JP4467531B2 - Reactor building - Google Patents

Reactor building Download PDF

Info

Publication number
JP4467531B2
JP4467531B2 JP2006051467A JP2006051467A JP4467531B2 JP 4467531 B2 JP4467531 B2 JP 4467531B2 JP 2006051467 A JP2006051467 A JP 2006051467A JP 2006051467 A JP2006051467 A JP 2006051467A JP 4467531 B2 JP4467531 B2 JP 4467531B2
Authority
JP
Japan
Prior art keywords
dry well
reactor
pressure vessel
chamber
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006051467A
Other languages
Japanese (ja)
Other versions
JP2007232419A (en
Inventor
雄亮 清水
静 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2006051467A priority Critical patent/JP4467531B2/en
Publication of JP2007232419A publication Critical patent/JP2007232419A/en
Application granted granted Critical
Publication of JP4467531B2 publication Critical patent/JP4467531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、沸騰水型原子炉を備えた原子力発電所等の原子力プラントにおける原子炉格納容器およびこれに付随する機器室等から構成される原子炉建屋に関する。   The present invention relates to a nuclear reactor building including a nuclear reactor containment vessel and an equipment room associated therewith in a nuclear power plant such as a nuclear power plant equipped with a boiling water reactor.

従来の沸騰水型原子炉(以下、BWRという。)の中で最新のものに改良型BWR(以下、ABWRという。)が知られている。このABWRは鉄筋コンクリート製原子炉格納容器(以下、RCCVという。)を採用しており、原子炉建屋はRCCVとRCCV周囲に配置された機器室やペネトレーション室などから構成されている。   An improved BWR (hereinafter referred to as ABWR) is known as the latest of conventional boiling water reactors (hereinafter referred to as BWR). This ABWR employs a reinforced concrete reactor containment vessel (hereinafter referred to as RCCV), and the reactor building is composed of an RCCV and an equipment room, a penetration room, etc. arranged around the RCCV.

この原子炉建屋を小型化するための方法として、次の方法が知られている。即ち、上部ドライウェルを二重壁とし、内側と外側の壁の間をペネトレーション室とし、かつ非常用炉心冷却系配管を圧力抑制室内のプールを経由して圧力抑制室の下部に配置した機器室に引き回す。この方法によりRCCV周囲の機器室面積を縮小でき、建屋の小型化につながる(例えば、特許文献1参照)。   The following methods are known as methods for reducing the size of the reactor building. That is, an equipment room in which the upper dry well is a double wall, a penetration room is formed between the inner and outer walls, and an emergency core cooling system pipe is disposed in the lower part of the pressure suppression chamber via a pool in the pressure suppression chamber. Pull around. By this method, the equipment room area around the RCCV can be reduced, which leads to downsizing of the building (for example, see Patent Document 1).

特開平10−282285号公報Japanese Patent Laid-Open No. 10-282285

より経済性の高い原子炉建屋を実現するには原子炉建屋の小型化が有効である。現行
ABWRにおける原子炉建屋ではRCCV周囲に機器室を配置しており、原子炉建屋の平面積はRCCVの直径および機器室の必要面積から決定されている。しかしRCCVの直径および機器室の必要面積をこれ以上縮小することは困難である。
Miniaturization of the reactor building is effective in realizing a more economical reactor building. In the reactor building in the current ABWR, an equipment room is arranged around the RCCV, and the flat area of the reactor building is determined from the diameter of the RCCV and the required area of the equipment room. However, it is difficult to further reduce the diameter of the RCCV and the required area of the equipment room.

一方原子炉建屋内の非常用炉心冷却系の配管は高い耐震性が要求されるため、配管物量やサポート物量低減のため配管長を極力短縮すべきであるが、現行ABWRではRCCV周囲に機器室が配置されるため配管長が増大している。   On the other hand, the piping of the emergency core cooling system in the reactor building is required to have high seismic resistance, so the piping length should be shortened as much as possible to reduce the amount of piping and supporting materials. The pipe length is increased because of the arrangement.

従って、本発明の目的は、原子炉建屋の小型化および非常用炉心冷却系の配管の最短化が達成でき、より経済的な原子炉建屋を提供することにある。   Accordingly, an object of the present invention is to provide a more economical reactor building that can achieve downsizing of the reactor building and minimization of the piping of the emergency core cooling system.

本発明の目的を達成するための手段は、原子炉圧力容器を内蔵する原子炉格納容器と、前記原子炉圧力容器を取り囲む上部ドライウェルと、前記上部ドライウェルの下方に位置し前記原子炉圧力容器の下方に位置する下部ドライウェルと、前記下部ドライウェルの周囲に位置する圧力抑制室と、前記上部ドライウェルの内に流出した蒸気を前記圧力抑制室に導くベント管と、前記原子炉圧力容器を前記原子炉格納容器内で支持するペデスタルと、前記圧力抑制室と前記原子炉圧力容器とを注水配管を介して連絡する非常用炉心冷却系とを具備する原子炉建屋において、前記下部ドライウェルの周囲でかつ前記圧力抑制室の下方に配置され、機器を収納する機器室を具備し、前記注水配管が前記機器室及び前記ペデスタル内に配置され、前記下部ドライウェルの水平外側に前記注水配管が通されるペネトレーション室を介して前記機器室が配置され、前記ペネトレーション室は前記ペデスタルと上下方向に重なり合っている配置とされていることを特徴とする原子炉建屋である。 Means for achieving the object of the present invention includes a reactor containment vessel containing a reactor pressure vessel, an upper dry well surrounding the reactor pressure vessel, and the reactor pressure located below the upper dry well. A lower dry well positioned below the vessel, a pressure suppression chamber positioned around the lower dry well, a vent pipe for guiding the vapor flowing into the upper dry well to the pressure suppression chamber, and the reactor pressure In the reactor building comprising a pedestal that supports a vessel in the reactor containment vessel, and an emergency core cooling system that connects the pressure suppression chamber and the reactor pressure vessel through a water injection pipe, A device chamber that is disposed around the well and below the pressure suppression chamber, and stores the device; the water injection pipe is disposed in the device chamber and the pedestal; The nuclear reactor is characterized in that the equipment room is arranged through a penetration chamber through which the water injection pipe is passed horizontally outside the dry well, and the penetration room is arranged so as to overlap the pedestal in the vertical direction. It is a building .

このような原子炉建屋によれば、RCCV内圧力抑制室の下部に非常用系機器を含む機器室を設置し、RCCVと機器室を同一投影面内に収めることで原子炉建屋の平面積縮小を実現できる上、さらに具体的には、原子炉圧力容器を支持する圧力容器ペデスタルに非常用炉心冷却系配管の設置スペースを確保することにより、非常用炉心冷却系の配管ルートを最短化をも同時に達成できる原子炉建屋とすることが出来る。   According to such a reactor building, an equipment room including emergency equipment is installed in the lower part of the RCCV internal pressure suppression room, and the RCCV and the equipment room are accommodated in the same projection plane, thereby reducing the area of the reactor building. More specifically, the installation space for the emergency core cooling system piping is secured in the pressure vessel pedestal that supports the reactor pressure vessel, thereby minimizing the piping route of the emergency core cooling system. The reactor building can be achieved at the same time.

本発明によれば、原子炉建屋の小型化および圧力抑制内のサプレッションプールから原子炉圧力容器への注水配管ルートの最短化により、より経済的な原子炉建屋を提供することができる。   According to the present invention, a more economical reactor building can be provided by downsizing the reactor building and minimizing the water injection piping route from the suppression pool in the pressure suppression to the reactor pressure vessel.

本発明の実施例においては、本発明の目的を次のような手法で達成している。
(1)圧力抑制室22内のサプレッションプール6の下方に機器室8を設置し、その機器室8に非常用炉心冷却系のポンプ等の機器を設置する。
(2)原子炉圧力容器を支持する圧力容器ペデスタル5に、圧力抑制室22内のサプレッションプール6と原子炉圧力容器2を結ぶ非常用炉心冷却系配管13を内蔵する。
(3)圧力容器ペデスタル5の下方に圧力容器ペデスタル5と重なるようにしてペネトレーション室9を設置する。
In the embodiment of the present invention, the object of the present invention is achieved by the following method.
(1) The equipment room 8 is installed below the suppression pool 6 in the pressure suppression room 22, and equipment such as an emergency core cooling system pump is installed in the equipment room 8.
(2) An emergency core cooling system pipe 13 that connects the suppression pool 6 in the pressure suppression chamber 22 and the reactor pressure vessel 2 is built in the pressure vessel pedestal 5 that supports the reactor pressure vessel.
(3) The penetration chamber 9 is installed below the pressure vessel pedestal 5 so as to overlap the pressure vessel pedestal 5.

