JP4465457B2 - Radiation detector and neutron detector with radiation type discrimination function - Google Patents

Radiation detector and neutron detector with radiation type discrimination function Download PDF

Info

Publication number
JP4465457B2
JP4465457B2 JP2004004560A JP2004004560A JP4465457B2 JP 4465457 B2 JP4465457 B2 JP 4465457B2 JP 2004004560 A JP2004004560 A JP 2004004560A JP 2004004560 A JP2004004560 A JP 2004004560A JP 4465457 B2 JP4465457 B2 JP 4465457B2
Authority
JP
Japan
Prior art keywords
radiation
detector
single crystal
rise time
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004004560A
Other languages
Japanese (ja)
Other versions
JP2005195552A (en
Inventor
龍也 中村
政樹 片桐
雅隆 大久保
雅宏 浮辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004004560A priority Critical patent/JP4465457B2/en
Publication of JP2005195552A publication Critical patent/JP2005195552A/en
Application granted granted Critical
Publication of JP4465457B2 publication Critical patent/JP4465457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、単結晶基盤上に製作された超伝導トンネル接合素子により放射線吸収により基盤で発生したフォノンを検出する放射線検出器において、ガンマ線またはX線または電子線と、粒子線(アルファ線、中性子など)との線種弁別機能を持った放射線検出器に関するものである。   The present invention relates to a radiation detector for detecting phonons generated on a substrate by radiation absorption by a superconducting tunnel junction device manufactured on a single crystal substrate, and includes a gamma ray, an X-ray or an electron beam, and a particle beam (alpha ray, neutron). Etc.) related to a radiation detector having a line type discrimination function.

特に、本発明は、超伝導トンネル接合素子の電荷パルス信号の立ち上がり時間が放射線種により異なることを利用することを特徴としている。また、ボロン10(10B)やリチウム6(6Li)などの中性子捕獲断面積の大きな元素を含む単結晶基盤を用いて検出器を構成した場合、中性子検出が可能となり、バックグランドとなるガンマ線、X線、電子線との弁別が可能となる。このため、各放射線種が混在するような放射線場においても中性子対バックグランド比に優れた中性子検出が可能となり、中性子ビームを用いた実験や分析などの検出器として用いることができる。 In particular, the present invention is characterized by utilizing the fact that the rise time of the charge pulse signal of the superconducting tunnel junction element varies depending on the radiation type. Also, in the case of constituting the detector using a single crystal base containing a large element of neutron capture cross section such as boron 10 (10 B) and lithium 6 (6 Li), it is possible to neutron detection, gamma rays as a background , X-ray and electron beam can be discriminated. This makes it possible to detect neutrons with excellent neutron-to-background ratio even in a radiation field in which various radiation types coexist, and can be used as a detector for experiments and analyzes using neutron beams.

従来より、半導体検出器あるいはシンチレーション検出器においては、放射線の線種によりパルス信号の立ち上がり時間が異なることを利用して、放射線の弁別を行う放射線検出器あるいは中性子検出器が開発され使用されてきた(例えば、非特許文献1参照 )。また、図4に示すようにGeなどの半導体検出素子上にフォノンセンサを形成した放射線検出器においては、Ge半導体素子による電離信号とフォノンセンサからのフォノン信号の相関をとることで、中性子とガンマ線の弁別が行われている(例えば、非特許文献2参照)。   Conventionally, in semiconductor detectors or scintillation detectors, radiation detectors or neutron detectors that discriminate radiation have been developed and used by utilizing the fact that the rise time of the pulse signal differs depending on the radiation line type. (For example, refer nonpatent literature 1). Further, in a radiation detector in which a phonon sensor is formed on a semiconductor detection element such as Ge as shown in FIG. 4, neutrons and gamma rays are obtained by correlating the ionization signal from the Ge semiconductor element and the phonon signal from the phonon sensor. Is discriminated (see, for example, Non-Patent Document 2).

しかし、放射線吸収により単結晶基盤で発生したフォノンを、単結晶上に製作した超伝導トンネル接合素子により検出し、放射線あるいは中性子を検出する検出器においては、放射線種によりその信号の立ち上がり時間特性が異なることが知られていなかったため、立ち上がり時間の差を利用して放射線種弁別を行った例はない。
Knoll著、放射線計測ハンドブック第3版、日刊工業新聞社 Nuclear Instruments and Method In Physics Research A,326(1993)166-171
However, in a detector that detects phonons generated on a single crystal substrate due to radiation absorption by a superconducting tunnel junction device fabricated on a single crystal and detects radiation or neutrons, the rise time characteristic of the signal depends on the type of radiation. Since it was not known that there is no difference, there is no example of performing radiation type discrimination using the difference in rise time.
By Knoll, Radiation Measurement Handbook 3rd Edition, Nikkan Kogyo Shimbun Nuclear Instruments and Method In Physics Research A, 326 (1993) 166-171

単結晶基盤で発生したフォノンを超伝導トンネル接合素子で検出する放射線検出器おいて、従来技術では放射線のエネルギー情報を必要とし、また複数のセンサーからの信号相関を取る必要があるため検出器の構造、信号処理回路等が複雑になるという問題があった。この欠点を改善し、入射する放射線のエネルギーに関係なく、ガンマ線またはX線または電子線と、粒子線とを明確に分離することが解決すべき課題である。   In radiation detectors that detect phonons generated on a single crystal substrate with a superconducting tunnel junction element, the conventional technology requires energy information of radiation, and it is necessary to correlate signals from multiple sensors. There is a problem that the structure, the signal processing circuit, and the like are complicated. The problem to be solved is to remedy this drawback and to clearly separate gamma rays or X-rays or electron beams from particle beams regardless of the energy of the incident radiation.

単結晶基盤上に製作された超伝導トンネル接合素子による放射線吸収により基盤で発生したフォノンを検出する放射線検出器において、超伝導トンネル接合型素子の電荷パルス信号の立ち上がり時間が、X線またはガンマ線または電子線吸収による場合と、粒子線吸収による場合とにおいて異なることを利用して放射線種弁別を可能とする。   In a radiation detector for detecting phonons generated in a substrate by radiation absorption by a superconducting tunnel junction device fabricated on a single crystal substrate, the rise time of the charge pulse signal of the superconducting tunnel junction device is X-ray or gamma ray or The radiation type discrimination is made possible by utilizing the difference between the case of electron beam absorption and the case of particle beam absorption.

本発明の検出器により、入射する放射線のエネルギーに関係なく、ガンマ線またはX線または電子線と、粒子線とを明確に分離することができる。   With the detector of the present invention, gamma rays, X-rays, electron beams, and particle beams can be clearly separated regardless of the energy of incident radiation.

(実施例1)
実施例1として、本発明による検出器について、図1、図2を参照して述べる。本実施例では図1に示すような単結晶上に超伝導(S)/絶縁体(I)/超伝導(S)構造(SIS構造)のNb/Al/Al23/Al/Nb構造を用いた超伝導トンネル接合素子を形成し、放射線吸収により基盤で発生したフォノンを検出する放射線検出器を製作する。実施例では単結晶体としてはLBO(Li247)を用いた。超伝導トンネル接合素子からの信号は電荷アンプにより増幅して読み出す。図2は、X線(55Fe線源、エネルギー 5.9 keV)、ガンマ線(60Co線源、1.17MeV、1.33MeV、電子線と等価)及び熱中性子 (241Am/Li線源、α粒子と7Liとに対応)を入射した場合における超伝導トンネル素子からの電荷パルス信号の立ち上がり時間分布が示している。この実験結果より、X線またはガンマ線(電子線)と、α粒子と7Li(中性子との核反応により発生)とにおいて電荷パルス信号の立ち上がり時間が異なることがわかる。
Example 1
As a first embodiment, a detector according to the present invention will be described with reference to FIGS. In this example, a Nb / Al / Al 2 O 3 / Al / Nb structure of superconducting (S) / insulator (I) / superconducting (S) structure (SIS structure) on a single crystal as shown in FIG. A superconducting tunnel junction device is formed, and a radiation detector that detects phonons generated on the substrate by radiation absorption is manufactured. In the examples, LBO (Li 2 B 4 O 7 ) was used as the single crystal. A signal from the superconducting tunnel junction element is amplified and read by a charge amplifier. Figure 2 shows X-rays ( 55 Fe source, energy 5.9 keV), gamma rays ( 60 Co source, 1.17 MeV, 1.33 MeV, equivalent to electron beam) and thermal neutrons ( 241 Am / Li source, α particles and 7 The rise time distribution of the charge pulse signal from the superconducting tunnel element in the case of incidence on Li) is shown. From this experimental result, it can be seen that the rise time of the charge pulse signal differs between X-rays or gamma rays (electron beams) and α particles and 7 Li (generated by a nuclear reaction between neutrons).

この電荷パルス信号を電荷アンプの後に接続されたライズタイム・パルス波高変換回路により立ち上がり時間をパルス波高値に変換し、その後に設けられた波高弁別器により、図2の立ち上がり時間分布情報に基づいて放射線線種毎のパルス波高を選別する。選別した信号は、X線またはガンマ線用と粒子用の2つの計数回路により計数される。このように、超伝導トンネル接合素子の電荷パルス信号の立ち上がり時間を利用することで、ガンマ線またはX線または電子線と、粒子線との線種弁別を可能とする放射線検出器を構成できる。   The charge pulse signal is converted into a pulse peak value by a rise time pulse height converter circuit connected after the charge amplifier, and the pulse height discriminator provided thereafter is used based on the rise time distribution information of FIG. Select the pulse height for each radiation type. The selected signal is counted by two counting circuits for X-rays or gamma rays and particles. In this way, by using the rise time of the charge pulse signal of the superconducting tunnel junction device, a radiation detector that enables line type discrimination between gamma rays, X-rays, electron beams, and particle beams can be configured.

(実施例2)
実施例2として、本発明による検出器について、図3を参照して述べる。本実施例では、単結晶基盤として10Bを96%まで濃縮したLBO(LiB35あるいはLi247)単結晶を用い、その上に超伝導(S)/絶縁体(I)/超伝導(S)構造(SIS構造)のNb/Al/Al23/Al/Nb構造を用いた超伝導トンネル接合素子を製作し検出器とする。10Bを96%まで濃縮することにより自然のLBO単結晶(10B含有率20%)の約5倍の中性子捕獲率を持つ検出器を構成することができる。LBO単結晶基盤に入射した中性子はLBO単結晶中の10Bと核反応し、α粒子と6Liを生成する。このため、実施例1で述べたように、X線またはガンマ線(電子線)または中性子(α粒子及び7Liに対応)とにおいて立ち上がり時間が異なる。
(Example 2)
As Example 2, a detector according to the present invention will be described with reference to FIG. In this example, an LBO (LiB 3 O 5 or Li 2 B 4 O 7 ) single crystal enriched with 10 B up to 96% is used as a single crystal substrate, and a superconductor (S) / insulator (I) is formed thereon. A superconducting tunnel junction element using an Nb / Al / Al 2 O 3 / Al / Nb structure having a / superconducting (S) structure (SIS structure) is fabricated and used as a detector. By concentrating 10 B to 96%, a detector having a neutron capture rate about 5 times that of a natural LBO single crystal ( 10 B content 20%) can be constructed. Neutrons incident on the LBO single crystal substrate undergo a nuclear reaction with 10 B in the LBO single crystal to generate α particles and 6 Li. For this reason, as described in Example 1, the rise time is different for X-rays, gamma rays (electron beams), or neutrons (corresponding to α particles and 7 Li).

実施例1と同様に、この電荷バルス信号を電荷アンプの後に接続されたライズタイム・パルス波高変換回路により立ち上がり時間をパルス波高値に変換し、その後に設けられた波高弁別器により、図2の立ち上がり時間分布情報に基づいて放射線線種毎のパルス波高を選別する。選別した信号は、X線またはガンマ線用と、中性子用の2つの計数回路により計数される。このように、超伝導トンネル接合素子の電荷パルス信号の立ち上がり時間を利用することで、ガンマ線またはX線または電子線と、中性子との線種弁別を可能とする中性子検出器を構成できる。   As in the first embodiment, the rise time is converted into a pulse peak value by a rise time pulse height converter circuit connected after the charge amplifier, and the pulse discriminator provided thereafter converts the charge pulse signal into the pulse peak value shown in FIG. Based on the rise time distribution information, the pulse wave height for each radiation ray type is selected. The selected signals are counted by two counting circuits for X-rays or gamma rays and for neutrons. In this way, by using the rise time of the charge pulse signal of the superconducting tunnel junction device, a neutron detector that enables line type discrimination between gamma rays, X-rays, electron beams, and neutrons can be configured.

単結晶上に超伝導(S)/絶縁体(I)/超伝導(S)構造(SIS構造)のNb/Al/Al23/Al/Nb構造を用いた超伝導トンネル接合素子を形成し、放射線吸収により基盤で発生したフォノンを検出する放射線検出器の構造を示す図である。Superconducting tunnel junction device using Nb / Al / Al 2 O 3 / Al / Nb structure of superconducting (S) / insulator (I) / superconducting (S) structure (SIS structure) is formed on a single crystal. FIG. 3 is a diagram showing the structure of a radiation detector that detects phonons generated on the substrate by radiation absorption. X線(55Fe線源、エネルギー 5.9 keV)、ガンマ線(60Co線源、1.17MeV、1.33MeV、電子線と等価)及び熱中性子 (241Am/Li線源、α粒子と7Li粒子に対応)を入射入射した場合の、超伝導トンネル素子の電荷バルス信号の立ち上がり時間分布の測定結果を示す図である。X-ray ( 55 Fe source, energy 5.9 keV), gamma ray ( 60 Co source, 1.17 MeV, 1.33 MeV, equivalent to electron beam) and thermal neutron ( 241 Am / Li source, α particle and 7 Li particle) Is a diagram showing the measurement result of the rise time distribution of the charge pulse signal of the superconducting tunnel element when the light is incident. 単結晶基盤として10Bを96%濃縮した単結晶体LBO(LiB35あるいはLi247)を用い、その上に超伝導(S)/絶縁体(I)/超伝導(S)構造(SIS構造)のNb/Al/Al23/Al/Nb構造を用いた超伝導トンネル接合素子を製作した中性子検出器の構造を示す図である。A single crystal LBO (LiB 3 O 5 or Li 2 B 4 O 7 ) enriched with 96 B of 10 B is used as a single crystal substrate, and superconducting (S) / insulator (I) / superconducting (S ) is a diagram showing a Nb / Al / Al 2 O 3 / Al / Nb structure of the neutron detector structure was fabricated superconducting tunnel junction element using a structure (SIS structure). 従来のGe半導体検出素子上にフォノンセンサを形成し電荷とフォノンの相関を取ることにより線種弁別を行っている放射線検出器の構成を示す図である。It is a figure which shows the structure of the radiation detector which forms a phonon sensor on the conventional Ge semiconductor detection element, and is performing line | wire type discrimination by taking the correlation of an electric charge and a phonon.

Claims (2)

単結晶基盤上に製作された超伝導トンネル接合素子による放射線吸収により基盤で発生したフォノンを検出する放射線検出器において、ガンマ線またはX線または電子線と、粒子線とを電荷パルス信号の立ち上がり時間が異なることを利用して弁別することを特徴とした放射線検出器。   In a radiation detector that detects phonons generated in a substrate by radiation absorption by a superconducting tunnel junction device fabricated on a single crystal substrate, the rise time of the charge pulse signal is changed between gamma rays, X-rays or electron beams, and particle beams. A radiation detector characterized by discriminating using different things. 上記請求項1において、単結晶基盤の構成元素にボロン10(10B)あるいはリチウム6(6Li)を含むことを特徴とした中性子検出器。



























In the first aspect, neutron detectors comprising boron 10 (10 B) or lithium 6 (6 Li) as a constituent element of the single crystal base.



























JP2004004560A 2004-01-09 2004-01-09 Radiation detector and neutron detector with radiation type discrimination function Expired - Lifetime JP4465457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004560A JP4465457B2 (en) 2004-01-09 2004-01-09 Radiation detector and neutron detector with radiation type discrimination function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004560A JP4465457B2 (en) 2004-01-09 2004-01-09 Radiation detector and neutron detector with radiation type discrimination function

Publications (2)

Publication Number Publication Date
JP2005195552A JP2005195552A (en) 2005-07-21
JP4465457B2 true JP4465457B2 (en) 2010-05-19

Family

ID=34819142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004560A Expired - Lifetime JP4465457B2 (en) 2004-01-09 2004-01-09 Radiation detector and neutron detector with radiation type discrimination function

Country Status (1)

Country Link
JP (1) JP4465457B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101169A1 (en) * 2009-03-05 2010-09-10 Kurakado Masahiko Radiation detector
JP5317126B2 (en) 2010-03-05 2013-10-16 独立行政法人産業技術総合研究所 Ion valence discrimination high-speed particle detector
JP7418659B2 (en) * 2021-04-15 2024-01-19 三菱電機株式会社 radiation analyzer

Also Published As

Publication number Publication date
JP2005195552A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US6727504B1 (en) Boron nitride solid state neutron detector
US5734166A (en) Low-energy neutron detector based upon lithium lanthanide borate scintillators
JP2003248061A (en) Scintillator for detection neutron, and neutron detector using the same
EP1989573B1 (en) Solid state neutron detector
US6921903B2 (en) Method and system for measuring neutron emissions and ionizing radiation, solid state detector for use therein, and imaging system and array of such detectors for use therein
Streicher et al. Special nuclear material characterization using digital 3-D position sensitive CdZnTe detectors and high purity germanium spectrometers
EP0734076B1 (en) Wide range radiation detector
JP4465457B2 (en) Radiation detector and neutron detector with radiation type discrimination function
JP2006337136A (en) Neutron dosimetry device
JP6615713B2 (en) Radiation measurement equipment
Streicher et al. Fast neutron detection using pixelated CdZnTe spectrometers
US7599463B2 (en) Remote sensing device to detect materials of varying atomic numbers
RU2102775C1 (en) Neutron flux recorder
RU2158011C2 (en) Neutron and gamma-ray recording detector
Souza et al. Development and characterization of a water-based muon veto for the v-Angra Experiment
Bernat et al. 4H-SiC Schottky Barrier Diodes for Efficient Thermal Neutron Detection. Materials 2021, 14, 5105
Kang et al. Response of a photodiode coupled with boron for neutron detection
Kaufman et al. Wire spark chambers for clinical imaging of gamma-rays
Zimmerman et al. Optimized system for hydrogen detection
Paulus et al. Enhancement of peak-to-total ratio in gamma-ray spectroscopy
Jain et al. Measurement of high energy neutrons by fission reactions
WO2022174917A1 (en) Neutron counting by delayed capture-gamma detection (dcd)
Na et al. Discrimination of non-radiation backgrounds in the proportional counter of MARDS
WO2022228699A1 (en) System and method to count neutrons
RU2413246C1 (en) Solid-state neutron detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4465457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term