JP4465476B2 - Motion capture measurement method for fingers using magnetic position and orientation sensor - Google Patents

Motion capture measurement method for fingers using magnetic position and orientation sensor Download PDF

Info

Publication number
JP4465476B2
JP4465476B2 JP2006062659A JP2006062659A JP4465476B2 JP 4465476 B2 JP4465476 B2 JP 4465476B2 JP 2006062659 A JP2006062659 A JP 2006062659A JP 2006062659 A JP2006062659 A JP 2006062659A JP 4465476 B2 JP4465476 B2 JP 4465476B2
Authority
JP
Japan
Prior art keywords
finger
fingers
motion capture
sensors
orientation sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006062659A
Other languages
Japanese (ja)
Other versions
JP2007236602A (en
Inventor
昇 吉村
一孝 水戸部
英夫 玉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2006062659A priority Critical patent/JP4465476B2/en
Publication of JP2007236602A publication Critical patent/JP2007236602A/en
Application granted granted Critical
Publication of JP4465476B2 publication Critical patent/JP4465476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、手指の繊細な動きを記録・再現するための磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法に関する。 The present invention relates to a finger motion capture measurement method using a magnetic position and orientation sensor for recording and reproducing delicate movements of fingers.

一般に、動体に装着された光学マーカの位置情報により動体の動きを検出・捕捉する光学式モーションキャプチャ装置と、前記動体に装着された磁気センサの動きを検出・捕捉する磁気式モーションキャプチャ装置と、前記光学式モーションキャプチャ装置にて検出・捕捉した光学データ及び前記磁気式モーションキャプチャ装置にて検出・捕捉した磁気データをキャリブレートするためのキャリブレーション手段と、キャリブレートされた動体の光学データ及び磁気データを用いて、前記動体スケルトンの動作データを生成し、生成された動体スケルトンの動作データを動体キャラクタスケルトンに変換する制御手段とを備えた画像情報処理システムが知られている(特許文献1を参照)。
また、ピアノなどのように手指によって演奏される楽器については、その演奏教習時に実際の手指の運指状態を目視で確認させることは重要な教習方法であり、楽器演奏時の運指を表示してその演奏教習を支援する運指データ作成装置及び運指表示装置が知られている(特許文献2を参照)。
現在、手指のモーションキャプチャ(MoCap)としては、グローブに埋め込まれた光ファイバーが曲がる時に光伝送率が減衰することを機序として手指の動きを測定する製品が主流であるが、手の動きの85%程度しか測定できないし、手の大きさに合わせて買い揃えなければならないなど、精度と汎用性の点で問題が残っていた。
In general, an optical motion capture device that detects and captures the movement of a moving object based on position information of an optical marker attached to the moving object; a magnetic motion capture device that detects and captures the movement of a magnetic sensor attached to the moving object; Calibration means for calibrating optical data detected and captured by the optical motion capture device and magnetic data detected and captured by the magnetic motion capture device, and optical data and magnetic data of the calibrated moving object And an image information processing system including control means for generating motion data of the moving body skeleton and converting the generated motion data of the moving body skeleton into a moving body character skeleton (see Patent Document 1). .
In addition, for musical instruments that are played with fingers, such as the piano, it is an important learning method to visually check the fingering state of the fingers during the performance lesson. A fingering data creation device and a fingering display device that support performance learning are known (see Patent Document 2).
Currently, as the motion capture of the fingers (MoCap), products that measure the movement of the finger by the mechanism that the light transmission rate is attenuated when the optical fiber embedded in the glove bends are the mainstream. % Can only be measured, and it has to be purchased according to the size of the hand.

特開2003−106812号公報JP 2003-106812 A 特開2000−3171号公報JP 2000-3171

本発明は、手指の繊細な動きを記録・再現するための磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法を提供することを目的とする。 It is an object of the present invention to provide a finger motion capture measurement method using a magnetic position and orientation sensor for recording and reproducing delicate movements of fingers.

本発明の磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法は、ケーブルを細線化した小型軽量のトランスミッタ1個と指骨に1個ずつ1本の指に合計3個、手の甲部1個の合計片手16個のセンサを用いた磁気式3次元位置姿勢センサを用いて手指の動きを計測するものである。
さらに、大きさの異なる手指でもトランスミッタおよび16個のセンサを装着するため、トランスミッタと手の甲部のセンサは伸縮性のある面ファスナーを巻きつけて装着するグローブに固定し、その他のセンサは伸縮性に富むテーピングを用いて装着する構造である。
本発明のキャリブレーション手法は、磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法において、16個のセンサ装着時の位置及び角度のズレを補正するため、トランスミッタの位置と姿勢を固定し、それよりy0離れた位置に座標軸Xに平行な直線Lを描き、指を直線Lの左右に揃えることで装着者の手指の形状を測定するものである。
The motion capture measurement method for fingers using the magnetic position / orientation sensor of the present invention is composed of one small and lightweight transmitter with a thin cable, one finger for each finger bone, a total of three on one finger and one back of the hand. The movement of fingers is measured using a magnetic three-dimensional position and orientation sensor using a total of 16 sensors in one hand.
In addition, the transmitter and 16 sensors can be attached to fingers of different sizes, so the transmitter and back sensor are fixed to the glove to be worn with elastic hook-and-loop fasteners, and the other sensors are elastic. It is a structure to be mounted using abundant taping.
In the calibration method of the present invention, in the motion capture measurement method for fingers using a magnetic position and orientation sensor, the position and orientation of the transmitter are fixed in order to correct the position and angle deviation when the 16 sensors are mounted, The shape of the wearer's finger is measured by drawing a straight line L parallel to the coordinate axis X at a position away from y0 and aligning the fingers to the left and right of the straight line L.

本発明の磁気式位置姿勢センサを用いた手指用モーションキャプチャ装置は、測定できなかった手指の全ての関節における回転成分やズレまでもサブミリ精度で240Hzのサンプリングレートで計測出来る。
本発明の磁気式位置姿勢センサを用いた手指用モーションキャプチャ装置は、小型軽量のトランスミッタと16個のセンサに加え、センサケーブルの細線化により指先などの小さな部位への装着を可能にした。
さらに、手指に16個のセンサを一定の姿勢で安定して装着するために解剖学的知見を踏まえた装着ユニットの技術開発により,汎用性の高い手指のモーションキャプチャを実現した。
また、左右両方の手を同時に測定できるキャプチャ用ソフトウェアの開発,また,リアルタイムで3D-CGを描画するソフトウェアの開発により手指用モーションキャプチャシステムを実現している。
The motion capture device for fingers using the magnetic position and orientation sensor of the present invention can measure even rotational components and deviations in all joints of fingers that could not be measured at a sampling rate of 240 Hz with submillimeter accuracy.
The motion capture device for fingers using the magnetic position and orientation sensor of the present invention can be mounted on a small part such as a fingertip by thinning a sensor cable in addition to a small and light transmitter and 16 sensors.
Furthermore, a highly versatile finger motion capture has been realized by developing a mounting unit technology based on anatomical knowledge in order to stably mount 16 sensors on a finger in a fixed posture.
In addition, a finger motion capture system has been realized by developing capture software that can measure both left and right hands simultaneously, and software that draws 3D-CG in real time.

本発明の磁気式位置姿勢センサを用いた手指用モーションキャプチャ装置の一実施例を図面に基づいて、以下に説明する。
図1に示すように、磁気式三次元位置姿勢システム(Liberty 16 system)は、1個のトランスミッタ(Transmitter)と16個のセンサ(sensors)で構成されており、トランスミッタに対するセンサの相対的な位置(X,Y,Z)および角度(Az,El,Ro)を計測することができる。
それぞれのセンサは指に装着し易いようにモールドしており、1本の指に3個のセンサを装着できる。
指骨に1個ずつ1本の指に合計3個、片手あたり手の甲部の1個を加え計16個のセンサで手指のモーションキャプチャ(MoCap)を構成しており、あらゆる手の動きを計測することができる。
また、手の大きさに関わらず装着できることを重視し、トランスミッタと手の甲部のセンサを固定するグローブは伸縮性のある面ファスナーを巻きつけて装着し、その他のセンサは伸縮性に富むテーピングを用いて装着する構造である。
指先に装着するセンサと爪との間には液状プラスチックを介することでズレを防ぎ、伸縮性がありべたつかない接着剤(商品名:Kinesiotex)で固する。
磁気式三次元位置姿勢システムはUSBケーブル経由でコンピュータと接続し、16chを240Hzのサンプリングレートで計測する。
An embodiment of a motion capture device for fingers using the magnetic position and orientation sensor of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the magnetic three-dimensional position and orientation system (Liberty 16 system) consists of one transmitter (Transmitter) and 16 sensors (sensors), and the relative position of the sensor with respect to the transmitter. (X, Y, Z) and angle (Az, El, Ro) can be measured.
Each sensor is molded so as to be easily attached to the finger, and three sensors can be attached to one finger.
A finger motion capture (MoCap) is configured with a total of 16 sensors, one for each finger bone, 3 for each finger, and 1 for the back of the hand per hand. Can do.
In addition, emphasizing that it can be worn regardless of the size of the hand, the glove that secures the transmitter and the sensor on the back of the hand is wrapped with elastic hook-and-loop fasteners, and other sensors use elastic taping. It is a structure to be mounted.
Between the sensor and the pawl to be mounted on the fingertip prevents deviation in passing through the liquid plastic, stretch may not sticky adhesive (trade name: Kinesiotex) is fixed at.
The magnetic three-dimensional position and orientation system is connected to a computer via a USB cable and measures 16 channels at a sampling rate of 240 Hz.

本発明では、磁気式三次元位置姿勢センサのトランスミッタおよび16個のセンサの小型・軽量化とケーブルの細線化により、指先などの小さな部位の測定を可能にした。
さらに、16個のセンサを多チャンネル化することで,両手の手指を同時に計測することが出来る。
また、トランスミッタと16個のセンサの最適な配置を検討し、16個のセンサおよびケーブルの小型軽量化により,従来は不可能であった指先にも装着できるように改良した。
指1本あたり3カ所、片手あたり計15カ所と手の甲部1カ所の16カ所の位置(x,y,z)および姿勢(Az,El,Ro)の同時計測を可能にした。
また、16個のセンサを手指に装着するための装着ユニットを開発し,大きさの異なる手でも同一の装着ユニットを着用できるようにした.
手指の動きを再現するためには装着している手指の手骨の大きさ・形状を正確に計測した後,16個のセンサの位置・姿勢に関するキャプチャ・データから変換写像を用いて手骨の位置・姿勢を再現しなければならない。
In the present invention, the transmitter of the magnetic three-dimensional position and orientation sensor and the 16 sensors are reduced in size and weight and the cable is thinned, thereby enabling measurement of a small part such as a fingertip.
Furthermore, by making 16 sensors multi-channel, fingers of both hands can be measured simultaneously.
In addition, the optimal arrangement of the transmitter and 16 sensors was studied, and the 16 sensors and cables were reduced in size and weight so that they could be worn on fingertips, which was impossible before.
Simultaneous measurement of the position (x, y, z) and posture (Az, El, Ro) at three locations per finger, a total of 15 locations per hand and 16 locations on the back of the hand .
In addition, a mounting unit for mounting 16 sensors on the fingers was developed so that the same mounting unit can be worn by hands of different sizes.
In order to reproduce the movement of the fingers, the size and shape of the hand bones of the attached fingers are accurately measured, and then the hand bones are converted from the captured data on the positions and postures of the 16 sensors using a conversion map. The position / posture must be reproduced.

本発明では、そのために必要な計測手法および変換写像を導出するキャリブレーション手法も提案する。
手首にトランスミッタ、手指にセンサを装着する際、センサの位置は指の中心からずれており、センサと指骨の間の角度に差が生じてしまうため、実物の手指の姿勢・動きの情報と異なったものが計測データとして得られる。
磁気式三次元位置姿勢システムを用いた手指のモーションキャプチャ(MoCap)で記録したデータを3D-CGで再現するとき、指の個々の要素を実際のヒトのそれと一致させる作業、つまりキャリブレーションが必要となる。
図1にある各センサの中心に原点を仮定すると、トランスミッタから見た時それらの位置座標(X,Y,Z)および姿勢を示すオイラー角(Azimuth,Elevation,Roll;Az,El,Ro)の情報が得られ、パソコンにリアルタイムで記録される。
センサにより計測可能なデータは、図2(a)に示しており、X、Y、Zはトランスミッタの座標系を表し、x’、y’、z’はセンサの座標系を示している。
前述のセンサ装着時の位置及び角度のズレをキャリブレーションするため、図2(b)にあるように、トランスミッタの位置と姿勢を固定し、それよりy0離れた位置に座標軸Xに平行な直線Lを描き、指を直線Lの左右に揃えることでキャリブレーションを試みた。
ここでは、右手の人差し指の1センサを例に説明する。
指が直線Lの右にあるときのセンサのY座標をYR、左にある場合をYLとするとY座標は指の幅の中心をとり、Y+y0−(YR+YL)/2と変換できる。
ここで、(YR−YL)は指の幅を示す。
同様に、全てのセンサのY座標を修正する。
図2(b)の方法でZ座標およびAz、El、Roのキャリブレーションも可能である。
図3には、手を開いた状態から握るまでの右手センサ位置の変位を3次元空間に描画したCGを示す。
The present invention also proposes a measurement method necessary for this and a calibration method for deriving a conversion map.
When the transmitter is attached to the wrist and the sensor is attached to the finger, the sensor position is shifted from the center of the finger, resulting in a difference in the angle between the sensor and the phalange, which is different from the information on the posture and movement of the actual finger. Is obtained as measurement data.
When reproducing the data recorded by finger motion capture (MoCap) using a magnetic 3D position and orientation system with 3D-CG, it is necessary to calibrate the individual elements of the finger to match those of an actual human, that is, calibration is required. It becomes.
Assuming the origin at the center of each sensor in Fig. 1, the position coordinates (X, Y, Z) and Euler angles (Azimuth, Elevation, Roll; Az, El, Ro) indicating the position when viewed from the transmitter Information is obtained and recorded in real time on a personal computer.
Data that can be measured by the sensor is shown in FIG. 2A, where X, Y, and Z represent the coordinate system of the transmitter, and x ′, y ′, and z ′ represent the coordinate system of the sensor.
In order to calibrate the deviation of the position and angle when the sensor is mounted, the position and orientation of the transmitter are fixed as shown in FIG. 2B, and a straight line L parallel to the coordinate axis X is located at a position y0 away from it. I tried to calibrate by aligning my fingers to the left and right of the straight line L.
Here, one sensor of the index finger of the right hand will be described as an example.
If the Y coordinate of the sensor is Y R when the finger is to the right of the straight line L, and Y L is when it is to the left, the Y coordinate takes the center of the width of the finger and Y + y0− (Y R + Y L ) / Can be converted to 2.
Here, (Y R −Y L ) indicates the width of the finger.
Similarly, the Y coordinate of all sensors is corrected.
Calibration of Z coordinates and Az, El, and Ro is also possible by the method of FIG.
FIG. 3 shows a CG in which the displacement of the right hand sensor position from when the hand is opened to when it is gripped is drawn in a three-dimensional space.

手指用モーションキャプチャ装置の概略を示す構成図である。It is a block diagram which shows the outline of the motion capture apparatus for fingers. センサの位置・姿勢のキャリブレーション例を示す説明図である。It is explanatory drawing which shows the example of a calibration of the position and attitude | position of a sensor. 右手指に装着したセンサの変位を示す説明図である。It is explanatory drawing which shows the displacement of the sensor with which the right hand finger was mounted | worn.

Claims (3)

手首に小型軽量のトランスミッタ1個と1本の指骨に1個ずつ1本の指に合計3個、手の甲部1個の合計片手16個のセンサを用いた磁気式3次元位置姿勢センサを用いて手指の動きを計測することを特徴とする磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法Using a magnetic three-dimensional position and orientation sensor that uses a small and light transmitter on the wrist, one on each finger bone, three on each finger, and a total of 16 sensors on one back of the hand. A finger motion capture measurement method using a magnetic position and orientation sensor, characterized by measuring the movement of a finger. 大きさの異なる手指でもトランスミッタおよび16個のセンサを装着するため、トランスミッタと手の甲部のセンサは伸縮性のある面ファスナーを巻きつけて装着するグローブに固定し、その他のセンサは伸縮性に富むテーピングを用いて装着する構造であることを特徴とする請求項1記載の磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法Because the transmitter and 16 sensors can be worn even with fingers of different sizes, the transmitter and back sensor are fixed to the glove to be worn with elastic hook-and-loop fasteners, and the other sensors are highly flexible taping. The method of measuring a motion capture for a finger using a magnetic position and orientation sensor according to claim 1, characterized in that the structure is mounted by using a magnetic position and orientation sensor. 前記請求項1又は請求項2記載の磁気式位置姿勢センサを用いた手指用モーションキャプチャ計測方法において、16個のセンサ装着時の位置及び角度のズレを補正するため、トランスミッタの位置と姿勢を固定し、それよりy0離れた位置に座標軸Xに平行な直線Lを描き、指を直線Lの左右に揃えることで装着者の手指の形状を測定することを特徴とするキャリブレーション手法。 3. The method for measuring motion capture for fingers using the magnetic position and orientation sensor according to claim 1 or 2, wherein the position and orientation of the transmitter are fixed in order to correct position and angle misalignment when 16 sensors are mounted. A calibration method characterized by measuring the shape of the wearer's finger by drawing a straight line L parallel to the coordinate axis X at a position y0 away from it and aligning the fingers to the left and right of the straight line L.
JP2006062659A 2006-03-08 2006-03-08 Motion capture measurement method for fingers using magnetic position and orientation sensor Active JP4465476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062659A JP4465476B2 (en) 2006-03-08 2006-03-08 Motion capture measurement method for fingers using magnetic position and orientation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062659A JP4465476B2 (en) 2006-03-08 2006-03-08 Motion capture measurement method for fingers using magnetic position and orientation sensor

Publications (2)

Publication Number Publication Date
JP2007236602A JP2007236602A (en) 2007-09-20
JP4465476B2 true JP4465476B2 (en) 2010-05-19

Family

ID=38582740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062659A Active JP4465476B2 (en) 2006-03-08 2006-03-08 Motion capture measurement method for fingers using magnetic position and orientation sensor

Country Status (1)

Country Link
JP (1) JP4465476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563298B1 (en) 2014-07-23 2015-10-26 동서대학교산학협력단 Hand rehabilitation system based on hand motion recognition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126463B2 (en) 2007-09-12 2012-02-28 Kabushiki Kaisha Toshiba Mobile communication system, base station control apparatus, mobile terminal and method for controlling handover
JP2010117886A (en) * 2008-11-13 2010-05-27 Kanto Auto Works Ltd Virtual prototyping system, method of processing operation information in virtual prototyping, and recording medium with the processing method recorded
JP5392671B2 (en) * 2008-12-02 2014-01-22 学校法人早稲田大学 Walking measurement device
JP5284179B2 (en) * 2009-05-21 2013-09-11 トヨタ自動車東日本株式会社 Work determination system, work determination method, and recording medium recording the work determination method
EP2354897A1 (en) * 2010-02-02 2011-08-10 Deutsche Telekom AG Around device interaction for controlling an electronic device, for controlling a computer game and for user verification
JP2011200997A (en) * 2010-03-26 2011-10-13 Kanto Auto Works Ltd Teaching device and method for robot
CN105353866A (en) * 2014-08-20 2016-02-24 博世(上海)智能科技有限公司 Gloves used for acquiring data for sign language recognition
JP6578813B2 (en) * 2015-08-20 2019-09-25 株式会社Jvcケンウッド Out-of-head localization processing apparatus and filter selection method
WO2018110925A1 (en) * 2016-12-17 2018-06-21 이양수 Device for determining stroke in sleep
JP6966777B2 (en) * 2017-12-06 2021-11-17 国立大学法人秋田大学 Input system
CN210282277U (en) * 2019-06-21 2020-04-10 深圳岱仕科技有限公司 Hand exoskeleton device
JP2021177157A (en) 2020-05-08 2021-11-11 株式会社トプコン Eyewear display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563298B1 (en) 2014-07-23 2015-10-26 동서대학교산학협력단 Hand rehabilitation system based on hand motion recognition

Also Published As

Publication number Publication date
JP2007236602A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4465476B2 (en) Motion capture measurement method for fingers using magnetic position and orientation sensor
US11402903B1 (en) Fiducial rings in virtual reality
EP3707584B1 (en) Method for tracking hand pose and electronic device thereof
CN106679651B (en) Sound localization method, device and electronic equipment
US10642368B2 (en) Body posture detection system, suit and method
US20200012344A1 (en) One-size-fits-all data glove
MEng Development of finger-motion capturing device based on optical linear encoder
EP1437645B1 (en) Position/orientation measurement method, and position/orientation measurement apparatus
TWI474265B (en) Moving trajectory calibration method and moving trajectory generation method
CN108882837A (en) Utilize the automatic calibration of the endoscope of bracing wire
US10433725B2 (en) System and method for capturing spatially and temporally coherent eye gaze and hand data during performance of a manual task
EP2418562B1 (en) Modelling of hand and arm position and orientation
RU2014120182A (en) HOLOGRAPHIC USER INTERFACES FOR MEDICAL PROCEDURES
Lin et al. Novel assembled sensorized glove platform for comprehensive hand function assessment by using inertial sensors and force sensing resistors
Maestre et al. Acquisition of violin instrumental gestures using a commercial EMF tracking device
US11341867B2 (en) Movement tracking and simulation device and method
JP2002065641A (en) System for measuring finger movement
JP5087571B2 (en) Coordinate calibration method for 3D image display device
Shenoy et al. Design and validation of an IMU based full hand kinematic measurement system
KR20090025452A (en) Glove-based human-computer interface device
CN101929839A (en) Position measuring system, processing device for position measurement, and processing method for position measurement
CN110209270A (en) A kind of data glove, data glove system, bearing calibration and storage medium
JP2014117409A (en) Method and apparatus for measuring body joint position
KR100838181B1 (en) Hand interface device using miniaturized absolute position sensors, system for hand interface using it
CN115568946B (en) Lightweight navigation positioning system, method and medium for oral and throat surgery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150