転比を維持しながら同時停止するのは至難である。したがってホブ刃の欠損や加工中の歯車又は素材取り付け軸の破損などが起きる。そのために万一に備えて動力用の無停電電源装置の設置などの停電対策が必要となる。よって、長年の実績により構造がほぼ安定している従来の1軸タイプのホブ盤は加工能力の限度が伝導歯車音などで判断しやすいため、安心して生産能率を高めることができる。   In addition, if a power failure occurs suddenly during gear cutting with an NC hobbing machine, the motor will also lose its electromagnetic holding power, so the 2-axis motor will withstand variable loads and simultaneously stop while maintaining the rotation ratio. Is difficult. Therefore, the hob blade is broken, the gear being processed, or the material mounting shaft is damaged. Therefore, in case of emergency, it is necessary to take measures against power failure such as installation of an uninterruptible power supply for power. Therefore, the conventional single-shaft hobbing machine, which has a stable structure due to many years of experience, can easily determine the limit of machining capacity based on the transmission gear noise, etc., and can increase production efficiency with peace of mind.

ホブ盤は高精度の歯切加工が出来ることが最も重要なため、ホブ盤の製造メーカーはウオームホイール径を機械構造の範囲内で出来るだけ大きくし、歯数も多くして割出精度の向上、維持に特別の努力を払っている。しかし、創成歯切のためホブによる切削と同期して歯車素材を回転させる必要がある。よってホブによる断続切削荷重がすべり摩擦伝導のウオームホイールの歯にかかり偏磨耗を生じて割出精度が低下する。よって、同一の歯車を重切削で継続して歯切加工をする場合には、半数を計画的に割出換歯車の噛合いをずらせて、加工歯車の歯先と歯溝の位置を入れ換えて偏磨耗の均等化を図ることが重要である。   Since it is most important that the hobbing machine can perform high-precision gear cutting, hobbing machine manufacturers increase the worm wheel diameter as much as possible within the machine structure and increase the number of teeth to improve indexing accuracy. Have made special efforts to maintain. However, it is necessary to rotate the gear material in synchronism with the cutting by the hob for generating teeth. Therefore, the intermittent cutting load by the hob is applied to the teeth of the worm wheel with sliding friction conduction, causing uneven wear and lowering the indexing accuracy. Therefore, when gear cutting is continuously performed on the same gear by heavy cutting, half of the gears are systematically shifted and the positions of the tooth tip and the tooth gap of the processed gear are switched. It is important to equalize uneven wear.

また、ウオームギヤは平歯車と異なり、完全なるすべり摩擦のため、変動負荷がないときは、隣接ピッチを均等化する自己修正機能が強く、そのためになじみ磨耗で隣接ピッチが均等になり、割出精度も回復する。ただし、ウオームギヤ歯面のインボリュートカーブが磨耗により変形すると、なじみ磨耗によっても修正できないので、ウオームホイール歯数毎の割出誤差が発生する。よって、ホブ盤製造メーカーはウオームを耐磨耗性の特殊鋼で造り、焼入れ硬化して歯形の変形を防ぎ、またウオームホイールとの焼き付きを防いでいる。   Also, unlike spur gears, worm gears are completely sliding friction, so when there is no fluctuating load, the self-correcting function that equalizes adjacent pitches is strong, so the adjacent pitches become uniform due to familiar wear, and indexing accuracy Also recover. However, if the involute curve of the worm gear tooth surface is deformed due to wear, it cannot be corrected due to the familiar wear, so that an indexing error occurs for each number of worm wheel teeth. Therefore, hobbing machine manufacturers make worms with wear-resistant special steel, quench and harden to prevent tooth profile deformation, and prevent seizure with worm wheels.

横形ホブ盤の内、最も加工能力が大きくはすば歯切も出来るのは、俗にいわれているミクロンホブ盤である。このホブ盤はスイスのミクロン社で開発され、横形ホブ盤の特徴を全て備えており、機構が合理的で歯車関係はバランスが良い歯数比となっており、操作性が良く優れた横形ホブ盤である。よって古くから親しまれ、各地でミクロン形ホブ盤として製造され用いられている。また横形ホブ盤は加工サイクルが短いため、歯切終了後、ホブが加工前の位置に自動復帰するタイプがある。ミクロン形ホブ盤にも自動復帰装置を取り付けたタイプがある。   Among the horizontal hobbing machines, the micron hobbing machine, which is commonly used, has the largest processing capability and can cut gears. This hobbing machine was developed by Micron in Switzerland and has all the features of a horizontal hobbing machine, with a rational mechanism, a well-balanced gear ratio, and excellent operability. It is a board. Therefore, it has been popular since ancient times, and it is manufactured and used as a micron hobbing machine in various places. In addition, since the horizontal hobbing machine has a short machining cycle, there is a type in which the hob automatically returns to the position before machining after completion of gear cutting. There are types of micron hobbing machines equipped with an automatic return device.

実開平5−39827号公報Japanese Utility Model Publication No. 5-39827 特公平8−15686号公報Japanese Patent Publication No. 8-15686

本発明が解決しようとする課題は、横形ホブ盤の割出機構に関するものである。横形ホブ盤はウオーム条が複数からなる多条ウオームを有するが、この多条ウオームの各条はウオームホイールの特定の歯としか噛合わない。したがって歯切加工により偏磨耗が生じた場合には、多条ウオームの各条は条数毎の特定の歯となじみ磨耗を繰り返すだけで隣接ピッチとは均等化作用が生じない。このために、ウオームホイールの歯数の条数分の1の割出誤差が生じて消滅することがない。したがって割出精度が次第に低下してゆく弊害があった。本発明はその弊害を除去して長期にわたり高精度の歯切加工を維持する横形ホブ盤を提供することを目的としている。   The problem to be solved by the present invention relates to an indexing mechanism for a horizontal hobbing machine. The horizontal hobbing machine has a multi-row worm composed of a plurality of worm strips, and each strip of the multi-row worm meshes only with a specific tooth of the worm wheel. Therefore, when uneven wear occurs due to gear cutting, each strip of the multi-row worm simply repeats wear with a specific tooth for each number of strips and does not cause an equalizing action with the adjacent pitch. For this reason, an indexing error that is a fraction of the number of teeth of the worm wheel occurs and does not disappear. Therefore, there is a negative effect that the indexing accuracy gradually decreases. An object of the present invention is to provide a horizontal hobbing machine that eliminates the adverse effects and maintains high-precision gear cutting over a long period of time.

上記の目的を達成するための本発明の手段は、多条ウオーム1とウオームホイール3の対からなるウオームギヤから形成の割出機構を有する横形ホブ盤において、ウオームホイール3の歯数を、多条ウオーム1の条数の倍数からなる歯数に1歯加えた歯数か、又は1歯減じた歯数の内でホブ盤構造に適合する歯数とすることで、ウオーム条数回だけウオームホイール3が回転する間に、多条ウオーム1の全ての条がウオームホイール3の全て歯と順送りに噛合うものとし、そのため帯小数値となった多条ウオームギヤ比から割出加工を可能にするために、割出機構の割出元軸10よりホブ軸23に至る間に、帯小数値の小数分を吸収又は補足して小数を消去し得る歯数比の歯車を設け、割出定数を整数として割出換歯車の算出を容易にし、かつウオームホイール3の回転のずれにホブ軸23の回転を同調させて歯切加工を可能にしたことを特徴とする横形ホブ盤の割出機構である。   The means of the present invention for achieving the above object is to provide a horizontal hobbing machine having an indexing mechanism formed from a worm gear composed of a pair of a multi-row worm 1 and a worm wheel 3. The number of teeth added to the number of teeth that is a multiple of the number of worms 1 or the number of teeth that is reduced by 1 tooth is adjusted to the hobbing machine structure. In order to enable indexing from the multiple-worm worm gear ratio, which is a small band value, all the teeth of the multi-worm worm 1 shall mesh with all the teeth of the worm wheel 3 while the 3 rotates. In addition, a gear having a gear ratio that can absorb or supplement decimal fractions and eliminate decimals is provided between the indexing source shaft 10 and the hob shaft 23 of the indexing mechanism, and the indexing constant is an integer. To facilitate the calculation of the indexing gear as The deviation of rotation of the worm wheel 3 by tuning the rotation of the hob axis 23 is horizontal hobbing machine indexing mechanism being characterized in that to allow gear cutting.

すなわち、上記の割出機構は、多条ウオーム1と噛合うウオームホイール3の歯数を、ウオーム条数回だけウオームホイール3が回転する間に、多条ウオーム1の全てのウオーム条と全てのウオームホイール3の歯が噛合う歯数にしたことである。したがって、歯切加工により偏磨耗が生じた場合、本発明のウオームホイール3は、ウオーム条数毎のなじみ磨耗を順次ずらせて隣接ピッチを均等化することにより、次第に全てのピッチが均等になり、割出精度が回復してくる。また、多条ウオームギヤは1条ウオームギヤに比べ進み角が大きくなるため、はすば歯車の如く噛合い率が向上する。したがって1条ウオームホイールに生じる歯数毎の割出誤差が、本発明の多条ウオームギヤでは発生し難くなり、長期にわたり円滑なる回転を維持できる。ただし、このような多条ウオームギヤは、ギヤ比が必ず帯小数値となるので割出機構には適当ではない。したがって、本発明の手段は、割出換歯車7を算出するために整数値の割出定数が必要なため、帯小数に近い任意の整数を割出定数とし、その整数との差分の小数を吸収或いは補足する歯数比の歯車を割出元軸10よりホブ軸23に至る割出機構の間に設けた手段である。   That is, the above-described indexing mechanism is configured such that the number of teeth of the worm wheel 3 meshing with the multi-row worm 1 is the same as the number of teeth of the worm wheel 3 while the worm wheel 3 is rotated several times. That is, the number of teeth with which the teeth of the worm wheel 3 are engaged is set. Therefore, when uneven wear occurs due to gear cutting, the worm wheel 3 of the present invention gradually equalizes adjacent pitches by sequentially shifting the familiar wear for each number of worm lines, so that all pitches are gradually made uniform. Indexing accuracy is restored. In addition, since the multi-worm worm gear has a larger lead angle than the single-worm worm gear, the meshing rate is improved like a helical gear. Therefore, the indexing error for each number of teeth generated in the single worm wheel is difficult to occur in the multi-row worm gear of the present invention, and smooth rotation can be maintained over a long period of time. However, such a multi-row worm gear is not suitable for the indexing mechanism because the gear ratio is always a decimal value. Therefore, since the means of the present invention requires an index constant of an integer value to calculate the index change gear 7, an arbitrary integer close to the decimal is used as an index constant, and the decimal of the difference from the integer is calculated. A gear having a gear ratio to be absorbed or supplemented is provided between the indexing mechanisms extending from the indexing source shaft 10 to the hob shaft 23.

以上の本発明の手段としたことで、帯小数値の多条ウオームギヤ比から整数値の割出定数を得て、割出換歯車の算出を容易にし、また多条ウオームギヤが回転するごとに順次に噛合いがずれて絶えずなじみ磨耗により、ウオームホイールの隣接ピッチを均等化するために、歯切加工による偏磨耗が生じても次第に消滅して、長期にわたり高精度の割出加工を維持できる。したがって、シェービングや歯車研削による二次加工で精度を向上することが至難であった薄板材からなる歯車やピニオン歯車の精度が飛躍的に向上し、それらの小形歯車を使用する精密機器の品質向上に大いに寄与できるので、本発明の割出機構は従来の横形ホブ盤にない優れた効果を奏するものである。   By using the above-described means of the present invention, it is possible to obtain an integer value index constant from the multi-row worm gear ratio of the decimal value, facilitate the calculation of the index change gear, and each time the multi-row worm gear rotates. In order to equalize the adjacent pitches of the worm wheels due to constant wear due to the disengagement of the gears, even if uneven wear due to gear cutting occurs, it gradually disappears, and high-precision indexing can be maintained over a long period of time. Therefore, the precision of gears and pinion gears made of thin sheet materials, which were difficult to improve in the secondary processing by shaving and gear grinding, has improved dramatically, and the quality of precision equipment that uses these small gears has improved. Therefore, the indexing mechanism of the present invention has an excellent effect not found in the conventional horizontal hobbing machine.

本発明の実施例を説明する前に、従来の横形ホブ盤の割出機構について説明し、その後に本発明による横形ホブ盤の割出機構と比較して、本発明がホブ盤としての機能があることを説明する。そこで横形ホブ盤で最も有名なミクロン形ホブ盤を選び、本発明を適用した例と比較して説明する。   Before describing the embodiment of the present invention, the indexing mechanism of the conventional horizontal hobbing machine will be described, and then the present invention will function as a hobbing machine as compared with the indexing mechanism of the horizontal hobbing machine according to the present invention. Explain that there is. Therefore, the most famous micron hobbing machine will be selected as the horizontal hobbing machine and will be described in comparison with an example to which the present invention is applied.

先ず、図2のミクロン形ホブ盤の割出機構における歯車系統図を参照して説明する。この多条ウオーム1は5条を1単位とするウオーム条からなってウオーム軸2に設けられており、これと噛合うウオームホイール3の歯数は80でウオームホイール軸4に設けられている。なお、図2で歯数80を80Nとして記載しているように、図面では数値の後に歯数を示すNを付して表している。ウオーム軸2の一端は外部に露出しており、割出換歯車7を取り付けることができる。割出元軸10の一端も外部に露出しており、元軸換歯車9を取り付けることができる。割出元軸10とホブ軸23は機構内部の伝導軸及び歯車を介して1対1の回転比となっている。したがって、割出元軸10とウオーム軸2に同歯数の元軸換歯車9と割出換歯車7を取り付け、中間歯車8で接続すると、ウオームギヤ比が16のため、ホブ軸23が16回転すると割出元軸10が16回転し、さらにウオーム軸2が16回転し、その結果ウオームホイール軸4が1回転する。すなわち、16分割の割出が出来る。   First, the gear system diagram in the indexing mechanism of the micron type hobbing machine in FIG. 2 will be described. The multi-worm worm 1 is formed on a worm shaft 2 having 5 worms as one unit, and the worm wheel 3 meshing with the worm wheel 3 has 80 teeth and is provided on the worm wheel shaft 4. In FIG. 2, the number of teeth 80 is indicated as 80N, and in the drawing, N indicating the number of teeth is added after the numerical value. One end of the worm shaft 2 is exposed to the outside, and an index gear 7 can be attached. One end of the indexing source shaft 10 is also exposed to the outside, and the original shaft changing gear 9 can be attached. The indexing source shaft 10 and the hob shaft 23 have a one-to-one rotation ratio through a transmission shaft and gears inside the mechanism. Therefore, when the original gear change gear 9 and the index change gear 7 having the same number of teeth are attached to the index main shaft 10 and the worm shaft 2 and connected by the intermediate gear 8, the worm gear ratio is 16, so the hob shaft 23 rotates 16 times. Then, the indexing source shaft 10 rotates 16 times, and the worm shaft 2 further rotates 16 times. As a result, the worm wheel shaft 4 rotates once. That is, 16-division indexing can be performed.

したがって、このミクロン形ホブ盤の割出定数は16となり、割出元軸10に歯数が16の元軸換歯車9を取り付けておけば、割出すべき歯数の割出換歯車7をウオーム軸2に取り付け、中間歯車8で接続すれば、目的歯数の割出ができる割出機構となる。ただし、元軸換歯車9の歯数が16では歯車径が小さすぎるので、普通では2倍歯数の32の元軸換歯車9を取り付ける。この場合には、ウオーム軸2の割出換歯車7も比例して2倍の歯数にする必要がある。また、少歯数の歯切のために、歯数64の元軸換歯車9が用意されている。したがって、上記の割出定数の16は割出換歯車7の割り出すべき歯数Zを算出するための基準数値である。   Therefore, the indexing constant of this micron type hobbing machine is 16. If the main shaft changing gear 9 having 16 teeth is attached to the indexing main shaft 10, the indexing gear 7 having the number of teeth to be indexed is warmed. If it is attached to the shaft 2 and connected by the intermediate gear 8, an indexing mechanism capable of indexing the target number of teeth is obtained. However, since the gear diameter is too small when the number of teeth of the original gear change gear 9 is 16, the original gear change gear 9 having 32 times the number of teeth is usually attached. In this case, the indexing gear 7 of the worm shaft 2 needs to be proportionally doubled in the number of teeth. Also, an original gear change gear 9 with 64 teeth is prepared for gear cutting with a small number of teeth. Therefore, the above index constant 16 is a reference value for calculating the number of teeth Z to be indexed of the index change gear 7.

このミクロン形ホブ盤の割出元軸10に、割出定数の16と同じ歯数の元軸換歯車9を取り付け、ウオーム軸2に割出すべき歯数Zと同歯数の割出換歯車7を取り付け、中間歯車8で接続してホブ軸23を1回転させた場合に、駆動側の歯車を分子とし、被動側の歯車を分母として、ウオームホイール軸4の回転割合を表すと、次の計算式(1)となる。この場合、ホブ軸23からウオームホイール軸4に至る間の中で中間歯車及び噛合い歯数比が1対1の歯車は回転比に影響しないために省略している。   The main shaft changing gear 9 having the same number of teeth as the indexing constant 16 is attached to the indexing main shaft 10 of this micron type hobbing machine, and the indexing gear having the same number of teeth as the number Z of teeth to be indexed to the worm shaft 2 7 is connected by the intermediate gear 8 and the hob shaft 23 is rotated once, the rotation rate of the worm wheel shaft 4 is expressed by using the driving gear as the numerator and the driven gear as the denominator. This is the calculation formula (1). In this case, the intermediate gear and the gear having a meshing gear ratio of 1: 1 are omitted from the hob shaft 23 to the worm wheel shaft 4 because they do not affect the rotation ratio.

Figure 0004468473
Figure 0004468473

上記のとおりで、この計算式(1)はホブ軸23を1回転させるとウオームホイール軸4がZ分の1回転することを示している。すなわちホブ軸23がZ回転でウオームホイール軸4は1回転するので、割出歯車7の歯数Zの割出加工が出来る機構である。よって割出換歯車7の算出が容易に出来る。   As described above, the calculation formula (1) indicates that when the hob shaft 23 is rotated once, the worm wheel shaft 4 is rotated by 1 / Z. That is, since the hob shaft 23 rotates Z and the worm wheel shaft 4 rotates once, this is a mechanism capable of indexing the number of teeth Z of the indexing gear 7. Accordingly, the indexing gear 7 can be easily calculated.

この計算式(1)のなかで、1はホブ軸23の回転数、分子の70はホブ軸23に固定の歯車22の歯数で、分母の35は伝導軸14cに固定の歯車21の歯数である。次の分子30は伝導軸14aに固定のはすば歯車13の歯数で、分母の60は割出元軸10に固定のはすば歯車11の歯数である。次の分子16は割出元軸10に取り付けた元軸換歯車9の割出定数の歯数で、分母のZはウオーム軸2に取り付けた割出換歯車7の割出すべき歯数である。次の分子の5は多条ウオーム1の条数で、分母の80はウオームホイール軸4に固定のウオームホイール3の歯数である。したがって、この多条ウオームギヤのギヤ比は整数値のため、なじみ磨耗によっても16分の1の割出誤差は解消されることがない。   In this calculation formula (1), 1 is the number of rotations of the hob shaft 23, numerator 70 is the number of teeth of the gear 22 fixed to the hob shaft 23, and the denominator 35 is the teeth of the gear 21 fixed to the conduction shaft 14 c. Is a number. The next numerator 30 is the number of teeth of the helical gear 13 fixed to the conduction shaft 14 a, and the denominator 60 is the number of teeth of the helical gear 11 fixed to the indexing source shaft 10. The next numerator 16 is the number of teeth of the indexing constant of the main shaft changing gear 9 attached to the indexing main shaft 10, and the denominator Z is the number of teeth to be indexed of the indexing gear 7 attached to the worm shaft 2. . The next numerator 5 is the number of multiple worms 1 and the denominator 80 is the number of teeth of the worm wheel 3 fixed to the worm wheel shaft 4. Therefore, since the gear ratio of this multi-row worm gear is an integer value, the indexing error of 1/16 is not eliminated even by familiar wear.

次に、本発明の実施例について、前記のミクロン形ホブ盤に適用した例として図1を参照して説明する。ところで、ミクロン形ホブ盤は構造が合理的でバランスの良い歯数比となっている。そこで、このミクロン形ホブ盤の構造を出来るだけ変更せず、歯数を僅か変更するだけで、本発明の目的を達成し得るものとしたのである。したがって、従来のホブ盤が使用によって割出精度が劣化した場合にも、本発明の歯車と取り替えるだけで高精度のホブ盤に再生できる利点がある。   Next, an embodiment of the present invention will be described with reference to FIG. 1 as an example applied to the micron hobbing machine. By the way, the micron type hobbing machine has a reasonable structure and a well-balanced gear ratio. Therefore, the object of the present invention can be achieved by changing the number of teeth slightly without changing the structure of the micron hobbing machine as much as possible. Therefore, even when the indexing accuracy deteriorates due to the use of the conventional hobbing machine, there is an advantage that the hobbing machine can be regenerated into a highly accurate hobbing machine by simply replacing the gear of the present invention.

すなわち、多条ウオーム1は単位条数は5条のままとし、ウオームホイール3の歯数を80から81とする。したがって多条ウオーム1の位置をずらせて噛合いを調整する。このようにウオームホイール3の歯数を81としたので、多条ウオーム1とウオームホイール3からなるウオームギヤの噛合いは順次ずれて、ウオームホイール3が5回転で多条ウオーム1の各条が全てのウオームホイール3の歯と均等に噛合うこととなる。このため、歯切加工により多条ウオームギヤに偏磨耗が生じた場合でも、ウオームホイール3に5歯毎のなじみ磨耗が発生することなく、噛合いが順次ずれていき、絶えず隣接ピッチを均等化する方向になじみ磨耗し合うこととなる。このために、次第にウオームギヤの全てのピッチが均一になる。また、1条のウオームギヤに比べ、多条ウオームギヤは進み角が大きいために、はすば歯車の如く噛合い率が大きくなる。このため、ウオームホイール3の歯数毎の回転誤差が発生し難くなり、長期にわたり高精度の割出加工を維持できる。   That is, in the multi-row worm 1, the number of unit stripes remains 5 and the number of teeth of the worm wheel 3 is 80 to 81. Therefore, the meshing is adjusted by shifting the position of the multi-worm worm 1. In this way, since the number of teeth of the worm wheel 3 is 81, the meshing of the worm gear composed of the multi-worm worm 1 and the worm wheel 3 is sequentially shifted, and the worm wheel 3 is rotated five times so that all the elements of the multi-worm worm 1 are all. Will mesh evenly with the teeth of the worm wheel 3. For this reason, even if uneven wear occurs in the multi-row worm gear due to gear cutting, the worm wheel 3 does not generate the familiar wear for every five teeth, and the meshing is sequentially shifted, and the adjacent pitch is constantly equalized. It will become familiar and wear with each other. For this reason, all the pitches of the worm gears gradually become uniform. Further, since the multiple-worm worm gear has a larger advance angle than the single-worm worm gear, the meshing rate is increased like a helical gear. For this reason, it becomes difficult for the rotation error for every number of teeth of the worm wheel 3 to occur, and high-precision indexing can be maintained over a long period of time.

ただし、上記した多条ウオーム1とウオームホイール3からなるウオームギヤの場合、そのギヤ比は帯小数値の16.2となる。このために割出換歯車7の算出が複雑となり、このままでは実用に適さない。そこで、本発明では、割出元軸10よりホブ軸23に至る割出機構の間に、帯小数16.2の小数分0.2を吸収し得る歯数比のはすば歯車13、歯車21、歯車22を設けて割出定数を整数値の16とした手段である。   However, in the case of a worm gear composed of the above-mentioned multi-row worm 1 and worm wheel 3, the gear ratio is 16.2 which is a decimal value. For this reason, the calculation of the indexing gear 7 becomes complicated, and it is not suitable for practical use as it is. Therefore, in the present invention, the helical gear 13 and the gears having a gear ratio that can absorb the fractional fraction 0.2 of the band decimal 16.2 between the indexing mechanism from the indexing source shaft 10 to the hob shaft 23. 21 is a means in which a gear 22 is provided and the indexing constant is set to an integer value of 16.

すなわち、図1に示すように、一端にホブ24を有するホブ軸23に固定の歯車22を歯数72の歯車に取替え、これと噛合う伝導軸14cに固定の歯車21を歯数32の歯車に取り替える。したがって、1歯分の軸間距離が余るのでプラス転位した歯車とする。次に、伝導軸14cの傘歯車20と噛み合う傘歯車19を経て、伝導軸14bのはすば歯車17から、さらに伝導軸14aのはすば歯車16およびはすば歯車13からなる歯車構造において、伝導軸14aに固定の上記のはすば歯車13を歯数27のはすば歯車と取り替える。この取り替えにより中間はすば歯車12とはすば歯車13の軸間距離に1.5歯分の軸間距離が余ることとなる。しかし、この余った軸間距離を調整するための中間歯車軸12aは噛合いを調整するために多少位置を移動することができる。また、中間はすば歯車12ははすば歯車11と直角に噛合っているため、できるだけはすば歯車11の歯幅の中心と噛合わせる必要がある。したがって新規なはすば歯車13との噛合い位置の関係から、中間はすば歯車12の歯数を2歯増した歯車とする。このようにすることで、中間はすば歯車12ははすば歯車13と噛合い、かつ、はすば歯車11の歯幅のほぼ中心とも噛合うので、中間歯車軸12aの位置を固定し直す。以上が本発明の割出機構をミクロン形ホブ盤に適用した手段である。なお、伝導軸14aのはすば歯車16の嵌合部および伝導軸14bのはすば歯車17の嵌合部にはスライドキー溝18が形成されているのではすば歯車16及びはすば歯車17は噛合いを保ちながら摺動することができる。   That is, as shown in FIG. 1, the gear 22 fixed to the hob shaft 23 having the hob 24 at one end is replaced with a gear having 72 teeth, and the fixed gear 21 is connected to the conductive shaft 14c meshing with the gear 22 having 32 teeth. Replace with. Therefore, since the inter-shaft distance for one tooth is left, it is a positively shifted gear. Next, through a bevel gear 19 that meshes with the bevel gear 20 of the transmission shaft 14c, in the gear structure including the helical gear 17 of the transmission shaft 14b and the helical gear 16 and the helical gear 13 of the transmission shaft 14a. The helical gear 13 fixed to the transmission shaft 14a is replaced with a helical gear having 27 teeth. As a result of this replacement, an inter-axial distance of 1.5 teeth is left in the inter-axial distance between the helical gear 12 and the helical gear 13. However, the intermediate gear shaft 12a for adjusting the extra inter-shaft distance can be moved slightly to adjust the meshing. Further, since the intermediate helical gear 12 meshes with the helical gear 11 at a right angle, it is necessary to mesh with the center of the tooth width of the helical gear 11 as much as possible. Therefore, from the relationship of the meshing position with the new helical gear 13, the intermediate helical gear 12 is a gear having two more teeth. By doing so, the intermediate helical gear 12 meshes with the helical gear 13 and also meshes with the approximate center of the tooth width of the helical gear 11, so that the position of the intermediate gear shaft 12a is fixed. cure. The above is the means in which the indexing mechanism of the present invention is applied to a micron type hobbing machine. Note that the slide key groove 18 is formed in the fitting portion of the helical gear 16 of the transmission shaft 14a and the fitting portion of the helical gear 17 of the transmission shaft 14b. The gear 17 can slide while maintaining meshing.

上記のように、本発明をミクロン形ホブ盤に用いた手段であるが、多条ウオームギヤ比が帯小数値でありながら、割出定数を整数値の16として算出した割出換歯車7で割出加工が可能なことを、次の計算式(2)により説明する。前記の計算式(1)の如く、割出元軸10に新規の割出定数16と同じ歯数の元軸換歯車9を取り付け、ウオーム軸2には割出すべき歯数Zと同じ歯数の割出換歯車7を取り付け、中間歯車8で接続する。またホブ軸23よりウオームホイール軸4に至る間の中間歯車及び歯数比が1対1の歯車は省略して、ホブ軸23を1回転させた場合に、駆動歯車を分子とし被動歯車を分母として、ウオームホイール軸4がZ分の1回転すれば、Z歯数の割出換歯車7でZ歯数の歯切加工が出来ることになる。また伝導軸14aには駆動用プーリー15を有し、駆動力が伝達される。   As described above, the present invention is a means using a micron hobbing machine, but the multi-worm worm gear ratio is a band decimal value, and is divided by the indexing gear 7 calculated as an integer constant of 16. The fact that the machining can be performed will be described by the following calculation formula (2). As shown in the above formula (1), the original shaft changing gear 9 having the same number of teeth as the new indexing constant 16 is attached to the indexing source shaft 10, and the worm shaft 2 has the same number of teeth as the number of teeth Z to be indexed. Are attached by an intermediate gear 8. Further, when the intermediate gear between the hob shaft 23 and the worm wheel shaft 4 and the gear with a gear ratio of 1: 1 are omitted, when the hob shaft 23 is rotated once, the driving gear is a numerator and the driven gear is a denominator. If the worm wheel shaft 4 is rotated by 1 / Z, the Z tooth number indexing gear 7 can perform gear cutting with the number of Z teeth. The conduction shaft 14a has a driving pulley 15 to transmit a driving force.

Figure 0004468473
Figure 0004468473

本発明の割出機構をミクロン形ホブ盤に適用した手段は上記の通りで、多条ウオームギヤ比を帯小数値の16.2として、全てのウオーム1の条が全てのウオームホイール3の歯と均等に噛合う歯数81としたことにより、5歯毎のなじみ磨耗を隣接ピッチ均等化方向に変えて、絶えずなじみ磨耗によりウオームホイール3の割出精度を向上する割出機構にしたものである。しかし、多条ウオームギヤ比が帯小数値では、割出換歯車7の算出が困難でホブ盤には不適当である。よって、本発明の手段は、上記の如く割出元軸10よりホブ軸23に至る割出機構の間に、小数分の0.2を吸収し得る歯数比の歯車を設けたことにより、整数値の16を割出定数として割出換歯車7の算出を容易にし、かつ、高精度の歯切加工を長期にわたり維持することができる手段である。   The means of applying the indexing mechanism of the present invention to the micron type hobbing machine is as described above, and the multiple streak worm gear ratio is 16.2 which is a subordinate value. By making the number of teeth to be evenly engaged 81, the wear-in wear of every 5 teeth is changed to the adjacent pitch equalization direction, and the indexing mechanism that constantly improves the indexing accuracy of the worm wheel 3 by the wear-in wear. . However, when the multi-worm worm gear ratio is a small decimal value, it is difficult to calculate the indexing gear 7, which is inappropriate for the hobbing machine. Therefore, according to the means of the present invention, a gear having a gear ratio capable of absorbing 0.2 of a fraction is provided between the indexing mechanism from the indexing source shaft 10 to the hob shaft 23 as described above. This is a means that makes it easy to calculate the index change gear 7 with an integer value of 16 as an index constant and can maintain high-precision gear cutting over a long period of time.

横形ホブ盤は比較的に割出定数の数値が小さいため、割出換歯車の精度がウオームギヤを介して加工精度に及ぼす影響が大きい。本発明の割出機構の場合には、その誤差が加工歯車の全周に分散するが、加工送りも同時進行するため、螺旋状の縞模様となり歯面精度が低下する。したがって、高精度の歯切加工をするには、割出換歯車を歯車研削などの二次加工したピッチ精度の良い割出換歯車を使用する必要がある。また図1には記載していなかった差動装置を使用してはすば歯切をする場合、ウオームホイール1歯分回転が遅れるため、差動定数を変更する必要がある。もし、従来のリード表を変更したくない時は送りねじピッチ5mmを81分の80に縮小する必要がある。   Since the horizontal hobbing machine has a relatively small indexing constant, the accuracy of the indexing gear greatly affects the machining accuracy via the worm gear. In the case of the indexing mechanism of the present invention, the error is distributed over the entire circumference of the machined gear, but the machining feed also proceeds simultaneously, resulting in a spiral stripe pattern and a reduction in tooth surface accuracy. Therefore, in order to perform gear cutting with high accuracy, it is necessary to use an indexing gear with good pitch accuracy obtained by performing secondary processing such as gear grinding on the indexing gear. In addition, when using a differential gear not shown in FIG. 1 to perform gear cutting, it is necessary to change the differential constant because rotation of one worm wheel is delayed. If it is not desired to change the conventional lead table, it is necessary to reduce the lead screw pitch 5 mm to 80/81.

ホブ盤製造メーカーが多条ウオームと噛合うウオームホイールを製造する場合、多条ウオームと同径、同条のウオームホイール歯切専用のホブを使用する必要がある。よってミクロン形のウオームホイール歯数80の場合には、マザーホブ盤の割出数は80ではなく16である。よって5歯毎のピッチ誤差が出来やすく、正確なウオームホイールが得難い。したがって、歯車研削ができるはすば歯車を使用したウオームホイールがある。しかし、多条ウオームと点接触となるため、摩擦圧が高くなり焼損を起こしやすい欠点がある。本発明のウオームホイールは歯数が81のため、5条毎のピッチ誤差が生じないため、高精度のウオームホイールが得られる。ただし、割出数が16.2となるので、小数分を割り出すため81歯と80歯の組合わせ割出換歯車が余分に必要となる。   When a hobbing machine manufacturer manufactures a worm wheel that meshes with a multi-strip worm, it is necessary to use a hob dedicated to worm wheel gear cutting with the same diameter and the same strip as the multi-strip worm. Therefore, in the case of 80 micron-shaped worm wheel teeth, the index number of the mother hobbing machine is 16, not 80. Therefore, it is easy to make a pitch error every 5 teeth, and it is difficult to obtain an accurate worm wheel. Therefore, there is a worm wheel using a helical gear that can perform gear grinding. However, since it is in point contact with the multi-strand worm, there is a drawback that the friction pressure is increased and burnout is likely to occur. Since the worm wheel of the present invention has 81 teeth, a pitch error does not occur every five lines, and a highly accurate worm wheel can be obtained. However, since the index number is 16.2, an extra combination indexing gear of 81 teeth and 80 teeth is necessary to determine the fractional number.

本発明をミクロン形のホブ盤に適用した場合には、在来の伝導歯車を取り替えて目的を達したが、他機種の横形ホブ盤で構造がより簡単な場合に、本発明を適用した例を簡単に説明する。例えば、割出機構のウオームホイールの歯数が30、噛合う多条ウオームの条数が3、割出定数が10である横形ホブ盤において、割出元軸よりホブ軸に至る間で、本発明の歯数に交換できる伝導歯車が無いホブ盤の場合、本発明を適用するには、例えばウオームホイールの歯数を29とすれば多条ウオームギヤ比が9.6666・・・と無限の帯小数となる。すなわち、9+2/3の帯分数となる。したがって、10との差の1/3を補足するため、新規に割出元軸側に歯数30の伝導歯車を設け、ホブ軸側に29の伝導歯車を設け、その間に回転方向が逆になるのを正すため任意歯数の中間歯車を設けて噛合わせれば、伝導構造が余分に増えるが、従来の多条ウオームギヤの弊害を除去できて永く高精度の歯切り加工を維持できる。   When the present invention is applied to a micron type hobbing machine, the conventional transmission gear was replaced and the purpose was achieved. However, when the structure is simpler with a horizontal hobbing machine of another model, an example in which the present invention is applied Is briefly explained. For example, in a horizontal hobbing machine in which the number of teeth of the worm wheel of the indexing mechanism is 30, the number of meshed multiple-worm worms is 3, and the indexing constant is 10, the distance from the indexing axis to the hob axis In the case of a hobbing machine having no transmission gear that can be replaced with the number of teeth of the invention, in order to apply the present invention, for example, if the number of teeth of the worm wheel is 29, the multi-worm worm gear ratio is 9.6666. Decimal. That is, the mixed number is 9 + 2/3. Therefore, in order to supplement 1/3 of the difference from 10, a transmission gear with 30 teeth is newly provided on the indexing source shaft side, and 29 transmission gears are provided on the hob shaft side. If an intermediate gear with an arbitrary number of teeth is provided and meshed to correct this, the conductive structure will be increased, but the adverse effects of the conventional multi-row worm gear can be eliminated and high precision gear cutting can be maintained for a long time.

本発明のミクロン形のホブ盤の割出機構のうち、差動装置を除いて示す歯車系統の斜視略図である。FIG. 3 is a schematic perspective view of a gear system, excluding a differential device, of an indexing mechanism for a micron hobbing machine according to the present invention. 従来のミクロン形のホブ盤の割出機構のうち、差動装置を除いて示す歯車系統の斜視略図である。It is a schematic perspective view of a gear system shown excluding a differential device among conventional indexing mechanisms of a micron hobbing machine.

符号の説明Explanation of symbols

1 多条ウオーム
2 ウオーム軸
3 ウオームホイール
4 ウオームホイール軸
5 コレットチャック
6 歯車素材
7 割出換歯車
Z 割出換歯車の歯数
8 中間歯車
9 元軸換歯車
10 割出元軸
11 はすば歯車
12 中間はすば歯車
12a 中間歯車軸
13 はすば歯車
14a 伝導軸
14b 伝導軸
14c 伝導軸
15 駆動用プーリー
16 はすば歯車
17 はすば歯車
18 スライドキー溝
19 傘歯車
20 傘歯車
21 歯車
22 歯車
23 ホブ軸
24 ホブ
1 Worm shaft 2 Worm shaft 3 Worm wheel 4 Worm wheel shaft 5 Collet chuck 6 Gear material 7 Indexing gear Z Number of teeth of the indexing gear 8 Intermediate gear 9 Original shaft changing gear 10 Indexing shaft 11 HASUBA Gear 12 Intermediate helical gear 12a Intermediate gear shaft 13 Helical gear 14a Conductive shaft 14b Conductive shaft 14c Conductive shaft 15 Driving pulley 16 Helical gear 17 Helical gear 18 Slide keyway 19 Bevel gear 20 Bevel gear 21 Gear 22 Gear 23 Hob shaft 24 Hob

Claims (1)

多条ウオームとウオームホイールから形成の割出機構を有する横形ホブ盤において、ウオームホイールの歯数を、ホブ盤構造に収まる範囲の成る丈多い歯数にして、ウオーム条数回だけウオームホイールが回転する間に多条ウオームの噛合いが順次ずれて全てのウオーム条と全てのウオームホイール歯が均等に噛合う歯数とし、よって帯小数値となった多条ウオームギヤ比から割出換歯車の算出を容易にし、また割出加工を可能にするため、割出元軸よりホブ軸に至る伝導軸間に、多条ウオームギヤ比から、帯小数値の小数分を吸収或いは補足する歯数比の歯車を設けて整数値の割出定数にし、ウオームホイールの回転のずれにホブ軸回転を同調させたことを特徴とする横形ホブ盤の割出機構。 In a horizontal hobbing machine that has an indexing mechanism formed from multi-row worms and worm wheels, the number of teeth of the worm wheel is set to a large number of teeth that can be accommodated in the hobbing machine structure, and the worm wheel rotates several times. During this time, the meshing of the multiple worms is shifted sequentially so that all the worms and all the worm wheel teeth are meshed evenly. Gears with a gear ratio that absorbs or supplements the fractional number of decimals from the multi-row worm gear ratio between the transmission shaft from the indexing shaft to the hob shaft to facilitate indexing and machining. An indexing mechanism for a horizontal hobbing machine, wherein the indexing constant is an integer value, and the hob shaft rotation is synchronized with the rotation deviation of the worm wheel.
JP2008301453A 2008-11-26 2008-11-26 Hobbing machine indexing mechanism Expired - Fee Related JP4468473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301453A JP4468473B1 (en) 2008-11-26 2008-11-26 Hobbing machine indexing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301453A JP4468473B1 (en) 2008-11-26 2008-11-26 Hobbing machine indexing mechanism

Publications (2)

Publication Number Publication Date
JP4468473B1 true JP4468473B1 (en) 2010-05-26
JP2010125545A JP2010125545A (en) 2010-06-10

Family

ID=42306596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301453A Expired - Fee Related JP4468473B1 (en) 2008-11-26 2008-11-26 Hobbing machine indexing mechanism

Country Status (1)

Country Link
JP (1) JP4468473B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205411A (en) * 1989-02-06 1990-08-15 Honda Motor Co Ltd Gear cutting machine
JPH09108941A (en) * 1995-10-13 1997-04-28 Toyoda Mach Works Ltd Gear grinding device
JPH09174331A (en) * 1995-12-25 1997-07-08 Nachi Fujikoshi Corp Method and device for gear meshing of internal gear grinding wheel of hard gear honing panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110398B1 (en) * 1970-08-27 1976-04-03

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205411A (en) * 1989-02-06 1990-08-15 Honda Motor Co Ltd Gear cutting machine
JPH09108941A (en) * 1995-10-13 1997-04-28 Toyoda Mach Works Ltd Gear grinding device
JPH09174331A (en) * 1995-12-25 1997-07-08 Nachi Fujikoshi Corp Method and device for gear meshing of internal gear grinding wheel of hard gear honing panel

Also Published As

Publication number Publication date
JP2010125545A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US9573210B2 (en) Gear cutting machine, end mill and method of form milling
KR101916470B1 (en) Tool for cutting gear and method for cutting gear
EP3157703B1 (en) Method for finishing hardened gears
JP2013000879A (en) Method for gear pre-cutting of a plurality of different bevel gears, and use of according milling tool
KR20110104528A (en) Machine tool and method for producing gearing
US8747035B2 (en) Method for producing bevel gears having hypocycloidal teeth in the continuous forming method using corresponding tools
JP7224109B2 (en) Gear manufacturing machining method for workpiece
CN103180077B (en) A kind of method for generation of non-straight gear teeth
CN203109371U (en) Forming and generating gear milling machine
JP2013193203A (en) Machining method for workpiece using spiral machining tool
JP2015212006A (en) Milling tool and tool body
CN101710350A (en) Methods for designing and manufacturing double-lead linear contact bias worm drive
CN203738162U (en) Biarc correction cycloid gear hob
Guo et al. An efficient tapered tool having multiple blades for manufacturing cylindrical gears with power skiving
CN206047261U (en) The process equipment of curved tooth line gear
CN103817491B (en) A kind of plunge grinding processing method of large modulus straight trough end face spline
CN101780569A (en) Processing method for manufacturing teeth of cylindrical gears by turning
JP5162920B2 (en) Gear processing method and gear processing apparatus
CN109317764B (en) Multi-tooth part machining method and multi-tooth part cutting tool
CN103071863A (en) Forming and generating gear milling machine and processing method
CN102211234B (en) Method for hobbing disc cylindrical gear type spiral involute gear
JP4468473B1 (en) Hobbing machine indexing mechanism
CN104708119A (en) Machining method for worm gear pair
CN102653016B (en) Method for machining involute gear with different helix angles on left tooth surface and right tooth surface
CN206614415U (en) A kind of correction of the flank shape wheel for the finishing gear shaver that Shaving Process correction of the flank shape is used

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees