JP4467343B2 - Method for producing 2,6-naphthalenedicarboxylic acid - Google Patents

Method for producing 2,6-naphthalenedicarboxylic acid Download PDF

Info

Publication number
JP4467343B2
JP4467343B2 JP2004092510A JP2004092510A JP4467343B2 JP 4467343 B2 JP4467343 B2 JP 4467343B2 JP 2004092510 A JP2004092510 A JP 2004092510A JP 2004092510 A JP2004092510 A JP 2004092510A JP 4467343 B2 JP4467343 B2 JP 4467343B2
Authority
JP
Japan
Prior art keywords
naphthalenedicarboxylic acid
lower alkyl
acid
hydrolysis
nda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004092510A
Other languages
Japanese (ja)
Other versions
JP2005272425A (en
Inventor
雅也 北山
浩之 若森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Original Assignee
Ueno Fine Chemicals Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2004092510A priority Critical patent/JP4467343B2/en
Priority to EP05006639A priority patent/EP1591435A3/en
Priority to KR1020050025030A priority patent/KR20060044775A/en
Priority to CN2005100685349A priority patent/CN1680264B/en
Priority to TW094109268A priority patent/TW200533646A/en
Priority to US11/090,054 priority patent/US7355071B2/en
Publication of JP2005272425A publication Critical patent/JP2005272425A/en
Application granted granted Critical
Publication of JP4467343B2 publication Critical patent/JP4467343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、2,6−ナフタレンジカルボン酸のジ低級アルキルエステルを塩基性化合物の存在下に加水分解し2,6−ナフタレンジカルボン酸のジカルボン酸塩の溶液を得た後に、酸析する工程を含んでなる、2,6−ナフタレンジカルボン酸の製造方法に関する。   The present invention includes a step of acidifying after di-lower alkyl ester of 2,6-naphthalenedicarboxylic acid is hydrolyzed in the presence of a basic compound to obtain a solution of 2,6-naphthalenedicarboxylic acid dicarboxylate. The production method of 2,6-naphthalenedicarboxylic acid.

2,6−ナフタレンジカルボン酸(以下2,6−NDAと記載)はポリエチレンナフタレ−トや、液晶性ポリエステル、ポリアミドなど、種々の高分子用モノマーとして重要な化合物である。また、2,6−ナフタレンジカルボン酸のジ低級アルキルエステル(以下2,6−NDCと記載)は、2,6−NDAと同様に、種々の高分子用モノマーとして重要である。2,6−NDCのうち、融点などの物性面や、モノマーとしての使いやすさから2,6−ナフタレンジカルボン酸ジメチルエステルが最も重要であり、広く利用されている。   2,6-naphthalenedicarboxylic acid (hereinafter referred to as 2,6-NDA) is an important compound as a monomer for various polymers such as polyethylene naphthalate, liquid crystalline polyester, and polyamide. Further, 2,6-naphthalenedicarboxylic acid di-lower alkyl ester (hereinafter referred to as 2,6-NDC) is important as a monomer for various polymers, like 2,6-NDA. Of 2,6-NDC, 2,6-naphthalenedicarboxylic acid dimethyl ester is the most important and widely used because of its physical properties such as melting point and ease of use as a monomer.

従来2,6−NDAの製法としては、2,6位をアルキル基および/またはアシル基で置換されたナフタレンを、コバルト、マンガン等の重金属を触媒に用い、アルキル基および/またはアシル基を分子状酸素により酸化する製法などが知られている。しかし、この方法により得られた粗2,6−NDAは、アルデヒド型の中間体や、酸化重合体などの不純物を含んでいるために、直接、高分子用モノマーとして使用する事はできないものであった。このため上記の方法により得られた粗2,6−NDAに関して、種々の精製方法が検討されている。   Conventionally, 2,6-NDA is produced by using naphthalene substituted at the 2,6-position with an alkyl group and / or an acyl group and a heavy metal such as cobalt or manganese as a catalyst, and then converting the alkyl group and / or acyl group into a molecule. A production method that oxidizes with gaseous oxygen is known. However, the crude 2,6-NDA obtained by this method contains impurities such as aldehyde-type intermediates and oxidation polymers, so it cannot be used directly as a polymer monomer. there were. For this reason, various purification methods have been studied for the crude 2,6-NDA obtained by the above method.

粗2,6−NDAの精製方法として、例えば、メタノールなどの低級アルコールにより粗2,6−NDAをエステル化した後に、蒸留、再結晶などの方法により精製された2,6−NDCを得た後に、エステル基を分解し、高純度の2,6−NDAを得る方法が一般的に知られている。   As a method for purifying crude 2,6-NDA, for example, 2,6-NDA was obtained by esterification of crude 2,6-NDA with a lower alcohol such as methanol and then by distillation, recrystallization and the like. Later, a method for decomposing an ester group to obtain 2,6-NDA with high purity is generally known.

上記の2,6−NDCのエステル基の分解による高純度の2,6−NDAの製法としては、酸触媒によりエステル基の分解を行う方法、特定の条件下で水によりエステル基の分解を行う方法、および塩基性触媒によりエステル基の分解を行う方法などが提案されている。   As a method of producing high purity 2,6-NDA by decomposing the ester group of 2,6-NDC, a method of decomposing the ester group with an acid catalyst, or decomposing the ester group with water under specific conditions A method and a method of decomposing an ester group with a basic catalyst have been proposed.

酸触媒によりエステル基を分解する方法としては、酸触媒および脂肪族カルボン酸の存在下に2,6−NDCのエステル基の分解を行い、高純度の2,6−NDAを得る方法が知られている(特許文献1を参照)。しかし、この方法においては反応に長時間を要し、エステル基の分解工程において副生物として脂肪族カルボン酸エステル類が生じてしまうなどの問題がある。   As a method for decomposing an ester group with an acid catalyst, a method is known in which the ester group of 2,6-NDC is decomposed in the presence of an acid catalyst and an aliphatic carboxylic acid to obtain 2,6-NDA of high purity. (See Patent Document 1). However, this method has a problem that a long time is required for the reaction, and aliphatic carboxylic acid esters are generated as a by-product in the ester group decomposition step.

水を用いて特定の条件下でエステル基を分解する方法としては、液相条件下で、反応温度において生成する2,6−NDAの少なくとも約10%を可溶化するのに十分な量の水の存在下に、少なくとも華氏450度(摂氏232度)の反応温度で2,6−NDCのエステル基を加水分解する方法が知られている(特許文献2を参照)。しかし、この方法においては華氏450度以上の非常に高い温度を必要とすることや、水の沸点より非常に高い温度で反応することにより高圧で反応させる必要があるなど、工業的実施には困難を伴うものである。   A method for decomposing ester groups under certain conditions with water includes a sufficient amount of water to solubilize at least about 10% of the 2,6-NDA produced at the reaction temperature under liquid phase conditions. There is known a method of hydrolyzing the ester group of 2,6-NDC at a reaction temperature of at least 450 degrees Fahrenheit (232 degrees Celsius) in the presence of (see Patent Document 2). However, this method requires a very high temperature of 450 degrees Fahrenheit, or requires a reaction at a high pressure by reacting at a temperature much higher than the boiling point of water. It is accompanied by.

塩基性触媒によりエステル基を分解する方法としては、水あるいは水と水混和性有機溶媒の混合溶媒中で塩基性触媒によりエステル基の加水分解を行った後に、酸析により2,6−NDAを回収する方法が知られている(特許文献3を参照)。しかし、この方法においては水、あるいは水と水混和性有機溶媒の混合溶媒に対する、2,6−NDCの溶解度が非常に小さいために、2,6−NDCが完全には加水分解されない、または完全に加水分解するには長時間を要するという問題がある。
特開平6−256256号公報 特表平6−505512号公報 特開平3−240750号公報
As a method for decomposing an ester group with a basic catalyst, hydrolysis of the ester group with a basic catalyst in water or a mixed solvent of water and a water-miscible organic solvent is performed, and then 2,6-NDA is obtained by acid precipitation. A method of collecting is known (see Patent Document 3). However, in this method, the solubility of 2,6-NDC in water or a mixed solvent of water and a water-miscible organic solvent is so small that 2,6-NDC is not completely hydrolyzed or completely dissolved. There is a problem that it takes a long time to hydrolyze.
JP-A-6-256256 JP-T 6-505512 JP-A-3-240750

本発明は、高純度の2,6−NDAを高温、高圧などの激しい条件を必要とせず、特別な装置などを用いない簡易な工程で、短時間で製造する方法を提供することを目的とする。   It is an object of the present invention to provide a method for producing high-purity 2,6-NDA in a short time with a simple process that does not require special conditions and does not require severe conditions such as high temperature and high pressure. To do.

本発明者らは、2,6−NDCを塩基性化合物の存在下に加水分解し2,6−NDAのカルボン酸塩の溶液を得た後に、それを酸析する工程を含んでなる、2,6−NDAの製造方法について鋭意検討した結果、まず少量の水の存在下に、水と自由に混和する有機溶媒中で塩基性化合物による第一加水分解を行い、2,6−NDCが加水分解により2,6−NDAのモノエステル体または2,6−NDAのカルボン酸塩へとほぼ転化された後に多量の水を添加することによりさらに第二加水分解を行い、第二加水分解により得られた反応液を酸析することにより、速やかに高純度の2,6−NDAが得られることを見出し、本発明の完成に到った。   The present inventors include a step of hydrolyzing 2,6-NDC in the presence of a basic compound to obtain a 2,6-NDA carboxylate solution and then acidifying it. As a result of intensive investigations on the production method of 1,6-NDA, first, in the presence of a small amount of water, first hydrolysis with a basic compound is performed in an organic solvent freely mixed with water, and 2,6-NDC is hydrolyzed. After being almost converted to a 2,6-NDA monoester or 2,6-NDA carboxylate by decomposition, a large amount of water is added to perform a second hydrolysis, which is obtained by the second hydrolysis. It was found that high purity 2,6-NDA can be obtained quickly by acidifying the obtained reaction solution, and the present invention has been completed.

すなわち本発明は、2,6−NDCを塩基性化合物の存在下に加水分解し2,6−NDAのジカルボン酸塩の溶液を得た後に、それを酸析する工程を含んでなる2,6−NDAの製造方法において、以下の(1)〜(3)の工程を含むことを特徴とする、2,6−NDAの製造方法を提供する。
(1)2,6−NDC1モルに対し2〜10モルの水の存在下に、2,6−NDCに対して5〜20倍重量の水と自由に混和する有機溶媒中で、塩基性化合物と2,6−NDCとを、2,6−NDCの80%以上が転化するまで反応させる第一加水分解工程。
(2)第一加水分解反応液に、工程(1)において仕込んだ2,6−NDCに対し5〜20倍重量の水を加え、さらに反応させる第二加水分解工程。
(3)第二加水分解反応液を酸析し、2,6−ナフタレンジカルボン酸を得る工程。
なお、本明細書および特許請求の範囲において低級とは、炭素原子数1〜6であるものを表す。
That is, the present invention comprises a step of hydrolyzing 2,6-NDC in the presence of a basic compound to obtain a 2,6-NDA dicarboxylate solution, and then acidifying it. -The manufacturing method of 2,6-NDA characterized by including the process of the following (1)-(3) in the manufacturing method of NDA.
(1) A basic compound in an organic solvent that is freely miscible with 5 to 20 times the weight of 2,6-NDC in the presence of 2 to 10 moles of water with respect to 1 mole of 2,6-NDC And a first hydrolysis step in which 2,6-NDC is reacted until 80% or more of 2,6-NDC is converted.
(2) A second hydrolysis step in which 5 to 20 times weight of water is added to the first hydrolysis reaction solution with respect to 2,6-NDC charged in step (1) and further reacted.
(3) A step of acidifying the second hydrolysis reaction solution to obtain 2,6-naphthalenedicarboxylic acid.
In the present specification and claims, the term “lower” means one having 1 to 6 carbon atoms.

本発明に使用する2,6−NDCは、従来公知の何れの方法により得られた物でもよい。例えば、2,6位をアルキル基および/またはアシル基で置換されたナフタレンを、コバルト、マンガン等の重金属などを触媒に用い、アルキル基および/またはアシル基を分子状酸素により酸化することにより得られた粗2,6−NDAを、硫酸、p−トルエンスルホン酸などの酸触媒の存在下、低級アルコールなどと反応させることにより得ることが出来る。
2,6−NDCにおける低級アルキルは、炭素原子数1〜6の直鎖状または分枝鎖状の飽和炭化水素基であればいずれでもよいが、入手容易性の点などからメチルが好適である。
The 2,6-NDC used in the present invention may be obtained by any conventionally known method. For example, naphthalene substituted at the 2,6 position with an alkyl group and / or an acyl group is obtained by oxidizing a alkyl group and / or an acyl group with molecular oxygen using a heavy metal such as cobalt or manganese as a catalyst. The obtained crude 2,6-NDA can be obtained by reacting with a lower alcohol or the like in the presence of an acid catalyst such as sulfuric acid or p-toluenesulfonic acid.
The lower alkyl in 2,6-NDC may be any straight-chain or branched saturated hydrocarbon group having 1 to 6 carbon atoms, but methyl is preferred from the standpoint of availability. .

本発明の方法は、加水分解に必要な少量の水の存在下に、水と自由に混和する有機溶媒中で、2,6−NDCの第一加水分解を行うことを特徴とする。
第一加水分解時に系内に存在する水の量は、2,6−NDCに対して2〜10モル、好ましくは4〜6モルである。
The method of the present invention is characterized in that the first hydrolysis of 2,6-NDC is carried out in an organic solvent freely mixed with water in the presence of a small amount of water necessary for hydrolysis.
The amount of water present in the system during the first hydrolysis is 2 to 10 mol, preferably 4 to 6 mol, relative to 2,6-NDC.

本発明において使用する、水と自由に混和する有機溶媒としては、メタノール、エタノール、イソプロパノール、2−メトキシエタノール、2−エトキシエタノール、エチレングリコール、グリセリンおよびポリエチレングリコール200などのアルコール系溶媒、アセトンなどのケトン系溶媒、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチル−2−ピロリドンなどの非プロトン性極性溶媒などが挙げられる。水と自由に混和する有機溶媒は上記の群から選択される1種または2種以上を組み合わせて使用してもよい。   Examples of organic solvents that are freely mixed with water used in the present invention include alcohol solvents such as methanol, ethanol, isopropanol, 2-methoxyethanol, 2-ethoxyethanol, ethylene glycol, glycerin and polyethylene glycol 200, and acetone. Examples include ketone solvents, aprotic polar solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoramide, and N-methyl-2-pyrrolidone. The organic solvent that is freely miscible with water may be used alone or in combination of two or more selected from the above group.

上記の溶媒のなかでは、アルコール系溶媒が、蒸留により精製し易い点や、塩基性の加水分解条件下で安定であり品質の低下が少ないことなどから好ましい。   Among the above-mentioned solvents, alcohol solvents are preferable because they are easily purified by distillation, are stable under basic hydrolysis conditions, and have little deterioration in quality.

本発明の第一加水分解工程において、水と自由に混和する有機溶媒の使用量は、2,6−NDCに対して5〜20倍重量、好ましくは7〜10倍重量がよい。水と自由に混和する有機溶媒の重量が2,6−NDCに対して5倍重量より少なければ、反応液のスラリー濃度が高いために攪拌状況が悪化し、反応速度が低下する。20倍重量より多ければ、酸析後の母液への2,6−NDAの溶解量が増加し、歩留まりの点で問題となる。   In the first hydrolysis step of the present invention, the amount of the organic solvent that is freely miscible with water is 5 to 20 times the weight, preferably 7 to 10 times the weight of 2,6-NDC. If the weight of the organic solvent that is freely mixed with water is less than 5 times the weight of 2,6-NDC, the slurry concentration of the reaction solution is high, so that the stirring situation is deteriorated and the reaction rate is lowered. If it is more than 20 times the weight, the amount of 2,6-NDA dissolved in the mother liquor after acid precipitation increases, which causes a problem in terms of yield.

本発明において加水分解に使用する塩基性化合物としては、アルカリ金属化合物が好ましい。アルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩、ナトリウムメトキシド、カリウムメトキシドなどのアルカリ金属の低級アルコキシドが挙げられる。   In the present invention, the basic compound used for hydrolysis is preferably an alkali metal compound. Examples of the alkali metal compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, Examples include alkali metal lower alkoxides such as sodium methoxide and potassium methoxide.

アルカリ金属化合物などの塩基性化合物は、固体で使用してもよく、水溶液または上述の水と自由に混和する有機溶媒の溶液として添加しても良い。
塩基性化合物の使用量は、2,6−NDCのエステル基に対して1.0〜5.0当量であるのが好ましく、1.1〜2.0当量であるのが特に好ましい。
The basic compound such as an alkali metal compound may be used as a solid, or may be added as an aqueous solution or a solution of an organic solvent that is freely miscible with water.
The amount of the basic compound used is preferably 1.0 to 5.0 equivalents, particularly preferably 1.1 to 2.0 equivalents, relative to the ester group of 2,6-NDC.

本発明において、第一加水分解は、40〜100℃で行うのが好ましい。より好ましくは、60〜100℃で行うのがよい。さらに好ましくは、溶媒によって異なるが、その系における沸点温度で還流状態で行うのがよい。
第一加水分解反応時間は1〜5時間が好ましい。
In the present invention, the first hydrolysis is preferably performed at 40 to 100 ° C. More preferably, it is good to carry out at 60-100 degreeC. More preferably, although it depends on the solvent, the reaction should be carried out at reflux temperature at the boiling temperature in the system.
The first hydrolysis reaction time is preferably 1 to 5 hours.

第一加水分解の終了を示す2,6−NDCの転化を確認する分析手段は特に限定されないが、例えば、高速液体クロマトグラフィーなどの方法により確認することができる。
ここで、2,6−NDCの転化とは、2,6−NDCが加水分解反応により2,6−NDAのモノエステル体の塩または2,6−NDAのジカルボン酸塩へ変化することをいう。
The analysis means for confirming the conversion of 2,6-NDC indicating the end of the first hydrolysis is not particularly limited, but can be confirmed by a method such as high performance liquid chromatography.
Here, the conversion of 2,6-NDC means that 2,6-NDC is converted into a salt of a monoester of 2,6-NDA or a dicarboxylate of 2,6-NDA by a hydrolysis reaction. .

第一加水分解反応での2,6−NDCの転化率は、仕込み量に対して80%以上であるのが好ましく、90%以上であるのが特に好ましく、95%以上であるのがさらに好ましい。   The conversion rate of 2,6-NDC in the first hydrolysis reaction is preferably 80% or more, particularly preferably 90% or more, and more preferably 95% or more with respect to the charged amount. .

本発明の第二加水分解工程における加水量は、第一加水分解工程で仕込んだ2,6−NDCに対し5〜20倍重量、好ましくは7〜10倍重量を用いるのがよい。加水量が5倍重量以下であると、2,6−NDAのモノエステル体の塩が析出しやすく反応速度が遅くなる。加水量が20倍重量より多いと、容積効率が悪化する問題がある。   The amount of hydrolysis in the second hydrolysis step of the present invention is 5 to 20 times, preferably 7 to 10 times the weight of 2,6-NDC charged in the first hydrolysis step. If the amount of water added is 5 times or less, 2,6-NDA monoester salt is likely to precipitate, resulting in a slow reaction rate. When the amount of water added is more than 20 times the weight, there is a problem that the volumetric efficiency is deteriorated.

第二加水分解での反応温度は、第一加水分解に記載した条件と同様でよい。
第二加水分解反応時間は0.5〜2時間が好ましい。
The reaction temperature in the second hydrolysis may be the same as the conditions described in the first hydrolysis.
The second hydrolysis reaction time is preferably 0.5 to 2 hours.

本発明の方法により得られる酸析前の、2,6−NDAのジカルボン酸塩の溶液に対して必要に応じ、不溶性の異物を除去するためのろ過、着色性物質、金属などを除去するための活性炭などを用いた吸着剤処理を行っても良い。
また、酸析前に、酸析により生じた塩類の析出による2,6−NDAへの塩類の混入を防ぐ為に、さらに、第二加水分解工程で加えた水と同程度の量の水を反応液に加えてもよい。
To remove 2,6-NDA dicarboxylate solution obtained by the method of the present invention, if necessary, filtration for removing insoluble foreign substances, coloring substances, metals, etc. Adsorbent treatment using activated carbon or the like may be performed.
In addition, before acid precipitation, in order to prevent salt from being mixed into 2,6-NDA due to precipitation of salts caused by acid precipitation, an amount of water similar to that added in the second hydrolysis step is further added. You may add to a reaction liquid.

本発明において酸析工程で使用される酸は特に限定されないが、鉱酸が好適に用いられる。鉱酸としては例えば、塩酸、フッ化水素酸のような二元酸、硫酸、硝酸、リン酸、過塩素酸のようなオキソ酸が挙げられる。   The acid used in the acid precipitation step in the present invention is not particularly limited, but a mineral acid is preferably used. Examples of the mineral acid include binary acids such as hydrochloric acid and hydrofluoric acid, and oxo acids such as sulfuric acid, nitric acid, phosphoric acid, and perchloric acid.

酸析により得られた、2,6−NDAのスラリーを、遠心分離、フィルタープレスによるろ過などの常法により、分離する。分離された2,6−NDAは、必要により冷水、温水により洗浄した後に乾燥する。   The 2,6-NDA slurry obtained by acid precipitation is separated by conventional methods such as centrifugation and filtration with a filter press. The separated 2,6-NDA is dried after being washed with cold water or hot water as necessary.

このようにして得られた、2,6−NDAはポリエチレンナフタレートや、液晶性ポリエステル、ポリアミドなど、種々の高分子用モノマーとして、好適に利用される。   The 2,6-NDA thus obtained is suitably used as a monomer for various polymers such as polyethylene naphthalate, liquid crystalline polyester, and polyamide.

以下、実施例により本発明を詳細に説明する。
(実施例1)
攪拌装置、温度計、ジムロート冷却器を取り付けた、容量2Lのガラス製四つ口コルベンに、2,6−ナフタレンジカルボン酸ジメチルエステル40g(0.164モル)、メタノール400g、および48%水酸化ナトリウム28.6gを仕込んだ。反応開始時の水分量は2,6−ナフタレンジカルボン酸ジメチルエステルに対して5倍モルであった。
攪拌下に65℃まで昇温し、還流状態で第一加水分解として1.5時間反応を行った。反応1.5時間の時点で、反応液をサンプリングし、高速液体クロマトグラフィーにより、2,6−ナフタレンジカルボン酸ジメチルエステルが、2,6−NDAのモノメチルエステルおよび2,6−NDAの塩にほぼ100%転化していることを確認した。
反応液に400gの水を加えた後、74℃に昇温し、第二加水分解として、さらに30分間反応を行った。この後に、反応液に400gの水を加え80℃に昇温し、30%硫酸水溶液62gを30分かけて滴下し酸析し、2,6−NDAの懸濁液を得た。
得られた2,6−NDAの懸濁液を吸引ろ過した後に、温水洗浄、乾燥したところ、35.4g(0.164モル、収率>99%)と、2,6−NDAの結晶が定量的に得られた。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
To a 2L glass four-necked Kolben equipped with a stirrer, thermometer, and Jimroth condenser, 2,6-naphthalenedicarboxylic acid dimethyl ester 40 g (0.164 mol), methanol 400 g, and 48% sodium hydroxide 28.6 g was charged. The water content at the start of the reaction was 5 times moles relative to 2,6-naphthalenedicarboxylic acid dimethyl ester.
The temperature was raised to 65 ° C. with stirring, and the reaction was performed for 1.5 hours as the first hydrolysis under reflux. At the time of 1.5 hours of reaction, the reaction solution was sampled, and 2,6-naphthalenedicarboxylic acid dimethyl ester was converted into 2,6-NDA monomethyl ester and 2,6-NDA salt by high performance liquid chromatography. 100% conversion was confirmed.
After adding 400 g of water to the reaction solution, the temperature was raised to 74 ° C., and the reaction was further performed for 30 minutes as the second hydrolysis. Thereafter, 400 g of water was added to the reaction solution, the temperature was raised to 80 ° C., 62 g of 30% sulfuric acid aqueous solution was dropped over 30 minutes and acidified to obtain a 2,6-NDA suspension.
The obtained 2,6-NDA suspension was subjected to suction filtration, washed with warm water, and dried. As a result, 35.4 g (0.164 mol, yield> 99%) and 2,6-NDA crystals were obtained. Obtained quantitatively.

(実施例2〜7)
溶媒および反応温度を表1の条件に変える他は、実施例1と同様に2,6−NDAを調製した。なお、何れも第一加水分解反応を1.5時間行った時点で、反応液をサンプリングし、高速液体クロマトグラフィーにより、2,6−ナフタレンジカルボン酸ジメチルエステルが、2,6−NDAのモノメチルエステルおよび2,6−NDAの塩にほぼ100%転化していることを確認した。
(Examples 2 to 7)
2,6-NDA was prepared in the same manner as in Example 1 except that the solvent and reaction temperature were changed to the conditions shown in Table 1. In any case, when the first hydrolysis reaction was carried out for 1.5 hours, the reaction solution was sampled, and 2,6-naphthalenedicarboxylic acid dimethyl ester was converted to 2,6-NDA monomethyl ester by high performance liquid chromatography. And almost 100% conversion to 2,6-NDA salt.

Figure 0004467343
Figure 0004467343

(比較例1)
攪拌装置、温度計、ジムロート冷却器を取り付けた、容量2Lのガラス製四つ口コルベンに、2,6−ナフタレンジカルボン酸ジメチルエステル40g(0.164モル)、50重量%のメタノール水溶液800g、および48%水酸化ナトリウム28.6gを仕込んだ。
攪拌下に90℃まで昇温し、還流状態で5時間反応を行った。反応5時間の時点で、反応液をサンプリングし、高速液体クロマトグラフィーにより分析を行った。
分析の結果、反応液中の比率は、2,6−ナフタレンジカルボン酸ジメチルエステル約40重量%、2,6−ナフタレンジカルボン酸モノメチルエステル約40重量%、2,6−ナフタレンジカルボン酸約20重量%であり、反応5時間では、加水分解反応は完全には進行しなかった。
このように、多量の水の存在下に一段階の加水分解反応を行った場合では、効率的に2,6−NDAを得ることはできなかった。
(Comparative Example 1)
To a 2 L glass four-necked colben fitted with a stirrer, thermometer, and Jimroth condenser, 2,6-naphthalenedicarboxylic acid dimethyl ester 40 g (0.164 mol), 50 wt% aqueous methanol solution 800 g, and 48% sodium hydroxide (28.6 g) was charged.
The temperature was raised to 90 ° C. with stirring, and the reaction was carried out for 5 hours under reflux. At the time of 5 hours of reaction, the reaction solution was sampled and analyzed by high performance liquid chromatography.
As a result of the analysis, the ratio in the reaction solution was about 40% by weight of 2,6-naphthalenedicarboxylic acid dimethyl ester, about 40% by weight of 2,6-naphthalenedicarboxylic acid monomethyl ester, and about 20% by weight of 2,6-naphthalenedicarboxylic acid. In the reaction time of 5 hours, the hydrolysis reaction did not proceed completely.
Thus, when a one-stage hydrolysis reaction was performed in the presence of a large amount of water, 2,6-NDA could not be obtained efficiently.

Claims (4)

2,6−ナフタレンジカルボン酸のジ低級アルキルエステルを塩基性化合物の存在下に加水分解し2,6−ナフタレンジカルボン酸のジカルボン酸塩の溶液を得た後に、それを酸析する工程を含んでなる2,6−ナフタレンジカルボン酸の製造方法において、以下の(1)〜(3)の工程を含むことを特徴とする、2,6−ナフタレンジカルボン酸の製造方法
(1)2,6−ナフタレンジカルボン酸のジ低級アルキルエステルに対し2〜10モルの水の存在下に、2,6−ナフタレンジカルボン酸のジ低級アルキルエステルに対して5〜20倍重量の、メタノール、エタノール、イソプロパノール、2−メトキシエタノール、2−エトキシエタノール、エチレングリコール、グリセリン、ポリエチレングリコール200、アセトン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチル−2−ピロリドンからなる群から選択される1種または2種以上の有機溶媒中で、塩基性化合物と2,6−ナフタレンジカルボン酸のジ低級アルキルエステルとを、2,6−ナフタレンジカルボン酸のジ低級アルキルエステルの80%以上が転化するまで反応させる第一加水分解工程
(2)第一加水分解反応液に、工程(1)において仕込んだ2,6−ナフタレンジカルボン酸のジ低級アルキルエステルに対し5〜20倍重量の水を加え、さらに反応させる第二加水分解工程;および、
(3)第二加水分解反応液を酸析し、2,6−ナフタレンジカルボン酸を得る工程。
A step of hydrolyzing a di-lower alkyl ester of 2,6-naphthalenedicarboxylic acid in the presence of a basic compound to obtain a solution of a dicarboxylic acid salt of 2,6-naphthalenedicarboxylic acid, and then acidifying it. The method for producing 2,6-naphthalenedicarboxylic acid, comprising the following steps (1) to (3) :
(1) 2,6-naphthalene in the presence of 2 to 10 moles of water against the di-lower alkyl ester le of dicarboxylic acid, 5 to 20-fold weight relative to di-lower alkyl ester of 2,6-naphthalene dicarboxylic acid , Methanol, ethanol, isopropanol, 2-methoxyethanol, 2-ethoxyethanol, ethylene glycol, glycerin, polyethylene glycol 200, acetone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethyl phosphor In one or more organic solvents selected from the group consisting of amide and N-methyl-2-pyrrolidone , a basic compound and a di-lower alkyl ester of 2,6-naphthalenedicarboxylic acid are mixed with 2,6 80 di-lower alkyl esters of naphthalenedicarboxylic acid The first hydrolysis step of reacting until or converted;
(2) A second hydrolysis step in which 5 to 20 times weight of water is added to the first hydrolysis reaction solution with respect to the di-lower alkyl ester of 2,6-naphthalenedicarboxylic acid charged in step (1) and further reacted. ;and,
(3) A step of acidifying the second hydrolysis reaction solution to obtain 2,6-naphthalenedicarboxylic acid.
機溶媒が、メタノール、エタノール、イソプロパノール、2−メトキシエタノール、2−エトキシエタノール、エチレングリコール、グリセリンおよびポリエチレングリコール200からなる群より選択される1種以上である請求項1に記載の2,6−ナフタレンジカルボン酸の製造方法。 Organic solvent, methanol, ethanol, isopropanol, 2-methoxyethanol, 2-ethoxyethanol, ethylene glycol, according to claim 1 at least one is selected from the group consisting of glycerol and polyethylene glycol 200 2,6 -Method for producing naphthalenedicarboxylic acid. 塩基性化合物が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、アルカリ金属の低級アルコキシドからなる群より選択される請求項1または2に記載の2,6−ナフタレンジカルボン酸の製造方法。 The 2,6-naphthalenedicarboxylic acid according to claim 1 or 2 , wherein the basic compound is selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, and lower alkoxides of alkali metals. Production method. 塩基性化合物の使用量が、2,6−ナフタレンジカルボン酸のジ低級アルキルエステルのエステル基に対し1.0〜5.0当量である、請求項1〜の何れかに記載の2,6−ナフタレンジカルボン酸の製造方法。 The amount of a basic compound is 1.0-5.0 equivalent with respect to the ester group of the di-lower alkyl ester of 2, 6- naphthalene dicarboxylic acid, The 2,6 in any one of Claims 1-3 -Method for producing naphthalenedicarboxylic acid.
JP2004092510A 2004-03-26 2004-03-26 Method for producing 2,6-naphthalenedicarboxylic acid Expired - Lifetime JP4467343B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004092510A JP4467343B2 (en) 2004-03-26 2004-03-26 Method for producing 2,6-naphthalenedicarboxylic acid
EP05006639A EP1591435A3 (en) 2004-03-26 2005-03-24 Method for preparing 2,6-Naphtalene dicarboxyclic acid
KR1020050025030A KR20060044775A (en) 2004-03-26 2005-03-25 Method for preparing 2,6-naphthalene dicarboxylic acid
CN2005100685349A CN1680264B (en) 2004-03-26 2005-03-25 Method for preparing 2,6-naphthalene dicarboxylic acid
TW094109268A TW200533646A (en) 2004-03-26 2005-03-25 Method for preparing 2, 6-naphthalene dicarboxylic acid
US11/090,054 US7355071B2 (en) 2004-03-26 2005-03-28 Method for preparing 2,6-naphthalene dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092510A JP4467343B2 (en) 2004-03-26 2004-03-26 Method for producing 2,6-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2005272425A JP2005272425A (en) 2005-10-06
JP4467343B2 true JP4467343B2 (en) 2010-05-26

Family

ID=35172463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092510A Expired - Lifetime JP4467343B2 (en) 2004-03-26 2004-03-26 Method for producing 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4467343B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189001B2 (en) * 2009-01-26 2013-04-24 上野製薬株式会社 Method for producing 2,6-naphthalenedicarboxylic acid
JP6934805B2 (en) 2017-10-31 2021-09-15 上野製薬株式会社 Method for producing 2,6-naphthalenedicarboxylic acid
CN114478227B (en) * 2020-10-27 2024-01-26 中国石油化工股份有限公司 Method for preparing 2, 6-naphthalene dicarboxylic acid by using 2, 6-naphthalene dicarboxylic acid salt

Also Published As

Publication number Publication date
JP2005272425A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US7355071B2 (en) Method for preparing 2,6-naphthalene dicarboxylic acid
US10745342B2 (en) Synthesis method of 2,4,6-trifluorobenzylamine
JP4467343B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP6934805B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP4439964B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP5318595B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP6503227B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP5236274B2 (en) Method for producing 6-hydroxy-2-naphthoic acid regenerated product
JP2010053052A (en) Method for producing polyvalent ester compound
JP4397718B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP4028612B2 (en) Method for producing 6-bromo-2-naphthalenecarboxylic acid methyl ester
JP5189001B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP2010168326A (en) Method for producing 2,6-naphthalene dicarboxylic acid
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
JPH03240750A (en) Production of high-purity naphthalenecarboxylic acid
US20100056824A1 (en) Method for preparation of 1,2,3,4-benzenetetracarboxylic acid
US20050070735A1 (en) Process for the production of triiodotrimesic acid
JP2010168327A (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP2023152807A (en) Method for producing 4,4'-dihydroxybiphenyl-3,3'-dicarboxylic acid
JP2023152806A (en) Method for producing 4,4'-dihydroxybiphenyl-3,3'-dicarboxylic acid
JPH10330314A (en) Production of pentaerythritol tetraester
JP2024027404A (en) Method for producing 2,5-furandicarboxylic acid
JPH0925257A (en) Production of polycyclic aromatic dicarboxlic acid dialkylester
JP2591111B2 (en) Method for inverting the configuration of an optically active α-oxy acid ester
KR101778617B1 (en) Method for Producing Methyl-4-hydroxyiminomethylbenzoate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R150 Certificate of patent or registration of utility model

Ref document number: 4467343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250