JP4466291B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP4466291B2
JP4466291B2 JP2004255376A JP2004255376A JP4466291B2 JP 4466291 B2 JP4466291 B2 JP 4466291B2 JP 2004255376 A JP2004255376 A JP 2004255376A JP 2004255376 A JP2004255376 A JP 2004255376A JP 4466291 B2 JP4466291 B2 JP 4466291B2
Authority
JP
Japan
Prior art keywords
disk
braking
support member
spoke
brake disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004255376A
Other languages
Japanese (ja)
Other versions
JP2005102490A (en
Inventor
泰隆 野口
光雄 宮原
慎一朗 平松
博行 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004255376A priority Critical patent/JP4466291B2/en
Publication of JP2005102490A publication Critical patent/JP2005102490A/en
Application granted granted Critical
Publication of JP4466291B2 publication Critical patent/JP4466291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

本発明は、渦電流式減速装置に関し、特に、機関の回転軸に連結した制動ディスクに対して磁界を作用させるタイプの渦電流式減速装置の改良に関する。
The present invention relates to an eddy current reduction device, and more particularly to an improvement of an eddy current reduction device of a type in which a magnetic field is applied to a braking disk connected to a rotating shaft of an engine.

トラック等の大型車両の補助ブレーキ等に使用される渦電流式減速装置には、いくつかのタイプがある。機関の回転軸に連結した制動部材の形状に着目すると、ディスク状の制動部材を採用するタイプ(ディスクタイプ)と、ドラム状の制動部材を採用するタイプに大別される。また、磁気を発生する構成に着目すると、永久磁石を用いたもの、電磁石を用いたもの、更には永久磁石と電磁石の両方を用いた所謂ハイブリッドタイプに大別される。   There are several types of eddy current type speed reducers used for auxiliary brakes of large vehicles such as trucks. Focusing on the shape of the braking member connected to the rotating shaft of the engine, it is roughly divided into a type that employs a disc-shaped braking member (disc type) and a type that employs a drum-shaped braking member. Focusing on the configuration that generates magnetism, it is roughly divided into those using permanent magnets, those using electromagnets, and so-called hybrid types using both permanent magnets and electromagnets.

特開2003−338825には、ディスク状制動部材の肉厚を内周側と外周側とで変化させることで、耐久性を向上させ、変形を抑制した渦電流式減速装置が開示されている。   Japanese Patent Application Laid-Open No. 2003-338825 discloses an eddy current reduction device that improves durability and suppresses deformation by changing the thickness of a disc-shaped braking member between an inner peripheral side and an outer peripheral side.

特開2003−333825JP2003-333825A

ディスクタイプの渦電流式減速装置においては、制動時に制動ディスクが発熱して変形(熱膨張)し、制動ディスクに非弾性ひずみ(塑性ひずみ及び、クリープひずみ)が発生して永久変形が生じる場合がある。その結果、制動ディスクの表面に疲労き裂が発生する場合もある。制動ディスクに永久変形が生じると、磁石とディスクとの距離が変化し、制動力を一定に保つことができず、長期間安定した制動力を得ることができなくなる。また、ディスク表面に疲労き裂が発生すると、制動時に発生する渦電流の流れが当該き裂により遮断され、渦電流の流れが悪くなって制動力が低下する事になる。   In a disk-type eddy current reduction device, the brake disk generates heat and deforms (thermal expansion) during braking, and inelastic strain (plastic strain and creep strain) occurs in the brake disk, resulting in permanent deformation. is there. As a result, fatigue cracks may occur on the surface of the brake disk. When permanent deformation occurs in the brake disk, the distance between the magnet and the disk changes, the brake force cannot be kept constant, and a stable brake force cannot be obtained for a long time. Further, when a fatigue crack occurs on the disk surface, the flow of eddy current generated during braking is interrupted by the crack, and the flow of eddy current deteriorates and the braking force decreases.

本発明は、上記のような状況に鑑みて成されたものであり、長期間にわたって使用した場合であっても、ディスクの経時変形が小さく安定した制動力が得られ、疲労き裂が生じ難い、耐久性に優れた渦電流式減速装置を提供することを目的とする。
The present invention has been made in view of the above situation, and even when used for a long period of time, a stable braking force with small deformation with time of the disk is obtained, and fatigue cracks hardly occur. An object of the present invention is to provide an eddy current type speed reducer with excellent durability.

上記目的を達成するために、本発明の第1の態様に係る渦電流式減速装置は、機関の回転軸に連結された制動ディスクと;制動時に前記制動ディスクの制動面に対して磁界を作用させる磁界発生部と;前記制動ディスクの制動面と反対側の面において、当該制動ディスクを前記回転軸に対して支持する複数のスポーク状支持部材とを備えている。そして、前記スポーク状支持部材の各々は、前記制動ディスクの中心方向から外周方向に向かって延び、当該ディスクの放射方向に対して当該ディスクの制動時の回転方向とは逆側に傾いて配置される。   In order to achieve the above object, an eddy current reduction device according to a first aspect of the present invention includes a braking disk coupled to a rotating shaft of an engine; and a magnetic field applied to a braking surface of the braking disk during braking. And a plurality of spoke-like support members that support the braking disk with respect to the rotating shaft on a surface opposite to the braking surface of the braking disk. Each of the spoke-like support members extends from the center direction of the braking disk toward the outer circumferential direction, and is inclined with respect to the radial direction of the disk and opposite to the rotation direction during braking of the disk. The

本発明の第2の態様に係る渦電流式減速装置は、機関の回転軸に連結された制動ディスクと;制動時に前記制動ディスクの制動面に対して磁界を作用させる磁界発生部と;前記制動ディスクの制動面と反対側の面において、当該制動ディスクを前記回転軸に対して支持する複数のスポーク状支持部材とを備える。そして、前記スポーク状支持部材の各々は、前記制動ディスクに固定されるスポーク部と前記回転軸の外周部に連結される連結部とを有する。また、制動ディスクの面と垂直で前記スポーク状支持部材の長手方向に沿った断面で当該支持部材を見た場合に、前記連結部の中心ラインが前記スポーク部の中心ラインからずれている。   An eddy current reduction device according to a second aspect of the present invention includes a braking disk coupled to a rotating shaft of an engine; a magnetic field generating unit that applies a magnetic field to a braking surface of the braking disk during braking; A plurality of spoke-like support members that support the braking disk with respect to the rotating shaft are provided on a surface opposite to the braking surface of the disk. Each of the spoke-like support members has a spoke portion that is fixed to the brake disk and a connecting portion that is connected to the outer peripheral portion of the rotating shaft. Further, when the support member is viewed in a cross section perpendicular to the surface of the brake disk and along the longitudinal direction of the spoke-like support member, the center line of the connecting portion is deviated from the center line of the spoke portion.

本発明の第3の態様に係る渦電流式減速装置は、上述した第1及び第2の態様を組み合わせた構成であり、機関の回転軸に連結された制動ディスクと;制動時に前記制動部材の制動面に対して磁界を作用させる磁界発生部と;前記制動ディスクの制動面と反対側の面において、当該制動ディスクを前記回転軸に対して支持する複数のスポーク状支持部材とを備える。そして、前記スポーク状支持部材の各々は、前記制動ディスクに固定されるスポーク部と前記回転軸の外周部に連結される連結部とを有する。前記スポーク状支持部材の各々は、前記制動ディスクの中心方向から外周方向に向かって延び、当該ディスクの放射方向に対して当該ディスクの制動時の回転方向とは逆側に傾いて配置される。また、前記制動ディスクの面と垂直で前記スポーク状支持部材の長手方向に沿った断面で当該支持部材を見た場合に、前記連結部の中心ラインが前記スポーク部の中心ラインからずれている。   An eddy current reduction device according to a third aspect of the present invention is a combination of the first and second aspects described above, a braking disk connected to the rotating shaft of the engine; A magnetic field generating section that applies a magnetic field to the braking surface; and a plurality of spoke-like support members that support the braking disk with respect to the rotating shaft on a surface opposite to the braking surface of the braking disk. Each of the spoke-like support members has a spoke portion that is fixed to the brake disk and a connecting portion that is connected to the outer peripheral portion of the rotating shaft. Each of the spoke-like support members extends from the center direction of the braking disk toward the outer circumferential direction, and is inclined with respect to the radial direction of the disk and opposite to the rotation direction during braking of the disk. Further, when the support member is viewed in a cross section perpendicular to the surface of the braking disk and along the longitudinal direction of the spoke-like support member, the center line of the connecting portion is deviated from the center line of the spoke portion.

本発明においては、好ましくは、前記スポーク状支持部材の前記角度は、前記制動ディスクの制動時の回転方向と逆側に向かって30〜70度とする。   In the present invention, preferably, the angle of the spoke-like support member is set to 30 to 70 degrees toward the opposite side to the rotation direction during braking of the braking disk.

本発明の第1〜第3の態様によれば、制動ディスクの耐久性を高めるために、制動ディスクの変形を支持部で過度に拘束せず、発生する非弾性ひずみを低減する構造とした。従って、制動時のディスクの半径方向及び、軸方向の変形をスポーク状支持部の弾性変形で吸収することが可能となり、制動ディスク及び当該支持部に非弾性ひずみが生じ難くなる。その結果、制動ディスクに永久変形が生じて制動力が低下したり、疲労き裂が発生することを効果的に抑制することができる。更に、制動ディスクの軽量化等の目的で形状をリング状とした場合には、制動面と逆側にスポーク状支持部を設けることにより、ディスク自体の強度アップを図ることが可能となる。   According to the first to third aspects of the present invention, in order to increase the durability of the brake disk, the deformation of the brake disk is not excessively restrained by the support portion, and the generated inelastic strain is reduced. Accordingly, the radial and axial deformations of the disc during braking can be absorbed by the elastic deformation of the spoke-like support portion, and inelastic strain is hardly generated in the brake disc and the support portion. As a result, it is possible to effectively suppress the occurrence of permanent deformation in the brake disk and the reduction of the braking force or the occurrence of fatigue cracks. Furthermore, when the shape of the brake disk is a ring shape for the purpose of reducing the weight of the brake disk, the strength of the disk itself can be increased by providing a spoke-like support portion on the opposite side to the brake surface.

本発明の第4の態様においては、機関の回転軸に連結された制動ディスクと;
制動時に前記制動ディスクの制動面に対して磁界を発生させる磁界発生部と;前記制動ディスクの制動面と反対側の面において、当該制動ディスクを前記回転軸の外周部に対して支持する複数のスポーク状支持部材とを備え、前記支持部材と前記制動ディスクの内周縁とが交差する位置をX1;前記支持部材と前記機関の回転軸の外周縁とが交差する位置をX2;前記制動ディスクの回転中心をO;前記位置X1と前記制動ディスクの回転中心Oを通る直線をL1;前記位置X2と前記制動ディスクの回転中心Oを通る直線をL2;前記位置X1において前記支持部材が内側に向かって延びる方向をL3;前記位置X2において前記支持部材が外側に向かって延びる方向をL4;前記位置X1と前記位置X2とを結ぶ直線をL5;L2とL4とが成す角をθ1;L1とL3とが成す角をθ2;L2とL5とが成す角をθ3;L1とL5とが成す角をθ4とした場合に、以下の式を満たす構造とする。
θ1<θ3・・・・・・・・(1)
θ2<θ4・・・・・・・・(2)
In a fourth aspect of the invention, a braking disk connected to the rotating shaft of the engine;
A magnetic field generator for generating a magnetic field with respect to the braking surface of the braking disk at the time of braking; and a plurality of members that support the braking disk with respect to the outer peripheral portion of the rotating shaft on a surface opposite to the braking surface of the braking disk A position where the support member and the inner peripheral edge of the braking disk intersect with each other; X1; a position where the support member intersects with the outer peripheral edge of the rotation shaft of the engine; and X2; The center of rotation is O; a straight line passing through the position X1 and the center of rotation O of the brake disk is L1; a straight line passing through the position X2 and the center of rotation of the brake disk is L2, and the support member is directed inward at the position X1. L3; a direction extending the support member outward at the position X2; L4; a straight line connecting the position X1 and the position X2; L5; L2 and L4 θ3 and angle between L2 and L5;; .theta.2 the angle formed L1 and the L3 is; corners of θ1 formed by the case of the θ4 the angle between L1 and L5, a structure which satisfies the following expression.
θ1 <θ3 (1)
θ2 <θ4 (2)

上記の条件を満たすように支持部材を湾曲させ、支持部材の傾斜角度θ3とθ4を大きくするとともに、支持部材の結合部角度θ1とθ2を小さくすることにより、制動ディスクの半径方向及び軸方向の変形をこのスポーク状支持部材の弾性変形でさらに吸収させることが可能になるとともに、制動時の支持部材と機関の回転軸の外周縁との結合部及び支持部材と制動ディスクとの結合部に生じる非弾性ひずみを低減することが可能となる。
The support member is bent so as to satisfy the above conditions, and the inclination angles θ3 and θ4 of the support member are increased, and the coupling portion angles θ1 and θ2 of the support member are decreased, thereby reducing the radial direction and the axial direction of the brake disk. The deformation can be further absorbed by the elastic deformation of the spoke-like support member, and also occurs at the joint portion between the support member and the outer peripheral edge of the rotating shaft of the engine and the joint portion between the support member and the brake disk during braking. Inelastic strain can be reduced.

以下、本発明についてディスク状の制動部材に対して永久磁石を近接、離間させるタイプの渦電流式減速装置を一例に説明する。なお、本発明の技術的思想は、磁界発生機構として、電磁石式又は電磁石と永久磁石とを組み合わせたハイブリッドタイプを採用した装置にも適用可能である。   Hereinafter, the present invention will be described by taking as an example an eddy current type speed reducer in which a permanent magnet is brought close to and away from a disc-shaped braking member. The technical idea of the present invention can also be applied to an apparatus adopting an electromagnet type or a hybrid type combining an electromagnet and a permanent magnet as a magnetic field generation mechanism.

図1は、本発明の第1実施例に係る渦電流式減速装置(リターダ)の要部の構造を示す断面図である。本実施例に係る渦電流式減速装置10は、機関の回転軸12に対して連結固定された強磁性体からなる制動ディスク14と;制動ディスク14の近傍に配置される制動ユニット(16,26,28,30,32,34)とを備えている。制動ディスク14は、回転軸12の外周に固定されたリング状保持部材18と、保持部材18のフランジ部に固定された環状の固定リング20と、スポーク状支持部材22とによって、回転軸12に連結されている。   FIG. 1 is a cross-sectional view showing the structure of the main part of an eddy current type speed reducer (retarder) according to a first embodiment of the present invention. The eddy current type speed reducer 10 according to the present embodiment includes a braking disk 14 made of a ferromagnetic material connected and fixed to a rotating shaft 12 of an engine, and a braking unit (16, 26) disposed in the vicinity of the braking disk 14. , 28, 30, 32, 34). The brake disk 14 is attached to the rotating shaft 12 by a ring-shaped holding member 18 fixed to the outer periphery of the rotating shaft 12, an annular fixing ring 20 fixed to the flange portion of the holding member 18, and a spoke-like support member 22. It is connected.

回転軸12は、例えば、大型車両(トラック)のプロペラシャフトに連結される。制動ディスク14は円盤(ディスク)状に成形される。   The rotating shaft 12 is connected to a propeller shaft of a large vehicle (truck), for example. The brake disk 14 is formed into a disk shape.

制動ユニットは、制動用の磁界を発生する複数の永久磁石16と;当該永久磁石16を保持するリング状又は円弧状の磁石保持部材26と;これら永久磁石16及び磁石保持部材26を収容するケース30と;磁石保持部材26に連結され、永久磁石16を制動ディスク14に対して近接、離間移動させるための駆動機構としてのエアシリンダー32,ピストンロッド28,ピストン34とを備えている。   The braking unit includes a plurality of permanent magnets 16 that generate a magnetic field for braking; a ring-shaped or arc-shaped magnet holding member 26 that holds the permanent magnet 16; and a case that houses the permanent magnet 16 and the magnet holding member 26 30; and an air cylinder 32, a piston rod 28, and a piston 34, which are connected to the magnet holding member 26 and serve as a drive mechanism for moving the permanent magnet 16 toward and away from the brake disk 14.

ケース30は、例えば、アルミニウム、アルミニウム合金、炭素鋼、鋳鉄、ステンレス鋼等の材質によって成形することができる。永久磁石16は、環状の磁石保持部材26の円周方向において、制動ディスク14の表面(制動面=図の左側)に対向して、隣接する磁極面が互いに逆向きに配した複数の永久磁石ピースからなる。そして、磁石16を制動ディスク14の表面に接近して制動状態となり、制動ディスク14から離れて非制動状態となる。   The case 30 can be formed of a material such as aluminum, aluminum alloy, carbon steel, cast iron, stainless steel, or the like. In the circumferential direction of the annular magnet holding member 26, the permanent magnet 16 is opposed to the surface of the braking disk 14 (braking surface = left side in the figure), and a plurality of permanent magnets having adjacent magnetic pole surfaces arranged in opposite directions. It consists of pieces. Then, the magnet 16 approaches the surface of the braking disk 14 to enter a braking state, and moves away from the braking disk 14 to enter a non-braking state.

なお、図1にはケース30の永久磁石16と制動ディスク14の間にポールピースを配置しない「ポールピースレス」構造を示しているが、制動力の低下を防止するため及び、非制動時の磁気漏れを防止するために軟磁性体からなるポールピースを設けた構造を採用することもできる。また、本実施例は、永久磁石16を使用した構造であるが、永久磁石16に代えて電磁石を用いた場合には、電磁石のコイルに流す電流の入り・切りにより制動を切り替えるため、磁石をディスク表面に対して移動可能に構成する必要はなくなる。   FIG. 1 shows a “pole piece-less” structure in which no pole piece is arranged between the permanent magnet 16 of the case 30 and the braking disk 14. However, in order to prevent a reduction in braking force and during non-braking In order to prevent magnetic leakage, a structure provided with a pole piece made of a soft magnetic material may be employed. In this embodiment, the permanent magnet 16 is used. However, when an electromagnet is used instead of the permanent magnet 16, the braking is switched by turning on / off the current flowing through the coil of the electromagnet. There is no need to be movable with respect to the disk surface.

図2は制動ディスク14を制動面と反対側(裏面)から見た様子を示す。制動ディスク14の裏面には、複数(例えば8本)のスポーク状の支持部材22と、多数の放熱フィン24が形成されている。なお、図において、符号21はボルト穴を示し、固定リング20を保持部材18(図示せず)のフランジ部に固定する際に用いられる。また、図3は、図2のA−A断面、すなわち、制動ディスク14の面と垂直でスポーク状支持部材22の長手方向に沿った断面で当該支持部材22を見た様子を示す。   FIG. 2 shows a state in which the braking disk 14 is viewed from the side opposite to the braking surface (back surface). A plurality of (for example, eight) spoke-like support members 22 and a large number of radiating fins 24 are formed on the rear surface of the brake disk 14. In the figure, reference numeral 21 denotes a bolt hole, which is used when the fixing ring 20 is fixed to the flange portion of the holding member 18 (not shown). FIG. 3 shows a state in which the support member 22 is viewed in the AA cross section of FIG. 2, that is, a cross section perpendicular to the surface of the brake disk 14 and along the longitudinal direction of the spoke-like support member 22.

制動ディスク14においては、磁石16(図示せず)からの磁力を回転する制動ディスク14に作用させることにより制動トルクを発生する。フィン24は、制動時に発熱する制動ディスク14の冷却効率を高めるものである。固定リング20は、制動ディスク14を回転軸12に固定する際に、ボルト等で簡易に固定できるようにしたものであり、固定時の安定性を高める効果がある。スポーク状支持部材22は、制動ディスク14と固定リング20を結合(連結)し、制動ディスク14に発生した制動トルクを回転軸に伝達する。   In the brake disk 14, a braking torque is generated by applying a magnetic force from a magnet 16 (not shown) to the rotating brake disk 14. The fins 24 increase the cooling efficiency of the brake disk 14 that generates heat during braking. The fixing ring 20 can be easily fixed with a bolt or the like when the brake disk 14 is fixed to the rotary shaft 12, and has an effect of improving stability at the time of fixing. The spoke-like support member 22 couples (connects) the brake disk 14 and the fixing ring 20 and transmits the braking torque generated on the brake disk 14 to the rotating shaft.

なお、ロータ(14,20,22,24)は、各々の構成部品を個別に成形し、これらを溶接などで一体として製造することができる。或いは、鋳造法や鋼塊からの削りだしなどで一体に製造することもできる。ロータの材質は、例えば機械構造用合金鋼やクロム−モリブデン鋼などとすることができる。また、制動力を向上するために,制動ディスク14の表面に銅などの電気抵抗の低い材料からなる層を設けてもよい。   The rotor (14, 20, 22, 24) can be manufactured by molding each component individually and integrally forming them by welding or the like. Or it can also manufacture integrally by the casting method or the shaving from a steel ingot. The material of the rotor can be, for example, mechanical structural alloy steel or chromium-molybdenum steel. In order to improve the braking force, a layer made of a material having a low electrical resistance such as copper may be provided on the surface of the braking disk 14.

スポーク状支持部材22は、制動ディスク14の裏面に固定されたスポーク部22bと、固定リング20に固定された連結部22aとを備えている。図3に示すように、本実施例においては、制動ディスク14の面と垂直でスポーク状支持部材22の長手方向に沿った断面で当該支持部材22を見た場合に、連結部22aが制動ディスク14と反対側に向かって湾曲している。すなわち、連結部22aの中心ラインC1がスポーク部22bの中心ラインC2からずれている。   The spoke-like support member 22 includes a spoke portion 22 b fixed to the back surface of the brake disk 14 and a connecting portion 22 a fixed to the fixing ring 20. As shown in FIG. 3, in this embodiment, when the support member 22 is viewed in a cross section perpendicular to the surface of the brake disk 14 and along the longitudinal direction of the spoke-like support member 22, the connecting portion 22a is connected to the brake disk. 14 is curved toward the opposite side. That is, the center line C1 of the connecting portion 22a is shifted from the center line C2 of the spoke portion 22b.

スポーク状支持部材22の連結部22aの中心ラインC1をスポーク部22bの中心ラインC2からずらすことにより、制動ディスク14と支持部22の回転軸方向の位置ずれ(差)が大きくなり、回転軸方向に離れた位置で制動ディスク14を支持する格好となる。そうすると、近い位置を支持する場合と比べて、制動ディスク14は半径方向に比較的容易に変形することが可能になり、制動時に熱膨張が拘束されて発生する非弾性ひずみが低減される。また、制動ディスク14が比較的容易に変形できるようになると、制動ディスク14の回転軸方向への変形(反り)量が小さくなるため、支持部材22に生じる非弾性ひずみが低減される。その結果、支持部材22および制動ディスク14の耐久性が向上することになる。   By shifting the center line C1 of the connecting portion 22a of the spoke-like support member 22 from the center line C2 of the spoke portion 22b, the positional deviation (difference) between the braking disk 14 and the support portion 22 in the rotation axis direction increases, and the rotation axis direction Thus, the brake disk 14 is supported at a position far away. As a result, the brake disk 14 can be deformed relatively easily in the radial direction as compared with the case of supporting a close position, and inelastic strain generated by restraining thermal expansion during braking is reduced. Further, when the brake disk 14 can be deformed relatively easily, the amount of deformation (warpage) of the brake disk 14 in the direction of the rotation axis is reduced, so that inelastic strain generated in the support member 22 is reduced. As a result, the durability of the support member 22 and the brake disk 14 is improved.

また、スポーク状支持部材22の連結部22aを、制動ディスク14と反対側に突出・湾曲させることにより、制動時における制動ディスク14の半径方向の変形(熱膨張)を湾曲部(22a)が半径方向に伸縮することにより、弾性変形で吸収することができる。その結果、支持部材22および制動ディスク14に発生する非弾性ひずみが低減され、ロータの耐久性が向上する。なお、連結部22aの湾曲の方向は、図5に示す例とは逆に制動ディスク14側とすることも可能である。ただし、この場合には、支持部材22の直線状のスポーク部22bが、図5の例に比べて下方に延びるようになり、湾曲位置が若干下がることになる。   Further, by projecting and bending the connecting portion 22a of the spoke-like support member 22 to the opposite side to the braking disk 14, the bending portion (22a) has a radial deformation (thermal expansion) of the braking disk 14 during braking. By stretching in the direction, it can be absorbed by elastic deformation. As a result, inelastic strain generated in the support member 22 and the brake disk 14 is reduced, and the durability of the rotor is improved. It should be noted that the direction of bending of the connecting portion 22a can be on the braking disk 14 side, contrary to the example shown in FIG. However, in this case, the linear spoke portion 22b of the support member 22 extends downward as compared with the example of FIG. 5, and the curved position is slightly lowered.

図4は、図2の一部を拡大した図であり、ディスク支持部材及びフィンの傾斜角を示す。図4に示すように、スポーク状支持部材22の各々は、制動ディスク14(固定リング20)の中心方向から外周方向に向かって延びるが、支持部材22とディスク14の内周縁とが交差する位置をXSとした場合、XS及びディスク14の中心Oを通るディスク放射線(一点鎖線)に対して支持部材22が角度θS傾いて配置される。フィン24の各々は、制動ディスク14の放射方向に対して角度θF傾いて配置される。すなわち、フィン24とディスク14の内周縁とが交差する位置をXFとした場合、XF及びディスク14の中心Oを通るディスク放射線(一点鎖線)に対してフィン24が角度θF傾いて配置される。なお、傾斜の方向は、スポーク状支持部材22及びフィン24の上端(外周側)が、制動時の回転方向に対して後方に向く(遅れる)、すなわち、当該ディスクの制動時の回転方向とは逆側に傾くようにする。   FIG. 4 is an enlarged view of a part of FIG. 2 and shows the tilt angles of the disk support member and the fins. As shown in FIG. 4, each of the spoke-like support members 22 extends from the center direction of the brake disk 14 (fixing ring 20) toward the outer peripheral direction, but the position where the support member 22 and the inner peripheral edge of the disk 14 intersect each other. Is XS, the support member 22 is disposed at an angle θS with respect to the disk radiation (one-dot chain line) passing through XS and the center O of the disk 14. Each of the fins 24 is disposed at an angle θF with respect to the radial direction of the brake disk 14. That is, when the position where the fin 24 and the inner peripheral edge of the disk 14 intersect is XF, the fin 24 is disposed at an angle θF with respect to the disk radiation (dotted line) passing through the center F of the XF and the disk 14. In addition, the direction of the inclination is that the upper ends (outer peripheral sides) of the spoke-like support members 22 and the fins 24 are directed backward (delayed) with respect to the rotation direction during braking, that is, the rotation direction during braking of the disk. Tilt to the opposite side.

このように、ロータの回転方向に対してスポーク状支持部材22を傾斜させると、制動時における制動ディスク14の半径方向の変形を当該支持部材22がロータの回転方向に弾性変形することで吸収することが可能になる。その結果、支持部材22および制動ディスク14に発生する非弾性ひずみが低減され、ロータの耐久性が向上する。また、スポーク状支持部材22及びフィン24の傾斜の方向を回転方向に対して後方に向く(遅れる)ようにすると、ロータの内周側から外周側へ空気(風)が滑らかに流れ、ロータが回転する時にうける空気の抵抗(風損)による非制動時の損失トルクが低減され、車両の燃費向上を図ることが可能となる。   Thus, when the spoke-like support member 22 is inclined with respect to the rotation direction of the rotor, the radial deformation of the brake disk 14 during braking is absorbed by the support member 22 elastically deforming in the rotation direction of the rotor. It becomes possible. As a result, inelastic strain generated in the support member 22 and the brake disk 14 is reduced, and the durability of the rotor is improved. Further, when the direction of inclination of the spoke-like support members 22 and the fins 24 is directed backward (delayed) with respect to the rotational direction, air (wind) flows smoothly from the inner peripheral side to the outer peripheral side of the rotor, Loss torque during non-braking due to air resistance (windage loss) when rotating is reduced, and it becomes possible to improve the fuel consumption of the vehicle.

磁石16(図示せず)が発する磁力を回転する制動ディスク14に作用させると、制動ディスク14に渦電流が発生し、この渦電流と磁力の相互作用により制動ディスク14に制動トルクが発生する。この状態が制動状態である。これに対して、制動ディスク14に磁力を作用させず、制動トルクが発生しない状態が非制動状態である。   When a magnetic force generated by a magnet 16 (not shown) is applied to the rotating brake disk 14, an eddy current is generated in the brake disk 14, and a braking torque is generated in the brake disk 14 due to the interaction between the eddy current and the magnetic force. This state is a braking state. On the other hand, a state in which no magnetic force is applied to the braking disk 14 and no braking torque is generated is a non-braking state.

制動時には、渦電流が発生すると同時にジュール熱が発生し、制動ディスク14は発熱する。この発熱によって、環状の制動ディスク14が熱膨張し、環の径が大きくなる方向に変形する。この制動ディスク14の変形(熱膨張)は、支持部材22によって拘束される。支持部材22によって、制動ディスク14の径が大きくなる方向(断面でみると半径方向)の変形が拘束されると、制動ディスク14は回転軸方向に変形する(磁石16と反対側に反り上がる)。その際、支持部材22による拘束力が強いと、制動ディスク14および支持部材22に非弾性ひずみ(塑性ひずみ,および,クリープひずみ)が生じやすくなる。   At the time of braking, eddy current is generated and Joule heat is generated at the same time, and the braking disk 14 generates heat. Due to this heat generation, the annular braking disk 14 is thermally expanded and deformed in the direction of increasing the diameter of the ring. The deformation (thermal expansion) of the braking disk 14 is restrained by the support member 22. When the support member 22 constrains deformation in the direction in which the diameter of the brake disk 14 increases (radial direction when viewed in cross section), the brake disk 14 is deformed in the direction of the rotation axis (warps up to the opposite side of the magnet 16). . At this time, if the restraining force by the support member 22 is strong, inelastic strain (plastic strain and creep strain) is likely to occur in the brake disk 14 and the support member 22.

このように,制動時に非弾性ひずみが生じると、非制動状態に切り替え、制動ディスク14が冷却された後でも永久変形が生じてしまう。永久変形が生じると制動ディスク14表面と磁石16間の距離が変化するため、制動ディスク14に作用する磁力が変化するのに併せて発生する制動トルクが変化する。すなわち、従来のように支持部材による拘束力が過度に強い場合、渦電流減速装置を使用する度に徐々に制動力が低下し、長期間安定した制動力を得ることが困難となる。また、制動と非制動の繰返しで制動ディスクおよび支持部に非弾性ひずみが繰返し負荷されると疲労き裂が発生することがある。   Thus, when inelastic strain occurs during braking, permanent deformation occurs even after switching to the non-braking state and cooling the braking disk 14. When permanent deformation occurs, the distance between the surface of the brake disk 14 and the magnet 16 changes, so that the braking torque that is generated changes as the magnetic force acting on the brake disk 14 changes. That is, when the restraining force by the support member is excessively strong as in the prior art, the braking force gradually decreases each time the eddy current reduction device is used, and it becomes difficult to obtain a stable braking force for a long period of time. Further, fatigue cracks may occur when inelastic strain is repeatedly applied to the brake disk and the support portion by repeated braking and non-braking.

発明者らは、ロータの形状を適正なものとするため、支持部材22に発生する非弾性ひずみと支持部材形状(ロータ形状)との関係を有限要素法解析(以下、FEM解析と呼ぶ)で評価した。評価したロータの形状を表1に示す。表1に示すように、制動ディスク14の形状、フィン24の形状及び枚数、固定リング20の形状は全ての例で共通とした。また、FEM解析ではロータの材質をクロム−モリブデン鋼(JIS SCM415)とし、制動ディスク14の最高温度を650℃、最低温度を100℃とし、この熱サイクルを負荷したときに支持部材22に生じる非弾性ひずみ範囲を評価した。また、フィン24の断面形状は長方形とした。

Figure 0004466291
In order to make the shape of the rotor appropriate, the inventors conducted a finite element method analysis (hereinafter referred to as FEM analysis) on the relationship between the inelastic strain generated in the support member 22 and the support member shape (rotor shape). evaluated. Table 1 shows the rotor shapes evaluated. As shown in Table 1, the shape of the brake disk 14, the shape and number of fins 24, and the shape of the fixing ring 20 were common to all examples. Further, in the FEM analysis, the material of the rotor is chromium-molybdenum steel (JIS SCM415), the maximum temperature of the braking disk 14 is 650 ° C., the minimum temperature is 100 ° C. The elastic strain range was evaluated. The cross-sectional shape of the fin 24 is a rectangle.

Figure 0004466291

表2には、支持部材22に生じる非弾性ひずみ範囲の評価結果を示す。なお、表2においては発生する非弾性ひずみ範囲が最大となる箇所の値を示した。表中、番号2,3,5〜9の支持部材22は、連結部22aが図5に示すように制動ディスク14と反対側に湾曲しているため、連結部が湾曲していないもの(番号1)より発生する非弾性ひずみ範囲が小さい。   Table 2 shows the evaluation results of the inelastic strain range generated in the support member 22. In Table 2, the value of the portion where the generated inelastic strain range is maximum is shown. In the table, the support members 22 with the numbers 2, 3, 5 to 9 are such that the connecting portion 22a is curved to the opposite side of the braking disk 14 as shown in FIG. The inelastic strain range generated from 1) is small.

番号4の例は、支持部材22の連結部22aの外側が突出していない(l=0)が、内側が窪んでいる(l=3mm)ため、番号1の比較例(l=l=0)より発生する非弾性ひずみ範囲が小さい。連結部22aを湾曲させると同時に支持部材22を傾斜させた番号5の例(l=l=3mm、θ=θ=30°)と、番号6の例(l=l=10mm、θ=θ=45°)及び、番号10の例(l=l=5mm、θ=θ=70°)は、発生する非弾性ひずみが極めて小さいことが分かった。

Figure 0004466291
In the example of No. 4, the outer side of the connecting portion 22a of the support member 22 does not protrude (l 2 = 0), but the inner side is depressed (l 1 = 3 mm), so the comparative example of No. 1 (l 1 = l The inelastic strain range generated from 2 = 0) is small. The example of number 5 (l 1 = l 2 = 3 mm, θ F = θ S = 30 °) in which the connecting portion 22a is bent and the support member 22 is inclined, and the example of number 6 (l 1 = l 2 = 10 mm, θ F = θ S = 45 °) and the example of number 10 (l 1 = l 2 = 5 mm, θ F = θ S = 70 °) were found to generate very little inelastic strain.

Figure 0004466291

一般に,負荷される非弾性ひずみ範囲が大きいほど疲労き裂の発生寿命は短くなる。従って,本発明例の番号2〜9は比較例に比べて疲労き裂の発生寿命が長く、耐久性に優れることが確認された。さらに,本発明例のロータは支持部材22の非弾性変形が小さいため、長期間使用しても制動力の低下を招きにくいことが確認された。   In general, the greater the inelastic strain range applied, the shorter the fatigue crack initiation life. Therefore, it was confirmed that Nos. 2 to 9 of the inventive examples had a long fatigue crack generation life and superior durability compared to the comparative examples. Furthermore, since the inelastic deformation of the support member 22 is small in the rotor of the present invention example, it has been confirmed that the braking force is hardly lowered even when used for a long time.

図6は、本発明の第2実施例に係るリターダのディスク支持部材122の形状を示す側面(断面)図である。本実施例に係る支持部材122は、上述した支持部材22と同様に、制動ディスク14の裏面に固定されたスポーク部122bと、固定リング20に固定された連結部122aとを備えている。本実施例においては、制動ディスク14の面と垂直でスポーク状支持部材122の長手方向に沿った断面で当該支持部材122を見た場合に、連結部122aの制動ディスク14側が窪んだ形状となっているが、制動ディスク14と反対側(図の右側)はスポーク部122bから突出しない形状となっている。表1中では、番号4の例に相当する。   FIG. 6 is a side view (sectional view) showing the shape of the disc support member 122 of the retarder according to the second embodiment of the present invention. Similar to the support member 22 described above, the support member 122 according to the present embodiment includes a spoke portion 122 b fixed to the back surface of the brake disk 14 and a connecting portion 122 a fixed to the fixing ring 20. In the present embodiment, when the support member 122 is viewed in a cross section perpendicular to the surface of the brake disk 14 and along the longitudinal direction of the spoke-like support member 122, the brake disk 14 side of the connecting portion 122a is recessed. However, the side opposite to the braking disk 14 (the right side in the figure) has a shape that does not protrude from the spoke part 122b. In Table 1, this corresponds to the number 4 example.

図7は、本発明の第3実施例に係るリターダの制動ディスク14を中心としたロータの構造を示す平面図である。図8は、図7に示す制動ディスク14、支持部材222及び固定リング20の構成を示す断面図(側面図)である。図9は、第3実施例の要部の構成を示す拡大平面図である。なお、上述した各実施例と同一又は対応する構成要素には同一の符号を付し、重複した説明は省略する。また、本実施例の特徴である支持部材222の形状以外の構造、構成については、上述した第1及び第2実施例と同様とすることができる。固定リング20と制動ディスク14とは、放射方向に所定のすき間を持って配置される。固定リング20は、制動ディスク14と同心円、且つ、当該制動ディスク14の内側において回転軸に連結されている。固定リング20と制動ディスク14とは、支持部材222によって連結される。   FIG. 7 is a plan view showing the structure of the rotor centered on the retarder braking disk 14 according to the third embodiment of the present invention. FIG. 8 is a cross-sectional view (side view) showing the configuration of the brake disk 14, the support member 222, and the fixing ring 20 shown in FIG. 7. FIG. 9 is an enlarged plan view showing the configuration of the main part of the third embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as or corresponds to each Example mentioned above, and the overlapping description is abbreviate | omitted. Further, the structure and configuration other than the shape of the support member 222, which is a feature of the present embodiment, can be the same as those of the first and second embodiments described above. The fixing ring 20 and the brake disk 14 are arranged with a predetermined gap in the radial direction. The fixing ring 20 is concentric with the brake disk 14 and is connected to the rotating shaft inside the brake disk 14. The fixing ring 20 and the brake disk 14 are connected by a support member 222.

本実施例の特徴は、図9に詳細に示されている。支持部材222と制動ディスク14の内周縁とが交差する点をX1;支持部材222と固定リング20の外周縁(機関の回転軸の外周縁)とが交差する点をX2;前記制動ディスク14の回転中心をO;点X1と制動ディスク14の回転中心Oを通る直線をL1;点X2と制動ディスク14の回転中心Oを通る直線をL2;点X1において支持部材222が内側に向かって延びる方向をL3;点X2において支持部材222が外側に向かって延びる方向をL4;点X1と点X2とを結ぶ直線をL5;L2とL4とが成す角をθ1;L1とL3とが成す角をθ2;L2とL5とが成す角をθ3;L1とL5とが成す角をθ4とした場合に、以下の式(1)及び(2)を満たす。
θ1<θ3・・・・・・・・(1)
θ2<θ4・・・・・・・・(2)
The features of this embodiment are shown in detail in FIG. X1 is a point where the support member 222 and the inner peripheral edge of the braking disk 14 intersect; X2 is a point where the support member 222 and the outer peripheral edge (the outer peripheral edge of the rotation shaft of the engine) intersect; The rotation center is O; a straight line passing through the point X1 and the rotation center O of the braking disk 14 is L1, a straight line passing through the point X2 and the rotation center O of the braking disk 14 is L2, and the direction in which the support member 222 extends inward at the point X1. L3; the direction in which the support member 222 extends outward at the point X2 is L4; the straight line connecting the point X1 and the point X2 is L5; the angle formed by the L2 and L4 is θ1; the angle formed by the L1 and L3 is θ2 The angle formed by L2 and L5 is θ3; and the angle formed by L1 and L5 is θ4, the following expressions (1) and (2) are satisfied.
θ1 <θ3 (1)
θ2 <θ4 (2)

上記の条件を満たすように支持部材222を湾曲させ、支持部材222の傾斜角度θ3とθ4を大きくするとともに、支持部材222の制動ディスク14との結合部X1の角度θ1と固定リング20との結合部X2の角度θ2を小さくすることにより、制動ディスク14の半径方向及び軸方向の変形をこのスポーク状支持部材222の弾性変形でさらに吸収させることが可能になるとともに、制動時の支持部材222と制動ディスク14との結合部X1及び支持部材222と固定リング20との結合部X2に生じる非弾性ひずみを低減することが可能となる。   The support member 222 is bent so as to satisfy the above condition, the inclination angles θ3 and θ4 of the support member 222 are increased, and the angle θ1 of the joint portion X1 of the support member 222 with the brake disk 14 is coupled to the fixing ring 20. By reducing the angle θ2 of the portion X2, the radial and axial deformations of the brake disk 14 can be further absorbed by the elastic deformation of the spoke-like support member 222, and the support member 222 during braking and It is possible to reduce inelastic strain generated in the coupling portion X1 with the brake disk 14 and the coupling portion X2 between the support member 222 and the fixing ring 20.

図10は、第3実施例との比較として使用される説明図であり、リターダの制動ディスク付近の平面状態を示す。   FIG. 10 is an explanatory diagram used for comparison with the third embodiment, and shows a planar state in the vicinity of the brake disk of the retarder.

発明者らは、ロータの形状を適正なものとするため、支持部材222に発生する非弾性ひずみと支持部材形状の関係を有限要素法解析(以下、FEM解析と呼ぶ)で評価した。評価したロータの形状を表3に示す。また、図5に示す支持部材の各寸法はすべて同じであり、番号1〜7のディスクともに、l=8mm,l=10mm,L=−9.2mm,H=10mm,h=10mmである。支持部材222は回転軸の軸線方向で磁石と反対側に突出するように湾曲した形状である。実施例1〜3はθ1=θ3、且つ、θ2=θ4、すなわち、図10に示すような直線状の支持部材22を有するディスク14である。これに対し、実施例4〜7は、θ1<θ3、θ2<θ4であり、図7及び図9に示されているように、ディスクを正面から見た状態で支持部材222が湾曲している。実施例1〜3および本実施例4〜7のディスクは、制動ディスク14、固定リング20、フィン24の形状・枚数、支持部材(22,222)の厚さ・本数はすべて同じであり、支持部材の形状(角度θ1,θ2,θ3,θ4)と、その支持部材の角度θ2に合わせたフィン24の角度θFのみが異なる。 The inventors evaluated the relationship between the inelastic strain generated in the support member 222 and the support member shape by a finite element method analysis (hereinafter referred to as FEM analysis) in order to make the rotor shape appropriate. Table 3 shows the evaluated rotor shapes. Further, the dimensions of the support member shown in FIG. 5 are all the same, and l 1 = 8 mm, l 2 = 10 mm, L = −9.2 mm, H = 10 mm, and h = 10 mm for the disks 1 to 7. is there. The support member 222 has a curved shape so as to protrude to the opposite side of the magnet in the axial direction of the rotation shaft. Examples 1 to 3 are disks 14 each having θ1 = θ3 and θ2 = θ4, that is, a linear support member 22 as shown in FIG. On the other hand, in Examples 4 to 7, θ1 <θ3 and θ2 <θ4, and as shown in FIGS. 7 and 9, the support member 222 is curved in a state where the disk is viewed from the front. . In the disks of Examples 1 to 3 and Examples 4 to 7, the brake disk 14, the fixing ring 20, the shape and the number of fins 24, and the thickness and number of the support members (22, 222) are all the same. Only the shape of the member (angles θ1, θ2, θ3, θ4) is different from the angle θF of the fin 24 matched to the angle θ2 of the support member.

Figure 0004466291
Figure 0004466291

表4に支持部材に生じる非弾性ひずみ範囲の評価結果を示す。なお、表4は発生する非弾性ひずみ範囲が最大となる箇所の値を示す。   Table 4 shows the evaluation results of the inelastic strain range generated in the support member. Table 4 shows values at locations where the generated inelastic strain range is maximum.

Figure 0004466291
Figure 0004466291

表4において、番号4,5のディスクは、θ1<θ3、θ2<θ4を満たす形状の支持部材を採用しているため、番号1(直線状の支持部材であり、θ1,θ2が番号4,5と同じ)に比べて、支持部材と固定リングの結合部近傍、および支持部材と制動ディスクの結合部近傍に生じる非弾性ひずみ範囲が小さくなる。   In Table 4, since the discs of Nos. 4 and 5 employ a support member having a shape satisfying θ1 <θ3 and θ2 <θ4, No. 1 (a linear support member, θ1 and θ2 are Nos. 4 and 4). 5), the inelastic strain range generated in the vicinity of the connecting portion between the support member and the fixing ring and in the vicinity of the connecting portion between the support member and the brake disk is reduced.

番号6,7のディスクは、θ1<θ3、θ2<θ4を満たす形状の支持部材を採用しているため、番号2(直線状の支持部材でθ1とθ2が番号6,7と同じ)に比べて、支持部材と固定リングの結合部近傍、および支持部材と制動ディスクの結合部近傍に生じる非弾性ひずみ範囲が小さくなる。   The discs of Nos. 6 and 7 employ a support member having a shape satisfying θ1 <θ3 and θ2 <θ4. Therefore, compared to No. 2 (a linear support member, θ1 and θ2 are the same as those of Nos. 6 and 7). Thus, the inelastic strain range generated in the vicinity of the joint between the support member and the fixing ring and in the vicinity of the joint between the support member and the brake disk is reduced.

このように、θ1とθ2が同じであっても、θ1<θ3、θ2<θ4の条件を満たす支持部材を採用したディスクでは、発生する非弾性ひずみ範囲を小さくできることが確認された。   As described above, it was confirmed that even if θ1 and θ2 are the same, the generated inelastic strain range can be reduced in the disk employing the support member that satisfies the conditions of θ1 <θ3 and θ2 <θ4.

また、θ3とθ4が等しい番号3と番号6を比較すると、θ1とθ2が小さい番号6の方が発生する非弾性ひずみ範囲が小さくなる。これは、番号6の例では、図7に示した支持部材222と固定リング20がなす角度α(=90°−θ1)と、支持部材222と制動ディスク14のなす角度β(=90°−θ2)が、番号3の例における図10に示す支持部材22と固定リング20がなす角度α(=90°−θ1)と、支持部材22と制動ディスク14のなす角度β(=90°−θ2)より大きく、そのため支持部材222、22と固定デリング20および制動ディスク14との結合部へのひずみの集中が小さいためと考えられる。   Further, comparing No. 3 and No. 6 in which θ3 and θ4 are equal, the inelastic strain range in which No. 6 in which θ1 and θ2 are smaller is smaller. In the example of No. 6, this is because the angle α (= 90 ° −θ1) formed by the support member 222 and the fixing ring 20 shown in FIG. 7 and the angle β (= 90 ° − formed by the support member 222 and the brake disk 14). θ2) is an angle α (= 90 ° −θ1) formed by the support member 22 and the fixing ring 20 shown in FIG. 10 in the example of number 3, and an angle β (= 90 ° −θ2) formed by the support member 22 and the brake disk 14. This is considered to be because the concentration of strain at the joint between the support members 222 and 22 and the fixed dering 20 and the brake disk 14 is small.

一般に、負荷される非弾性ひずみ範囲が大きいほど疲労き裂の発生寿命は短くなる。従って、本実施例の番号4〜7は番号1〜3に比べて疲労き裂の発生寿命が長く、耐久性に優れることがわかる。さらに、本実施例のロータは支持部材(222)の非弾性変形が小さいため、長期間使用しても制動力の低下を招きにくいことが確認された。   In general, the fatigue crack generation life becomes shorter as the inelastic strain range to be applied is larger. Therefore, it can be seen that Nos. 4 to 7 in this example have a longer fatigue crack generation life than Nos. 1 to 3 and are excellent in durability. Furthermore, since the inelastic deformation of the support member (222) is small in the rotor of this example, it has been confirmed that the braking force is hardly lowered even when used for a long time.

上記のように、本実施例においては、支持部材222と固定リング20の結合部において、支持部材222と固定リング20の結合部と、支持部材222と制動ディスク14の結合部を結ぶ直線が回転方向となす角度θ3よりも、支持部材222と固定リング20の結合部において支持部材222が回転方向となす角度θ1が小さくなるようにし、更に、支持部材222と制動ディスク14の結合部において、支持部材222と固定リング20の結合部と、支持部材222と制動ディスク14の結合部を結ぶ直線が回転方向となす角度θ4よりも、支持部材222と制動ディスク14の結合部において支持部材222が回転方向となす角度θ2が小さくなる構成である。このため、支持部材222を回転方向に対して十分に傾斜させると同時に、支持部材222と固定リング20及び、支持部材222と制動ディスク14とがなす角度α,βが過度に小さくなることを防止でき、よって、ロータの耐久性を向上させることが可能となる。   As described above, in the present embodiment, in the joint portion between the support member 222 and the fixing ring 20, the straight line connecting the joint portion between the support member 222 and the fixing ring 20 and the joint portion between the support member 222 and the brake disk 14 rotates. The angle θ1 between the support member 222 and the fixing ring 20 is smaller than the angle θ3 between the support member 222 and the fixing ring 20, and the angle θ1 between the support member 222 and the brake disk 14 is supported at the connection portion between the support member 222 and the brake disk 14. The support member 222 rotates at the joint portion between the support member 222 and the brake disk 14 than the angle θ4 formed by the straight line connecting the joint portion between the member 222 and the fixing ring 20 and the joint portion between the support member 222 and the brake disk 14 with respect to the rotation direction. The angle θ2 formed with the direction is reduced. Therefore, the support member 222 is sufficiently inclined with respect to the rotation direction, and at the same time, the angles α and β formed by the support member 222 and the fixing ring 20 and the support member 222 and the brake disk 14 are prevented from becoming excessively small. Therefore, it is possible to improve the durability of the rotor.

本実施例においては、θ1及びθ2は、0°〜60°であることが望ましい。60°より大きいと、θ1<θ3、θ2<θ4の条件を満たすように支持部材を湾曲させても、図7に示す角度α,βが小さくなるため、支持部材と固定リング20および制動ディスク14の結合部へのひずみの集中を十分に抑制することが難しくなる。   In the present embodiment, θ1 and θ2 are preferably 0 ° to 60 °. If the angle is larger than 60 °, the angles α and β shown in FIG. 7 become small even if the support member is curved so as to satisfy the conditions of θ1 <θ3 and θ2 <θ4. It becomes difficult to sufficiently suppress the concentration of strain on the joint portion.

また、θ3及びθ4は、30°〜100°であることが望ましい。30°より小さいと、θ1<θ3、θ2<θ4の条件を満たすように支持部材を湾曲させても、その湾曲量が小さくなるため、制動ディスクの変形を支持部材で十分に吸収することができなくなる。その結果、制動ディスクおよび支持部材に発生する非弾性ひずみを十分に抑制できなくなる可能性がある。一方、θ3及びθ4が100°より大きい場合には、固定リングと制動ディスク間の支持部材の長さが過度に長くなるため、支持部材の剛性が不足し、ディスクを回転させたときの振動が過度に大きくなることがある。更に望ましくは、θ3は60°以上とし、θ4は50°以上とする。   Further, θ3 and θ4 are desirably 30 ° to 100 °. If the angle is smaller than 30 °, even if the support member is bent so as to satisfy the conditions of θ1 <θ3 and θ2 <θ4, the amount of the curve becomes small, so that the deformation of the brake disk can be sufficiently absorbed by the support member. Disappear. As a result, inelastic strain generated in the brake disk and the support member may not be sufficiently suppressed. On the other hand, when θ3 and θ4 are larger than 100 °, the length of the support member between the fixing ring and the braking disk becomes excessively long, so that the rigidity of the support member is insufficient, and the vibration when the disk is rotated is generated. May become excessively large. More preferably, θ3 is 60 ° or more, and θ4 is 50 ° or more.

以上、本発明の実施例(実施形態、実施態様)について説明したが、本発明はこれらの実施例に何ら限定されるものではなく、特許請求の範囲に示された技術的思想の範疇において変更可能なものである。上述した例においては、スポーク状支持部材22の連結部22aとスポーク部22bとが連続した形状となっているが、連結部22aとスポーク部22bとが分離した構造を採用することもできる。また、支持部材22及びフィン24の断面形状は、長方形に限らず他の形状を採用することもできる。更に、上述の例では、フィン24が制動ディスク14の内周側から外周側まで連続した直線状のものを示したが、曲線状であってもよいし、途中で分割されているものであっても良い。
As mentioned above, although the Example (embodiment, embodiment) of this invention was described, this invention is not limited to these Examples at all, It changes in the category of the technical idea shown by the claim. It is possible. In the example described above, the connecting portion 22a and the spoke portion 22b of the spoke-like support member 22 have a continuous shape, but a structure in which the connecting portion 22a and the spoke portion 22b are separated can also be adopted. Further, the cross-sectional shapes of the support member 22 and the fins 24 are not limited to a rectangle, and other shapes can be adopted. Further, in the above-described example, the fins 24 are linear ones that are continuous from the inner peripheral side to the outer peripheral side of the brake disk 14, but may be curved or divided in the middle. May be.

図1は、本発明の第1実施例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。FIG. 1 is a cross-sectional view showing the structure of the main part of a retarder according to a first embodiment of the present invention, showing a braking state. 図2は、図1に示すリターダの制動ディスクを中心としたロータの構造を示す平面図である。FIG. 2 is a plan view showing the structure of the rotor around the braking disk of the retarder shown in FIG. 図3は、図2のA−A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図4は、図2の一部を拡大した図であり、ディスク支持部材及びフィンの傾斜角を示す。FIG. 4 is an enlarged view of a part of FIG. 2 and shows the tilt angles of the disk support member and the fins. 図5は、図3に対応した図であり、ディスク支持部材の形状を示す説明図である。FIG. 5 is a diagram corresponding to FIG. 3 and is an explanatory diagram showing the shape of the disk support member. 図6は、本発明の第2実施例に係るリターダのディスク支持部材の形状を示す側面(断面)図である。FIG. 6 is a side (sectional) view showing the shape of the disc support member of the retarder according to the second embodiment of the present invention. 図7は、本発明の第3実施例に係るリターダの制動ディスクを中心としたロータの構造を示す平面図である。FIG. 7 is a plan view showing the structure of a rotor centering on a retarder braking disk according to a third embodiment of the present invention. 図8は、図7に示す制動ディスク、支持部材及び固定リングの構成を示す断面図(側面図)である。FIG. 8 is a cross-sectional view (side view) showing the configuration of the brake disk, support member, and fixing ring shown in FIG. 図9は、第3実施例の要部の構成を示す拡大平面図である。FIG. 9 is an enlarged plan view showing the configuration of the main part of the third embodiment. 図10は、第3実施例との比較として使用される説明図であり、リターダの制動ディスク付近の平面状態を示す。FIG. 10 is an explanatory diagram used for comparison with the third embodiment, and shows a planar state in the vicinity of the brake disk of the retarder.

符号の説明Explanation of symbols

10 渦電流式減速装置
12 回転軸
14 制動ディスク
16 永久磁石
20 固定リング
22,122,222 スポーク状支持部材
22a,122a,222a 連結部
22b,222b スポーク部
24 放熱フィン
DESCRIPTION OF SYMBOLS 10 Eddy current type speed reducer 12 Rotating shaft 14 Brake disk 16 Permanent magnet 20 Fixed ring 22,122,222 Spoke-like support member 22a, 122a, 222a Connecting part 22b, 222b Spoke part 24 Radiation fin

Claims (4)

機関の回転軸に連結された制動ディスクと;
制動時に前記制動ディスクの制動面に対して磁界を作用させる磁界発生部と;
前記制動ディスクの制動面と反対側の面において、当該制動ディスクを前記回転軸に対して支持する複数のスポーク状支持部材とを備え、
前記スポーク状支持部材の各々は、前記制動ディスクに固定されるスポーク部と前記回転軸の外周部に連結される連結部とを有し、
前記制動ディスクの面と垂直で前記スポーク状支持部材の長手方向に沿った断面で当該支持部材を見た場合に、前記連結部は前記制動ディスクの制動面と反対側に向かって湾曲し、前記スポーク部よりも外側に突出しており、
前記スポーク状支持部材の各々は、前記制動ディスクの中心方向から外周方向に向かって延び、当該ディスクの放射方向に対して当該ディスクの制動時の回転方向とは逆側に傾いて配置され、
前記スポーク状支持部材と前記制動ディスクの内周縁とが交差する位置をX1;前記支持部材と前記機関の回転軸の外周縁とが交差する位置をX2;前記制動ディスクの回転中心をO;前記位置X1と前記制動ディスクの回転中心Oを通る直線をL1;前記位置X2と前記制動ディスクの回転中心Oを通る直線をL2;前記位置X1において前記支持部材が内側に向かって延びる方向をL3;前記位置X2において前記支持部材が外側に向かって延びる方向をL4;前記位置X1と前記位置X2とを結ぶ直線をL5;L2とL4とが成す角をθ1;L1とL3とが成す角をθ2;L2とL5とが成す角をθ3;L1とL5とが成す角をθ4とした場合に、以下の式を満たすことを特徴とする渦電流式減速装置。
θ1<θ3・・・・・・・・(1)
θ2<θ4・・・・・・・・(2)
A brake disc connected to the rotating shaft of the engine;
A magnetic field generator for applying a magnetic field to the braking surface of the braking disk during braking;
A plurality of spoke-like support members that support the braking disk with respect to the rotating shaft on a surface opposite to the braking surface of the braking disk;
Each of the spoke-like support members has a spoke part fixed to the brake disc and a connection part connected to the outer peripheral part of the rotating shaft,
When the support member is viewed in a cross section perpendicular to the surface of the brake disk and along the longitudinal direction of the spoke-like support member, the connecting portion is curved toward the opposite side of the brake surface of the brake disk, and Protrudes outside the spokes ,
Each of the spoke-like support members extends from the center direction of the braking disk toward the outer circumferential direction, and is inclined with respect to the radial direction of the disk and is inclined to the opposite side to the rotation direction during braking of the disk,
X1 is a position where the spoke-shaped support member and the inner peripheral edge of the brake disk intersect; X2 is a position where the support member and the outer peripheral edge of the rotation shaft of the engine intersect; O is the rotation center of the brake disk; L1 is a straight line passing through the position X1 and the rotation center O of the braking disk; L2 is a straight line passing through the position X2 and the rotation center O of the braking disk; L3 is a direction in which the support member extends inward at the position X1; A direction in which the support member extends outward at the position X2 is L4; a straight line connecting the position X1 and the position X2 is L5; an angle formed by L2 and L4 is θ1; an angle formed by L1 and L3 is θ2 An angle formed by L2 and L5 is θ3; and an angle formed by L1 and L5 is θ4, an eddy current reduction device satisfying the following expression:
θ1 <θ3 (1)
θ2 <θ4 (2)
前記角度θ1及びθ2は、0〜60°であり、前記角度θ3及びθ4は、30〜100°であることを特徴とする請求項1に記載の渦電流減速装置。  2. The eddy current reduction device according to claim 1, wherein the angles [theta] 1 and [theta] 2 are 0 to 60 [deg.], And the angles [theta] 3 and [theta] 4 are 30 to 100 [deg.]. 前記角度θ3は60°以上、θ4は50°以上であることを特徴とする請求項2に記載の渦電流減速装置。  The eddy current reduction device according to claim 2, wherein the angle θ3 is 60 ° or more and θ4 is 50 ° or more. 前記制動ディスクの制動面と反対側の面に形成された複数のフィンを更に備え、  A plurality of fins formed on a surface opposite to the braking surface of the braking disk;
前記フィンの各々は、前記制動ディスクの中心方向から外周方向に向かって延び、当該ディスクの放射方向に対して当該ディスクの制動時の回転方向とは逆側に傾いて配置されることを特徴とする請求項1乃至3の何れかに記載の渦電流式減速装置。  Each of the fins extends from the center direction of the braking disk toward the outer peripheral direction, and is disposed to be inclined with respect to the radial direction of the disk opposite to the rotation direction during braking of the disk. The eddy current type reduction device according to any one of claims 1 to 3.
JP2004255376A 2003-09-02 2004-09-02 Eddy current reducer Active JP4466291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255376A JP4466291B2 (en) 2003-09-02 2004-09-02 Eddy current reducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003310591 2003-09-02
JP2004255376A JP4466291B2 (en) 2003-09-02 2004-09-02 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2005102490A JP2005102490A (en) 2005-04-14
JP4466291B2 true JP4466291B2 (en) 2010-05-26

Family

ID=34467531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255376A Active JP4466291B2 (en) 2003-09-02 2004-09-02 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP4466291B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905088B2 (en) * 2006-11-30 2012-03-28 住友金属工業株式会社 Eddy current reducer for automobile
JP4905148B2 (en) * 2007-01-20 2012-03-28 住友金属工業株式会社 Eddy current reducer
DE102010019317A1 (en) * 2010-05-03 2011-11-03 Voith Turbo Smi Technologies Gmbh & Co. Kg Rotor for a permanent magnet retarder
JP6651880B2 (en) * 2016-02-04 2020-02-19 日本製鉄株式会社 Eddy current heating device
WO2021176977A1 (en) * 2020-03-06 2021-09-10 日本製鉄株式会社 Eddy current-type speed reducer

Also Published As

Publication number Publication date
JP2005102490A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
EP1480320B1 (en) Eddy current speed reducer
US8970077B2 (en) Rotary electric machine
JP4466291B2 (en) Eddy current reducer
US6039157A (en) Eddy current braking system
JP4007223B2 (en) Eddy current reducer
JP4905148B2 (en) Eddy current reducer
JP4715546B2 (en) Eddy current reducer
JP3966259B2 (en) Eddy current reducer
JP4858352B2 (en) Eddy current reducer
JP7343818B2 (en) Eddy current reduction gear
JPH0714669Y2 (en) Ventilated disk rotor
JP3849401B2 (en) Eddy current reducer
JP7290831B2 (en) Eddy current reduction gear
JP3591299B2 (en) Eddy current speed reducer
JP3721937B2 (en) Eddy current reducer
JP3659054B2 (en) Eddy current reducer
JP2021069272A (en) Eddy current reduction gear
JP2002303342A (en) Brake disk
JP2023038094A (en) Bearing device for wheel
JP2005143190A (en) Eddy current type reduction gear
JP2002027733A (en) Permanent magnet fixing device for eddy current decelerator
JP2019146470A (en) Rotor of eddy current type deceleration device
JPH04168970A (en) Eddy current type reduction gear
JP2004364413A (en) Rotor for eddy current type reduction gear, and eddy current type reduction gear equipped with that rotor
JPH04271261A (en) Brake drum of eddy current type speed reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350