本発明による原子炉建屋の実施例の一例について、図1に示す。図1に示すように、
RCCV1は原子炉圧力容器2を内蔵し、RCCV1内の上側に上部ドライウェル3を、また原子炉圧力容器2の下方に下部ドライウェル4を有している。
An example of an embodiment of a reactor building according to the present invention is shown in FIG. As shown in FIG.
The RCCV 1 includes a reactor pressure vessel 2, and has an upper dry well 3 on the upper side of the RCCV 1 and a lower dry well 4 on the lower side of the reactor pressure vessel 2.

下部ドライウェル4には原子炉圧力容器2を支持する圧力容器ペデスタル5およびドライウェルで発生した高温・高圧の蒸気を圧力抑制室22内のサプレッションプール6に導くためのベント管7を設置している。   The lower dry well 4 is provided with a pressure vessel pedestal 5 that supports the reactor pressure vessel 2 and a vent pipe 7 for guiding high-temperature and high-pressure steam generated in the dry well to the suppression pool 6 in the pressure suppression chamber 22. Yes.

また高温・高圧の蒸気を凝縮し、かつ非常用炉心冷却系の水源となる圧力抑制室22内のサプレッションプール6下部に機器室8,ペネトレーション室9および非常用炉心冷却系ポンプ10等を設置している。その非常用炉心冷却系ポンプ10と非常用炉心冷却系配管13は、非常用炉心冷却系の主要構成となっている。   Also, an equipment room 8, a penetration room 9, an emergency core cooling system pump 10, etc. are installed below the suppression pool 6 in the pressure suppression chamber 22 that condenses high-temperature and high-pressure steam and serves as a water source for the emergency core cooling system. ing. The emergency core cooling system pump 10 and the emergency core cooling system pipe 13 are the main components of the emergency core cooling system.

主蒸気配管11および給水配管12はタービン建屋との配管接続の最短化を考慮して従来通り上部ドライウェル3内を引き回した後、RCCV1の壁を貫通してタービン建屋に連絡するルートとしている。   The main steam pipe 11 and the water supply pipe 12 are routed through the wall of the RCCV 1 and connected to the turbine building after being routed through the upper dry well 3 as usual in consideration of minimizing the pipe connection with the turbine building.

このようにRCCV1と機器室8,ペネトレーション室9および非常用炉心冷却系ポンプ10等を同一投影面積内で上下に設置したことにより、平面的にコンパクトな建屋構成が可能となる。   Thus, the RCCV 1, the equipment room 8, the penetration room 9, the emergency core cooling system pump 10, and the like are installed vertically within the same projection area, so that a flat and compact building configuration is possible.

一方、非常用炉心冷却系配管13は圧力抑制室22内のサプレッションプール6を水源とし、圧力抑制室22内のサプレッションプール6の底部を配管で貫通させ、機器室8内に設置する非常用炉心冷却系ポンプ10に至る。さらにペネトレーション室9および圧力容器ペデスタル5に内蔵した非常用炉心冷却系配管スペース14を経由し、原子炉圧力容器2に接続される。   On the other hand, the emergency core cooling system piping 13 uses the suppression pool 6 in the pressure suppression chamber 22 as a water source, penetrates the bottom of the suppression pool 6 in the pressure suppression chamber 22 with piping, and is installed in the equipment chamber 8. It reaches the cooling system pump 10. Further, it is connected to the reactor pressure vessel 2 via an emergency core cooling system piping space 14 built in the penetration chamber 9 and the pressure vessel pedestal 5.

非常用炉心冷却系配管を内蔵した圧力容器ペデスタルの一例を図2に示す。圧力容器ペデスタル5内にはドライウェル内で発生した高温・高圧の蒸気を圧力抑制室22内のサプレッションプールに導くためのベント管7を設置し、このベント管7の間の空隙を非常用炉心冷却系配管13の引き回しスペースとしている。   An example of a pressure vessel pedestal incorporating an emergency core cooling system pipe is shown in FIG. A vent pipe 7 is installed in the pressure vessel pedestal 5 to guide the high-temperature and high-pressure steam generated in the dry well to the suppression pool in the pressure suppression chamber 22, and the space between the vent pipes 7 is used as an emergency core. A space for the cooling system pipe 13 is provided.

このような構造をもつ圧力容器ペデスタルを採用し、さらに前記の非常用炉心冷却系配管13のルートにより、配管ルートの最短化を図ることが可能となる。さらに非常用炉心冷却系配管13のルートはRCCVの外側を経由せず、ペネトレーション室も圧力抑制室22内のサプレッションプール6の下方に配置したことにより、従来のRCCV周りに配置されていた非常用炉心冷却系配管13のスペースやペネトレーションスペースを削除できる。   The pressure vessel pedestal having such a structure is adopted, and the route of the emergency core cooling system piping 13 can be further shortened. Furthermore, the route of the emergency core cooling system piping 13 does not pass through the outside of the RCCV, and the penetration chamber is disposed below the suppression pool 6 in the pressure suppression chamber 22, so that the emergency core disposed around the conventional RCCV is used. The space of the core cooling system piping 13 and the penetration space can be deleted.

これらのスペースは他の機器の設置エリアとして有効に活用するかまたは単にRCCVを周回する連絡通路とすることにより、プラントレイアウトの自由度を高めることができるほか、よりいっそうの原子炉建屋平面積の縮小も実現できる。   These spaces can be used effectively as installation areas for other equipment, or simply by using a communication passage around the RCCV, so that the degree of freedom in plant layout can be increased, and even more of the reactor building floor area can be increased. Reduction can also be realized.

本実施例の副次的な効果としては、非常用炉心冷却系配管13がほとんどRCCV1内で引き回されるため、RCCV1外側での配管破断のポテンシャルが大幅に低減するほか、ペネトレーション室9の集約設置により、耐圧試験および耐漏えい試験の簡素化,集中的な遮へい対策による遮へい物量低減および被ばく低減が実現できる。   As a secondary effect of the present embodiment, the emergency core cooling system pipe 13 is mostly routed in the RCCV1, so that the potential of pipe breakage outside the RCCV1 is greatly reduced, and the penetration chamber 9 is consolidated. By installing, it is possible to simplify the pressure test and leak resistance test, and to reduce the amount of shielding and exposure by intensive shielding measures.

また機器室8に設置される非常用炉心冷却系ポンプ10は圧力抑制室22内のサプレッションプール6の下部に設置され、圧力抑制室22内のサプレッションプールからの十分な必要吸込み水頭が確保できるため、従来の縦型ポンプに替え横型ポンプとすることが可能となり、ポンプの同一階での保守点検が出来るなどのスペース上および保守点検上のメリットを有している。   Further, the emergency core cooling system pump 10 installed in the equipment room 8 is installed in the lower part of the suppression pool 6 in the pressure suppression chamber 22 and can secure a sufficient necessary suction head from the suppression pool in the pressure suppression chamber 22. Therefore, it is possible to replace the conventional vertical pump with a horizontal pump, and there is a merit in terms of space and maintenance such that maintenance inspection can be performed on the same floor of the pump.

図3は本実施例による原子炉建屋最地下階の平面を示す図である。原子炉建屋15の内側にRCCVから基礎まで延長した円筒形の壁16を設置し、この壁の内側に機器室8を設置する。機器室8は系統分離要求に応じ、必要に応じて分離壁17を設置する。機器室の内側にはペネトレーション室9を設置し、遮蔽要求に応じて遮蔽壁21を設置する。   FIG. 3 is a diagram showing a plane of the lowest basement floor of the reactor building according to the present embodiment. A cylindrical wall 16 extending from the RCCV to the foundation is installed inside the reactor building 15, and the equipment room 8 is installed inside the wall. The equipment room 8 is provided with a separation wall 17 as required in response to a system separation request. A penetration room 9 is installed inside the equipment room, and a shielding wall 21 is installed according to the shielding requirement.

このようにRCCV1の投影面積内に機器室8およびペネトレーション室9が設置されるため建屋の平面寸法が合理的に低減可能となることに加え、原子炉建屋15とRCCV1との間のスペースは階段室やアクセスのための通路スペースのみとすることができるため建屋の大幅なコンパクト化が可能となる。   Thus, since the equipment room 8 and the penetration room 9 are installed within the projected area of the RCCV1, the plan dimension of the building can be reduced reasonably, and the space between the reactor building 15 and the RCCV1 is a staircase. Since only the room and the passage space for access can be provided, the building can be greatly downsized.

図4は前記実施例1のRCCV1において、下部ドライウェル4に床18を設置して、下部ドライウェル4を上下二つの空間に水密に区画したもので、上方の空間はリターンライン19に通じている。主蒸気配管11や給水配管12における配管破断等の事故時には非常用炉心冷却系が作用し、圧力抑制室22内のサプレッションプール6の水が非常用炉心冷却系ポンプ10により冷却水として原子炉圧力容器2に供給される。   FIG. 4 shows the RCCV 1 of the first embodiment in which a floor 18 is installed in the lower dry well 4 and the lower dry well 4 is partitioned into two upper and lower spaces in a watertight manner. The upper space leads to a return line 19. Yes. In the event of an accident such as a pipe breakage in the main steam pipe 11 or the feed water pipe 12, the emergency core cooling system acts, and the water in the suppression pool 6 in the pressure suppression chamber 22 is cooled by the emergency core cooling system pump 10 as the reactor water pressure. It is supplied to the container 2.

その後冷却水は下部ドライウェル4に滞留し、リターンライン19を経て圧力抑制室
22内のサプレッションプールへ至る。下部ドライウェルの容積が大きい場合には下部ドライウェルに滞留する水の容量が増加し、非常用炉心冷却系の水源である圧力抑制室22内のサプレッションプール水量が減少する。
Thereafter, the cooling water stays in the lower dry well 4 and reaches the suppression pool in the pressure suppression chamber 22 via the return line 19. When the volume of the lower dry well is large, the volume of water staying in the lower dry well increases, and the amount of suppression pool water in the pressure suppression chamber 22 that is the water source of the emergency core cooling system decreases.

このような場合下部ドライウェル4より上方、例えば上部ドライウェル3などに事故時に下部ドライウェル4に注水する水を貯蔵しておく必要が生じ、建屋の小型化を阻害する要因となる。   In such a case, it is necessary to store water to be poured into the lower dry well 4 at the time of an accident in the upper dry well 3 or the like, for example, which becomes a factor that hinders downsizing of the building.

そこで下部ドライウェル4に設置した床18により下部ドライウェル4の水が溜まる空間の容積を縮小し、下部ドライウェル4より上方に水を貯蔵しておく必要が無くなる。下部ドライウェル4の上部空間から分断された床18下方の下部空間20は、たとえばサンプを設置するサンプ室として利用できる。   Therefore, the floor 18 installed in the lower dry well 4 reduces the volume of the space in which the water in the lower dry well 4 accumulates, and there is no need to store water above the lower dry well 4. The lower space 20 below the floor 18 divided from the upper space of the lower dry well 4 can be used as, for example, a sump chamber in which a sump is installed.

一方床18の設置高さは下部ドライウェル4において制御棒引き抜きスペースを確保できるように設定すればよいため、下部ドライウェル4の容積が低減しても制御棒引き抜きは問題なく行える。また下部ドライウェル4へのアクセスルートは、従来のABWRのようにRCCV1の外部から圧力抑制室22内のサプレッションプール6を貫通し下部ドライウェル4に至るトンネルを設けることにより確保できる。   On the other hand, the installation height of the floor 18 may be set so that a control rod extraction space can be secured in the lower dry well 4, so that the control rod can be extracted without any problem even if the volume of the lower dry well 4 is reduced. Further, the access route to the lower dry well 4 can be secured by providing a tunnel extending from the outside of the RCCV 1 through the suppression pool 6 in the pressure suppression chamber 22 to the lower dry well 4 as in the conventional ABWR.

本発明は、原子力発電所の原子炉建屋に適用される。   The present invention is applied to a nuclear power plant reactor building.

本発明の第1実施例による原子炉建屋の縦断面図である。1 is a longitudinal sectional view of a reactor building according to a first embodiment of the present invention. 図1の圧力容器ペデスタルの横断面図である。It is a cross-sectional view of the pressure vessel pedestal of FIG. 図1の原子炉建屋の機器室高さレベルでの横断面図である。FIG. 2 is a cross-sectional view of the reactor building of FIG. 1 at the equipment room height level. 本発明の第2実施例による原子炉建屋の縦断面図である。It is a longitudinal cross-sectional view of the reactor building by 2nd Example of this invention.

符号の説明Explanation of symbols

1…原子炉格納容器、2…原子炉圧力容器、3…上部ドライウェル、4…下部ドライウェル、5…圧力容器ペデスタル、6…サプレッションプール、7…ベント管、8…機器室、9…ペネトレーション室、10…非常用炉心冷却系ポンプ、11…主蒸気配管、12…給水配管、13…非常用炉心冷却系配管、14…非常用炉心冷却系配管スペース、15…原子炉建屋、16…円筒形の壁、17…分離壁、18…床、19…リターンライン、20…床の下部空間、21…遮蔽壁、22…圧力抑制室。
DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Reactor pressure vessel, 3 ... Upper dry well, 4 ... Lower dry well, 5 ... Pressure vessel pedestal, 6 ... Suppression pool, 7 ... Vent pipe, 8 ... Equipment room, 9 ... Penetration Chamber 10 Emergency core cooling system pump 11 Main steam piping 12 Water supply piping 13 Emergency core cooling piping 14 Emergency core cooling piping space 15 Reactor building 16 Cylindrical Shape wall, 17 ... separation wall, 18 ... floor, 19 ... return line, 20 ... lower space of floor, 21 ... shielding wall, 22 ... pressure suppression chamber.

Claims (3)

原子炉圧力容器を内蔵する原子炉格納容器と、前記原子炉圧力容器を取り囲む上部ドライウェルと、前記上部ドライウェルの下方に位置し前記原子炉圧力容器の下方に位置する下部ドライウェルと、前記下部ドライウェルの周囲に位置する圧力抑制室と、前記上部ドライウェルの内に流出した蒸気を前記圧力抑制室に導くベント管と、前記原子炉圧力容器を前記原子炉格納容器内で支持するペデスタルと、前記圧力抑制室と前記原子炉圧力容器とを注水配管を介して連絡する非常用炉心冷却系とを具備する原子炉建屋において、A reactor containment vessel containing a reactor pressure vessel, an upper dry well surrounding the reactor pressure vessel, a lower dry well located below the upper dry well and below the reactor pressure vessel, and A pressure suppression chamber located around the lower dry well; a vent pipe for guiding the vapor flowing into the upper dry well to the pressure suppression chamber; and a pedestal for supporting the reactor pressure vessel in the reactor containment vessel And a reactor building comprising an emergency core cooling system that connects the pressure suppression chamber and the reactor pressure vessel via a water injection pipe,
前記下部ドライウェルの周囲でかつ前記圧力抑制室の下方に配置され、機器を収納する機器室を具備し、前記注水配管が前記機器室及び前記ペデスタル内に配置され、前記下部ドライウェルの水平外側に前記注水配管が通されるペネトレーション室を介して前記機器室が配置され、前記ペネトレーション室は前記ペデスタルと上下方向に重なり合っている配置とされていることを特徴とする原子炉建屋。A device room is disposed around the lower dry well and below the pressure suppression chamber, and stores a device. The water injection pipe is disposed in the device chamber and the pedestal, and is disposed horizontally outside the lower dry well. The reactor room is disposed through a penetration chamber through which the water injection pipe is passed, and the penetration chamber is disposed so as to overlap the pedestal in the vertical direction.
原子炉圧力容器を内蔵する原子炉格納容器と、前記原子炉圧力容器を取り囲む上部ドライウェルと、前記上部ドライウェルの下方に位置し前記原子炉圧力容器の下方に位置する下部ドライウェルと、前記下部ドライウェルの周囲に位置する圧力抑制室と、前記上部ドライウェルの内に流出した蒸気を前記圧力抑制室に導くベント管と、前記原子炉圧力容器を前記原子炉格納容器内で支持するペデスタルと、前記圧力抑制室と前記原子炉圧力容器とを注水配管を介して連絡する非常用炉心冷却系とを具備する原子炉建屋において、A reactor containment vessel containing a reactor pressure vessel, an upper dry well surrounding the reactor pressure vessel, a lower dry well located below the upper dry well and below the reactor pressure vessel, and A pressure suppression chamber located around the lower dry well; a vent pipe for guiding the vapor flowing into the upper dry well to the pressure suppression chamber; and a pedestal for supporting the reactor pressure vessel in the reactor containment vessel And a reactor building comprising an emergency core cooling system that connects the pressure suppression chamber and the reactor pressure vessel via a water injection pipe,
前記下部ドライウェルの周囲でかつ前記圧力抑制室の下方に配置され、機器を収納する機器室を具備し、前記注水配管が前記機器室及び前記ペデスタル内に配置され、前記圧力容器ペデスタルには前記下部ドライウェルと前記圧力抑制室とを連絡する水路となるリターンラインを備え、前記下部ドライウェルの空間を前記リターンラインに通じる少なくともひとつの空間を含む複数の空間に水密に区画する床を前記下部ドライウェルに設置し、前記下部ドライウェルの水平外側に前記注水配管が通されるペネトレーション室を介して前記機器室が配置され、前記ペネトレーション室は前記ペデスタルと上下方向に重なり合っている配置とされていることを特徴とする原子炉建屋。It is arranged around the lower dry well and below the pressure suppression chamber, and has an equipment room for housing equipment, the water injection pipe is arranged in the equipment room and the pedestal, and the pressure vessel pedestal has the A lower line is provided with a return line serving as a water channel connecting the lower dry well and the pressure suppression chamber, and the lower dry well is partitioned into a plurality of spaces including at least one space communicating with the return line. The equipment room is arranged through a penetration chamber that is installed in a dry well and the water injection pipe is passed through the horizontal outside of the lower dry well, and the penetration chamber is arranged to overlap the pedestal in the vertical direction. Reactor building, characterized by
請求項2において、前記下部ドライウェルと前記ペネトレーション室と前記機器室とは互いに壁で区画されていることを特徴とする原子炉建屋。3. The nuclear reactor building according to claim 2, wherein the lower dry well, the penetration room, and the equipment room are partitioned by a wall.
JP2006051467A 2006-02-28 2006-02-28 Reactor building Expired - Fee Related JP4467531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051467A JP4467531B2 (en) 2006-02-28 2006-02-28 Reactor building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051467A JP4467531B2 (en) 2006-02-28 2006-02-28 Reactor building

Publications (2)

Publication Number Publication Date
JP2007232419A JP2007232419A (en) 2007-09-13
JP4467531B2 true JP4467531B2 (en) 2010-05-26

Family

ID=38553158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051467A Expired - Fee Related JP4467531B2 (en) 2006-02-28 2006-02-28 Reactor building

Country Status (1)

Country Link
JP (1) JP4467531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335762B (en) * 2018-03-30 2024-05-10 中广核研究院有限公司 Reactor pressure vessel and support structure applied to same

Also Published As

Publication number Publication date
JP2007232419A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4834349B2 (en) Reactor containment cooling equipment
JP5006178B2 (en) Reactor containment vessel and nuclear power plant using the same
JP5679783B2 (en) Reactor containment and nuclear power plant
US10991471B2 (en) Emergency core cooling system and boiling water reactor plant using the same
TW201324534A (en) Pressurized water reactor with compact passive safety systems
JP6071404B2 (en) Nuclear plant and static containment cooling system
US7684535B2 (en) Reactor containment vessel
US20160336081A1 (en) Operating floor confinement and nuclear plant
KR101397311B1 (en) Foundation for a building in a nuclear facility and nuclear facility
JP4467531B2 (en) Reactor building
JP2004061276A (en) Reactor containment vessel
JP4908012B2 (en) Boiling water reactor
JP2008039403A (en) Nuclear reactor containment installation and nuclear reactor building
JP2010160061A (en) Nuclear reactor building and construction method for the same
JP7321045B2 (en) nuclear power plant
JP2004085234A (en) Facility for containing nuclear reactor
JP2008196716A (en) Turbine building integrated with condenser made of steel plate concrete, and its construction method
JPS642231B2 (en)
JP4436797B2 (en) Reactor facility
JPH10282285A (en) Reactor building
WO2017187563A1 (en) Turbine building and nuclear power plant
JPS6330785A (en) Reactor pressure-vessel support structure
JP2002168985A (en) Reactor container
JP3146050B2 (en) Reactor containment vessel
JPS63284495A (en) Transient storage equipment for radioactive drain water of nuclear power plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R150 Certificate of patent or registration of utility model

Ref document number: 4467531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees